JP2015010962A - Method for determining degradation of storage battery and device for determining degradation of storage battery - Google Patents

Method for determining degradation of storage battery and device for determining degradation of storage battery Download PDF

Info

Publication number
JP2015010962A
JP2015010962A JP2013137413A JP2013137413A JP2015010962A JP 2015010962 A JP2015010962 A JP 2015010962A JP 2013137413 A JP2013137413 A JP 2013137413A JP 2013137413 A JP2013137413 A JP 2013137413A JP 2015010962 A JP2015010962 A JP 2015010962A
Authority
JP
Japan
Prior art keywords
storage battery
soc
current
deterioration
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013137413A
Other languages
Japanese (ja)
Inventor
優 三浦
Masaru Miura
優 三浦
渉 手塚
Wataru Tezuka
渉 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2013137413A priority Critical patent/JP2015010962A/en
Publication of JP2015010962A publication Critical patent/JP2015010962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for determining the degradation of a storage battery and a device for determining the degradation of the storage battery capable of improving the accuracy of determining the degradation of the storage battery for cyclical use.SOLUTION: The prevent invention comprises: a step S11 for fully charging a storage battery for cyclical use by equalized charging; a step S12 for discharging the storage battery to a 50-95% state of charge (SOC); a step S13 for measuring a voltage of the storage battery when charged with a current in the range 0.05-0.6 CA or discharged with a current in the range 0.05-1.0 CA; a step S14 for calculating, after calculating a polarization voltage ΔV from the measurement result, an internal DC resistance R from the calculated value; and a step S15 for determining a degradation state of the storage battery by comparing the internal DC resistance R, which is calculated from the polarization voltage on the basis of a data table indicating an internal DC resistance constituting a threshold J for the determination of degradation at charge time or at discharge time predetermined corresponding to a charge-time current (0.05-0.6 CA) or a discharge-time current (0.05-1.0 CA), and the internal DC resistance constituting the threshold J.

Description

本発明は、系統電源の電力や、再生可能エネルギーからの電力と連係動作するために、充電状態が所定範囲内で制御されるサイクル用の蓄電池の劣化判定方法および蓄電池の劣化判定装置に関する。   The present invention relates to a storage battery deterioration determination method and a storage battery deterioration determination apparatus for a cycle in which the state of charge is controlled within a predetermined range in order to operate in association with the power of a system power supply or the power from renewable energy.

複数の蓄電池を直列接続および/または並列に接続した組電池システムは、産業用途に用いられており、通信や電力などの電源設備などに付帯させて常時フロート充電することで蓄電池を満充電状態に保ち、停電時に蓄電池を放電させて非常用電源として使用される。この場合、蓄電池には、フロート用の鉛蓄電池などが用いられる。
一方、近年では、電気料金の割安な夜間の電力を蓄電池に貯蔵(充電)し、昼間の電力需要増大時に放出(放電)し、電力負荷を平準化する電力貯蔵用電源として使用されるようになってきている。この場合、蓄電池にはサイクル用の鉛蓄電池などが用いられる。また、組電池システムは、再生可能エネルギーである風力発電や太陽光発電に併設して、発電量が少ないときに蓄電池から放電し、発電量が多いときに蓄電池に充電することで不安定な電力を平準化する用途でも使用されることがある。さらに、上記非常用と電力貯蔵用の両方の用途でハイブリッド的な使い方をされることもある。
また、上記のサイクル用の蓄電池では、サイクル寿命の向上や、変動の大きい風力や太陽光の出力変動に合わせて電池の充電が行われやすくするよう、蓄電池の状態を部分充電状態(PSOC:Partial State of Charge)で運用されることが多くなってきている。
このように、サイクル用の蓄電池では、PSOCで充電と放電のサイクルを頻繁に繰り返すために絶えず充電状態が変動しており、使用状況によって蓄電池の劣化状況が大きく変わるので、蓄電池の正確な劣化判定が特に重要になる。
An assembled battery system in which a plurality of storage batteries are connected in series and / or in parallel is used for industrial purposes, and is attached to a power supply facility such as communication or electric power so that the storage battery is fully charged by always performing float charging. It is used as an emergency power source by keeping the battery discharged during a power outage. In this case, a float lead storage battery or the like is used as the storage battery.
On the other hand, in recent years, it is used as a power storage power source that stores (charges) low-cost electricity at night in a storage battery, discharges (discharges) it when daytime power demand increases, and equalizes the power load. It has become to. In this case, a lead storage battery for cycles is used as the storage battery. In addition, an assembled battery system can be used in combination with wind power generation or solar power generation, which is a renewable energy, and discharges from the storage battery when the power generation amount is small, and charges the storage battery when the power generation amount is large. May also be used for leveling. Furthermore, it may be used in a hybrid manner in both the emergency and power storage applications.
Further, in the above-described storage battery for cycle, the state of the storage battery is changed to a partially charged state (PSOC: Partial) so that the cycle life is improved and the battery is easily charged in accordance with the output fluctuations of wind and sunlight with large fluctuations. (State of Charge) is increasingly used.
In this way, in a storage battery for a cycle, since the charge and discharge cycles are frequently repeated in the PSOC, the state of charge constantly fluctuates, and the deterioration state of the storage battery changes greatly depending on the usage situation, so the accurate deterioration determination of the storage battery Is particularly important.

蓄電池の劣化判定方法としては、フロート用の場合には、フロート充電中に固定配線方式の内部抵抗装置を用いて交流4端子法などにより内部抵抗測定を行い、これを閾値と比較して劣化判定(閾値より大きい場合が劣化)を行うことが、また一方で、サイクル用の場合には、放電電圧の変化を測定し、これを閾値と比較して劣化判定(閾値より大きい場合が劣化)を行うことが提案されている(例えば、特許文献1参照)。これらの判定方法は、蓄電池の充電状態(SOC:State of Charge)によって、その値が変わるため、誤差が少ないSOCで測定することが正確な判定につながる。   As a method for determining the deterioration of a storage battery, in the case of a float, the internal resistance is measured by the AC 4-terminal method using a fixed wiring internal resistance device during float charging, and this is compared with a threshold value to determine the deterioration. On the other hand, in the case of the cycle, the change in the discharge voltage is measured, and this is compared with the threshold value to determine the deterioration (degradation is larger than the threshold value). It has been proposed to do so (see, for example, Patent Document 1). In these determination methods, since the value changes depending on the state of charge (SOC) of the storage battery, measurement with an SOC with less error leads to accurate determination.

特開2010−164441号公報JP 2010-164441 A

しかしながら、電力貯蔵用などに使用されるサイクル用の蓄電池は、PSOCで所定の範囲のSOCの間で充電と放電のサイクルが繰り返す運用を行うと、電流積算の誤差や充放電装置のノイズなどの影響でSOCが徐々にずれることによって正しいSOCで劣化判定することができないため、高精度な正しいSOCで劣化判定をすることが難しかった。   However, a cycle storage battery used for power storage or the like is subject to errors in current integration, charge / discharge device noise, etc., when the cycle of charging and discharging is repeated between a predetermined range of SOCs in PSOC. Since the SOC gradually shifts due to the influence, the deterioration cannot be determined with the correct SOC, so it is difficult to determine the deterioration with the high-accuracy correct SOC.

本発明は、上述した事情を鑑みてなされたものであり、サイクル用の蓄電池の劣化判定精度を向上させることが可能な蓄電池の劣化判定方法および蓄電池の劣化判定装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a storage battery deterioration determination method and a storage battery deterioration determination apparatus capable of improving the deterioration determination accuracy of a storage battery for a cycle. .

上述した課題を解決するため、本発明の蓄電池の劣化判定方法は、複数の蓄電池を直列および/または並列に接続した組電池システムに用いられ、PSOC(部分充電状態)で運用されるサイクル用の蓄電池を均等充電により満充電にする工程と、所定のSOC(充電状態)まで放電させる工程と、0.05〜0.6CAの範囲の電流で充電または放電させたときの電圧を測定する工程と、この測定電圧から分極電圧を算出した後、前記分極電圧から直流内部抵抗の値を算出する工程と、前記電流に対応して予め定められた充電時または放電時の劣化判定の閾値となる直流内部抵抗を示したデータテーブルに基づいて前記分極電圧から算出した直流内部抵抗と、前記閾値となる直流内部抵抗を比較することにより前記蓄電池の劣化判定を行う工程と、を備えることを特徴とする。
この構成によれば、サイクル用の蓄電池の劣化判定精度を向上させることができる。
In order to solve the above-described problem, the storage battery deterioration determination method of the present invention is used for a battery pack system in which a plurality of storage batteries are connected in series and / or in parallel, and is used for a cycle operated in PSOC (partial charge state). A step of fully charging the storage battery by equal charge, a step of discharging to a predetermined SOC (charged state), a step of measuring a voltage when charged or discharged with a current in a range of 0.05 to 0.6 CA, and After calculating the polarization voltage from the measured voltage, the step of calculating the value of the DC internal resistance from the polarization voltage, and the direct current that becomes the threshold for deterioration determination at the time of charging or discharging that is predetermined corresponding to the current The deterioration determination of the storage battery is performed by comparing the DC internal resistance calculated from the polarization voltage based on the data table indicating the internal resistance with the DC internal resistance serving as the threshold. Characterized in that it comprises a degree, the.
According to this configuration, it is possible to improve the deterioration determination accuracy of the cycle storage battery.

上記構成において、前記所定のSOCまで放電させる工程では、劣化前の前記蓄電池の総放電電気量を基準にして50〜95%のSOCまで放電させることを特徴とする。
この構成によれば、SOCを95%以下にすることで、組電池の充電時に大きく分極して、運用中の上限電圧に到達しにくくすることができ、また劣化状態を正しく判定することができる。一方、SOCを50%以上にすることで、満充電から調整するまでの時間を短くすることができ、また、SOCを下げ過ぎないことで、組電池の寿命の低下を防止することができる。
The said structure WHEREIN: In the process discharged to the said predetermined | prescribed SOC, it discharges to 50 to 95% of SOC on the basis of the total electric discharge amount of the said storage battery before deterioration, It is characterized by the above-mentioned.
According to this configuration, by setting the SOC to 95% or less, it is possible to make a large polarization during charging of the assembled battery, making it difficult to reach the upper limit voltage during operation, and it is possible to correctly determine the deterioration state. . On the other hand, by setting the SOC to 50% or more, the time from full charge to adjustment can be shortened, and by not reducing the SOC too much, the life of the assembled battery can be prevented from decreasing.

また、上記構成において、前記所定のSOCまで放電させる工程では、前記蓄電池が使用される充放電サイクルの中間のSOCまで放電させることを特徴とする。
この構成によれば、運用中の常用されるSOCの範囲内で組電池11の劣化を判定することができ、劣化をより適切に判定することができる。
Moreover, in the said structure, it is made to discharge to the middle SOC of the charging / discharging cycle in which the said storage battery is used in the process discharged to the said predetermined SOC.
According to this configuration, it is possible to determine the deterioration of the assembled battery 11 within the range of the SOC that is in operation, and it is possible to more appropriately determine the deterioration.

また、上記構成において、前記蓄電池は、SOC50〜95%の範囲のPSOCで運用されることを特徴とする。
この構成によれば、組電池の寿命の急激な劣化を防いで、組電池の劣化をより適切に判定することができる。また、この範囲内で運用を行うことにより、他の電力からの充電を効率良く行うことができる。
Moreover, the said structure WHEREIN: The said storage battery is operate | moved by PSOC of SOC 50 to 95% of range.
According to this configuration, the deterioration of the assembled battery can be more appropriately determined while preventing rapid deterioration of the assembled battery life. Further, by operating within this range, charging from other power can be performed efficiently.

また、本発明の蓄電池の劣化判定装置は、複数の蓄電池を直列および/または並列に接続した組電池システムに用いられ、PSOC(部分充電状態)で運用されるサイクル用の蓄電池の充放電を行う充放電部と、前記充放電部により前記蓄電池を所定のSOC(充電状態)まで放電させ、その後、0.05〜0.6CAの範囲の電流で充電、または0.05〜1.0CAの範囲の電流で放電させたときの電圧を測定し、この測定電圧から分極電圧を算出した後、前記分極電圧から直流内部抵抗を算出し、前記電流に対応して予め定められた充電時または放電時の劣化判定の閾値となる直流内部抵抗を示したデータテーブルに基づいて、前記分極電圧から算出した直流内部抵抗と、前記閾値となる直流内部抵抗を比較することにより前記蓄電池の劣化判定を行う情報処理部とを備えることを特徴とする。
この構成によれば、蓄電池の劣化判定精度を向上させることができる。
In addition, the storage battery deterioration determination device of the present invention is used in an assembled battery system in which a plurality of storage batteries are connected in series and / or in parallel, and performs charge / discharge of a storage battery for a cycle operated in a PSOC (partial charge state). The storage battery is discharged to a predetermined SOC (charged state) by the charging / discharging unit and the charging / discharging unit, and then charged with a current in the range of 0.05 to 0.6 CA, or in the range of 0.05 to 1.0 CA. After measuring the voltage at the time of discharging with the current, and calculating the polarization voltage from the measured voltage, the DC internal resistance is calculated from the polarization voltage, and at the time of charging or discharging predetermined corresponding to the current The storage battery is compared by comparing the DC internal resistance calculated from the polarization voltage with the DC internal resistance serving as the threshold based on a data table indicating the DC internal resistance serving as a threshold for determining deterioration of the battery. Characterized in that it comprises an information processing unit for performing the deterioration determination.
According to this configuration, it is possible to improve the deterioration determination accuracy of the storage battery.

本発明によれば、サイクル用の蓄電池の劣化判定精度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration determination precision of the storage battery for cycles can be improved.

本発明の実施形態に係る蓄電池の劣化判定装置を示す図である。It is a figure which shows the deterioration determination apparatus of the storage battery which concerns on embodiment of this invention. SOC90%における放電5秒目の電流と電圧との関係を示すグラフである。It is a graph which shows the relationship between the electric current and voltage of the discharge for 5 seconds in SOC90%. SOC90%における充電5秒目の電流と電圧との関係を示すグラフである。It is a graph which shows the relationship between the electric current of the 5th charge in SOC 90%, and a voltage. 蓄電池の劣化判定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the deterioration determination apparatus of a storage battery.

以下、図面を参照して本発明の一実施の形態について説明する。
図1は、本発明の実施形態に係る蓄電池の劣化判定装置を示す図である。
この蓄電池の劣化判定装置(以下、電池劣化判定装置と言う)10は、電力で動作する機器の電源となる組電池11の劣化を判定する装置である。
まず、この電池劣化判定装置10が対象とする組電池11の一例として、組電池を構成する蓄電池に鉛蓄電池を用いた例について説明する。
この組電池11は、複数のセル(鉛蓄電池)12が直列に接続されたサイクル用の鉛蓄電池である。つまり、この組電池11は、充電と放電のサイクルを繰り返すために充電状態が常に変動する状況下で使用されることを意図して、サイクル寿命の長寿命化、PSOC(部分充電状態;Pertial State of Charge)での充電受け入れ性の改善などを図った二次電池である。
具体的には、この組電池11は、例えば、再生可能エネルギーである風力発電や太陽光発電などからの余剰電力を充電し、不足電力を放電する平準化用電源に使用されたり、夜間の電力で充電し、昼間の電力需要増大時に放電し、電力負荷を平準化する電力貯蔵用電源に使用されたりする。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a storage battery deterioration determination device according to an embodiment of the present invention.
The storage battery deterioration determination device (hereinafter referred to as a battery deterioration determination device) 10 is a device that determines the deterioration of an assembled battery 11 serving as a power source for a device that operates on electric power.
First, an example in which a lead storage battery is used as a storage battery constituting the assembled battery will be described as an example of the assembled battery 11 targeted by the battery deterioration determination device 10.
This assembled battery 11 is a lead acid battery for a cycle in which a plurality of cells (lead acid batteries) 12 are connected in series. In other words, the assembled battery 11 is intended to be used in a situation where the state of charge constantly fluctuates in order to repeat the charge and discharge cycles, so that the cycle life is extended, and the PSOC (Partial State; of Charge), which is a secondary battery designed to improve charge acceptance.
Specifically, the assembled battery 11 is used as a leveling power source that charges surplus power from, for example, wind power generation or solar power generation, which is renewable energy, and discharges insufficient power, or power at night It is used for power storage power sources for leveling the power load.

電池劣化判定装置10は、組電池11を充電または放電する機能を具備する充放電装置(充放電部)21と、充放電装置21の制御機能および組電池11の劣化判定機能を具備する情報処理装置(情報処理部)22とを備えている。
情報処理装置22は、組電池11の各セル12に接続されたモニター線23を介して各セル12の電圧や電流を測定可能な測定部24と、測定部24の測定結果を入力する処理部25とを有している。そして、処理部25の制御の下、測定部24による測定や、充放電装置21による充電および放電が制御され、また測定データを基に判定データを算出するようになっている。
The battery deterioration determination device 10 includes a charge / discharge device (charge / discharge unit) 21 having a function of charging or discharging the assembled battery 11, a control function of the charge / discharge device 21, and an information processing having a deterioration determination function of the assembled battery 11. And an apparatus (information processing unit) 22.
The information processing apparatus 22 includes a measurement unit 24 that can measure the voltage and current of each cell 12 via a monitor line 23 connected to each cell 12 of the assembled battery 11, and a processing unit that inputs measurement results of the measurement unit 24. 25. Under the control of the processing unit 25, measurement by the measurement unit 24 and charging and discharging by the charge / discharge device 21 are controlled, and determination data is calculated based on the measurement data.

処理部25は、各種データを記憶する記憶部26を有しており、この記憶部26には、組電池11の劣化を判定するための各種制御や演算を行うためのプログラムデータや、劣化判定の閾値Jなどのデータが記憶されている。
この劣化判定の閾値Jは、分極電圧ΔVから算出した直流内部抵抗Rの閾値であり、これらの閾値は、0.05〜1CAまでの所定の電流レート、例えば0.05CA刻みの電流レート毎に、充電時または放電時の劣化判定の閾値となる直流内部抵抗Rを示したデータテーブルとして記憶されている。
The processing unit 25 includes a storage unit 26 that stores various types of data. In the storage unit 26, program data for performing various controls and calculations for determining deterioration of the assembled battery 11, and deterioration determination Data such as the threshold value J is stored.
The threshold value J of the deterioration determination is a threshold value of the DC internal resistance R calculated from the polarization voltage ΔV, and these threshold values are set at a predetermined current rate of 0.05 to 1 CA, for example, every 0.05 CA increment. These are stored as a data table indicating the DC internal resistance R that is a threshold value for determining deterioration during charging or discharging.

図2は、2V−1000Ah(10時間率容量)のサイクル用鉛蓄電池を均等充電により満充電状態にした後、0.1CAの電流で1時間放電して、SOCを90%まで調整し、0.05CA(50A)〜1CA(1000A)の電流で5秒間放電したときの電流と電圧をプロットしたグラフである。ここで、電流と電圧の傾きは直流内部抵抗を示しており、このグラフから、放電時は電流と電圧の関係が直線となり、どの電流においても直流内部抵抗が同じ数値を示すことが分かる。なお、ここでは、SOC90%まで調整後に放電した場合を示したが、SOC50%〜95%まで調整後に放電した場合でも同様の挙動を示した。
一方、図3はSOCを90%まで調整したサイクル用鉛蓄電池を、0.05CA(50A)〜1CA(1000A)の電流で5秒間充電したときの電流と電圧をプロットしたグラフである。このグラフから、充電時は0.05CA(50A)〜0.6CA(600A)までは直線性を示すため直流内部抵抗が同じであるが、0.75CA(750A)を超えると分極が大きくなることが分かる。よって、充電時の電流レートは、0.75CAを超えると酸素過電圧、水素過電圧の影響で直流内部抵抗が正しく測定できなくなるため、0.05CA〜0.6CAの範囲が好ましい。なお、ここでは、SOC90%まで調整後充電した場合を示したが、SOC50%〜95%まで調整後に充電した場合でも同様の挙動を示した。
また、放電時および充電時共に、電流は0.05CA未満でも直流内部抵抗は測定可能であるが、分極が比較的小さく、直流内部抵抗の測定精度が落ちるため、0.05CA以上であることが好ましい。
このデータテーブル形式を用いることにより、算出した値とデータテーブル値とを比較することで、より簡単に、劣化判定を行うことができる。
FIG. 2 shows that a 2V-1000 Ah (10 hour rate capacity) cycle lead-acid battery is fully charged by equal charge, then discharged for 1 hour at a current of 0.1 CA, and the SOC is adjusted to 90%. It is the graph which plotted the electric current and voltage when discharging for 5 second by the electric current of 0.05CA (50A)-1CA (1000A). Here, the slope of the current and voltage indicates the DC internal resistance. From this graph, it can be seen that the relationship between the current and voltage is a straight line during discharge, and the DC internal resistance shows the same numerical value at any current. In addition, although the case where it discharged after adjustment to SOC90% was shown here, even when it discharged after adjustment to SOC50% -95%, the same behavior was shown.
On the other hand, FIG. 3 is a graph plotting current and voltage when a lead acid battery for a cycle with SOC adjusted to 90% is charged with a current of 0.05 CA (50 A) to 1 CA (1000 A) for 5 seconds. From this graph, during charging, the direct current internal resistance is the same because it shows linearity from 0.05CA (50A) to 0.6CA (600A), but the polarization increases when it exceeds 0.75CA (750A). I understand. Therefore, if the current rate during charging exceeds 0.75 CA, the DC internal resistance cannot be measured correctly due to the influence of oxygen overvoltage and hydrogen overvoltage, so the range of 0.05 CA to 0.6 CA is preferable. In addition, although the case where it charged after adjustment to SOC90% was shown here, even when it charged after adjustment to SOC50% -95%, the same behavior was shown.
Further, the DC internal resistance can be measured even when the current is less than 0.05 CA, both at the time of discharging and at the time of charging. However, since the polarization is relatively small and the measurement accuracy of the DC internal resistance is lowered, it may be 0.05 CA or more. preferable.
By using this data table format, it is possible to perform the deterioration determination more easily by comparing the calculated value and the data table value.

充放電装置21は、情報処理装置(情報処理部)22の制御の下、セル12毎のSOCのばらつきを解消するための均等充電(回復充電、リフレッシュ充電を含む)を組電池11に行ったり、情報処理装置22の指示に基づく電流値で組電池11を放電または充電させたりする。この充放電装置21は、公知の充放電装置を適用することが可能である。   The charge / discharge device 21 performs equal charge (including recovery charge and refresh charge) on the assembled battery 11 to eliminate the variation in SOC for each cell 12 under the control of the information processing device (information processing unit) 22. The assembled battery 11 is discharged or charged with a current value based on an instruction from the information processing device 22. As this charging / discharging device 21, a known charging / discharging device can be applied.

次に、この電池劣化判定装置10の動作を説明する。
図4はこの電池劣化判定装置10の動作を示すフローチャートである。
図4に示すように、この電池劣化判定装置10において、まず、情報処理装置22の処理部25は、予め定められたスケジュールに従って充放電装置21により均等充電を行って組電池11を満充電にする(ステップS11:充電工程)。
次に、処理部25は、充放電装置21によって組電池11の放電を行う(ステップS12:放電工程)。この場合、処理部25は、測定部24によって測定される電流値を積算することによって放電量を算出し、この放電量を監視することによって、組電池11のSOC(充電状態)を目標値Sxに調整する。
Next, operation | movement of this battery deterioration determination apparatus 10 is demonstrated.
FIG. 4 is a flowchart showing the operation of the battery deterioration determination device 10.
As shown in FIG. 4, in the battery deterioration determination device 10, first, the processing unit 25 of the information processing device 22 performs equal charge by the charge / discharge device 21 according to a predetermined schedule to fully charge the assembled battery 11. (Step S11: Charging step).
Next, the process part 25 discharges the assembled battery 11 by the charging / discharging apparatus 21 (step S12: discharge process). In this case, the processing unit 25 calculates the discharge amount by integrating the current values measured by the measurement unit 24, and monitors the discharge amount to determine the SOC (charge state) of the assembled battery 11 to the target value Sx. Adjust to.

次いで、処理部25は、ステップS12でSOCを目標値Sxに調整した組電池11を、充放電装置21によって目標電流値Ixで放電または充電させ、このときの電圧を測定部24によって測定する(ステップS13:電圧測定工程)。
続いて、処理部25は、この電圧の測定結果から分極電圧ΔVを求め、この値から直流内部抵抗Rを算出する(ステップS14)、この直流内部抵抗Rに基づいて組電池11の劣化状態を判定する(ステップS15:判定工程)。以上が電池劣化判定装置10による劣化判定処理である。
Next, the processing unit 25 causes the charging / discharging device 21 to discharge or charge the assembled battery 11 whose SOC is adjusted to the target value Sx in step S12, and measures the voltage at this time by the measuring unit 24 ( Step S13: Voltage measurement step).
Subsequently, the processing unit 25 obtains the polarization voltage ΔV from the measurement result of this voltage, calculates the direct current internal resistance R from this value (step S14), and determines the deterioration state of the assembled battery 11 based on the direct current internal resistance R. Determination (step S15: determination process). The above is the deterioration determination process by the battery deterioration determination apparatus 10.

一般に、鉛蓄電池はPSOC状態での使用を続けると、負極のサルフェーションが進行し、短寿命となる傾向がある。
本構成では、予め定めたスケジュールに従って均等充電を行うので、鉛蓄電池で構成される組電池11は、定期的に均等充電される。このため、一端、各セル12の負極板表面に生成した硫酸鉛を、海綿状の金属鉛に戻すことができる。従って、サルフェーション進行が抑えられ、SOCを100%に戻し、運用中に生じたSOCの誤差をリセットし易くなる。
また、この均等充電は、定期的に実施される均等充電のタイミングを利用することで、劣化判定の最初の均等充電のステップS11を省くことができる。
In general, when a lead-acid battery continues to be used in the PSOC state, sulfation of the negative electrode proceeds and the life tends to be short.
In this structure, since equal charge is performed according to a predetermined schedule, the assembled battery 11 composed of a lead storage battery is regularly charged equally. For this reason, the lead sulfate produced | generated on the negative electrode plate surface of each cell 12 at one end can be returned to sponge-like metal lead. Therefore, the progress of sulfation is suppressed, the SOC is returned to 100%, and the SOC error generated during operation is easily reset.
Moreover, this equal charge can omit step S11 of the first equal charge of the deterioration determination by utilizing the timing of the equal charge performed periodically.

また、上記ステップS12において、処理部25は、目標値Sxを50〜95%の範囲内の値に設定している。
ここで、一例として2V−1000Ah(10時間率容量)のサイクル用鉛蓄電池をSOC調整するまでの時間とSOC調整後の残存容量を表1に示す。
In step S12, the processing unit 25 sets the target value Sx to a value within the range of 50 to 95%.
Here, as an example, Table 1 shows the time until the SOC adjustment of a 2V-1000 Ah (10 hour rate capacity) cycle lead storage battery and the remaining capacity after the SOC adjustment.

Figure 2015010962
Figure 2015010962

発明者等の検討によれば、SOC95%超では、鉛蓄電池の充電時に大きく分極するため、組電池11として運用中の上限電圧に到達し易くなり、劣化状態を正しく判定することが難しくなる。また、電力安定化のためには組電池11が常に充放電できるSOCであることが必要になるが、鉛蓄電池のSOCが95%超では充電の受け入れ量が少な過ぎ、電力安定化に不利になることが分かった。
一方、SOCが40%では、鉛蓄電池を満充電から目的のSOCに調整するまでに時間がかかり過ぎるため好ましくない。また、未劣化の電池ではSOC40%でも残存容量があるため充放電しても問題ないが、初期容量の70%の容量まで劣化した電池では、SOC40%のときは残存容量が100Ahとなり、その状態で充放電すると深放電することになり、劣化判定することで鉛蓄電池にダメージを与え、組電池11の寿命が低下してしまうおそれがある。さらに、非常時に放電できる電力量が少なくなってしまう欠点がある。
According to the study by the inventors, when the SOC exceeds 95%, the lead storage battery is largely polarized when charged, so that it becomes easy to reach the upper limit voltage during operation as the assembled battery 11 and it is difficult to correctly determine the deterioration state. In addition, it is necessary for the battery pack 11 to be an SOC that can always be charged and discharged in order to stabilize the power. However, if the SOC of the lead storage battery exceeds 95%, the amount of charge accepted is too small, which is disadvantageous for power stabilization. I found out that
On the other hand, if the SOC is 40%, it takes too much time to adjust the lead storage battery from full charge to the target SOC, which is not preferable. In addition, an undegraded battery has a remaining capacity even if the SOC is 40%, so there is no problem with charging and discharging. However, in a battery deteriorated to a capacity of 70% of the initial capacity, the remaining capacity becomes 100 Ah when the SOC is 40%. If the battery is charged / discharged, the battery will be deeply discharged, and the deterioration determination may cause damage to the lead storage battery, leading to a decrease in the life of the assembled battery 11. Furthermore, there is a drawback that the amount of power that can be discharged in an emergency is reduced.

ステップS12の目標値Sxへの調整を説明する。本実施形態では、劣化前の組電池11の総放電電気量を基準(SOC=100%)とし、この総放電電気量から放電量を減算した値を、現在のSOCと見なし、このSOCが目標値Sxになるまで放電させる。
ここで、組電池11の劣化が進行していない場合は、上記の調整方法によって実際のSOCをほぼ目標値Sxに調整することができる。
一方、組電池11の劣化が進行している場合には、均等充電しても実際のSOCは100%に達しなくなるため、計測したSOCと、実際のSOCとにずれが生じてしまう。例えば、目標値Sxを40%に設定すると、実際のSOCはそれを更に下回ってしまうことになる。
本構成では、上述したように、目標値Sxを50%以上にしているので、実際のSOCとの間にずれが生じたとしても、実際のSOCがかなり低くなってしまうことを回避することができる。従って、電池寿命の低下を抑えることができる。
The adjustment to the target value Sx in step S12 will be described. In the present embodiment, the total discharge electricity amount of the assembled battery 11 before deterioration is used as a reference (SOC = 100%), and a value obtained by subtracting the discharge amount from this total discharge electricity amount is regarded as the current SOC, and this SOC is the target. Discharge until value Sx.
Here, when the deterioration of the assembled battery 11 has not progressed, the actual SOC can be adjusted to substantially the target value Sx by the adjustment method described above.
On the other hand, when the deterioration of the assembled battery 11 is progressing, the actual SOC does not reach 100% even when the batteries are evenly charged, so that a deviation occurs between the measured SOC and the actual SOC. For example, if the target value Sx is set to 40%, the actual SOC will be lower than that.
In the present configuration, as described above, the target value Sx is set to 50% or more, so that even if a deviation occurs from the actual SOC, it is possible to avoid that the actual SOC becomes considerably low. it can. Therefore, a decrease in battery life can be suppressed.

目標値Sxについては、より好ましくは、50〜95%の範囲内のうち、この組電池11が使用される充放電サイクルの中間のSOCが良い。例えば、この組電池11が50〜95%のSOCで運用されている場合には、目標値Sxを、50〜95%の中間値である72.5%に設定することが好ましい。このようにすれば、運用中の常用されるSOCで組電池11の劣化を判定することができ、劣化をより適切に判定することができる。
ここで、目標値Sxの値は、情報処理装置22の記憶部26に予め記憶させても良い。また、これに代えて、情報処理装置22がSOCを監視し、この監視結果に基づいて充放電サイクルの中間のSOCを定期的に求め、目標値Sxに設定するようにしても良い。
About target value Sx, More preferably, in the range of 50 to 95%, the middle SOC of the charge / discharge cycle in which this assembled battery 11 is used is good. For example, when the assembled battery 11 is operated with an SOC of 50 to 95%, the target value Sx is preferably set to 72.5%, which is an intermediate value of 50 to 95%. If it does in this way, degradation of assembled battery 11 can be judged with SOC currently used in operation, and degradation can be judged more appropriately.
Here, the value of the target value Sx may be stored in advance in the storage unit 26 of the information processing device 22. Alternatively, the information processing device 22 may monitor the SOC, periodically obtain the SOC in the middle of the charge / discharge cycle based on the monitoring result, and set it to the target value Sx.

以上より、組電池11を構成する鉛蓄電池12は、SOC50〜95%の範囲のPSOCで運用されることが好ましい。SOCが50%未満であると、鉛蓄電池12の性能劣化が著しくなるためであり、また、SOCが95%より大きいと、他の電力からの充電効率が悪くなるためである。   As mentioned above, it is preferable that the lead acid battery 12 which comprises the assembled battery 11 is operated by PSOC of SOC 50 to 95% of range. This is because if the SOC is less than 50%, the performance deterioration of the lead storage battery 12 becomes remarkable, and if the SOC is more than 95%, the charging efficiency from other electric power becomes worse.

上記ステップS13において、処理部25は、目標電流値Ixとして、定格放電容量に対する電流を、放電時は0.05〜1.0CAの範囲内の値に設定する。また、充電時は0.05〜0.6CAの範囲内の値に設定する。
発明者等の検討によれば、0.05CA未満では、組電池11を充電または放電したときの分極が小さいため、判定が難しい場合があった。また、放電時は1.0CA超で、放電時の分極が大きく運用中の下限電圧に到達し易くなり、一方、充電時は0.8CA超で、充電時の分極が大きく運用中の上限電圧に到達し易くなり、正しい判定が難しくなった。
In step S13, the processing unit 25 sets the current with respect to the rated discharge capacity as the target current value Ix to a value within the range of 0.05 to 1.0 CA during discharge. Moreover, it sets to the value within the range of 0.05-0.6CA at the time of charge.
According to the study by the inventors, if it is less than 0.05 CA, the determination may be difficult because the polarization when the assembled battery 11 is charged or discharged is small. In addition, it is more than 1.0 CA during discharge, and the polarization at the time of discharge is large, so that it is easy to reach the lower limit voltage during operation. This makes it easier to reach the correct judgment.

続いて、上記ステップS14の直流内部抵抗Rを算出する工程について説明する。
上記ステップS13で分極電圧ΔVを求めた後、処理部25は、以下の式(1)により分極電圧ΔVから直流内部抵抗Rを算出する。
R=ΔV/Ix ・・・(1)
Subsequently, the step of calculating the DC internal resistance R in step S14 will be described.
After obtaining the polarization voltage ΔV in step S13, the processing unit 25 calculates the DC internal resistance R from the polarization voltage ΔV by the following equation (1).
R = ΔV / Ix (1)

続いて、上記ステップS15において、処理部25は、直流内部抵抗Rを、記憶部26に記憶された劣化判定の閾値Jと比較することによって、組電池11の寿命状態を判定する。
例えば、直流内部抵抗Rが、閾値J(抵抗値)以上であれば、組電池11が寿命になったものと判定する。なお、この劣化判定については、分極電圧ΔVや直流内部抵抗Rに基づいて劣化判定する公知の手法を広く適用可能である。
Subsequently, in step S <b> 15, the processing unit 25 determines the life state of the assembled battery 11 by comparing the DC internal resistance R with the deterioration determination threshold value J stored in the storage unit 26.
For example, if the DC internal resistance R is equal to or greater than the threshold value J (resistance value), it is determined that the assembled battery 11 has reached the end of its life. For this deterioration determination, a well-known method for determining deterioration based on the polarization voltage ΔV or the DC internal resistance R can be widely applied.

以上説明したように、本実施の形態では、サイクル用の鉛蓄電池12で構成される組電池11を均等充電により満充電にした後、50〜95%のSOCまで放電させる工程と、0.05〜0.6CAの範囲の電流で充電、または0.05〜1.0CAの範囲の電流で放電させたときの電圧を測定する工程と、この測定電圧から分極電圧ΔVを算出した後、前記分極電圧ΔVから直流内部抵抗Rを算出する工程と、前記電流に対応して予め定められた充電時または放電時の劣化判定の閾値Jとなる直流内部抵抗を示したデータテーブルに基づいて、前記分極電圧から算出した直流内部抵抗Rと、前記閾値Jとなる直流内部抵抗を比較することにより組電池11(サイクル用の鉛蓄電池12)の劣化判定を行う工程と、を備える。   As described above, in the present embodiment, after the assembled battery 11 composed of the lead acid battery 12 for cycle is fully charged by equal charge, the step of discharging to 50 to 95% SOC; 0.05 A step of measuring a voltage when charged with a current in a range of .about.0.6 CA or discharged with a current in a range of 0.05 to 1.0 CA, and after calculating a polarization voltage .DELTA.V from the measured voltage, Based on the step of calculating the direct current internal resistance R from the voltage ΔV and the data table showing the direct current internal resistance that becomes the threshold value J of the deterioration determination at the time of charging or discharging corresponding to the current, the polarization A step of determining the deterioration of the battery pack 11 (lead battery 12 for cycle) by comparing the DC internal resistance R calculated from the voltage and the DC internal resistance that is the threshold value J.

この構成によれば、上述したように、SOCを100%に戻して運用中に生じたSOCの誤差をリセットし、かつ、運用中の上限電圧に到達しない範囲で劣化状態を判定し易くなる。また、満充電から調整するまでに時間がかかり過ぎてしまうことや、SOCを下げすぎて電池寿命を低下させることも回避し易くなる。
これらにより、本構成では、サイクル用の鉛蓄電池12で構成される組電池11の劣化判定精度を向上させることが可能になる。
従って、電力の負荷平準化や太陽光発電などの再生可能エネルギーの平準化などの電力貯蔵用途に用いた場合に、信頼性の高い組電池システムを維持することが可能になる。
According to this configuration, as described above, the SOC is returned to 100%, the SOC error generated during operation is reset, and the deterioration state is easily determined within a range that does not reach the upper limit voltage during operation. Moreover, it becomes easy to avoid that it takes too much time to adjust from full charge and that the SOC is lowered too much to shorten the battery life.
Accordingly, in this configuration, it is possible to improve the deterioration determination accuracy of the assembled battery 11 including the lead storage battery 12 for cycles.
Therefore, it is possible to maintain a highly reliable assembled battery system when used for power storage applications such as power load leveling and leveling of renewable energy such as solar power generation.

さらに、本構成では、均等充電で満充電にした後の放電では、劣化前の組電池11の総放電電気量を基準にして50〜95%のSOCまで放電させるので、SOCの調整がし易い。また、調整後のSOCと実際のSOCとの間にずれが生じても、実際のSOCが過度に低く調整されてしまうことを抑えることも可能である。
また、本構成では、均等充電で満充電にした後の放電では、組電池11が使用される充放電サイクルの中間のSOCまで放電させるので、劣化をより適切に判定することが可能になる。
Furthermore, in this configuration, in the discharge after the full charge is performed by the equal charge, the SOC is discharged to 50 to 95% based on the total discharge electricity amount of the assembled battery 11 before deterioration, so that the SOC can be easily adjusted. . Further, even if a deviation occurs between the adjusted SOC and the actual SOC, it is possible to suppress the actual SOC from being adjusted too low.
Further, in this configuration, in the discharge after the full charge is performed by the equal charge, the battery is discharged to the middle SOC of the charge / discharge cycle in which the assembled battery 11 is used, so that the deterioration can be more appropriately determined.

なお、上述の実施形態は、あくまでも本発明の一態様を示すものであり、本発明の主旨を逸脱しない範囲で任意に変形および応用が可能である。例えば、上述の実施形態では、組電池11の劣化判定方法や電池劣化判定装置10に本発明を適用する場合を説明したが、これに限らない。本発明は、複数のセルを有するサイクル用のニッケル・水素蓄電池の劣化判定方法や、その劣化判定装置に広く適用することが可能である。   The above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified and applied without departing from the gist of the present invention. For example, in the above-described embodiment, the case where the present invention is applied to the deterioration determination method for the assembled battery 11 or the battery deterioration determination apparatus 10 has been described, but the present invention is not limited thereto. The present invention can be widely applied to a deterioration determination method and a deterioration determination apparatus for a nickel-hydrogen storage battery for a cycle having a plurality of cells.

10 蓄電池の劣化判定装置(電池劣化判定装置)
11 組電池
12 セル、蓄電池、鉛蓄電池
21 充放電装置(充放電部)
22 情報処理装置(情報処理部)
23 モニター線
24 測定部
25 処理部
26 記憶部
10 Storage battery deterioration determination device (Battery deterioration determination device)
11 assembled battery 12 cell, storage battery, lead storage battery 21 charge / discharge device (charge / discharge unit)
22 Information processing device (Information processing unit)
23 Monitor Line 24 Measuring Unit 25 Processing Unit 26 Storage Unit

Claims (5)

複数の蓄電池を直列および/または並列に接続した組電池システムに用いられ、PSOC(部分充電状態)で運用されるサイクル用の蓄電池を均等充電により満充電にする工程と、所定のSOC(充電状態)まで放電させる工程と、0.05〜0.6CAの範囲の電流で充電、または0.05〜1.0CAの範囲の電流で放電させたときの電圧を測定する工程と、この測定電圧から分極電圧を算出した後、前記分極電圧から直流内部抵抗を算出する工程と、前記電流に対応して予め定められた充電時または放電時の劣化判定の閾値となる直流内部抵抗を示したデータテーブルに基づいて、前記分極電圧から算出した直流内部抵抗と、前記閾値となる直流内部抵抗を比較することにより前記蓄電池の劣化判定を行う工程と、を備えることを特徴とする蓄電池の劣化判定方法。   A process for charging a storage battery for a cycle that is used in an assembled battery system in which a plurality of storage batteries are connected in series and / or in parallel and operated in PSOC (partial charge state) by equal charge, and a predetermined SOC (charge state) ), A step of measuring a voltage when charged with a current in a range of 0.05 to 0.6 CA, or a discharge with a current of a range of 0.05 to 1.0 CA, and from the measured voltage After calculating the polarization voltage, a step of calculating a DC internal resistance from the polarization voltage, and a data table showing a DC internal resistance that becomes a threshold value for deterioration determination at the time of charge or discharge determined in advance corresponding to the current And determining the deterioration of the storage battery by comparing the direct-current internal resistance calculated from the polarization voltage with the direct-current internal resistance serving as the threshold value. Deterioration determination method of the storage battery to be. 前記所定のSOCまで放電させる工程では、劣化前の前記蓄電池の総放電電気量を基準にして50〜95%のSOCまで放電させることを特徴とする請求項1に記載の蓄電池の劣化判定方法。   2. The method for determining deterioration of a storage battery according to claim 1, wherein in the step of discharging to the predetermined SOC, the battery is discharged to 50 to 95% of SOC based on a total discharge electricity amount of the storage battery before deterioration. 前記所定のSOCまで放電させる工程では、前記蓄電池が使用される充放電サイクルの中間のSOCまで放電させることを特徴とする請求項1または2に記載の蓄電池の劣化判定方法。   The method for determining deterioration of a storage battery according to claim 1 or 2, wherein, in the step of discharging to the predetermined SOC, the battery is discharged to an intermediate SOC of a charge / discharge cycle in which the storage battery is used. 前記蓄電池は、SOC50〜95%の範囲のPSOCで運用されることを特徴とする請求項1乃至3のいずれか一項に記載の蓄電池の劣化判定方法。   The storage battery deterioration determination method according to any one of claims 1 to 3, wherein the storage battery is operated with a PSOC in a range of SOC 50 to 95%. 複数の蓄電池を直列および/または並列に接続した組電池システムに用いられ、PSOC(部分充電状態)で運用されるサイクル用の蓄電池の充放電を行う充放電部と、
前記充放電部により前記蓄電池を所定のSOC(充電状態)まで放電させ、その後、0.05〜0.6CAの範囲の電流で充電、または0.05〜1.0CAの範囲の電流で放電させたときの電圧を測定し、この測定電圧から分極電圧を算出した後、前記分極電圧から直流内部抵抗を算出し、前記電流に対応して予め定められた充電時または放電時の劣化判定の閾値となる直流内部抵抗を示したデータテーブルに基づいて前記分極電圧から算出した直流内部抵抗と、前記閾値となる直流内部抵抗を比較することにより前記蓄電池の劣化判定を行う情報処理部と
を備えることを特徴とする蓄電池の劣化判定装置。
A charge / discharge unit that charges and discharges a storage battery for a cycle that is used in an assembled battery system in which a plurality of storage batteries are connected in series and / or in parallel, and is operated in a PSOC (partial charge state);
The storage battery is discharged to a predetermined SOC (charged state) by the charging / discharging unit, and then charged with a current in the range of 0.05 to 0.6 CA or discharged with a current in the range of 0.05 to 1.0 CA. After measuring the voltage at this time, calculating the polarization voltage from this measurement voltage, calculating the DC internal resistance from the polarization voltage, and a threshold value for deterioration determination at the time of charging or discharging that is predetermined corresponding to the current An information processing unit that determines deterioration of the storage battery by comparing the DC internal resistance calculated from the polarization voltage based on the data table indicating the DC internal resistance to be compared with the DC internal resistance that is the threshold value. An apparatus for determining deterioration of a storage battery.
JP2013137413A 2013-06-28 2013-06-28 Method for determining degradation of storage battery and device for determining degradation of storage battery Pending JP2015010962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013137413A JP2015010962A (en) 2013-06-28 2013-06-28 Method for determining degradation of storage battery and device for determining degradation of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137413A JP2015010962A (en) 2013-06-28 2013-06-28 Method for determining degradation of storage battery and device for determining degradation of storage battery

Publications (1)

Publication Number Publication Date
JP2015010962A true JP2015010962A (en) 2015-01-19

Family

ID=52304244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137413A Pending JP2015010962A (en) 2013-06-28 2013-06-28 Method for determining degradation of storage battery and device for determining degradation of storage battery

Country Status (1)

Country Link
JP (1) JP2015010962A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405423A (en) * 2016-06-30 2017-02-15 南京金邦动力科技有限公司 Battery monitoring method and system
CN109874352A (en) * 2016-05-18 2019-06-11 日立汽车系统株式会社 Battery control device
CN111679200A (en) * 2020-06-03 2020-09-18 广州小鹏汽车科技有限公司 Battery state of charge calibration method and device and vehicle
WO2020233544A1 (en) * 2019-05-20 2020-11-26 Oppo广东移动通信有限公司 Battery test system and method
WO2022174698A1 (en) * 2021-02-20 2022-08-25 青岛特来电新能源科技有限公司 Health status evaluation method and apparatus for new energy device, medium and prompt terminal
JP7380974B2 (en) 2020-07-31 2023-11-15 エルジー エナジー ソリューション リミテッド Overvoltage characteristics evaluation device and overvoltage characteristics evaluation method for batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145979A (en) * 1996-11-07 1998-05-29 Nissan Motor Co Ltd Charging method for lithium ion battery
WO1999061929A1 (en) * 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
JP2001314046A (en) * 2000-05-01 2001-11-09 Toyota Motor Corp Charging apparatus and method of battery pack and electric vehicle
JP2006010501A (en) * 2004-06-25 2006-01-12 Auto Network Gijutsu Kenkyusho:Kk Battery status administration system
JP2007166789A (en) * 2005-12-14 2007-06-28 Toyota Motor Corp Method of determining fully charged capacity of secondary battery and determining device thereof
JP2012208027A (en) * 2011-03-30 2012-10-25 Gs Yuasa Corp Method for diagnosing deterioration of battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145979A (en) * 1996-11-07 1998-05-29 Nissan Motor Co Ltd Charging method for lithium ion battery
WO1999061929A1 (en) * 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
JP2001314046A (en) * 2000-05-01 2001-11-09 Toyota Motor Corp Charging apparatus and method of battery pack and electric vehicle
JP2006010501A (en) * 2004-06-25 2006-01-12 Auto Network Gijutsu Kenkyusho:Kk Battery status administration system
JP2007166789A (en) * 2005-12-14 2007-06-28 Toyota Motor Corp Method of determining fully charged capacity of secondary battery and determining device thereof
JP2012208027A (en) * 2011-03-30 2012-10-25 Gs Yuasa Corp Method for diagnosing deterioration of battery pack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874352A (en) * 2016-05-18 2019-06-11 日立汽车系统株式会社 Battery control device
CN109874352B (en) * 2016-05-18 2023-03-24 日本汽车能源株式会社 Battery control device
CN106405423A (en) * 2016-06-30 2017-02-15 南京金邦动力科技有限公司 Battery monitoring method and system
CN106405423B (en) * 2016-06-30 2019-09-13 南京金邦动力科技有限公司 Battery cell monitoring method and battery monitor system
WO2020233544A1 (en) * 2019-05-20 2020-11-26 Oppo广东移动通信有限公司 Battery test system and method
CN111679200A (en) * 2020-06-03 2020-09-18 广州小鹏汽车科技有限公司 Battery state of charge calibration method and device and vehicle
CN111679200B (en) * 2020-06-03 2023-02-10 广州小鹏汽车科技有限公司 Battery state of charge calibration method and device and vehicle
JP7380974B2 (en) 2020-07-31 2023-11-15 エルジー エナジー ソリューション リミテッド Overvoltage characteristics evaluation device and overvoltage characteristics evaluation method for batteries
WO2022174698A1 (en) * 2021-02-20 2022-08-25 青岛特来电新能源科技有限公司 Health status evaluation method and apparatus for new energy device, medium and prompt terminal

Similar Documents

Publication Publication Date Title
US8288995B2 (en) Assembled battery charging method and battery charging system
TWI510799B (en) Apparatus and method for estimating state of charging of battery
TWI711242B (en) Monitoring and balancing capacity in lithium sulfur cells arranged in series
CN105891730B (en) A kind of computational methods of automobile power cell capacity
JP5423925B1 (en) Method and apparatus for refresh charging assembled battery comprising lead-acid battery
JP2015010962A (en) Method for determining degradation of storage battery and device for determining degradation of storage battery
JP5509152B2 (en) Power storage system
JP6729985B2 (en) Storage battery system charge control device, storage battery system and storage battery charge control method
JP5619744B2 (en) Method and apparatus for detecting state of power storage device
WO2014143444A1 (en) State of charge (soc) display for rechargeable battery
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP5141408B2 (en) Equal charge system for lead acid batteries
KR20150058172A (en) Accumulator operation control device, accumulator operation control method, and program
JPWO2010134515A1 (en) Method for calculating number of healthy strings of sodium-sulfur battery, and failure detection method using the same
JP2014068468A (en) Charge control device
JP5483748B2 (en) Method for calculating remaining capacity of sodium-sulfur battery
JP2014068467A (en) Charge control device
Wong et al. A new state-of-charge estimation method for valve regulated lead acid batteries
JP2017168361A (en) Secondary battery device, charge control device, and charge control method
US20200195029A1 (en) Charge control device, charge control method, non-transitory computer readable medium, control circuit and power storage system
KR101675962B1 (en) Control System and Method for Setting Charging Power Reflecting Battery Capacity Efficiency
JP6179755B2 (en) Power storage system using lead-acid battery
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2018061359A (en) Secondary battery device, charge control device and charge control method
JP2014059251A (en) Internal resistance estimation device and internal resistance estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228