JP3347808B2 - Rechargeable battery charging method - Google Patents

Rechargeable battery charging method

Info

Publication number
JP3347808B2
JP3347808B2 JP12113493A JP12113493A JP3347808B2 JP 3347808 B2 JP3347808 B2 JP 3347808B2 JP 12113493 A JP12113493 A JP 12113493A JP 12113493 A JP12113493 A JP 12113493A JP 3347808 B2 JP3347808 B2 JP 3347808B2
Authority
JP
Japan
Prior art keywords
charging
terminal voltage
charging current
battery
differential value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12113493A
Other languages
Japanese (ja)
Other versions
JPH06333603A (en
Inventor
誉士 石倉
英知 竹本
恭一 有賀
高陽 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12113493A priority Critical patent/JP3347808B2/en
Publication of JPH06333603A publication Critical patent/JPH06333603A/en
Application granted granted Critical
Publication of JP3347808B2 publication Critical patent/JP3347808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電動車両の
走行用エネルギー源として使用される二次電池の電方
法に関する。
The present invention relates to relates to, for example, charging method for a secondary battery used as traveling energy source of the electric vehicle.

【0002】[0002]

【従来の技術】従来、鉛電池やニッケルカドミウム電池
等の二次電池を、その過充電を回避しながら効率的に充
電する手法として、特開平1−93071号公報、特開
昭53−66543号公報、特開昭51−86732号
公報に記載されたものが知られている。
2. Description of the Related Art Conventionally, as a method for efficiently charging a secondary battery such as a lead battery or a nickel cadmium battery while avoiding overcharging, JP-A-1-93071 and JP-A-53-66543. Japanese Patent Laid-Open Publication No. Sho 51-86732 is known.

【0003】特開平1−93071号公報に記載された
ものは、充電中における電池の端子電圧が所定の設定電
圧に達したことが検出されると、充電電流を減少させる
ように制御が行われる。
In the device described in JP-A-1-93071, when it is detected that the terminal voltage of a battery during charging has reached a predetermined set voltage, control is performed so as to reduce the charging current. .

【0004】また、特開昭53−66543号公報に記
載されたものは、充電中における電池の端子電圧の時間
微分値が正から負に変化したことが検出されると、充電
電流を減少させるように制御が行われる。
[0004] Japanese Patent Application Laid-Open No. 53-66543 discloses a technique in which the charging current is reduced when it is detected that the time derivative of the terminal voltage of the battery changes from positive to negative during charging. The control is performed as follows.

【0005】また、特開昭51−86732号公報に記
載されたものは、充電中における池の端子電圧の増加
率が所定値を下回る状態が所定時間継続すると、充電電
流を減少させるように制御が行われる。
[0005] Also, those described in JP-A-51-86732, when the state in which the increase rate of the terminal voltage of the batteries during charging is below a predetermined value continues for a predetermined time so as to decrease the charging current Control is performed.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記特開平
1−93071号公報のものは、設定電圧が低過ぎると
充電時間が長くなったり充電不足が発生したりする問題
があり、逆に設定電圧が高過ぎると過充電になって電池
の寿命を縮める問題がある。
The technique disclosed in Japanese Unexamined Patent Publication No. 1-93071 has a problem that if the set voltage is too low, the charging time becomes longer or insufficient charging occurs. If the charge is too high, there is a problem that the battery is overcharged and the life of the battery is shortened.

【0007】また、前記特開昭53−66543号公報
或いは前記特開昭51−86732号公報のものは、充
電電流を減少させる時点で既に過充電が発生している可
能性があり、やはり電池の寿命を縮める問題がある。
[0007] Further, in Japanese Unexamined Patent Application Publication No. 53-66543 or Japanese Unexamined Patent Application Publication No. 51-86732, there is a possibility that overcharging has already occurred at the time when the charging current is reduced. There is a problem that shortens the life of the device.

【0008】本発明は前述の事情に鑑みてなされたもの
で、過充電による電池の劣化を回避しながら短時間で効
率的な充電を行うための二次電池の電方法を提供する
ことを目的とする。
[0008] The present invention has been made in view of the above circumstances, it is to provide a charging method for secondary batteries for efficient charging in a short time while avoiding deterioration of the battery due to overcharging Aim.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載された発明によれば充電器に接続
されて充電される電池の充電電流及び端子電圧を検出
し、これら充電電流及び端子電圧に基づいて電池の充電
を制御する二次電池の充電方法において、電池を所定の
充電電流で充電し、端子電圧の二階時間微分値に基づい
て該端子電圧が変極点に達したことが検出されたときに
充電電流を減少させる第1工程と、減少した充電電流に
よる充電中に、電池の端子電圧の二階時間微分値に基づ
いて該端子電圧が変極点に達したことが検出されたとき
に充電電流を更に減少させる第2工程と、前記第2工程
を少なくとも1回実行した後に、電池のトータルの充電
電力 量が所定値に達したときに充電を停止する第3工程
とを含むことを特徴とする二次電池の充電方法が提案さ
れる。
To achieve the above object , according to the first aspect of the present invention, a battery charger is connected to a charger.
Current and terminal voltage of the battery being charged
The battery is charged based on the charging current and the terminal voltage.
In a method of charging a secondary battery for controlling
Charging with charging current, based on second-order time derivative of terminal voltage
When it is detected that the terminal voltage has reached the inflection point,
A first step of reducing the charging current, and
During charging by the second time derivative of the terminal voltage of the battery.
And it is detected that the terminal voltage has reached the inflection point
A second step of further reducing the charging current, and the second step
Is performed at least once, and then the battery is fully charged.
Third step of stopping charging when the amount of power reaches a predetermined value
A method of charging a secondary battery characterized by including
It is.

【0010】上記構成によれば、電池の充電中の端子電
圧の二階時間微分値に基づいて該端子電圧が変極点に達
したことが検出されたときに充電電流を減少させる制御
を少なくとも2回繰り返して行うので、充電電流をきめ
細かく制御して、電池を傷めることなく、より短時間で
の充電が可能となる。
According to the above configuration, the terminal voltage during charging of the battery is adjusted.
The terminal voltage reaches the inflection point based on the second-order time derivative of the voltage
Control to decrease the charging current when it is detected that
Is repeated at least twice, so that the charging current
Fine control, no battery damage, faster
Can be charged.

【0011】また請求項2に記載された発明によれば、
請求項1の構成に加えて、前記第2工程の実行中に端子
電圧の一階微分値が所定値以下になった後に該端子電圧
が変極点に達したことが検出されたとき、定電流充電か
ら定電圧充電に切り換えて充電電流を更に減少させるこ
とを特徴とする二次電池の充電方法が提案される。
According to the second aspect of the present invention,
In addition to the configuration of claim 1, the terminal is connected during execution of the second step.
After the first derivative of the voltage becomes equal to or less than a predetermined value, the terminal voltage
When the inflection point is reached,
Switch to constant voltage charging to further reduce the charging current.
A method of charging a secondary battery characterized by the following is proposed.

【0012】上記構成によれば、端子電圧が変極点に達
したことが検出されたときに充電電流を減少させる制御
を少なくとも2回繰り返して行う間に、端子電圧の一階
微分値が所定値以下になった後に該端子電圧が変極点に
達したことが検出されると、定電流充電から定電圧充電
に切り換えて充電電流を更に減少させるので、定電流充
電から定電圧充電への切り換えタイミングを適切に設定
して、電池を傷めることなく、より短時間での充電が可
能となる。
According to the above configuration, the terminal voltage reaches the inflection point.
Control to decrease the charging current when it is detected that
Is repeated at least two times,
After the differential value falls below the predetermined value, the terminal voltage becomes the inflection point.
When it is detected that the battery has reached
To reduce the charging current further,
Set the timing of switching from charging to constant voltage charging appropriately
The battery in less time without damaging the battery.
It works.

【0013】また請求項3に記載された発明によれば、
充電器に接続されて充電される電池の充電電流及び端子
電圧を検出し、これら充電電流及び端子電圧に基づいて
電池の充電を制御する二次電池の充電方法において、電
池を所定の充電電流で充電しながら端子電圧の二階時間
微分値を所定時間毎に算出する第1工程と、前記第1工
程で端子電圧の二階時間微分値が0以上であって端子電
圧の増加率が増加傾向にある場合に、前記充電電流に所
定値を加算した新たな充電電流で充電を継続するととも
に、前記第1工程で端子電圧の二階時間微分値が0未満
であって端子電圧の増加率が減少傾向にある場合に、前
記充電電流から所定値を減算した新たな充電電流で充電
を継続する第2工程と、電池のトータルの充電電力量が
所定値に 達したときに充電を停止する第3工程とを含む
ことを特徴とする二次電池の充電方法が提案される。
According to the third aspect of the present invention,
Charging current and terminals of the battery connected to the charger and charged
Voltage, and based on these charging currents and terminal voltages
In a method of charging a secondary battery for controlling charging of a battery,
Second-order time of terminal voltage while charging the pond with the specified charging current
A first step of calculating a differential value every predetermined time;
When the second derivative of the terminal voltage is 0 or more,
If the rate of increase of the pressure is increasing,
Continue charging with the new charging current with the fixed value added
In the first step, the second-order time differential value of the terminal voltage is less than 0
If the rate of increase of the terminal voltage is decreasing,
Charging with a new charging current obtained by subtracting a predetermined value from the charging current
And the total charge power of the battery
A third step of stopping charging when a predetermined value is reached.
A method for charging a secondary battery characterized by the above is proposed.

【0014】上記構成によれば、電池を所定の充電電流
で充電しながら端子電圧の二階時間微分値を所定時間毎
に算出し、その二階時間微分値が0以上であって端子電
圧の増加率が増加傾向にある場合には、前記充電電流に
所定値を加算した新たな充電電流で充電を継続し、逆に
端子電圧の二階時間微分値が0未満であって端子電圧の
増加率が減少傾向にある場合には、前記充電電流から所
定値を減算した新たな充電電流で充電を継続するので、
充電電流を一層きめ細かく制御して、電池を傷めること
なく、極めて短時間での充電が可能となる。
According to the above configuration, the battery is charged at a predetermined charging current.
The second derivative of the terminal voltage with predetermined time
And the second-order time differential value is 0 or more and
When the rate of increase in pressure is increasing, the charging current
Continue charging with the new charging current to which the predetermined value has been added, and conversely
When the second derivative of the terminal voltage is less than 0 and the terminal voltage
If the rate of increase is decreasing, the charge current is
Since charging is continued with a new charging current that has been subtracted from the fixed value,
Damaging the battery by controlling the charging current more finely
, And can be charged in an extremely short time.

【0015】また請求項4に記載された発明によれば、
請求項3の構成に加えて、前記第2工程で充電電流に所
定値を加算或いは減算するとき、端子電圧の一階時間微
分値の値に応じて前記所定値を増減することを特徴とす
る二次電池の充電方法が提案される。
According to the invention described in claim 4,
In addition to the configuration of claim 3, the charging current in the second step is controlled.
When adding or subtracting a constant value, the first-order time
The predetermined value is increased or decreased according to the value of the minute value.
A method of charging a secondary battery is proposed.

【0016】上記構成によれば、端子電圧の一階時間微
分値の値に応じて、充電電流に所定値を加算或いは減算
する所定値を増減するので、充電電流をより一層きめ細
かく制御することができる。
According to the above configuration, the first-order time period of the terminal voltage is reduced.
Adds or subtracts a predetermined value from the charging current according to the value of the minute value
Increase or decrease the specified value, so that the charging current can be
Thus, it can be controlled.

【0017】また請求項5に記載された発明によれば、
請求項1〜請求項4の何れか1項の構成に加えて、前記
第3工程で、電池のトータルの充電電力量を端子電圧と
充電電流との積を充電時間の全域に亘って積分して算出
することを特徴とする二次電池の充電方法が提案され
る。
According to the invention described in claim 5,
In addition to the configuration of any one of claims 1 to 4,
In the third step, the total charge power of the battery is defined as the terminal voltage.
Calculated by integrating the product with the charging current over the entire charging time
A method of charging a secondary battery characterized by
You.

【0018】上記構成によれば、電池のトータルの充電
電力量を端子電圧と充電電流との積を充電時間の全域に
亘って積分して算出するので、電池のトータルの充電電
力量を精密に算出することができる。
According to the above configuration, the total charge of the battery
The electric energy is the product of the terminal voltage and the charging current over the entire charging time.
The total charge of the battery is calculated
Competence can be calculated precisely.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の実施例に基づいて説明する。
Embodiments of the present invention will be described below.
A description will be given based on an embodiment of the present invention shown in the attached drawings .

【0020】図1〜図3は本発明の第1参考例を示すも
ので、図1は電池充電装置のブロック図、図2は電池を
定電流で充電した場合の電圧特性を示すグラフ、図3は
充電電流と端子電圧とを示すグラフである。
[0020] FIGS. 1 to 3 show a first exemplary embodiment of the present invention, FIG. 1 is a block diagram of a battery charging device, the graph 2 showing the voltage characteristics when the battery was charged at a constant current, Fig. 3 is a graph showing the charging current and the terminal voltage.

【0021】図1において、符号Bは例えば鉛電池等の
二次電池であって、充電電流を制御し得る充電器Cに接
続される。充電中における電池Bの充電電流及び端子電
圧は、それぞれ電流計1及び電圧計2によって検出され
る。電流計1及び電圧計2の出力は制御装置3に入力さ
れて演算処理され、その結果に基づいて充電器Cから電
池Bに供給される充電電流が制御される。
In FIG. 1, reference numeral B denotes a secondary battery such as a lead battery, which is connected to a charger C which can control a charging current. The charging current and terminal voltage of battery B during charging are detected by ammeter 1 and voltmeter 2, respectively. The outputs of the ammeter 1 and the voltmeter 2 are input to the control device 3 and subjected to arithmetic processing, and the charging current supplied from the charger C to the battery B is controlled based on the results.

【0022】図2に示すように、放電した電池Bを定電
流で充電すると、充電開始直後に端子電圧Vが急増する
期間(即ち、時刻T0 までの期間)があり、その後端子
電圧Vは緩やかに増加する。やがて端子電圧Vは急激に
増加し、ピークに達した後に減少に転じる。
As shown in FIG. 2, when the discharged battery B is charged with a constant current, there is a period in which the terminal voltage V sharply increases immediately after the start of charging (ie, a period until time T 0 ), and thereafter, the terminal voltage V becomes Increases slowly. Eventually, the terminal voltage V sharply increases, and starts decreasing after reaching the peak.

【0023】ところで、端子電圧Vがピーク近傍に達す
るまで充電を継続すると、電池Bの電解液が電気分解さ
れてガスが発生する状態、即ち、いわゆる過充電状態に
なって電池Bの寿命を縮めることになる。そこで、本実
施例では電池Bの端子電圧Vがピークに達する前に該端
子電圧Vの曲線に現れる変極点に着目し、端子電圧Vが
前記変極点に達する前の状態を過充電未到達状態とし、
また前記変極点に達した後の状態を過充電状態として充
電電流の制御を行うようになっている。これを、第1
考例に対応する図3に基づいて説明する。
If the charging is continued until the terminal voltage V reaches the vicinity of the peak, the electrolyte of the battery B is electrolyzed to generate gas, that is, a so-called overcharged state, and the life of the battery B is shortened. Will be. Therefore, in the present embodiment, focusing on the inflection point that appears on the curve of the terminal voltage V before the terminal voltage V of the battery B reaches the peak, the state before the terminal voltage V reaches the inflection point is referred to as the overcharge unreached state. age,
The state after reaching the inflection point is set as an overcharged state, and the charging current is controlled. This, the first participants
A description will be given based on FIG.

【0024】図3は定電流二段充電を行うもので、充電
の開始と共に充電器Cから電池Bに充電電流I1 が供給
され、その充電電流I1 は電流計1によって検出されて
一定値に保持される。充電中における電池Bの端子電圧
Vは電圧計2によって検出され、制御装置3は前記端子
電圧Vを時間で微分して一階時間微分値V′(=dV/
dt)を演算するとともに、その一階時間微分値V′を
更に時間で微分して二階時間微分値V″(=d2 V/d
2 )を演算する。
FIG. 3 shows a two-stage constant-current charging in which a charging current I 1 is supplied from a charger C to a battery B at the start of charging, and the charging current I 1 is detected by an ammeter 1 and is a constant value. Is held. The terminal voltage V of the battery B during charging is detected by the voltmeter 2, and the control device 3 differentiates the terminal voltage V with time to obtain a first-order time differential value V '(= dV /
dt), and the first-order time differential value V ′ is further differentiated with time to obtain a second-order time differential value V ″ (= d 2 V / d).
t 2 ) is calculated.

【0025】一階時間微分値V′は端子電圧Vの時間変
化率に対応するもので、その値が大きい程グラフにおけ
る端子電圧曲線の傾きが大きくなる。二階時間微分値
V″は端子電圧曲線の傾きが増加傾向にあるか減少傾向
にあるかを示すもので、その値が正の場合には端子電圧
曲線が下向きに凸になって増加傾向となり、負の場合に
は端子電圧曲線が上向きに凸になって減少傾向となる。
そして、二階時間微分値V″が正から負に変わるときが
端子電圧曲線の曲率の方向が変化する変極点に対応し、
そのときに端子電圧曲線の傾きが増加傾向から減少傾向
に転じることになる。
The first-order time differential value V 'corresponds to the rate of change of the terminal voltage V with time. The larger the value, the larger the slope of the terminal voltage curve in the graph. The second-order time differential value V ″ indicates whether the slope of the terminal voltage curve is increasing or decreasing. When the value is positive, the terminal voltage curve becomes convex downward and increases. In the case of a negative value, the terminal voltage curve becomes convex upward and tends to decrease.
When the second-order time differential value V ″ changes from positive to negative, it corresponds to the inflection point where the direction of the curvature of the terminal voltage curve changes,
At that time, the slope of the terminal voltage curve changes from an increasing tendency to a decreasing tendency.

【0026】而して、端子電圧曲線が電圧Vcにおいて
変極点に達すると、過充電を防止すべく制御装置3が充
電電流をI1 からI2 に減少させる。その後、充電電流
2で充電を継続し、トータルの充電電力量が前回の放
電電力量から決定される所定値に達したときに充電を停
止する。前記トータルの充電電力量は、端子電圧Vと充
電電流Iの積を充電時間の全域に亘って積分することに
より求められる。尚、充電の開始直後における端子電圧
Vの急増時にも変極点が発生する場合があるが、電池B
の端子電圧Vが所定値以下の状態において発生する前記
変極点は無視される。
When the terminal voltage curve reaches the inflection point at the voltage Vc, the control device 3 reduces the charging current from I 1 to I 2 to prevent overcharging. Thereafter, charging continues with a charging current I 2, and stops charging when the charged electrical energy of the total has reached a predetermined value determined from the previous discharge electric energy. The total charging power is obtained by integrating the product of the terminal voltage V and the charging current I over the entire charging time. It should be noted that an inflection point may also occur when the terminal voltage V suddenly increases immediately after the start of charging.
The inflection point that occurs when the terminal voltage V is equal to or lower than a predetermined value is ignored.

【0027】上述のように、端子電圧曲線が変極点に達
して該端子電圧曲線の傾きが増加傾向から減少傾向に転
じたときに充電電流Iを減少させているので、従来の定
電流二段充電に比べて充電電流Iを減少させるタイミン
グを適切に設定することが可能となり、短時間で効率的
な充電を行いながら過充電を防止して電池Bの寿命を延
長することができ、しかも周囲の温度や電池Bの個体差
による過充電や充電不足を発生させる虞がない。
As described above, the charging current I is reduced when the terminal voltage curve reaches the inflection point and the slope of the terminal voltage curve changes from increasing to decreasing. The timing at which the charging current I is reduced as compared with the charging can be appropriately set, and overcharging can be prevented while prolonging the life of the battery B while performing efficient charging in a short time. There is no possibility of overcharging or insufficient charging due to the temperature of the battery or the individual difference of the battery B.

【0028】図4は本発明の第2参考例を示すものであ
る。
FIG. 4 shows a second reference example of the present invention.

【0029】この第2参考例は定電流−定電圧充電を行
うもので、充電電流I1 での定電流充電による充電中
に、端子電圧曲線が変極点に達して該端子電圧曲線の傾
きが増加傾向から減少傾向に転じると、定電流充電から
そのときの端子電圧Vcでの定電圧充電に切り換えら
れ、これにより充電電流はI1 から次第に減少する。そ
して、トータルの充電電力量が所定値に達したときに充
電を停止する。
[0029] The second reference example constant current - performs a constant voltage charging, the charging by constant current charging at a charging current I 1, the slope of the terminal voltage curve terminal voltage curve reaches the inflection point Turning to decrease from increase, it is switched from the constant current charging to the constant voltage charging at the terminal voltage Vc at that time, thereby the charging current gradually decreases from I 1. Then, the charging is stopped when the total charging power reaches a predetermined value.

【0030】而して、上述した第2参考例によれば、従
来の定電流−定電圧充電に比べて、定電流充電から定電
圧充電への切り換えタイミングを適切に設定することが
でき、前記第1参考例と同様の作用効果を得ることが可
能である。
According to the second embodiment , the switching timing from the constant current charging to the constant voltage charging can be appropriately set, as compared with the conventional constant current-constant voltage charging. The same operation and effect as in the first reference example can be obtained.

【0031】以下、本発明の第1〜第4実施例を説明す
る。尚、前記第1参考例の図1及び図2は、第1〜第4
実施例についても同様に適用される。
Hereinafter, first to fourth embodiments of the present invention will be described.
You. FIGS. 1 and 2 of the first reference example are the first to fourth examples.
The same applies to the embodiment.

【0032】図5は本発明の第1実施例を示すものであ
る。
FIG. 5 shows a first embodiment of the present invention.

【0033】この第1実施例は定電流多段充電を行うも
ので、最初に充電電流I1 で定電流充電を行い、端子電
圧曲線が変極点に達すると充電電流をI2 に減少させて
再び定電流充電を行う。そして端子電圧曲線が再び変極
点に達すると充電電流をI3まで更に減少させ、これを
繰り返す間にトータルの充電電力量が所定値に達したと
きに充電を停止する。
In the first embodiment, the constant current multi-stage charging is performed. First , the constant current charging is performed with the charging current I 1 , and when the terminal voltage curve reaches the inflection point, the charging current is reduced to I 2 and the charging is performed again. Perform constant current charging. Then the charging current the terminal voltage curve reaches inflection point again further reduced to I 3, the charging power amount of total stops charging when it reaches a predetermined value while repeating this.

【0034】而して、上述した第1実施例によれば、前
記第1参考例に比べて更にきめ細かい充電電流Iの制御
が可能になり、電池Bを傷めることなく、より短時間で
の充電が可能となる。
Thus, according to the first embodiment described above, it is possible to control the charging current I more finely than in the first reference example, and to charge the battery B in a shorter time without damaging the battery B. Becomes possible.

【0035】図6は本発明の第2実施例を示すものであ
る。
FIG. 6 shows a second embodiment of the present invention.

【0036】この第2実施例は定電流多段−定電圧充電
を行うもので、端子電圧曲線が変極点に達する毎に充電
電流をI1 からI2 、I3 、…のように次第に減少させ
てゆき、端子電圧Vの増加率(即ち端子電圧Vの一階時
間微分値V′)が所定値以下になった後の変極点におい
て定電圧充電に切り換え、トータルの充電電力量が所定
値に達すると充電を停止する。
The second embodiment performs constant current multi-stage constant voltage charging. The charging current is gradually reduced from I 1 to I 2 , I 3 ,... Every time the terminal voltage curve reaches the inflection point. Then, at the inflection point after the rate of increase of the terminal voltage V (that is, the first-order time differential value V 'of the terminal voltage V) becomes equal to or less than a predetermined value, switching to constant voltage charging is performed, and the total amount of charging power reaches the predetermined value. Stop charging when it reaches.

【0037】而して、上述した第2実施例によれば、前
記第2参考例に比べて更にきめ細かい充電電流Iの制御
が可能になり、電池Bを傷めることなく、より短時間で
の充電が可能となる。
Thus, according to the second embodiment described above, it is possible to control the charging current I more finely than in the second embodiment, and to charge the battery B in a shorter time without damaging the battery B. Becomes possible.

【0038】次に、図7のフローチャートに基づいて本
発明の第3実施例を説明する。
Next, a third embodiment of the present invention will be described with reference to the flowchart of FIG.

【0039】先ず、ステップS1で充電電流Iによる電
池Bの充電を開始し、ステップS2で電池Bの充電が完
了するまでの間、ステップS3で微小時間t1毎に端子
電圧Vの二階時間微分値V″が0以上であるか否かを判
断する。
First, in step S1, charging of the battery B by the charging current I is started, and in step S3, until the charging of the battery B is completed, in step S3, the second-order time differential value of the terminal voltage V at every minute time t1. It is determined whether or not V ″ is 0 or more.

【0040】ステップS3で二階時間微分値V″が0以
上であって端子電圧Vの増加率が増加する傾向にある場
合には、電池Bが過充電される虞がないと判断し、ステ
ップS4で前記充電電流Iに所定の増加量pを加えたI
+pを充電電流Iとする。一方、ステップS3で二階時
間微分値V″が0未満であって端子電圧Vの増加率が減
少する傾向にある場合には、現在の充電電流Iのままで
は電池Bが過充電される虞があると判断し、ステップS
5で前記充電電流Iから所定の減少量hを引いたI−h
を充電電流Iとする。このようにして、微小時間t1毎
に端子電圧Vの二階時間微分値V″を参照しながら充電
電流Iを増加量p或いは減少量hだけ増減し、ステップ
S2で電池Bの充電が完了したときに充電電流Iの供給
を停止する。
If the second-order time differential value V ″ is 0 or more in step S3 and the rate of increase of the terminal voltage V tends to increase, it is determined that there is no risk that the battery B will be overcharged, and step S4 I is obtained by adding a predetermined increment p to the charging current I.
+ P is the charging current I. On the other hand, if the second-order time differential value V ″ is less than 0 and the rate of increase of the terminal voltage V tends to decrease in step S3, the battery B may be overcharged with the current charging current I as it is. It is determined that there is, and step S
Ih obtained by subtracting a predetermined reduction amount h from the charging current I at 5
Is the charging current I. In this manner, the charging current I is increased or decreased by the increase amount p or the decrease amount h with reference to the second-order time differential value V ″ of the terminal voltage V at each minute time t1, and when the charging of the battery B is completed in step S2. , The supply of the charging current I is stopped.

【0041】上述の第3実施例によれば、微小時間t1
毎に二階時間微分値V″を参照しているので、前述の第
、第2実施例よりも更にきめ細かい充電電流Iの制御
が可能になり、電池Bを劣化を防止しながら極めて短時
間で充電を完了させることが可能となる。
According to the third embodiment, the short time t1
Since the second-order time differential value V ″ is referred to each time, it is possible to control the charging current I more finely than in the first and second embodiments described above, and to prevent the battery B from deteriorating in an extremely short time. Charging can be completed.

【0042】次に、図8のフローチャート及び図9のグ
ラフに基づいて本発明の第4実施例を説明する。
Next, a fourth embodiment of the present invention will be described with reference to the flowchart of FIG. 8 and the graph of FIG.

【0043】先ず、ステップS11で充電電流Iによる
電池Bの充電を開始し、ステップS12で電池Bの充電
が完了するまでの間、ステップS13で微小時間t1毎
に二階時間微分値V″が0以上であるか否かを判断す
る。
First, the charging of the battery B with the charging current I is started in step S11, and until the charging of the battery B is completed in step S12, the second-order time differential value V ″ is set to 0 every minute time t1 in step S13. It is determined whether or not this is the case.

【0044】ステップS13で二階時間微分値V″が0
以上であって端子電圧Vの増加率が増加する傾向にある
場合には、電池Bが過充電される虞がないと判断し、以
下のステップS14〜S19で充電電流Iを増加或いは
一定値に保持する制御が行われる。
In step S13, the second-order time differential value V "is set to 0.
When the rate of increase of the terminal voltage V has a tendency to increase, it is determined that the battery B is not likely to be overcharged, and the charging current I is increased or set to a constant value in steps S14 to S19 below. The holding control is performed.

【0045】即ち、ステップS14で端子電圧Vの一階
時間微分値V′が定数aと比較され、一階時間微分値
V′がa未満である場合、つまり端子電圧Vの増加率が
小さい場合には、ステップS15で充電電流Iの増加量
pとして大きい値p(大)が選択される。また、ステッ
プS14で一階時間微分値V′がa以上であり、且つス
テップS16で一階時間微分値V′が前記aよりも大き
い定数b(a<b)未満である場合には、ステップS1
7で充電電流Iの増加量pとして中間の値p(中)が選
択される。更に、ステップS16で二階時間微分値V″
がb以上である場合には、ステップS18で充電電流I
の増加量pとして0が選択される。そして、ステップS
19で、前記各ステップS15,S17,S15で求め
た増加量pを前記充電電流Iに加えて新たな充電電流I
とする。
That is, in step S14, the first-order time differential value V 'of the terminal voltage V is compared with the constant a, and when the first-order time differential value V' is smaller than a, that is, when the rate of increase of the terminal voltage V is small. In step S15, a large value p (large) is selected as the increase amount p of the charging current I in step S15. If the first-order time differential value V 'is equal to or larger than a in step S14 and the first-order time differential value V' is smaller than a constant b (a <b) larger than a in step S16, S1
At 7, an intermediate value p (medium) is selected as the increase amount p of the charging current I. Further, in step S16, the second-order time differential value V ″
Is greater than or equal to b, the charging current I is determined in step S18.
0 is selected as the increase amount p of. And step S
In step 19, the increment p obtained in each of the steps S15, S17 and S15 is added to the charging current I to obtain a new charging current I.
And

【0046】一方、ステップS13で二階時間微分値
V″が0未満であって端子電圧Vの増加率が減少する傾
向にある場合には、そのままの充電電流Iでは電池Bが
過充電される虞があると判断し、以下のステップS20
〜S25で充電電流Iを減少させる制御が行われる。
On the other hand, if the second-order time differential value V ″ is less than 0 and the rate of increase of the terminal voltage V tends to decrease in step S13, the battery B may be overcharged with the charging current I as it is. Is determined to exist, and the following step S20
At steps S25 to S25, control for reducing the charging current I is performed.

【0047】即ち、ステップS20で端子電圧Vの一階
時間微分値V′が定数Fと比較され、一階時間微分値
V′がFを越えた場合、つまり端子電圧Vの増加率が大
きい場合には、ステップS21で充電電流Iの減少量h
として小さい値h(小)が選択される。また、ステップ
S20で一階時間微分値V′がF以下であり、且つステ
ップS22で一階時間微分値V′が前記Fよりも小さい
定数G(F>G)を越えている場合には、ステップS2
3で充電電流Iの減少量hとして中間の値h(中)が選
択される。更に、ステップS22で二階時間微分値V″
がG以下である場合には、ステップS24で充電電流I
の減少量hとして大きい値h(大)が選択される。そし
て、ステップS25で、前記各ステップS21,S2
3,S24で求めた減少量hを前記充電電流Iから引い
て新たな充電電流Iとする。
That is, in step S20, the first-order time differential value V 'of the terminal voltage V is compared with the constant F, and when the first-order time differential value V' exceeds F, that is, when the rate of increase of the terminal voltage V is large. In step S21, the decrease amount h of the charging current I
Is selected as a small value h (small). If the first-order time differential value V 'is equal to or less than F in step S20 and the first-order time differential value V' exceeds a constant G (F> G) smaller than F in step S22, Step S2
At 3, an intermediate value h (medium) is selected as the decrease amount h of the charging current I. Further, in step S22, the second-order time differential value V ″
Is less than or equal to G, the charging current I is determined in step S24.
A large value h (large) is selected as the decrease amount h of. Then, in step S25, each of the above-described steps S21, S2
3. The amount of decrease h determined in S24 is subtracted from the charging current I to obtain a new charging current I.

【0048】上述のようにして、端子電圧Vの二階時間
微分値V″が正であるときに、端子電圧Vの一階時間微
分値V′の大小を参照し、その値が小さい場合には変極
点に達するまでに時間的余裕があると判断して充電電流
Iの増加量pが大きく設定され、逆に一階時間微分値
V′が大きい場合には間もなく変極点に達すると判断し
て充電電流Iの増加量pが小さく設定される。また、端
子電圧Vの二階時間微分値V″が負であるときに、端子
電圧Vの一階時間微分値V′の大小を参照し、その値が
大きい場合には変極点を通り越して間もないと判断して
充電電流Iの減少量hが小さく設定され、逆に一階時間
微分値V′が小さい場合には変極点を通り越してから時
間が経過していると判断して充電電流Iの減少量hが大
きく設定される。而して、この第4実施例によれば、前
述した第3実施例に比べて一層精密な充電電流Iの制御
を行うことができる。
As described above, when the second-order time differential value V ″ of the terminal voltage V is positive, the magnitude of the first-order time differential value V ′ of the terminal voltage V is referred to. It is determined that there is enough time to reach the inflection point, and the increase amount p of the charging current I is set large. Conversely, if the first-order time differential value V 'is large, it is determined that the inflection point will be reached soon. The increase amount p of the charging current I is set to be small, and when the second-order time differential value V ″ of the terminal voltage V is negative, the magnitude of the first-order time differential value V ′ of the terminal voltage V is referred to, and If the value is large, it is determined that it is just past the inflection point, and the reduction amount h of the charging current I is set to be small. Conversely, if the first-order time differential value V 'is small, it is necessary to pass the inflection point. It is determined that the time has elapsed, and the decrease amount h of the charging current I is set to be large. Thus, according to the fourth embodiment, it is possible to control the charging current I more precisely than in the third embodiment.

【0049】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものでなく、種々の設計変
更を行うことが可能である。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various design changes can be made.

【0050】例えば、実施例では端子電圧Vの二階時間
微分値V″=0の状態(即ち、変極点)を基準にして
電電流Iを制御しているが、本発明においてV″=0と
はV″が0の近傍の値である場合を含むものとする。
[0050] For example, the state of the second-order time differential value V "= 0 in the terminal voltage V in the embodiment (i.e., inflection point) charged relative to the
Although the current I is controlled, V ″ = 0 in the present invention.
Is assumed to include the case where V ″ is a value near 0.

【0051】また、端子電圧Vの二階時間微分値V″を
求める際に、必ずしも前記二階時間微分値V″を直接演
算する必要はなく、端子電圧Vとその一階時間微分値
V′とから二階時間微分値V″を推定することが可能で
ある。例えば、図2において、端子電圧Vが「小」から
「最大」まで変化する間に、一階時間微分値V′が
「小」から「大」まで増加し、そこで減少に転じて
「0」まで減少しているが、前記一階時間微分値V′が
増加から減少に転じる前記「大」の位置が二階時間微分
値V″=0の変極点に対応する。
When calculating the second-order time differential value V ″ of the terminal voltage V, it is not always necessary to directly calculate the second-order time differential value V ″, and the terminal voltage V and its first-order time differential value V ′ are used. It is possible to estimate the second-order time differential value V ″. For example, in FIG. 2, while the terminal voltage V changes from “small” to “maximum”, the first-order time differential value V ′ changes from “small”. Although it increases to "large" and then decreases and then decreases to "0", the position of "large" where the first-order time differential value V 'changes from increasing to decreasing is the second-order time differential value V "= Corresponds to zero inflection point.

【0052】また、第3実施例では過充電状態の度合い
の判定及び過充電未到達状態の度合いの判定を一階時間
微分値V′に大小に基づいて行っているが、この一階時
間微分値V′を直接演算することなく端子電圧V及び二
階時間微分値V″から推定することが可能である。例え
ば、図2において、二階時間微分値V″=0に達するま
での過充電未到達状態において、二階時間微分値V″が
「小」から「大」に達するまでは一階時間微分値V′が
小さく、また「大」から「0」に達するまでは一階時間
微分値V′が大きいと推定することができ、更に二階時
間微分値V″=0を越えた過充電状態において、二階時
間微分値V″が「0」から「−大」に達するまでは一階
時間微分値V′が大きく、また「−大」から「−小」に
達するまでは一階時間微分値V′が小さいと推定するこ
とができる。そして、前記二階時間微分値V″も結局は
端子電圧Vから得られる値であるため、池Bの端子電
圧Vに基づいて過充電状態の度合い及び過充電未到達状
態の度合いを判定することが可能となる。
In the third embodiment, the determination of the degree of overcharge state and the determination of the degree of overcharge unreached state are performed based on the magnitude of the first-order time differential value V '. The value V ′ can be estimated from the terminal voltage V and the second-order time differential value V ″ without directly calculating. For example, in FIG. 2, overcharging has not been reached until the second-order time differential value V ″ = 0. In the state, the first-order time differential value V ′ is small until the second-order time differential value V ″ reaches “large” from “small”, and the first-order time differential value V ′ until it reaches “0” from “large”. Can be estimated to be large, and further, in an overcharged state exceeding the second-order time differential value V ″ = 0, the first-order time differential value until the second-order time differential value V ″ reaches “−large” from “0”. V 'is large and the first floor until it reaches "-large" to "-small" It can be estimated that between differential value V 'is small. Since the second-order time differential value V "also eventually is a value obtained from the terminal voltage V, to determine the degree and extent of overcharge unreached status of the overcharged state based on the terminal voltage V of the batteries B Becomes possible.

【0053】また、本発明における一階時間微分値V′
及び二階時間微分値V″は数学的な意味での厳密な微分
値である必要はなく、一階時間微分値V′は微小な所定
時間における端子電圧Vの変化量を前記所定時間で除算
した値で代用することができ、また二階時間微分値V″
は微小な所定時間における一階時間微分値V′の変化量
を前記所定時間で除算した値で代用することができる。
In the present invention, the first-order time differential value V '
And the second-order time differential value V ″ need not be an exact differential value in a mathematical sense, and the first-order time differential value V ′ is obtained by dividing the amount of change in the terminal voltage V during a minute predetermined time by the predetermined time. Value, and the second-order time differential value V ″
Can be substituted by a value obtained by dividing the amount of change of the first-order time differential value V 'in a minute predetermined time by the predetermined time.

【0054】[0054]

【発明の効果】以上のように、請求項1記載された発
明によれば、電池の充電中の端子電圧の二階時間微分値
に基づいて該端子電圧が変極点に達したことが検出され
たときに充電電流を減少させる制御を少なくとも2回繰
り返して行うので、充電電流をきめ細かく制御して、電
池を傷めることなく、より短時間での充電が可能とな
る。
As described above, according to the first aspect of the present invention, the second-order time differential value of the terminal voltage during charging of the battery is provided.
It is detected that the terminal voltage has reached the inflection point based on
Control to reduce the charging current at least twice
Since the charging is performed repeatedly, the charging current is
It is possible to charge in a shorter time without damaging the pond.
You.

【0055】また請求項2に記載された発明によれば、
端子電圧が変極点に達したことが検出されたときに充電
電流を減少させる制御を少なくとも2回繰り返して行う
間に、端子電圧の一階微分値が所定値以下になった後に
該端子電圧が変極点に達したことが検出されると、定電
圧制御により充電電流を更に減少させるので、定電流充
電から定電圧充電への切り換えタイミングを適切に設定
して、電池を傷めることなく、より短時間での充電が可
能となる。
According to the second aspect of the present invention,
Charge when terminal voltage reaches inflection point
Repeat the control to reduce the current at least twice
In the meantime, after the first derivative of the terminal voltage becomes
When it is detected that the terminal voltage has reached the inflection point,
Since the charging current is further reduced by the voltage control,
Set the timing of switching from charging to constant voltage charging appropriately
The battery in less time without damaging the battery.
It works.

【0056】また請求項3に記載された発明によれば、
電池を所定の充電電流で充電しながら端子電圧の二階時
間微分値を所定時間毎に算出し、その二階時間微分値が
0以上であって端子電圧の増加率が増加傾向にある場合
には、前記充電電流に所定値を加算した新たな充電電流
で充電を継続し、逆に端子電圧の二階時間微分値が0未
満であって端子電圧の増加率が減少傾向にある場合に
は、前記充電電流から所定値を減算した新たな充電電流
で充電を継続するので、充電電流を一層きめ細かく制御
して、電池を傷めることなく、極めて短時間での充電が
可能となる。
According to the third aspect of the present invention,
While charging the battery with the specified charging current, when the terminal voltage is on the second floor
Is calculated every predetermined time, and the second-order time differential value is calculated.
0 or more and the rate of increase in terminal voltage is increasing
Is a new charging current obtained by adding a predetermined value to the charging current.
To continue charging, and conversely, the terminal time
Full and the rate of increase in terminal voltage is decreasing
Is a new charging current obtained by subtracting a predetermined value from the charging current.
, So that charging current can be controlled more finely
Battery in a very short time without damaging the battery.
It becomes possible.

【0057】また請求項4に記載された発明によれば、
端子電圧の一階時間微分値の値に応じて、充電電流に所
定値を加算或いは減算する所定値を増減するので、充電
電流をより一層きめ細かく制御することができる。
According to the fourth aspect of the present invention,
Depending on the value of the first derivative of the terminal voltage,
Add or subtract a fixed value Increase or decrease the specified value, so charge
The current can be more finely controlled.

【0058】また請求項5に記載された発明によれば、
電池のトータルの充電電力量を端子電圧と充電電流との
積を充電時間の全域に亘って積分して算出するので、電
池のトータルの充電電力量を精密に算出することができ
る。
According to the invention described in claim 5,
The total charge power of the battery is calculated by comparing the terminal voltage and the charge current.
The product is calculated by integrating over the entire charging time.
Accurate calculation of the total charging power of the pond
You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池充電装置のブロック図FIG. 1 is a block diagram of a battery charger.

【図2】電池を定電流で充電した場合の電圧特性を示す
グラフ
FIG. 2 is a graph showing voltage characteristics when a battery is charged with a constant current.

【図3】第1参考例の充電電流と端子電圧とを示すグラ
FIG. 3 is a graph showing a charging current and a terminal voltage according to a first reference example ;

【図4】第2参考例の充電電流と端子電圧とを示すグラ
FIG. 4 is a graph showing a charging current and a terminal voltage according to a second reference example ;

【図5】第1実施例の充電電流と端子電圧とを示すグラ
FIG. 5 is a graph showing a charging current and a terminal voltage according to the first embodiment.

【図6】第2実施例の充電電流と端子電圧とを示すグラ
FIG. 6 is a graph showing the charging current and the terminal voltage of the second embodiment.

【図7】第3実施例の充電方法を示すフローチャートFIG. 7 is a flowchart illustrating a charging method according to a third embodiment.

【図8】第4実施例の充電方法を示すフローチャートFIG. 8 is a flowchart illustrating a charging method according to a fourth embodiment.

【図9】第4実施例の充電電流と端子電圧とを示すグラ
FIG. 9 is a graph showing the charging current and the terminal voltage of the fourth embodiment.

【符号の説明】[Explanation of symbols]

B 電池 C 充電器 I 充電電流 V 端子電圧 V′ 一階時間微分値 V″ 二階時間微分 p 増加量(所定値) h 減少量(所定値) t1 微小時間(所定時間) B Battery C Charger I Charging current V Terminal voltage V 'First-order time differential value V "Second-order time differential value p Increase (predetermined value) h Decrease (predetermined value) t1 minute time (predetermined time)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関根 高陽 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (56)参考文献 特開 平4−217826(JP,A) 特開 平5−83876(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/42 - 10/48 H02J 7/00 - 7/12 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koyo Sekine 1-4-1, Chuo, Wako-shi, Saitama Pref. Honda Technical Research Institute Co., Ltd. (56) References JP-A-4-217826 (JP, A) JP-A Heisei 5-83876 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/42-10/48 H02J 7 /00-7/12

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充電器(C)に接続されて充電される電
池(B)の充電電流(I)及び端子電圧(V)を検出
し、これら充電電流(I)及び端子電圧(V)に基づい
て電池(B)の充電を制御する二次電池の充電方法にお
いて、 電池(B)を所定の充電電流(I)で充電し、端子電圧
(V)の二階時間微分値(V″)に基づいて該端子電圧
(V)が変極点に達したことが検出されたときに充電電
流(I)を減少させる第1工程と、 減少した充電電流(I)による充電中に、電池(B)の
端子電圧(V)の二階時間微分値(V″)に基づいて該
端子電圧(V)が変極点に達したことが検出されたとき
に充電電流(I)を更に減少させる第2工程と、 前記第2工程を少なくとも1回実行した後に、電池
(B)のトータルの充電電力量が所定値に達したときに
充電を停止する第3工程と、 を含むことを特徴とする二次電池の充電方法。
1. An electric power source connected to a charger (C) and charged.
Detection of charging current (I) and terminal voltage (V) of pond (B)
Then, based on the charging current (I) and the terminal voltage (V),
Battery (B) charging method to control the rechargeable battery
There are, to charge the battery (B) is at a predetermined charging current (I), the terminal voltage
(V) based on the second-order time differential value (V ″)
(V) is charged when it is detected that the inflection point has been reached.
A first step of reducing the current (I) and during charging with the reduced charging current (I),
Based on the second-order time differential value (V ″) of the terminal voltage (V),
When it is detected that the terminal voltage (V) has reached the inflection point
A second step of further reducing the charging current (I); and performing the second step at least once.
(B) when the total charging power reaches a predetermined value
And a third step of stopping charging.
【請求項2】 前記第2工程の実行中に端子電圧(V)
の一階微分値(V′)が所定値以下になった後に該端子
電圧(V)が変極点に達したことが検出されたとき、定
電流充電から定電圧充電に切り換えて充電電流(I)を
更に減少させることを特徴とする、請求項1に記載の二
次電池の充電方法。
2. The method according to claim 1, wherein a terminal voltage (V) is applied during execution of said second step.
After the first-order differential value (V ') becomes equal to or less than a predetermined value,
When it is detected that the voltage (V) has reached the inflection point,
Switching from current charging to constant voltage charging and charging current (I)
2. The method according to claim 1, further comprising:
How to charge the next battery.
【請求項3】 充電器(C)に接続されて充電される電
池(B)の充電電流(I)及び端子電圧(V)を検出
し、これら充電電流(I)及び端子電圧(V)に基づい
て電池(B)の充電を制御する二次電池の充電方法にお
いて、 電池(B)を所定の充電電流(I)で充電しながら端子
電圧(V)の二階時間微分値(V″)を所定時間(t
1)毎に算出する第1工程と、 前記第1工程で端子電圧(V)の二階時間微分値
(V″)が0以上であって端子電圧(V)の増加率が増
加傾向にある場合に、前記充電電流(I)に所定値
(p)を加算した新たな充電電流(I)で充電を継続す
るとともに、前記第1工程で端子電圧(V)の二階時間
微分値(V″)が0未満であって端子電圧(V)の増加
率が減少傾向にある場合に、前記充電電流(I)から所
定値(h)を減算し た新たな充電電流(I)で充電を継
続する第2工程と、 電池(B)のトータルの充電電力量が所定値に達したと
きに充電を停止する第3工程と、 を含むことを特徴とする二次電池の充電方法。
3. An electric power source connected to a charger (C) and charged.
Detection of charging current (I) and terminal voltage (V) of pond (B)
Then, based on the charging current (I) and the terminal voltage (V),
Battery (B) charging method to control the rechargeable battery
Terminal while charging the battery (B) with a predetermined charging current (I).
A second-order time differential value (V ″) of the voltage (V) is calculated for a predetermined time (t
1) a first step of calculating each time, and a second-order time differential value of the terminal voltage (V) in the first step
(V ″) is 0 or more, and the rate of increase of the terminal voltage (V) increases.
When the charging current (I) is increasing,
Continue charging with new charging current (I) to which (p) is added
And the second order time of the terminal voltage (V) in the first step.
When the differential value (V ″) is less than 0 and the terminal voltage (V) increases
When the charging rate is decreasing, the charging current (I) is
Charging is continued with a new charging current (I) from which the constant value (h) is subtracted.
A second step that follows, and that the total charging power of the battery (B) has reached a predetermined value;
And a third step of stopping charging when the battery is charged.
【請求項4】 前記第2工程で充電電流(I)に所定値
(p,h)を加算或いは減算するとき、端子電圧(V)
の一階時間微分値(V′)の値に応じて前記所定値
(p,h)を増減することを特徴とする、請求項3に記
載の二次電池の充電方法。
4. The method according to claim 2, wherein the charging current (I) is set to a predetermined value in the second step.
When adding or subtracting (p, h), the terminal voltage (V)
The predetermined value according to the value of the first-order time differential value (V ′)
4. The method according to claim 3, wherein (p, h) is increased or decreased.
How to charge the above secondary battery.
【請求項5】 前記第3工程で、電池(B)のトータル
の充電電力量を端子電圧(V)と充電電流(I)との積
を充電時間の全域に亘って積分して算出することを特徴
とする、請求項1〜請求項4の何れか1項に記載の二次
電池の充電方法。
5. The method according to claim 3, wherein in the third step, the total of the battery (B) is
Is the product of the terminal voltage (V) and the charging current (I).
Is calculated by integrating over the entire charging time.
The secondary according to any one of claims 1 to 4,
How to charge the battery.
JP12113493A 1993-05-24 1993-05-24 Rechargeable battery charging method Expired - Fee Related JP3347808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12113493A JP3347808B2 (en) 1993-05-24 1993-05-24 Rechargeable battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12113493A JP3347808B2 (en) 1993-05-24 1993-05-24 Rechargeable battery charging method

Publications (2)

Publication Number Publication Date
JPH06333603A JPH06333603A (en) 1994-12-02
JP3347808B2 true JP3347808B2 (en) 2002-11-20

Family

ID=14803719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12113493A Expired - Fee Related JP3347808B2 (en) 1993-05-24 1993-05-24 Rechargeable battery charging method

Country Status (1)

Country Link
JP (1) JP3347808B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332559B2 (en) * 2008-12-03 2013-11-06 レシップホールディングス株式会社 Charger
JP2012105467A (en) * 2010-11-11 2012-05-31 Diamond Electric Mfg Co Ltd Charger
JP5811921B2 (en) * 2012-03-27 2015-11-11 株式会社豊田自動織機 Lead-acid battery charger
JP7459531B2 (en) * 2020-01-31 2024-04-02 株式会社Gsユアサ Lead-acid battery charging method, control device, and computer program

Also Published As

Publication number Publication date
JPH06333603A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP3620118B2 (en) Constant current / constant voltage charger
JP3926699B2 (en) Secondary battery charging device and charging method thereof
JP3279071B2 (en) Battery pack charging device
US7129675B2 (en) System and method for battery charging
US5596259A (en) Method of charging a secondary battery
JP4112478B2 (en) Battery pack charger
JP3005460B2 (en) Rechargeable battery charging method
JPH0946916A (en) Charging controller
JPH10248175A (en) Method and apparatus for charging secondary battery
JPH08287957A (en) Method of charging carbon anode lithium storage battery
JP3347808B2 (en) Rechargeable battery charging method
JPH09200968A (en) Charge controller for battery set
JP3306188B2 (en) Rechargeable battery charging method
US6459239B1 (en) Method and apparatus for recharging batteries in the presence of a load current
JPH09149556A (en) Secondary battery charging method
JPH0956080A (en) Battery charger
JP3220797B2 (en) Rechargeable battery charging method
JP3157410B2 (en) Rechargeable battery charging method
JP3311500B2 (en) How to charge a lithium ion secondary battery
JP3268866B2 (en) Rechargeable battery charging method
JP3133534B2 (en) Battery overcharge / overdischarge prevention method
JP3092394B2 (en) Secondary battery charging method and device
JP3213432B2 (en) Rechargeable battery charging method
JP2793104B2 (en) Rechargeable battery charging method
JP3182283B2 (en) Charger and method of charging battery to be charged

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees