JP3279071B2 - Battery pack charging device - Google Patents

Battery pack charging device

Info

Publication number
JP3279071B2
JP3279071B2 JP14772894A JP14772894A JP3279071B2 JP 3279071 B2 JP3279071 B2 JP 3279071B2 JP 14772894 A JP14772894 A JP 14772894A JP 14772894 A JP14772894 A JP 14772894A JP 3279071 B2 JP3279071 B2 JP 3279071B2
Authority
JP
Japan
Prior art keywords
battery
voltage
bypass circuit
charging
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14772894A
Other languages
Japanese (ja)
Other versions
JPH0819188A (en
Inventor
雄一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14772894A priority Critical patent/JP3279071B2/en
Publication of JPH0819188A publication Critical patent/JPH0819188A/en
Application granted granted Critical
Publication of JP3279071B2 publication Critical patent/JP3279071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数個の二次電池を直
列接続して用いる組電池の充電装置に関し、特に密閉化
反応のないリチウム二次電池のような非水系二次電池の
組電池に好適な充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery charger for a battery pack using a plurality of secondary batteries connected in series, and more particularly to a battery pack for a non-aqueous secondary battery such as a lithium secondary battery having no sealing reaction. The present invention relates to a charging device suitable for a battery.

【0002】[0002]

【従来技術】電気自動車等においては、複数個の二次電
池を直列に接続した組電池が用いられる。このような組
電池の場合には、放電容量(放電可能な電気量)の減少
程度が各電池によって異なっている。例えば各電池間に
は製造バラツキがあり、また組電池で使用した場合の温
度分布が均一でない等の理由により、自己放電量や充電
受入率(充放電効率)に差があるので、放電容量の減少
程度が各電池によって異なっている。そのためDOD
(放電深度:全放電で100%、満充電で0%)0%か
らの放電容量には各電池にバラツキが生じ、それによっ
て組電池としての放電容量が減少する。すなわち、放電
時には、放電容量の小さくなった電池は早く放電終了し
て過放電状態となり、この過放電になっている電池が他
の電池の負荷となって、全ての電池がDOD100%に
ならないうちに電圧が低下し、組電池としては放電終了
になってしまう。一方、充電時には、放電時にDOD1
00%にならなかった電池が先にDOD0%に達して電
圧が上昇し、充電が終了してしまうが、放電時に過放電
になった電池はDOD0%にならないままで充電が終了
するので、DODの差は広がり、各電池の放電容量の差
も広がる。したがって、充放電を繰り返すと、放電容量
の小さかった電池は常に充電不足になるので、バラツキ
が大きくなって組電池全体としての放電容量が減少す
る。なお、一般に二次電池の場合には、充電終止電圧を
越えて過充電したり、放電終止電圧を過ぎて過放電する
と、寿命が低下するが、特にリチウム電池のような非水
系二次電池の場合にはその傾向が強いので、組電池中の
1個でも充電終止電圧や放電終止電圧に達した場合に
は、組電池としての充電、放電を終了する必要がある。
上記のように、複数の二次電池を直列接続した組電池に
おいては、放電容量やDODがばらついて、組電池全体
としての放電容量が低下するという問題があった。
2. Description of the Related Art In an electric vehicle or the like, an assembled battery in which a plurality of secondary batteries are connected in series is used. In the case of such an assembled battery, the degree of reduction in the discharge capacity (the amount of electricity that can be discharged) differs for each battery. For example, there is a difference in the self-discharge amount and the charge acceptance rate (charge / discharge efficiency) due to manufacturing variations among the batteries and the temperature distribution is not uniform when used in an assembled battery. The degree of reduction differs for each battery. Therefore DOD
(Depth of discharge: 100% for full discharge, 0% for full charge) The discharge capacity from 0% varies among the batteries, thereby reducing the discharge capacity of the assembled battery. That is, at the time of discharging, a battery having a reduced discharge capacity is quickly discharged and over-discharged, and the over-discharged battery becomes a load of another battery, and all batteries do not reach a DOD of 100%. Then, the voltage drops, and the battery pack ends discharging. On the other hand, when charging, DOD1
The battery that did not reach 00% first reaches DOD 0% and the voltage rises, and charging ends. However, the battery that has been overdischarged during discharging ends charging without reaching DOD 0%. And the difference in the discharge capacity of each battery also widens. Therefore, when charging and discharging are repeated, the battery having a small discharge capacity is always insufficiently charged, so that the variation becomes large and the discharge capacity of the whole assembled battery decreases. In general, in the case of a secondary battery, if the battery is overcharged beyond the end-of-charge voltage or overdischarged after the end-of-discharge voltage, its life is shortened. In particular, a non-aqueous secondary battery such as a lithium battery is used. In such a case, the tendency is strong. Therefore, when even one of the assembled batteries reaches the end-of-charge voltage or end-of-discharge voltage, it is necessary to end the charging and discharging of the assembled battery.
As described above, in a battery pack in which a plurality of secondary batteries are connected in series, there is a problem that the discharge capacity and DOD vary, and the discharge capacity of the whole battery pack decreases.

【0003】上記の問題に対処するための第1の従来例
としては、例えば、特開昭51−85437号公報に記
載されたものがある。この装置は、組電池を構成する各
電池の電圧のバラツキが大きくなると、充電電圧もしく
は充電電流を大きくして均等充電を行うものである。ま
た、第2の従来例としては、特開昭61−206179
号公報に記載されたものがある。この装置は、組電池を
構成する各電池に並列にバイパス回路を接続し、満充電
になった電池はバイパス回路を導通させて充電電流を低
下させ、充電終了していない電池は充電を継続すること
によってバラツキを減少させるものである。また、第3
の従来例としては、特開平5−64377号公報に記載
されたものがある。この従来例には、組電池を構成する
各電池のうち、1個でも満充電に達したら充電を停止さ
せるもの、および満充電に達した電池は充電電流をバイ
パスさせる回路を設けるものが記載されている。図6
は、上記のごとく満充電(充電終止電圧)に達した電池
のバイパス回路をを作動させる場合における電池電圧V
b、電池を流れる電流Ib、バイパス回路を流れる電流I
bpの変化を示す特性図である。図6に示すように、充電
開始から時点t1までは、バイパス回路をオフにし、充
電回路の電流をそのまま電池電流Ibとする。そして充
電によって電池電圧Vbが次第に上昇し、充電終止電圧
に達した時点t1でバイパス回路を作動させる。それ以
後は、電池電圧Vbが充電終止電圧を越えないようにバ
イパス回路を流れる電流Ibpを次第に増加させ、電池電
流Ibを次第に減少させる。時点t2では充電電流が0に
なっている。上記のように、満充電(充電終止電圧)に
達した電池については、バイパス回路を作動させて充電
電流を減少させ、他の満充電に達しない電池については
通常の充電を継続することにより、バラツキを解消する
ことが出来る。
As a first conventional example for addressing the above problem, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 51-85437. This device performs a uniform charging by increasing the charging voltage or the charging current when the variation in the voltage of each battery constituting the assembled battery increases. A second conventional example is disclosed in JP-A-61-206179.
Is described in Japanese Unexamined Patent Application Publication No. 2000-205,878. In this device, a bypass circuit is connected in parallel to each of the batteries constituting the assembled battery, a fully charged battery conducts the bypass circuit to reduce the charging current, and a battery that has not been charged continues charging. This reduces the variation. Also, the third
An example of the prior art is disclosed in Japanese Patent Application Laid-Open No. 5-64377. This conventional example describes a battery that stops charging when at least one battery has reached a full charge, and a battery that has a circuit that bypasses a charging current for a battery that has reached a full charge. ing. FIG.
Is the battery voltage V when activating the bypass circuit of the battery that has reached full charge (end-of-charge voltage) as described above.
b, current Ib flowing through the battery, current I flowing through the bypass circuit
FIG. 4 is a characteristic diagram showing a change in bp. As shown in FIG. 6, the start of charging to the time t 1, the bypass circuit is turned off, it is referred to as battery current Ib the current of the charging circuit. Then gradually increases the battery voltage Vb by the charging, activating the bypass circuit at the time t 1 has reached the charge voltage. Thereafter, the current Ibp flowing through the bypass circuit is gradually increased so that the battery voltage Vb does not exceed the charge termination voltage, and the battery current Ib is gradually decreased. At time t 2 is the charging current is 0. As described above, by operating the bypass circuit to reduce the charging current for a battery that has reached a full charge (end-of-charge voltage), and continuing normal charging for other batteries that have not reached a full charge. Variations can be eliminated.

【0004】[0004]

【発明が解決しようとする課題】しかし、第1の従来例
に記載の方法は、鉛−酸二次電池の場合には有効である
が、リチウム電池のような非水系二次電池の場合には、
第1の従来例のように過電圧を印加すると、前記のごと
く電池の寿命に重大な悪影響を及ぼすという問題があ
る。また、第2の従来例および第3の従来例では、共に
満充電になった電池の充電電流をバイパスするものであ
るため、次のごとき問題がある。すなわち、充電時には
常に満充電になるまで充電するとは限らず、途中で充電
を終了する場合も多いが、上記従来例では、満充電にな
らなければバラツキ解消機能が働かないので、各電池の
バラツキを常に解消することは困難である。また、電気
自動車のような大きな電力を取り扱う場合には、簡単な
定電圧ダイオードは電力的に使用が困難であるため、上
記のバイパス回路としては、抵抗とスイッチング素子
(FETなど)との直列回路を各電池に並列に接続する
方法が用いられる。しかし、前記図6の特性のように、
バイパス回路を流れる電流を制御する場合、スイッチン
グ素子をアナログ的に制御してバイパス電流を可変にす
る方法では、FETの電力損失が大きくなり、大容量の
FETとヒートシンクが必要になるという問題が生じる
ので、FETのオン−オフ時間をデューティ制御するP
WM制御方式を採用することが望ましい。しかし、電池
の場合には、その内部抵抗のため、バイパス回路をオフ
にしたときの電池電圧とオンにしたときの電池電圧とが
異なっているので、上記第2、第3の従来例のように満
充電になったものについてバイパス回路を作動させる
と、FETをオン−オフ制御する際に、オフ時には印加
電圧が規定電圧よりも高くなり、電池の寿命に悪影響を
及ぼすという問題があった。
However, the method described in the first conventional example is effective in the case of a lead-acid secondary battery, but is effective in the case of a non-aqueous secondary battery such as a lithium battery. Is
When an overvoltage is applied as in the first conventional example, there is a problem that the life of the battery is seriously adversely affected as described above. In the second conventional example and the third conventional example, since the charging current of the fully charged battery is bypassed, there is a problem as follows. That is, when charging, the battery is not always charged until the battery is fully charged, and the charging is often terminated halfway. However, in the above-described conventional example, the variation eliminating function does not work unless the battery is fully charged. Is always difficult to eliminate. Further, when handling large power such as an electric vehicle, since a simple constant voltage diode is difficult to use in terms of power, a series circuit of a resistor and a switching element (FET, etc.) is used as the bypass circuit. Is connected to each battery in parallel. However, as shown in the characteristics of FIG.
In the case of controlling the current flowing through the bypass circuit, the method of controlling the switching element in an analog manner to vary the bypass current causes a problem that the power loss of the FET increases and a large-capacity FET and a heat sink are required. Therefore, the duty cycle of the on-off time of the FET is controlled by P
It is desirable to adopt the WM control method. However, in the case of a battery, the battery voltage when the bypass circuit is turned off and the battery voltage when the battery is turned on are different due to the internal resistance. When the bypass circuit is operated for a battery that is fully charged, when the FET is turned on and off, the applied voltage becomes higher than a specified voltage when the FET is turned off, which adversely affects the life of the battery.

【0005】本発明は、上記のような従来技術の問題を
解決するためになされたものであり、第1の目的は、満
充電を行わない場合でも各電池のバラツキを有効に減少
させることが出来る組電池の充電装置を提供することで
あり、第2の目的は、大容量のFETやヒートシンクを
用いることなく、組電池を構成する各電池のバラツキを
有効に減少させることが出来る組電池の充電装置を提供
することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and a first object of the present invention is to effectively reduce variations among batteries even when full charge is not performed. A second object of the present invention is to provide a charging device for an assembled battery capable of effectively reducing the variation of each battery constituting the assembled battery without using a large-capacity FET or a heat sink. It is to provide a charging device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明にお
いては、複数の二次電池を直列に接続した組電池を充電
する装置において、抵抗とスイッチング素子との直列回
路からなり、上記組電池の各電池にそれぞれ並列に接続
されたバイパス回路と、上記組電池の各電池の電圧を検
出する電圧検出手段と、上記電圧検出手段で検出した充
電時における各電池の電圧のうち、最も低い電圧と他の
各電池の電圧とを比較し、その電圧差が第1の所定値を
越えた電池については、上記バイパス回路を導通させ、
上記の電圧差が上記第1の所定値より低い第2の所定値
以下になった場合には上記バイパス回路を遮断させるよ
うに制御する制御装置と、を備えるように構成してい
る。なお、上記請求項1の構成は、例えば後記図1の構
成と図2のフローチャートに記載の制御に相当する。
Means for Solving the Problems In order to achieve the above object, the present invention is configured as described in the claims. That is, according to the first aspect of the present invention, in a device for charging an assembled battery in which a plurality of secondary batteries are connected in series, the device comprises a series circuit of a resistor and a switching element, and is connected in parallel to each battery of the assembled battery. A bypass circuit connected to the battery pack, voltage detecting means for detecting the voltage of each battery in the battery pack, and the lowest voltage and the other battery voltages among the battery voltages at the time of charging detected by the voltage detecting means. The battery is compared with a voltage, and for a battery whose voltage difference exceeds a first predetermined value, the bypass circuit is turned on,
And a control device that controls to shut off the bypass circuit when the voltage difference becomes equal to or less than a second predetermined value that is lower than the first predetermined value. The configuration of claim 1 corresponds to, for example, the configuration of FIG. 1 described later and the control described in the flowchart of FIG.

【0007】また、上記の第1の所定値および第2の所
定値は、例えば、請求項2に記載のごとく、第1の所定
値は、電池電圧の変動幅、すなわち充電終止電圧と放電
終止電圧との差に所望のバラツキ割合を乗算して求めた
所望バラツキ電圧と同じ値に設定し、また、第2の所定
値は、最も電圧の低い電池のバイパス回路がオフで、電
圧の高い方の電池のバイパス回路をオンとした場合に、
電池の内部抵抗による電圧降下分を除いた正味の電池電
圧Vcについて上記両電池の電圧差を0としたときにお
ける上記両電池の端子電圧Vtの差を第2の所定値とし
て設定する。
Further, the first predetermined value and the second predetermined value are, for example, as set forth in claim 2, wherein the first predetermined value is a fluctuation range of the battery voltage, that is, a charge end voltage and a discharge end. The difference between the voltage and the desired variation ratio is set to the same value as the desired variation voltage obtained by multiplying the difference by a desired variation ratio. When the battery bypass circuit is turned on,
The difference between the terminal voltages Vt of the two batteries when the voltage difference between the two batteries is set to 0 for the net battery voltage Vc excluding the voltage drop due to the internal resistance of the batteries is set as a second predetermined value.

【0008】また、上記制御装置は、例えば、請求項3
に記載のごとく、最も低い電圧と他の各電池の電圧との
電圧差に応じて、電圧差が大きいほどバイパス電流値を
大きくするように、上記各バイパス回路を制御するもの
である。また、上記制御装置は、例えば、請求項4に記
載のごとく、スイッチング素子をPWM制御することに
よってバイパス電流値を変えるものである。また、上記
制御装置は、例えば、請求項5に記載のごとく、上記ス
イッチング素子がオフのときにおける電池の端子電圧が
充電終止電圧を越えた電池のバイパス回路については、
上記スイッチング素子を常時オンにするように制御する
ものである。なお、請求項3〜請求項5の構成は、例え
ば後記図3のフローチャートの制御に相当する。また、
上記二次電池は、例えば、請求項6に記載のごとく、非
水系二次電池であり、さらに非水系二次電池は、請求項
7に記載のごとく、リチウム二次電池である。ただし、
鉛−酸二次電池等の他の二次電池の組電池においても本
発明を適用することが出来る。
[0008] The control device may be, for example,
As described in above, according to the voltage difference between the lowest voltage and the voltage of each of the other batteries, the above bypass circuits are controlled such that the larger the voltage difference, the larger the bypass current value. Further, the control device changes the bypass current value by performing PWM control on the switching element, for example, as described in claim 4. Further, for example, as described in claim 5, the control device, for a battery bypass circuit in which the terminal voltage of the battery when the switching element is off exceeds the charge end voltage,
The switching element is controlled to be always on. The configurations of claims 3 to 5 correspond to, for example, the control of the flowchart of FIG. 3 described later. Also,
The secondary battery is, for example, a non-aqueous secondary battery as described in claim 6, and the non-aqueous secondary battery is a lithium secondary battery as described in claim 7. However,
The present invention can be applied to an assembled battery of another secondary battery such as a lead-acid secondary battery.

【0009】[0009]

【作用】本発明においては、充電時における各電池の電
圧のうち、最も低い電圧と他の各電池の電圧とを比較
し、その電圧差が第1の所定値を越えた電池について
は、バイパス回路を導通させて充電電流を減少させ、上
記の電圧差が上記第1の所定値より低い第2の所定値以
下になった場合にはバイパス回路を遮断させるように制
御するものである。上記の制御により、最も低い電圧と
第1の所定値以上の差がある電池は、並列に接続された
バイパス回路がオンにされるので、充電電流が大幅に低
下する。そのため、電圧の高い電池の充電は抑制され、
電圧の低い電池が重点的に充電されるので、全体として
のバラツキが減少する。また、電圧の低かった電池が充
電され、電圧が上昇した結果、バイパス回路オン中の電
池の電圧との差が小さくなった場合には、当該バイパス
回路をオフにして、その電池にも充電を行なうことが出
来、全体の電池を均等に充電することが出来る。特に本
発明においては、上記のように、最も低い電圧を基準と
して充電時からバイパス回路を制御するので、満充電に
なるか否かに関わりなく、常にバラツキを減少させるよ
うに機能する。
According to the present invention, the lowest voltage among the voltages of the batteries at the time of charging is compared with the voltages of the other batteries, and the batteries whose voltage difference exceeds a first predetermined value are bypassed. The circuit is made conductive to reduce the charging current, and when the voltage difference becomes equal to or less than a second predetermined value lower than the first predetermined value, the bypass circuit is controlled to be cut off. With the above control, the charging current of the battery having the difference between the lowest voltage and the first predetermined value or more is significantly reduced because the bypass circuit connected in parallel is turned on. Therefore, charging of the battery with a high voltage is suppressed,
Since the battery with a low voltage is mainly charged, the variation as a whole is reduced. In addition, when the battery having a low voltage is charged and the voltage increases, as a result, when the difference between the voltage of the battery and the battery whose bypass circuit is on becomes small, the bypass circuit is turned off and the battery is also charged. And evenly charge the entire battery. In particular, in the present invention, since the bypass circuit is controlled from the time of charging based on the lowest voltage as described above, it functions to always reduce variations regardless of whether or not the battery is fully charged.

【0010】また、上記第1の所定値と第2の所定値
は、請求項2に記載のように設定する。すなわち、第1
の所定値は、所望のバラツキ割合(許容されるバラツキ
の変動幅に対する割合)を変動幅に乗算して求める。例
えば、リチウム電池の場合は、充電終止電圧が4.2V
で放電終止電圧が2.5Vであるから、変動幅は1.7V
であり、許容されるバラツキ割合を仮に3%とすれば、
所望バラツキ電圧は1.7×0.03=0.051Vとな
り、この値が第1の所定値となる。また、第2の所定値
は、電圧の高い方の電池のバイパス回路をオンにしたと
きに、内部抵抗による電圧降下分を除いた正味の電池電
圧における両電池間の電圧差を0とした場合における両
電池の端子電圧(内部抵抗による電圧降下分を含む値)
の差を第2の所定値とすればよい。
Further, the first predetermined value and the second predetermined value are set as described in claim 2. That is, the first
Is determined by multiplying the variation width by a desired variation ratio (a ratio of the allowable variation to the variation range). For example, in the case of a lithium battery, the charge end voltage is 4.2 V
Since the discharge end voltage is 2.5 V, the fluctuation width is 1.7 V
Assuming that the allowable variation ratio is 3%,
The desired variation voltage is 1.7 × 0.03 = 0.051 V, and this value is the first predetermined value. In addition, the second predetermined value is a value when the voltage difference between the two batteries at the net battery voltage excluding the voltage drop due to the internal resistance is 0 when the bypass circuit of the battery with the higher voltage is turned on. Terminal voltage of both batteries in (value including voltage drop due to internal resistance)
May be set to a second predetermined value.

【0011】また、請求項3に記載のように、最も低い
電圧と他の各電池の電圧との電圧差に応じて、電圧差が
大きいほどバイパス電流値を大きくするように制御する
ことにより、DODの値をより精度よく揃えることが出
来る。また、請求項4および請求項5に記載のように、
スイッチング素子をPWM制御することによって電流値
を変えるように構成し、また、スイッチング素子がオフ
のときにおける電池の端子電圧が充電終止電圧を越えた
電池のバイパス回路については、上記スイッチング素子
を常時オンにするように制御することにより、PWM制
御によってトランジスタをオン−オフ制御しても、電池
の電圧が充電終止電圧を越えることがなく、電池の寿命
に悪影響を及ぼすおそれがない。したがって大容量のF
ETやヒートシンクが不要になる。
According to a third aspect of the present invention, according to a voltage difference between the lowest voltage and the voltage of each of the other batteries, the bypass current value is controlled to increase as the voltage difference increases. DOD values can be more accurately aligned. Also, as described in claim 4 and claim 5,
The current value is changed by performing PWM control on the switching element, and in a bypass circuit of a battery in which the terminal voltage of the battery exceeds the charge termination voltage when the switching element is off, the switching element is always on. Thus, even if the transistors are turned on and off by PWM control, the battery voltage does not exceed the charge end voltage, and there is no possibility that the battery life will be adversely affected. Therefore, large capacity F
No ET or heat sink is required.

【0012】また、従来の装置においては、組電池を構
成する各電池の電圧がばらつくので、組電池全体として
の放電容量を検出するには、各電池の電圧を検出する必
要があり、そのため、各電池毎に電圧センサを設ける必
要があったが、本発明においては、満充電でない場合で
も、各電池のバラツキが解消され、充電毎に各電池の電
圧がほぼ均等になるので、組電池の放電容量を検出する
場合には、組電池としての電圧のみを検出すればよい。
したがって、例えば組電池を電気自動車の駆動用電池と
して使用する場合、自動車には組電池全体としての電圧
を検出する1個の電圧センサを設けるだけで、放電容量
を簡単に検出することが出来る、という利点もある。
Further, in the conventional apparatus, since the voltage of each battery constituting the assembled battery varies, it is necessary to detect the voltage of each battery in order to detect the discharge capacity of the entire assembled battery. Although it was necessary to provide a voltage sensor for each battery, in the present invention, even when the battery is not fully charged, the variation of each battery is eliminated, and the voltage of each battery becomes substantially equal for each charge. When detecting the discharge capacity, only the voltage of the assembled battery needs to be detected.
Therefore, for example, when the assembled battery is used as a driving battery for an electric vehicle, the discharge capacity can be easily detected only by providing the vehicle with one voltage sensor that detects the voltage of the entire assembled battery. There is also an advantage.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。図1は本発明の一実施例のブロック図である。図
1において、1は組電池であり、1a〜1nからなる各
二次電池(以下、単に電池と記す)を直列に接続したも
のである。また、2a〜2nは抵抗、3a〜3nは例え
ばFET等のトランジスタであり、2と3とを直列に接
続した回路がバイパス回路として各電池1a〜1nに並
列に接続されている。また、4a〜4nは各電池の端子
電圧を検出する電圧センサ、5は制御装置(詳細後
述)、6は充電電流の開−閉を行なうコンタクタ、7は
充電回路、8は充電の開始・停止を指示する充電信号ス
イッチである。なお、上記制御装置5は、例えばアナロ
グ回路またはマイクロコンピュータ等で構成される。ま
た、充電回路7は、例えば交流の商用電源を所望の充電
電圧に変圧し、直流に変換して出力する回路である。図
1の装置においては、充電信号スイッチ8をオンにする
と、充電回路7が作動すると共に、制御装置5によって
コンタクタ6がオンにされ、充電回路7から組電池1に
電流が流れて充電が行なわれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1 is a block diagram of one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an assembled battery, in which secondary batteries 1a to 1n (hereinafter simply referred to as batteries) are connected in series. Further, 2a to 2n are resistors, 3a to 3n are transistors such as FETs, for example, and a circuit in which 2 and 3 are connected in series is connected in parallel to each of the batteries 1a to 1n as a bypass circuit. 4a to 4n are voltage sensors for detecting the terminal voltage of each battery, 5 is a control device (to be described in detail later), 6 is a contactor for opening and closing a charging current, 7 is a charging circuit, 8 is start / stop of charging. Is a charge signal switch for instructing a charge signal. The control device 5 is configured by, for example, an analog circuit or a microcomputer. The charging circuit 7 is a circuit that converts, for example, an AC commercial power supply to a desired charging voltage, converts the AC power into DC, and outputs the DC. In the apparatus shown in FIG. 1, when the charging signal switch 8 is turned on, the charging circuit 7 is operated, and the contactor 6 is turned on by the control device 5, and current flows from the charging circuit 7 to the battery pack 1 to perform charging. It is.

【0014】図2は、図1の制御装置5における充電制
御の第1の実施例を示すフローチャートである。以下、
図2に基づいて図1の装置の作用を説明する。図2にお
いて、ステップS1では、充電信号スイッチ8のオン−
オフに応じて制御装置5が充電開始か否かを判断し、
“YES”の場合にはステップS2で、コンタクタ6を
オンにして充電を開始する。この場合には、全てのバイ
パス回路はオフ、すなわち各トランジスタ3a〜3nは
全てオフである。次に、ステップS3では、各電圧セン
サ4a〜4nを用いて、組電池1を構成する各電池1a
〜1nの電圧を検出する。次に、ステップS4では、そ
れらの電圧のうちで最も低い電圧Vminを検出する。そ
してステップS5では、上記Vminと他の各電池の電圧
との電圧差Ddをそれぞれ検出する。次に、ステップS
6では、上記の各電圧差Ddと第1の所定値ΔV1(詳細
後述)とを比較し、Dd≧ΔV1であり、かつ当該バイパ
ス回路がオフになっている電池については、そのバイパ
ス回路をオンにする。具体的には、制御装置5から信号
を送って当該バイパス回路のトランジスタをオンにす
る。上記の制御により、最も低い電圧と第1の所定値Δ
1以上差がある電池は、並列に接続されたバイパス回
路がオンにされるので、充電電流が大幅に低下する。そ
のため、電圧の高い電池の充電は抑制され、電圧の低い
電池が重点的に充電されるので、全体としてのバラツキ
が減少する。次に、ステップS7では、上記の各電圧差
Ddと第2の所定値ΔV2(ΔV1>ΔV2、詳細後述)と
を比較し、ΔV2≧Ddであり、かつ当該バイパス回路が
オンになっている電池については、そのバイパス回路を
オフにする。具体的には、制御装置5から信号を送って
当該バイパス回路のトランジスタをオフにする。上記の
制御により、電圧の低かった電池が充電され、電圧が上
昇した結果、バイパス回路オン中の電池の電圧との差が
小さくなった場合には、当該バイパス回路をオフにし
て、その電池にも充電を行なうことが出来、全体の電池
を均等に充電することが出来る。
FIG. 2 is a flowchart showing a first embodiment of the charging control in the control device 5 of FIG. Less than,
The operation of the device of FIG. 1 will be described based on FIG. In FIG. 2, in step S1, the charging signal switch 8 is turned on.
The control device 5 determines whether or not to start charging in response to the OFF,
If "YES", in step S2, the contactor 6 is turned on to start charging. In this case, all the bypass circuits are off, that is, all the transistors 3a to 3n are off. Next, in step S3, each battery 1a constituting the battery pack 1 is used by using each of the voltage sensors 4a to 4n.
11n are detected. Next, in step S4, the lowest voltage Vmin among these voltages is detected. In step S5, a voltage difference Dd between Vmin and the voltage of each of the other batteries is detected. Next, step S
In step 6, the voltage difference Dd is compared with a first predetermined value ΔV 1 (to be described in detail later). For a battery in which Dd ≧ ΔV 1 and the bypass circuit is off, the bypass circuit is turned off. Turn on. Specifically, a signal is sent from the control device 5 to turn on the transistor of the bypass circuit. By the above control, the lowest voltage and the first predetermined value Δ
Battery is V 1 or more differences, a bypass circuit connected in parallel because it is turned on, the charging current is significantly reduced. Therefore, the charging of the battery with a high voltage is suppressed, and the battery with a low voltage is mainly charged, so that the variation as a whole is reduced. Next, in step S7, each of the above voltage differences Dd is compared with a second predetermined value ΔV 2 (ΔV 1 > ΔV 2 , which will be described in detail later), ΔV 2 ≧ Dd, and the bypass circuit is turned on. For a dead battery, its bypass circuit is turned off. Specifically, a signal is sent from the control device 5 to turn off the transistor of the bypass circuit. According to the above control, the battery having the low voltage is charged, and as a result of the voltage increase, when the difference between the voltage of the battery while the bypass circuit is on is reduced, the bypass circuit is turned off and the battery is charged. Can be charged, and the entire battery can be charged evenly.

【0015】次に、ステップS8では、バイパス回路オ
フ中の電池、すなわち充電中の電池において、その電圧
が充電終止電圧(例えばリチウム電池の場合には4.2
V)に達したものについては、バイパス回路をオンに
し、充電を抑制する。上記の制御により、早く満充電に
達した電池については過充電を行なわず、かつ未だ満充
電に達しない電池については充電を継続することが出来
る。次に、ステップS9では、バイパス回路オン、すな
わち充電電流を抑制している電池において、充電終止電
圧に達した電池があるか否かを判別し、無い場合にはス
テップS4に戻って上記のルーチンを繰り返し、有る場
合にはステップS10で充電を終了する。具体的には、
制御装置5から信号を送ってコンタクタ6をオフにす
る。上記のように本実施例においては、最も低い電圧を
基準として充電時からバイパス回路を制御するので、満
充電になるか否かに関わりなく、常にバラツキを減少さ
せるように機能する。なお、充電回路7の電圧、電流を
調節できる場合には、上記ステップS9で“YES”の
場合に、充電を終了させず、充電回路7からの充電電流
を減少させ、当該電池の電圧が充電終止電圧に達しない
ようにして充電を継続することも出来る。このようにす
れば、さらに各電池のバラツキを減少させることが出来
る。
Next, in step S8, the voltage of the battery whose bypass circuit is off, that is, the battery being charged, is the charge end voltage (for example, 4.2 in the case of a lithium battery).
For those that have reached V), the bypass circuit is turned on to suppress charging. With the above control, overcharging is not performed for a battery that has reached full charge early, and charging can be continued for a battery that has not yet reached full charge. Next, in step S9, it is determined whether or not there is a battery whose charging circuit has reached the charge cut-off voltage in the battery in which the bypass circuit is turned on, that is, the charging current is suppressed. Is repeated, and if there is, charging is ended in step S10. In particular,
A signal is sent from the control device 5 to turn off the contactor 6. As described above, in the present embodiment, since the bypass circuit is controlled from the time of charging based on the lowest voltage, it functions to always reduce the variation regardless of whether or not the battery is fully charged. If the voltage and current of the charging circuit 7 can be adjusted, if "YES" in step S9, the charging is not terminated, the charging current from the charging circuit 7 is reduced, and the voltage of the battery is reduced. Charging can be continued without reaching the end voltage. This can further reduce the variation among the batteries.

【0016】次に、前記第1の所定値ΔV1および第2
の所定値ΔV2について説明する。図4は二次電池の等
価回路図であり、(a)に示すごとき電池は、(b)に
示すように、内部抵抗rと容量Cとの直列回路として表
される。また、電池の端子電圧Vtは、容量Cにおける
電圧Vcと内部抵抗rの両端の電圧差Vrの和として表さ
れる。リチウム二次電池の場合には、充電終止電圧(D
OD0%)は4.2V、放電終止電圧(DOD100
%)は2.5Vであるが、これは図4(b)の等価回路
では、電圧Vcにおける値である。しかし、検出できる
電圧は、端子電圧Vtであるから、内部抵抗rによる電
圧降下分Vrを考慮して前記第1の所定値ΔV1および第
2の所定値ΔV2を設定する必要がある。最も電圧の低
い電池におけるVc、Vr、Vtを、それぞれVcmin、Vr
min、Vtminとし、流れる充電電流をIbatminとし、他
の或る電池のVc、Vr、Vtを、それぞれVcn、Vrn、
Vtnとし、流れる充電電流をIbatn、そのバイパス回路
に流れる電流をIbpnとする。この場合、下記の(数
1)式、(数2)式が成り立つ。
Next, the first predetermined value ΔV 1 and the second predetermined value ΔV 1
Will be described predetermined value [Delta] V 2. FIG. 4 is an equivalent circuit diagram of the secondary battery, and the battery as shown in FIG. 4A is represented as a series circuit of an internal resistance r and a capacitance C as shown in FIG. The terminal voltage Vt of the battery is expressed as the sum of the voltage Vc of the capacitor C and the voltage difference Vr across the internal resistance r. In the case of a lithium secondary battery, the charge end voltage (D
OD0%) is 4.2V, discharge end voltage (DOD100
%) Is 2.5 V, which is a value at the voltage Vc in the equivalent circuit of FIG. However, since the voltage that can be detected is the terminal voltage Vt, it is necessary to set the first predetermined value ΔV 1 and the second predetermined value ΔV 2 in consideration of the voltage drop Vr due to the internal resistance r. Vc, Vr, and Vt of the battery with the lowest voltage are represented by Vcmin and Vr, respectively.
min, Vtmin, the charging current flowing is Ibatmin, and Vc, Vr, Vt of another certain battery are Vcn, Vrn,
Vtn, the charging current flowing is Ibatn, and the current flowing through the bypass circuit is Ibpn. In this case, the following equations (1) and (2) hold.

【0017】Vtn=Vcn+Vrn …(数1) Vtmin=Vcmin+Vrmin …(数2) まず、第1の所定値ΔV1について説明する。各電池間
のバラツキを仮に3%以下に押さえるものとすれば、電
池の電圧の変動幅は4.2−2.5=1.7であるから、
Vcの電圧差としては、1.7×0.03=0.051Vと
なる。この場合、バイパス回路がオフであるから、各電
池に流れる電流は同一であり、したがってVrmin=Vrn
であるから、上記(数1)式、(数2)式から、下記
(数3)式が成り立つ。 Vcn−Vcmin=Vtn−Vtmin …(数3) 上記(数3)式から判るように、バイパス回路がオフの
場合には、内部抵抗による電圧降下分を除いた電池電圧
Vcにおける電圧差は、端子電圧Vtにおける電圧差と等
しい。したがって第1の所定値ΔV1は0.051Vに設
定すればよい。すなわち、第1の所定値ΔV1は、電池
電圧の変動幅に所望のバラツキ割合(%)を乗算して求
めた所望バラツキ電圧と同じ値に設定すればよい。
Vtn = Vcn + Vrn (Equation 1) Vtmin = Vcmin + Vrmin (Equation 2) First, the first predetermined value ΔV 1 will be described. Assuming that the variation among the batteries is suppressed to 3% or less, the fluctuation range of the battery voltage is 4.2-2.5 = 1.7.
The voltage difference of Vc is 1.7 × 0.03 = 0.051V. In this case, since the bypass circuit is off, the current flowing through each battery is the same, and therefore Vrmin = Vrn
Therefore, the following expression (3) is established from the above expression (1) and expression (2). Vcn−Vcmin = Vtn−Vtmin (Equation 3) As can be seen from Equation (3), when the bypass circuit is off, the voltage difference at the battery voltage Vc excluding the voltage drop due to the internal resistance is the terminal It is equal to the voltage difference at the voltage Vt. Therefore, the first predetermined value ΔV 1 may be set to 0.051V. That is, the first predetermined value ΔV 1 may be set to the same value as the desired variation voltage obtained by multiplying the variation range of the battery voltage by the desired variation ratio (%).

【0018】次に、第2の所定値ΔV2について説明す
る。この場合には、最も電圧の低い電池のバイパス回路
がオフで、他の或る電池のバイパス回路がオンとし、V
cn=VcminのときにおけるVtn−VtminをΔV2とすれ
ばよい。すなわち、電圧の高い方の電池のバイパス回路
をオンとしたときに、内部抵抗による電圧降下分を除い
た正味の電池電圧Vcにおける両電池の電圧差を0とし
た場合における両電池の端子電圧Vtの差をΔV2とすれ
ばよい。以下、実例について説明する。例えば、80A
hの電池を使用し、充電回路からの充電電流Ichgを4
0A、バイパス回路のバイパス電流を10Aとする。こ
の場合、電池の内部抵抗rは、リチウム二次電池の場合
には0.16Ω・Ah程度であるから、80Ahでは0.
002Ωとなる。したがって Vtn=Vcn+0.002(Ichg−Ibpn)=Vcn+0.0
6 Vtmin=Vcmin+0.002×Ichg=Vcmin+0.08 となり、したがって下記(数4)式が成り立つ。 Vtn−Vtmin=(Vcn+0.06)−(Vcmin+0.08) …(数4) 前記のように、ΔV2は、Vcn=Vcminのときにおける
Vtn−Vtminの値なので、(数4)式から、 ΔV2=Vtn−Vtmin=0.06−0.08=−0.02 となる。すなわち、この例の場合は、ΔV2=−0.02
Vに設定すればよい。つまりバイパス回路がオンになっ
ている方の電池の端子電圧が最も電圧の低い電池の端子
電圧よりも0.02Vだけ低くなった場合に、当該バイ
パス回路をオフにするように制御する。この場合、内部
抵抗による電圧降下分を除いた正味の電池電圧Vcは、
Vcn=Vcminで両電池が等しくなっている。
Next, the second predetermined value ΔV 2 will be described. In this case, the bypass circuit of the battery with the lowest voltage is turned off, the bypass circuit of another certain battery is turned on, and V
The Vtn-Vtmin which definitive when cn = Vcmin may be set to [Delta] V 2. That is, when the bypass circuit of the battery with the higher voltage is turned on, the terminal voltage Vt of both batteries in the case where the voltage difference between both batteries at the net battery voltage Vc excluding the voltage drop due to the internal resistance is 0 May be set to ΔV 2 . Hereinafter, an actual example will be described. For example, 80A
h, and the charging current Ichg from the charging circuit is 4
0A and the bypass current of the bypass circuit is 10A. In this case, the internal resistance r of the battery is about 0.16 Ω · Ah in the case of a lithium secondary battery, and thus is 0.1 at 80 Ah.
002Ω. Therefore, Vtn = Vcn + 0.002 (Ichg-Ibpn) = Vcn + 0.0
6 Vtmin = Vcmin + 0.002 × Ichg = Vcmin + 0.08 Therefore, the following equation (4) holds. Vtn-Vtmin = (Vcn + 0.06 ) - (Vcmin + 0.08) ... ( Equation 4) as the, [Delta] V 2, since values of Vtn-Vtmin which definitive when Vcn = Vcmin, from equation (4), [Delta] V 2 = Vtn-Vtmin = 0.06-0.08 = -0.02 That is, in the case of this example, ΔV 2 = −0.02
V may be set. That is, when the terminal voltage of the battery whose bypass circuit is on is lower by 0.02 V than the terminal voltage of the battery with the lowest voltage, the control is performed so that the bypass circuit is turned off. In this case, the net battery voltage Vc excluding the voltage drop due to the internal resistance is
Both batteries are equal at Vcn = Vcmin.

【0019】次に、図3は、本発明の第2の実施例にお
ける演算処理を示すフローチャートである。なお、装置
の回路は前記図1と同様である。図3において、ステッ
プS1〜ステップS5は、前記図2と同様である。次
に、ステップS11では、各バイパス回路を流れるバイ
パス電流を制御するためのデューティ比を演算する。こ
のバイパス電流は、例えば、ステップS5で求めた各電
圧差Ddに比例した値とする。そのため、デューティ比
は、それぞれの電圧差Ddに所定の係数Kを乗算するこ
とによって求める。そしてステップS12では、上記の
求めた各デューティ比に応じて各バイパス回路のトラン
ジスタをオン−オフさせ、PWM制御を行なう。次に、
ステップS13では、バイパス回路がオフのときに、充
電終止電圧に達した電池は、当該バイパス回路のトラン
ジスタを常時オン(デューティ比=100%)にする。
次に、ステップS14では、トランジスタを常時オンに
した電池で、充電終止電圧に達したものがあるか否かを
判断し、“YES”の場合には、ステップS15で充電
を終了し、“NO”の場合には、ステップS4に戻って
上記の制御を繰り返す。上記のように、電圧の最も低い
電池との電圧差に応じてバイパス回路を流れる電流(し
たがって充電電流)の値を可変にすることにより、前記
図2の制御よりもDODの値をより精度よく揃えること
が出来る。
Next, FIG. 3 is a flow chart showing the arithmetic processing in the second embodiment of the present invention. The circuit of the device is the same as that of FIG. In FIG. 3, steps S1 to S5 are the same as those in FIG. Next, in step S11, a duty ratio for controlling a bypass current flowing through each bypass circuit is calculated. This bypass current is, for example, a value proportional to each voltage difference Dd obtained in step S5. Therefore, the duty ratio is obtained by multiplying each voltage difference Dd by a predetermined coefficient K. Then, in step S12, the transistors of each bypass circuit are turned on / off according to the respective duty ratios obtained above, and PWM control is performed. next,
In step S13, when the bypass circuit is off, the battery that has reached the charging end voltage always turns on the transistor of the bypass circuit (duty ratio = 100%).
Next, in step S14, it is determined whether or not any of the batteries whose transistors have been constantly turned on has reached the charging end voltage. If "YES", the charging is terminated in step S15, and "NO""", The process returns to step S4 to repeat the above control. As described above, by making the value of the current flowing through the bypass circuit (accordingly, the charging current) variable according to the voltage difference from the battery having the lowest voltage, the value of DOD can be more accurately obtained than the control of FIG. Can be aligned.

【0020】また、上記の制御においては、ステップS
13で、バイパス回路がオフのときに、充電終止電圧に
達した電池は、当該バイパス回路のトランジスタを常時
オンにするように制御している。したがって、デューテ
ィ制御によってトランジスタをオン−オフしても、電池
の電圧が充電終止電圧を越えることがなく、電池の寿命
に悪影響を及ぼすおそれがない。図5は、上記の関係を
示す特性図である。図5において、横軸はDOD(放電
深度)、縦軸は充電中の電池の電圧である。また、実線
はバイパス回路オン時の電圧特性、一点鎖線はバイパス
回路オフ時の電圧特性を示す。また、4.2Vはリチウ
ム電池の充電終止電圧、2.5V同じく放電終止電圧で
ある。図5に示すように、バイパス回路がオフ(充電電
流が大)の場合には、DOD=x%の点で、電池電圧が
充電終止電圧4.2Vに達する。このとき、バイパス回
路がオン(充電電流が小)であれば、電池電圧は未だ充
電終止電圧に達していない。しかし、PWM制御を行な
っている場合には、バイパス回路がオンとオフを交互に
繰り返すので、DODがx%よりも0%に近い範囲で
は、オフ時に電池電圧が充電終止電圧を越え、電池の寿
命に悪影響を及ぼす。そのため、本実施例においては、
バイパス回路がオフのときに、充電終止電圧に達した電
池は、当該バイパス回路のトランジスタを常時オンにす
るように制御している。すなわち、図5のx%の右側で
は、トランジスタを常時オンにし、実線の特性に添って
上昇するようにしている。
In the above control, step S
In 13, when the bypass circuit is off, the battery that has reached the charging end voltage is controlled so that the transistor of the bypass circuit is always on. Therefore, even if the transistor is turned on and off by the duty control, the voltage of the battery does not exceed the charge end voltage, and there is no possibility that the life of the battery is adversely affected. FIG. 5 is a characteristic diagram showing the above relationship. In FIG. 5, the horizontal axis represents DOD (depth of discharge), and the vertical axis represents the voltage of the battery during charging. The solid line indicates the voltage characteristic when the bypass circuit is on, and the dashed line indicates the voltage characteristic when the bypass circuit is off. In addition, 4.2V is the charge end voltage of the lithium battery and 2.5V is the discharge end voltage as well. As shown in FIG. 5, when the bypass circuit is off (the charging current is large), the battery voltage reaches the charge end voltage 4.2V at the point of DOD = x%. At this time, if the bypass circuit is on (the charging current is small), the battery voltage has not yet reached the charging end voltage. However, when the PWM control is performed, the bypass circuit alternately turns on and off, so that when the DOD is closer to 0% than x%, the battery voltage exceeds the charge end voltage at the time of off, and Has a negative effect on life. Therefore, in this embodiment,
When the bypass circuit is off, the battery that has reached the charging end voltage is controlled so that the transistor of the bypass circuit is always on. That is, on the right side of x% in FIG. 5, the transistor is always turned on, and rises according to the characteristics of the solid line.

【0021】なお、バイパス回路のトランジスタの電力
容量とヒートシンクの熱容量に問題のない場合は、トラ
ンジスタをアナログ的に制御してバイパス電流を変えて
もよい。また、従来の装置においては、組電池を構成す
る各電池の電圧がばらつくので、組電池全体としての放
電容量を検出するには、各電池の電圧を検出する必要が
あり、そのため、各電池毎に電圧センサを設ける必要が
あった。その点、本発明においては、満充電でない場合
でも、各電池のバラツキが解消され、充電毎に各電池の
電圧がほぼ均等になるので、組電池の放電容量を検出す
る場合には、組電池としての電圧のみを検出すればよ
い。したがって、例えば組電池を電気自動車の駆動用電
池として使用する場合、自宅や充電ステーション等に設
ける充電装置(図1の構成)には各電池の電圧を検出す
る電圧センサが必要であるが、自動車には組電池全体と
しての電圧を検出する1個の電圧センサを設けるだけ
で、放電容量を簡単に検出することが出来る、という利
点もある。なお、本発明は、リチウム二次電池のような
非水系二次電池の充電装置として好適であるが、鉛−酸
二次電池のような他の二次電池にも勿論適用することが
出来、各電池間のバラツキを有効に低減することが出来
る。
If there is no problem with the power capacity of the transistor in the bypass circuit and the heat capacity of the heat sink, the transistor may be controlled in an analog manner to change the bypass current. Further, in the conventional device, since the voltage of each battery constituting the assembled battery varies, it is necessary to detect the voltage of each battery in order to detect the discharge capacity of the entire assembled battery. Needs to be provided with a voltage sensor. In this regard, in the present invention, even when the battery is not fully charged, the variation of each battery is eliminated, and the voltage of each battery is substantially equal for each charge. It is sufficient to detect only the voltage as Therefore, for example, when the assembled battery is used as a driving battery for an electric vehicle, a voltage sensor for detecting the voltage of each battery is required for a charging device (the configuration shown in FIG. 1) provided in a home or a charging station. Has the advantage that the discharge capacity can be easily detected only by providing one voltage sensor for detecting the voltage of the whole assembled battery. In addition, the present invention is suitable as a charging device for a non-aqueous secondary battery such as a lithium secondary battery, but can be applied to other secondary batteries such as a lead-acid secondary battery, of course. Variations between the batteries can be effectively reduced.

【0022】[0022]

【発明の効果】以上説明したごとく、本発明において
は、最も電圧の低い電池との電圧差に応じて、充電の当
初からバイパス回路を作動させることにより、満充電ま
で充電しない場合でも、各電池の放電容量や電圧のバラ
ツキを有効に減少させることが出来る、という効果が得
られる。また、バイパス回路のオフ時の電池電圧に応じ
て制御を切り替えることにより、電池の寿命に悪影響を
及ぼすことなしに、大容量のFETやヒートシンクを用
いることなく、組電池を構成する各電池のバラツキを有
効に減少させることが出来る、という効果が得られる。
また、満充電でない場合でも、各電池のバラツキが解消
され、充電毎に各電池の電圧がほぼ均等になるので、組
電池の放電容量を検出する場合には、組電池としての電
圧のみを検出すればよい。したがって、組電池全体とし
ての電圧を検出する1個の電圧センサを設けるだけで、
放電容量を簡単に検出することが出来る、という利点も
ある。
As described above, according to the present invention, by operating the bypass circuit from the beginning of charging in accordance with the voltage difference from the battery with the lowest voltage, each battery can be charged even when full charging is not performed. And the variation of the discharge capacity and the voltage of the semiconductor device can be effectively reduced. Also, by switching the control in accordance with the battery voltage when the bypass circuit is off, the variation in each battery constituting the assembled battery can be achieved without using a large capacity FET or heat sink without adversely affecting the battery life. Can be effectively reduced.
Even when the battery is not fully charged, the variation of each battery is eliminated, and the voltage of each battery is substantially equal for each charge, so when detecting the discharge capacity of the assembled battery, only the voltage of the assembled battery is detected. do it. Therefore, only by providing one voltage sensor for detecting the voltage of the entire battery pack,
There is also an advantage that the discharge capacity can be easily detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のブロック図。FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】本発明の第1の実施例の演算処理を示すフロー
チャート。
FIG. 2 is a flowchart showing a calculation process according to the first embodiment of the present invention.

【図3】本発明の第2の実施例の演算処理を示すフロー
チャート。
FIG. 3 is a flowchart illustrating a calculation process according to a second embodiment of the present invention.

【図4】二次電池の等価回路図。FIG. 4 is an equivalent circuit diagram of a secondary battery.

【図5】本発明における充電特性を示す特性図。FIG. 5 is a characteristic diagram showing charging characteristics in the present invention.

【図6】従来装置における電圧電流特性を示す特性図。FIG. 6 is a characteristic diagram showing voltage-current characteristics in a conventional device.

【符号の説明】[Explanation of symbols]

1…組電池 5…制御装置 1a〜1n…電池 6…コンタクト 2a〜2n…抵抗 7…充電回路 3a〜3n…トランジスタ 8…充電信号スイ
ッチ 4a〜4n…電圧センサ
DESCRIPTION OF SYMBOLS 1 ... Battery pack 5 ... Control device 1a-1n ... Battery 6 ... Contact 2a-2n ... Resistance 7 ... Charging circuit 3a-3n ... Transistor 8 ... Charge signal switch 4a-4n ... Voltage sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 7/02 - 7/12 H02J 7/34 - 7/36 H01M 10/44 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02J 7 /02-7/12 H02J 7/34-7/36 H01M 10/44

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の二次電池を直列に接続した組電池を
充電する装置において、 抵抗とスイッチング素子との直列回路からなり、上記組
電池の各電池にそれぞれ並列に接続されたバイパス回路
と、 上記組電池の各電池の電圧を検出する電圧検出手段と、 上記電圧検出手段で検出した充電時における各電池の電
圧のうち、最も低い電圧と他の各電池の電圧とを比較
し、その電圧差が第1の所定値を越えた電池について
は、上記バイパス回路を導通させ、上記の電圧差が上記
第1の所定値より低い第2の所定値以下になった場合に
は上記バイパス回路を遮断させるように制御する制御装
置と、 を備えたことを特徴とする組電池の充電装置。
An apparatus for charging an assembled battery in which a plurality of secondary batteries are connected in series, comprising a series circuit of a resistor and a switching element, wherein a bypass circuit is connected in parallel to each battery of the assembled battery. A voltage detecting means for detecting the voltage of each battery of the battery pack, and comparing the lowest voltage and the voltage of each of the other batteries among the voltages of the batteries at the time of charging detected by the voltage detecting means, When the voltage difference exceeds a first predetermined value, the bypass circuit is turned on. When the voltage difference becomes equal to or less than a second predetermined value lower than the first predetermined value, the bypass circuit is turned off. And a control device for controlling so as to shut off the charging device.
【請求項2】上記第1の所定値は、電池電圧の変動幅、
すなわち充電終止電圧と放電終止電圧との差に所望のバ
ラツキ割合を乗算して求めた所望バラツキ電圧と同じ値
に設定し、また、上記第2の所定値は、最も電圧の低い
電池のバイパス回路がオフで、電圧の高い方の電池のバ
イパス回路をオンとした場合に、電池の内部抵抗による
電圧降下分を除いた正味の電池電圧Vcについて上記両
電池の電圧差を0としたときにおける上記両電池の端子
電圧Vtの差を第2の所定値として設定するものであ
る、ことを特徴とする請求項1に記載の組電池の充電装
置。
2. The method according to claim 1, wherein the first predetermined value is a fluctuation range of the battery voltage,
That is, the difference between the end-of-charge voltage and the end-of-discharge voltage is set to the same value as the desired variation voltage obtained by multiplying the difference by the desired variation ratio, and the second predetermined value is a bypass circuit of the battery with the lowest voltage. Is off and the bypass circuit of the battery with the higher voltage is turned on, and when the voltage difference between the two batteries is 0 with respect to the net battery voltage Vc excluding the voltage drop due to the internal resistance of the battery. 2. The battery charger according to claim 1, wherein a difference between the terminal voltages Vt of the two batteries is set as a second predetermined value.
【請求項3】上記制御装置は、上記最も低い電圧と他の
各電池の電圧との電圧差に応じて、電圧差が大きいほど
バイパス電流値を大きくするように、上記各バイパス回
路を制御するものである、ことを特徴とする請求項1ま
たは請求項2に記載の組電池の充電装置。
3. The control device controls each of the bypass circuits according to a voltage difference between the lowest voltage and the voltage of each of the other batteries such that the larger the voltage difference, the larger the bypass current value. The charging device for an assembled battery according to claim 1 or 2, wherein
【請求項4】上記制御装置は、上記バイパス回路の上記
スイッチング素子をPWM制御することによってバイパ
ス電流値を変えるものである、ことを特徴とする請求項
3に記載の組電池の充電装置。
4. The battery charger according to claim 3, wherein the controller changes the bypass current value by performing PWM control on the switching element of the bypass circuit.
【請求項5】上記制御装置は、上記スイッチング素子が
オフのときにおける電池の端子電圧が充電終止電圧を越
えた電池のバイパス回路については、上記スイッチング
素子を常時オンにするように制御するものである、こと
を特徴とする請求項4に記載の組電池の充電装置。
5. The control device according to claim 1, wherein the control circuit controls the switching element so that the switching element is always on in a battery bypass circuit in which the terminal voltage of the battery when the switching element is off exceeds the charge cutoff voltage. The charging device for a battery pack according to claim 4, wherein
【請求項6】上記二次電池は、非水系二次電池であるこ
とを特徴とする請求項1乃至請求項5の何れかに記載の
組電池の充電装置。
6. The battery pack charging device according to claim 1, wherein the secondary battery is a non-aqueous secondary battery.
【請求項7】上記非水系二次電池は、リチウム二次電池
であることを特徴とする請求項6に記載の組電池の充電
装置。
7. The battery charger according to claim 6, wherein the non-aqueous secondary battery is a lithium secondary battery.
JP14772894A 1994-06-29 1994-06-29 Battery pack charging device Expired - Fee Related JP3279071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14772894A JP3279071B2 (en) 1994-06-29 1994-06-29 Battery pack charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14772894A JP3279071B2 (en) 1994-06-29 1994-06-29 Battery pack charging device

Publications (2)

Publication Number Publication Date
JPH0819188A JPH0819188A (en) 1996-01-19
JP3279071B2 true JP3279071B2 (en) 2002-04-30

Family

ID=15436828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14772894A Expired - Fee Related JP3279071B2 (en) 1994-06-29 1994-06-29 Battery pack charging device

Country Status (1)

Country Link
JP (1) JP3279071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928281B2 (en) 2009-03-27 2015-01-06 Itochu Corporation Battery control apparatus, vehicle, and battery control method

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066276A (en) * 1996-08-21 1998-03-06 Japan Tobacco Inc Charge protector and charger
JPH10191574A (en) * 1996-12-26 1998-07-21 Japan Tobacco Inc Charging equipment
JPH11234916A (en) * 1998-02-16 1999-08-27 Rohm Co Ltd Lithium ion battery pack
FR2776139B1 (en) * 1998-03-13 2002-03-08 Denso Corp DEVICE FOR BALANCING VOLTAGES IN A COMPOSITE BATTERY
JP3899700B2 (en) * 1998-09-03 2007-03-28 株式会社デンソー Battery pack voltage adjustment device and battery pack voltage adjustment method
JP4526718B2 (en) * 2001-02-20 2010-08-18 株式会社Kri Power storage device
GB0111107D0 (en) * 2001-05-05 2001-06-27 Sprue Aegis Ltd Power Supply
JP3615500B2 (en) * 2001-06-22 2005-02-02 三洋電機株式会社 Battery charge rate adjustment circuit
US7081737B2 (en) 2003-06-19 2006-07-25 O2Micro International Limited Battery cell monitoring and balancing circuit
FR2862813B1 (en) * 2003-11-20 2006-06-02 Pellenc Sa METHOD FOR BALANCED LOADING OF LITHIUM-ION OR POLYMER LITHIUM BATTERY
JP2005224024A (en) * 2004-02-05 2005-08-18 Makita Corp Combined battery set and battery pack
EP1610436A1 (en) 2004-06-09 2005-12-28 Fu-I Yang Series battery charger with separate detection of batteries
JP4888041B2 (en) 2006-02-16 2012-02-29 株式会社デンソー Battery voltage regulator
US9270133B2 (en) 2007-04-02 2016-02-23 Linear Technology Corporation Monitoring cells in energy storage system
JP4587233B2 (en) 2007-10-23 2010-11-24 本田技研工業株式会社 Discharge control device
JP4626828B2 (en) 2007-11-01 2011-02-09 本田技研工業株式会社 Discharge control device
JP2009131060A (en) * 2007-11-26 2009-06-11 Honda Motor Co Ltd Control system charge/discharge circuit
JP5304654B2 (en) * 2007-12-18 2013-10-02 パナソニック株式会社 Voltage equalization circuit
JP5279261B2 (en) 2007-12-27 2013-09-04 三洋電機株式会社 Charge state equalization apparatus and assembled battery system including the same
KR101091352B1 (en) * 2008-05-28 2011-12-07 주식회사 엘지화학 Apparatus for balancing of battery pack having function of prevention of over-discharge
JP5075741B2 (en) 2008-06-02 2012-11-21 パナソニック株式会社 Imbalance determination circuit, power supply device, and imbalance determination method
JP2010088179A (en) * 2008-09-30 2010-04-15 Panasonic Corp Battery equalization circuit, and battery power supply device
FR2939977A3 (en) * 2008-12-15 2010-06-18 Renault Sas METHOD AND SYSTEM FOR ENDORMATING ELECTRIC ENERGY STORAGE MEANS IN AN ELECTRIC OR HYBRID VEHICLE
JP5324381B2 (en) * 2009-10-01 2013-10-23 新電元工業株式会社 CHARGE CONTROL DEVICE AND CHARGE CONTROL METHOD IN THE CHARGE CONTROL DEVICE
US8872478B2 (en) 2010-03-09 2014-10-28 O2Micro Inc. Circuit and method for balancing battery cells
JP2012043581A (en) * 2010-08-17 2012-03-01 Jx Nippon Oil & Energy Corp Energy storage device
JP5632723B2 (en) 2010-11-26 2014-11-26 株式会社ケーヒン Cell balance control device
US20130249498A1 (en) * 2010-12-08 2013-09-26 Hitachi, Ltd. Non-aqueous secondary battery and secondary battery system
JP5260706B2 (en) 2011-06-24 2013-08-14 レノボ・シンガポール・プライベート・リミテッド Power system for portable electronic equipment with timekeeping circuit
JP2013055719A (en) 2011-09-01 2013-03-21 Omron Automotive Electronics Co Ltd Charge controller for battery pack and method of charge control
JP5573818B2 (en) 2011-11-08 2014-08-20 株式会社豊田自動織機 Battery equalization apparatus and method
JP5966373B2 (en) * 2012-01-19 2016-08-10 住友電気工業株式会社 Charging device and power supply device
JP2014157075A (en) 2013-02-15 2014-08-28 Omron Automotive Electronics Co Ltd Battery voltage detection device, and battery pack management system
JP2014158346A (en) 2013-02-15 2014-08-28 Omron Automotive Electronics Co Ltd Voltage monitoring apparatus for battery pack
JP6146663B2 (en) * 2013-07-02 2017-06-14 岩崎電気株式会社 Charging circuit and flash discharge lamp lighting device
JP6997955B2 (en) * 2017-04-05 2022-01-18 株式会社Gsユアサ Control method of power storage device and power storage element
JP6976468B1 (en) * 2021-04-12 2021-12-08 裕之 佐藤 Charge / discharge test device and charge / discharge control device
EP4239832A1 (en) * 2022-03-04 2023-09-06 NXP USA, Inc. Apparatus and method for balancing voltage of cells within a battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928281B2 (en) 2009-03-27 2015-01-06 Itochu Corporation Battery control apparatus, vehicle, and battery control method

Also Published As

Publication number Publication date
JPH0819188A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP3279071B2 (en) Battery pack charging device
US8436588B2 (en) Method of charging a battery array
JP3389670B2 (en) Series connection circuit of secondary battery
JP4065232B2 (en) How to charge the battery
US20090309547A1 (en) Charging method, battery pack and charger for battery pack
US20030062874A1 (en) Circuit for adjusting charging rate of cells in combination
JP2008220167A (en) Equalizer system and method for series connected energy storage device
US7394225B2 (en) Pseudo constant current multiple cell battery charger configured with a parallel topology
JP3669234B2 (en) Charge control device for battery pack
JPH0946916A (en) Charging controller
AU724298B2 (en) Battery charging system
JP3629791B2 (en) Charge control device for battery pack
JP2008011657A (en) Power supply unit
JPH104636A (en) Method for charging lithium cell
GB2293059A (en) Equalization of charge on series connected cells or batteries
JPH08213055A (en) Charging method of battery pack and its device
JP2000106220A (en) Method for balancing charging amount of secondary battery
JPH11341694A (en) Charging method of secondary battery
JPH06133465A (en) Method and apparatus for charging secondary battery
JP3419115B2 (en) Battery charge / discharge protection device
JPH09149556A (en) Secondary battery charging method
JPH0956080A (en) Battery charger
JP2000166103A (en) Charging discharging control method
JP3219637B2 (en) How to charge multiple lithium ion batteries
JP3473193B2 (en) Battery charging control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees