JP2007166789A - Method of determining fully charged capacity of secondary battery and determining device thereof - Google Patents
Method of determining fully charged capacity of secondary battery and determining device thereof Download PDFInfo
- Publication number
- JP2007166789A JP2007166789A JP2005360164A JP2005360164A JP2007166789A JP 2007166789 A JP2007166789 A JP 2007166789A JP 2005360164 A JP2005360164 A JP 2005360164A JP 2005360164 A JP2005360164 A JP 2005360164A JP 2007166789 A JP2007166789 A JP 2007166789A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- secondary battery
- battery
- charging
- charge capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、二次電池の満充電容量を推定する方法に関する。また、推定した満充電容量に基づいて、満充電容量が十分な二次電池と不十分な二次電池に判別する装置に関する。 The present invention relates to a method for estimating a full charge capacity of a secondary battery. The present invention also relates to an apparatus for discriminating between a secondary battery with a sufficient full charge capacity and a secondary battery with an insufficient full charge capacity based on the estimated full charge capacity.
二次電池は、充放電のサイクルを繰返すことによって、満充電容量が減少する。過放電現象や過充電現象が生じると、満充電容量の低下が促進される。その一方において、現に使用している二次電池、例えば、電気自動車やハイブリッド自動車が搭載している二次電池の満充電容量を直接的に計測することは難しい。
そこで、使用している二次電池の満充電容量を推定する技術が必要とされている。
In the secondary battery, the full charge capacity is reduced by repeating the charge / discharge cycle. When an overdischarge phenomenon or an overcharge phenomenon occurs, a decrease in the full charge capacity is promoted. On the other hand, it is difficult to directly measure the full charge capacity of a secondary battery currently used, for example, a secondary battery mounted on an electric vehicle or a hybrid vehicle.
Therefore, a technique for estimating the full charge capacity of the secondary battery being used is required.
自動車に搭載されている二次電池の満充電容量を推定するために、特許文献1の技術が開発されている。特許文献1の技術では、未使用状態(劣化していない状態)の二次電池が充放電可能な容量と、使用を開始した(劣化が進行している状態)の二次電池が充放電可能な容量から、二次電池の劣化度を算出し、その劣化度から二次電池の満充電容量を推定する。
In order to estimate the full charge capacity of a secondary battery mounted on an automobile, the technique of
本発明者らの研究によって、従来の技術で推定される満充電容量は、実際の満充電容量との相関が悪いことがわかってきた。
その原因は、次のように推測される。充電の進行と電池電圧の変化は必ずしも直線的でない。一般に、充電初期では電池電圧が急速度に上昇する一方、それ以降には緩やかに変化する。満充電容量を推定するためには、充電中の二次電池がいかなる状態にあるのかを区別して推定する必要がある。しかしながら、従来の技術では、充電中の二次電池がいかなる状態にあるのかを考慮していない。電池電圧が急速度に上昇する期間における計測結果なのか、電池電圧が一定速度で安定的に上昇する期間における計測結果なのかを区別しないで満充電容量を推定するために、推定結果の信頼性が低いものと推測される。
The inventors' research has shown that the full charge capacity estimated by the prior art has a poor correlation with the actual full charge capacity.
The cause is presumed as follows. The progress of charging and the change in battery voltage are not necessarily linear. In general, the battery voltage increases rapidly at the initial stage of charging, but gradually changes thereafter. In order to estimate the full charge capacity, it is necessary to distinguish and estimate what state the secondary battery being charged is in. However, the conventional technology does not consider what state the secondary battery being charged is in. In order to estimate the full charge capacity without distinguishing between the measurement result during the period when the battery voltage rises rapidly and the measurement result during the period when the battery voltage rises stably at a constant speed, the reliability of the estimation result Is estimated to be low.
発明者らは、下記の極めて単純な手法で、上記の問題が克服できることを見出した。
(1)電池電圧が急速度に上昇する期間における計測結果には依拠しない。電池電圧が一定速度で安定的に上昇する期間における計測結果のみに基づいて満充電容量を推定する。後者の期間内の計測値を採用するために、充電中の二次電池の電池電圧を連続的に計測して記憶する一方、所定電圧に達した時に、それ以前の直近期間内に計測して記憶しておいた計測値から満充電容量を推定する。これによると、電池電圧が一定速度で安定的に上昇する期間における計測結果のみに基づいて満充電容量を推定することができる。
(2)一定電流で充電している二次電池の時間に対する電圧変化率から満充電容量を推定する。
前記(1)によって電池電圧が一定速度で安定的に上昇する期間であることがわかっている期間において、前記(2)の電圧変化率を算出すると、その電圧変化率が実際の満充電容量によく相関することが確認された。本発明では、上記の知見を活用する。
The inventors have found that the above problem can be overcome by the following very simple method.
(1) Do not rely on measurement results during a period when the battery voltage rises rapidly. The full charge capacity is estimated based only on the measurement result during the period when the battery voltage rises stably at a constant speed. In order to adopt the measurement value in the latter period, the battery voltage of the secondary battery being charged is continuously measured and memorized, while when the predetermined voltage is reached, it is measured within the previous previous period. The full charge capacity is estimated from the stored measurement value. According to this, the full charge capacity can be estimated based only on the measurement result in the period in which the battery voltage rises stably at a constant speed.
(2) The full charge capacity is estimated from the voltage change rate with respect to time of the secondary battery charged with a constant current.
When the voltage change rate of (2) is calculated during the period in which the battery voltage is known to be stably rising at a constant speed according to (1), the voltage change rate becomes the actual full charge capacity. A good correlation was confirmed. In the present invention, the above knowledge is utilized.
本発明の満充電容量の推定方法は、二次電池を一定電流で充電しながら二次電池の電圧を連続的に計測する工程と、連続的に計測した電圧を充電時間に関連付けて記憶しておく工程と、連続的に計測した二次電池の電圧が所定電圧に達した時に、それ以前に記憶しておいた二次電池の電圧の計時的変化を示すデータから、充電時間に対する電圧変化率を算出する工程と、算出した電圧変化率から、二次電池の満充電容量を推定する工程を備えている。ここで、前記所定電圧が、二次電池の分極電圧が飽和している電圧レベルに設定されていることを特徴とする。
ここで、二次電池の電圧を連続的に計測するという場合には、アナログ回路によって連続的に計測するという場合のみならず、デジタル回路によって細かなサンプリング間隔で断続的に計測することを含む。充電時間に対して十分に細かなサンプリング間隔で計測すれば、実際的な意味では連続的に計測するものと評価することができる。
The full charge capacity estimation method of the present invention includes a step of continuously measuring the voltage of the secondary battery while charging the secondary battery at a constant current, and storing the voltage continuously measured in association with the charging time. The voltage change rate with respect to the charging time is obtained from the data indicating the time change of the voltage of the secondary battery previously stored when the voltage of the secondary battery measured continuously reaches the predetermined voltage. And a step of estimating the full charge capacity of the secondary battery from the calculated voltage change rate. Here, the predetermined voltage is set to a voltage level at which a polarization voltage of the secondary battery is saturated.
Here, the case where the voltage of the secondary battery is continuously measured includes not only the case where the voltage is continuously measured by an analog circuit, but also the case where the voltage is intermittently measured by a digital circuit at fine sampling intervals. If measurement is performed at a sampling interval sufficiently fine with respect to the charging time, it can be evaluated that measurement is continuous in a practical sense.
本方法では、一定電流で充電することから、充電時間と充電容量が比例する。時間に対する電圧変化率と、充電容量に対する電圧変化率は、比例関係にあって換算可能である。
実際の二次電池内では分極が生じる。充電初期の段階では、充電電流の一部が分極の生成に消費される。電池電圧は、分極の影響によって、急速に変化する。この段階の電池電圧の変化は、充電容量に比例しない。この期間の計測値を利用して満充電容量を推定すると、誤差が大きい。充電を継続すると、二次電池内で生じる分極は飽和し、分極の影響が電池電圧の変化率に影響しなくなる。
充電後期には、電池電圧が一定速度で安定的に上昇する。そこで、充電後期に達する電圧を所定電圧としておけば、それに先立つ直前期間で、電池電圧が一定速度で安定的に上昇する期間であることがわかる。
本発明者らの研究によって、電池電圧が一定速度で安定的に上昇する期間において、二次電池を一定電流で充電したときに得られる電圧変化率は、満充電容量によく相関することがわかってきた。電圧変化率が大きければ、満充電容量は小さく、電圧変化率が小さければ、満充電容量は大きいという関係にあることがわかってきた。
本方法では、一定電流で充電するというごく単純な処理を実施し、所定電圧となった直前期間での電圧変化率に着目することによって、満充電容量を正確に推定する。
In this method, since charging is performed at a constant current, the charging time and the charging capacity are proportional. The voltage change rate with respect to time and the voltage change rate with respect to the charge capacity are proportional and can be converted.
Polarization occurs in an actual secondary battery. In the initial stage of charging, a part of the charging current is consumed for the generation of polarization. The battery voltage changes rapidly due to the influence of polarization. The change in battery voltage at this stage is not proportional to the charge capacity. If the full charge capacity is estimated using the measured value during this period, the error is large. When charging is continued, the polarization generated in the secondary battery is saturated, and the influence of the polarization does not affect the rate of change of the battery voltage.
In the second half of charging, the battery voltage rises stably at a constant speed. Therefore, if the voltage that reaches the second half of charging is set as a predetermined voltage, it can be seen that it is a period in which the battery voltage rises stably at a constant speed in the immediately preceding period.
According to the studies by the present inventors, it is found that the voltage change rate obtained when the secondary battery is charged at a constant current during the period when the battery voltage stably rises at a constant speed correlates well with the full charge capacity. I came. It has been found that the full charge capacity is small when the voltage change rate is large, and the full charge capacity is large when the voltage change rate is small.
In this method, a simple process of charging with a constant current is performed, and the full charge capacity is accurately estimated by paying attention to the voltage change rate in the period immediately before the predetermined voltage is reached.
本発明は、推定される満充電容量から、満充電容量が十分な二次電池と不十分な二次電池に判別する装置に具現化することもできる。この装置は、二次電池を一定電流で充電する充電手段と、充電中の二次電池の電圧を連続的に計測する手段と、連続的に計測した電圧を、充電時間に関連付けて記憶しておく手段と、連続的に計測した二次電池の電圧が所定電圧に達した時に、それ以前に記憶しておいた二次電池の電圧の計時的変化を示すデータから、充電時間に対する電圧変化率を算出する手段と、算出した電圧変化率を閾値と比較する手段を備えている。ここでも、前記所定電圧は、二次電池の分極電圧が飽和している電圧レベルに設定されている。 The present invention can also be embodied in an apparatus that discriminates between a secondary battery having a sufficient full charge capacity and a secondary battery having an insufficient full charge capacity from the estimated full charge capacity. This device stores charging means for charging a secondary battery at a constant current, means for continuously measuring the voltage of the secondary battery being charged, and the continuously measured voltage in association with the charging time. The voltage change rate with respect to the charging time is calculated from the data indicating the time change of the voltage of the secondary battery previously stored when the voltage of the secondary battery reaches a predetermined voltage. And a means for comparing the calculated voltage change rate with a threshold value. Here, the predetermined voltage is set to a voltage level at which the polarization voltage of the secondary battery is saturated.
上記の装置によると、満充電容量によく相関する電圧変化率を利用することから、満充電容量が十分な二次電池と不十分な二次電池を正確に判別することが可能となる。 According to the above apparatus, since the voltage change rate that correlates well with the full charge capacity is used, it is possible to accurately distinguish between a secondary battery with a sufficient full charge capacity and a secondary battery with an insufficient full charge capacity.
下記に詳細に説明する実施例の主要な形態を最初に列記する。
(形態1)二次電池は、車両搭載用二次電池である。
(形態2)二次電池は、ハイブリッド自動車の電動機を駆動する二次電池である。
(形態3)二次電池は、ニッケル水素電池である。
(形態4)二次電池に低電流で充電処理する。二次電池に大電流で充電すると、分極電圧が飽和する以前に、電池電圧が充電後期の電池電圧にまで上昇してしまう。低電流で充電すると、電池電圧が充電後期の電池電圧に上昇するまでに、分極電圧が飽和する。比較的低電流で充電すると、満充電容量を高精度に推定することができる。
(形態5)判別装置は、二次電池の温度を計測する温度センサと、電圧変化率と比較する閾値を温度センサの検出結果に基づいて修正する手段を備えている。
(形態6)判別装置は、判別装置の運転開始後に所定時間が経過するのを待って充電を開始する。その時間は、電極の活性化分極が解消する時間に調整されている。
The main forms of the embodiments described in detail below are listed first.
(Embodiment 1) The secondary battery is a vehicle-mounted secondary battery.
(Mode 2) The secondary battery is a secondary battery that drives an electric motor of a hybrid vehicle.
(Mode 3) The secondary battery is a nickel metal hydride battery.
(Mode 4) The secondary battery is charged with a low current. When the secondary battery is charged with a large current, the battery voltage rises to the battery voltage at the later stage of charging before the polarization voltage is saturated. When charging at a low current, the polarization voltage saturates before the battery voltage rises to the battery voltage at the later stage of charging. When charged at a relatively low current, the full charge capacity can be estimated with high accuracy.
(Embodiment 5) The determination device includes a temperature sensor that measures the temperature of the secondary battery, and a unit that corrects a threshold value to be compared with the voltage change rate based on the detection result of the temperature sensor.
(Mode 6) The discriminating apparatus waits for a predetermined time to elapse after the start of operation of the discriminating apparatus and starts charging. The time is adjusted to a time when the activation polarization of the electrode is eliminated.
<実施例1>
図1は、ハイブリッド自動車1に搭載された二次電池30と、二次電池30の満充電容量が十分であるか不十分となるまで劣化したのかを判別する装置10を示している。ハイブリッド自動車1は、エンジン2と、第2駆動源であるモータ3を有している。モータ3は、二次電池30の電力を利用して駆動力を発生する電動機として作動するとともに、回転力を利用して発電して二次電池30を充電する充電器としても作動する発電電動機である。エンジン2の出力とモータ3の出力は、動力分配器4とドライブシャフト5を介して車輪6に伝えられる。
モータ3は、インバータ7と配線切替手段32を介して、二次電池30と接続されている。モータ3は、配線切替手段32を介して、判別装置10にも接続されている。判別装置10は、低電流電源16を内蔵している。
ハイブリッド自動車1が利用されている状態では、配線切替手段32が、モータ3と二次電池30を接続する。ハイブリッド自動車1が利用されていない状態では、配線切替手段32が、モータ3と判別装置10を接続する。モータ3と判別装置10が接続されている状態では、低電流電源16を利用して二次電池30を充電し、満充電容量が十分であるか不十分となるまで劣化したのかを判別する。
なお、低電流電源16は、後で詳述する判別装置10の制御ユニット20(図2参照)と接続可能であれば良く、判別装置10の中に内蔵されている必要はない。また、ハイブリッド自動車1から二次電池30を取り外し、取り外した二次電池30を判別装置10と接続する構成であってもよい。
<Example 1>
FIG. 1 shows a
The
In a state where the
Note that the low
判別装置10は、二次電池30を充電し、二次電池30の満充電容量を推定し、推定した満充電容量が十分であるか不十分となるまで劣化したのかを判別する。
判別装置10の構成を図2に示す。判別装置10は、二次電池30の端子間の電圧を測定する電圧センサ14と、二次電池30の温度を測定する温度センサ12と、二次電池30を充電する定電流電源16と、制御ユニット20から構成されている。
The
The configuration of the
制御ユニット20は、CPU22を中心としたマイクロプロセッサで構成されている。制御ユニット20は、CPU22の他に、制御プログラムが記憶されたROM24と、電圧センサ13や温度センサ12の測定データを一時的に記憶するRAM26と、タイマー28を備えている。
制御ユニット20は、ROM24に記憶されている制御プログラムに従って定電流電源16を制御し、充電電流を一定に維持した状態で二次電池30を充電する。制御ユニット20は、充電中の電池電圧を電圧センサ14で計測し、電圧センサ14で連続的に計測されている電池電圧を細かな時間間隔でサンプリングしてRAM26に記憶する。同様に、制御ユニット20は、充電中の電池温度を温度センサ12で計測し、温度センサ12で連続的に計測されている電池温度を細かな時間間隔でサンプリングしてRAM26に記憶する。RAM26には、充電開始時からの経過時間に対応付けられた状態で、電池電圧と電池温度が記憶される。RAM26には、電池電圧と電池温度の経時的変化を示すデータが記憶され、事後的に分析することで単位時間当たりの電池電圧の変化幅(電圧変化率)を算出することができるデータを記憶している。制御ユニット20は、RAM26に記憶された電池電圧や電池温度の経時的変化から、電池電圧の変化幅(電圧変化率)を算出し、算出された電圧変化率を閾値と比較し、比較結果を図示しない表示装置に出力する。
The
The
図3は、判別装置10が実行する処理内容を示しているフローチャートである。図3を参照して、判別手順を説明する。
ハイブリッド自動車1のエンジン2とモータ3が停止すると、配線切替手段32が切り替えられ、二次電池30が判別装置10に接続される。次に、二次電池30のプラス端子とマイナス端子の間が所定時間開放され、充電も放電していない状態に維持される(S1)。二次電池30を充電も放電していない状態に一定時間維持すると、電極の活性化分極が消失する。ステップ1では、電極の活性化分極が消失する時間(1時間)だけ、二次電池30を充電も放電していない状態に維持する。これに代えて、二次電池30を充電も放電していない状態に維持しながら開回路電圧を計測し、開回路電圧の時間に対する電圧変化率を求め、その変化率が一定値以下になるまでの時間を所定時間としてもよい。電極の活性化分極が消失すると、開回路電圧の電圧変化率はゼロ近傍に低下する。
FIG. 3 is a flowchart showing the processing contents executed by the
When the
二次電池30の開放処理が所定時間経過した後、CPU22は、定電流電源16を制御し、二次電池30に対する充電処理を開始する。ここでは、充電電流を一定に保って充電する。充電中に、CPU22は、電圧センサ14で連続的に計測されている電池電圧を細かな時間間隔でサンプリングしてRAM26に記憶する。同様に、温度センサ12で連続的に計測されている電池温度を細かな時間間隔でサンプリングしてRAM26に記憶する(S2)。充電電流は、低電流に調整される。例えば、初期(劣化していない新品の状態)の満充電容量が6.5Ahである二次電池30の場合、充電完了するのに6時間以上を要する1A以下の定電流で充電する。低電流で充電すると、充電の初期段階で分極電圧が飽和し、その後の分極電極が一定に維持される。低電流で充電すると、充電の後半段階では、分極電極を一定に維持することができる。充電の後半段階では、充電容量に比例して電池電圧が上昇する関係を得ることができる。
二次電池30の充電処理は、所定電圧に到達するまで行われる(S3)。所定電圧は、その二次電池が通常使用されるSOC(state of charge:充電状態)の範囲の上限から過充電現象が開始するSOCまでの間の電圧値に設定されるとよい。例えば、ニッケル水素電池の場合、通常使用時のSOCの範囲は40〜80%である。また、ニッケル水素電池の場合、ガス発生の過充電現象が生じるSOCは95%以上である。従って、ニッケル水素電池の場合、所定電圧は、SOCが80〜95%の間の電圧値に設定するとよい。
充電停止時の所定電圧は、通常の使用時に二次電池30の充電を停止するSOCに等しくてもよい。例えば、SOCが40〜80%の範囲で利用される二次電池であれば(例えば、ハイブリッド自動車用ニッケル水素電池は、SOCが40〜80%の範囲で利用される。6セル直列接続したニッケル水素電池は、SOCが80%であるときの電池電圧が8.371Vであり、その電圧まで充電すると充電を停止する。)、SOCが80%であるときの電池電圧を所定電圧とする。
SOCが80%であるときの電池電圧を所定電圧とすると、その直前の期間では、分極電極はすでに飽和して一定に維持されており、充電容量に比例して電池電圧が上昇する関係となっている。SOCが80%であるときの電池電圧を所定電圧とし、充電電流を小さな電流とし、充電開始に先立って開放期間を設けていることから、SOCが80%であるときの電池電圧に上昇した直前の期間では、分極電極はすでに飽和して一定に維持されており、充電容量に比例して電池電圧が上昇する関係となっていることが保証される。
After the opening process of the
The charging process of the
The predetermined voltage when the charging is stopped may be equal to the SOC that stops the charging of the
Assuming that the battery voltage when the SOC is 80% is a predetermined voltage, the polarization electrode is already saturated and kept constant in the period immediately before that, and the battery voltage increases in proportion to the charge capacity. ing. Since the battery voltage when the SOC is 80% is a predetermined voltage, the charging current is a small current, and an open period is provided prior to the start of charging, immediately before the battery voltage increases when the SOC is 80%. In this period, the polarization electrode is already saturated and kept constant, and it is guaranteed that the battery voltage increases in proportion to the charge capacity.
ステップS3でイエスとなると、RAM26に記憶されている直前期間の電圧変化を示すデータに基づき、充電時間に対する電圧変化率を算出する。電圧変化率は、単位時間当たりの電圧変化幅であり、図6に示すように、単位時間Tは、充電容量に比例して電池電圧が上昇する期間に比して短く設定されている。ステップS4で算出される電圧変化率は、充電容量に対する電池電圧の比例計数に相当し、それが小さいほど満充電容量は大きく、それが大きいほど満充電容量は小さいことが判明している。
図3のステップS5では、算出された電圧変化率を閾値と比較する。ここで、閾値には、閾値未満であれば満充電容量が不足し、閾値以上であれば満充電容量が不足していないと判別できる値を利用する。この実施例では、図7のL1に示す閾値を利用する。図7のL1は、充電容量に対する電圧変化率で示されているが、定電流充電であることから充電容量と充電時間は比例し、充電時間に対する電圧変化率に換算することができる。
If the answer is yes in step S3, the voltage change rate with respect to the charging time is calculated based on the data indicating the voltage change in the immediately preceding period stored in the
In step S5 of FIG. 3, the calculated voltage change rate is compared with a threshold value. Here, a value that can be determined that the full charge capacity is insufficient if the threshold is less than the threshold and that the full charge capacity is not insufficient if the threshold is equal to or greater than the threshold is used. In this embodiment, a threshold indicated by L1 in FIG. 7 is used. Although L1 in FIG. 7 is shown as a voltage change rate with respect to the charge capacity, the charge capacity and the charge time are proportional to each other because of constant current charge, and can be converted into a voltage change rate with respect to the charge time.
閾値未満であれば満充電容量が不足し、閾値以上であれば満充電容量が不足していないと判別できる閾値は、電池温度によって若干変化する。電池温度が高ければ、同じ満充電容量であっても電圧変化率は増大する。電池温度が高い場合には、大きな閾値を用いることが正しい。電池温度が低ければ、同じ満充電容量であっても電圧変化率は減少する。電池温度が低い場合には、小さな閾値を用いることが正しい。本実施例では、基準閾値を電池温度によって修正して閾値としている。電池温度が高い場合には、大きく修正した閾値を用い。電池温度が低い場合には、小さく修正した閾値を用いる。
閾値以上の電圧変化率であれば、満充電容量が不足している劣化電池であると判別し、閾値未満であれば十分な満充電容量を有する正常電池であると判別し、判別結果を表示する(S5)。
If it is less than the threshold value, the full charge capacity is insufficient, and if it is greater than or equal to the threshold value, the threshold value for determining that the full charge capacity is not insufficient varies slightly depending on the battery temperature. If the battery temperature is high, the voltage change rate increases even with the same full charge capacity. It is correct to use a large threshold when the battery temperature is high. If the battery temperature is low, the voltage change rate decreases even with the same full charge capacity. If the battery temperature is low, it is correct to use a small threshold. In this embodiment, the reference threshold value is corrected by the battery temperature to be a threshold value. If the battery temperature is high, use a greatly modified threshold. When the battery temperature is low, a small corrected threshold value is used.
If the voltage change rate is equal to or greater than the threshold, it is determined that the battery is a deteriorated battery with insufficient full charge capacity. (S5).
図4は、未使用状態のニッケル水素電池(以下「未使用電池」という。)を6セル直列接続したものを用いて定電流充電(1A)した場合の、充電容量に対する電圧の変化を示すグラフである。図4では、充電開始時のSOCが40%,50%,60%,70%,80%であるニッケル水素電池の結果を示している。
図4のグラフから明らかなように、充電開始期には分極が生じて電池電圧が急激に上昇するが、充電後期には、充電時間に対して電池電圧が、直線的に変化する。分極電圧が飽和して一定値に維持されるようになると、充電開始SOCが異なっていても、充電容量に対する電圧の変化率は等しくなる。
FIG. 4 is a graph showing a change in voltage with respect to charge capacity when constant current charging (1 A) is performed using six nickel-metal hydride batteries in an unused state (hereinafter referred to as “unused batteries”) connected in series. It is. FIG. 4 shows the results of nickel-metal hydride batteries having SOCs of 40%, 50%, 60%, 70%, and 80% at the start of charging.
As is clear from the graph of FIG. 4, polarization occurs in the charging start period and the battery voltage rapidly increases. In the latter charging period, the battery voltage linearly changes with respect to the charging time. When the polarization voltage is saturated and maintained at a constant value, the rate of change of the voltage with respect to the charge capacity becomes equal even if the charge start SOC is different.
電圧の変化の動向について、図5を参照して詳しく説明する。図5は、ニッケル水素電池に1Aで定電流充電したときの電池電圧(V)の変化を示すグラフである。図5のグラフにおいて、縦軸は電池電圧(V)を示し、横軸はSOCを示す。二次電池の充電開始時のSOCは40%である。二次電池の電池電圧(V)は、二次電池のSOCに依存する起電圧(Vsoc)と、充電電流(I)と二次電池の内部抵抗(R)の積(IR)と、二次電池内の分極に係る分極電圧(Vp)の和算値である。ニッケル水素電池の場合、SOCが40〜80%における内部抵抗値(R)は、略一定である。充電電流(I)が定電流であれば、SOCが40〜80%における(IR)は略一定である。 The trend of voltage change will be described in detail with reference to FIG. FIG. 5 is a graph showing a change in battery voltage (V) when a nickel hydride battery is charged with a constant current at 1A. In the graph of FIG. 5, the vertical axis indicates the battery voltage (V), and the horizontal axis indicates the SOC. The SOC at the start of charging of the secondary battery is 40%. The battery voltage (V) of the secondary battery includes the electromotive voltage (Vsoc) depending on the SOC of the secondary battery, the product (IR) of the charging current (I) and the internal resistance (R) of the secondary battery, and the secondary battery. It is the sum of polarization voltage (Vp) related to polarization in the battery. In the case of a nickel metal hydride battery, the internal resistance value (R) when the SOC is 40 to 80% is substantially constant. If the charging current (I) is a constant current, the (IR) at an SOC of 40 to 80% is substantially constant.
図5のグラフ中、Aで示されている部分は、充電開始時の電池電圧を示している。この時、充電開始時には、分極にかかる充電電流の消費がないため、分極電圧Vpの影響は生じていない。従って、電池電圧Vは、VsocとIRの和算値である。
図5のグラフ中、Bで示されている部分は、充電初期の電圧変化を示している。充電初期は、分極電圧(Vp)が徐々に増加する。このため、充電初期には、電池電圧Vは曲線的に増加する。
図5のグラフにおいてCで示される部分は、分極電圧Vpが飽和している期間の電圧変化を示している。初期充電に係る分極電圧Vpが飽和すれば、SOCに対する電池電圧(V)は、二次電池のSOCに依存する起電圧(Vsoc)に応じて決定することになる。分極電圧(Vp)が飽和すれば、充電開始時のSOCが異なる場合でも、SOCに対する電池電圧Vの変化は同一の軌道をたどる。したがって、分極電圧(Vp)の変化が飽和したCの領域で算出される電圧変化率は、略一定の値を示す。ただし、電圧変化率は電池ごとに相違する。
上記の電圧変化率に基づいて、二次電池の満充電容量と二次電池の劣化状態を推定し、表示することができる(S5)。この時、温度センサによって計測された電池温度に基づいて、満充電容量の補正が行われる。
In the graph of FIG. 5, the part indicated by A indicates the battery voltage at the start of charging. At this time, since charging current for polarization is not consumed at the start of charging, the influence of the polarization voltage Vp does not occur. Therefore, the battery voltage V is the sum of Vsoc and IR.
In the graph of FIG. 5, a portion indicated by B indicates a voltage change at the initial stage of charging. In the initial stage of charging, the polarization voltage (Vp) gradually increases. For this reason, the battery voltage V increases in a curve at the initial stage of charging.
A portion indicated by C in the graph of FIG. 5 indicates a voltage change during a period in which the polarization voltage Vp is saturated. When the polarization voltage Vp related to the initial charging is saturated, the battery voltage (V) with respect to the SOC is determined according to the electromotive voltage (Vsoc) depending on the SOC of the secondary battery. If the polarization voltage (Vp) is saturated, the change in the battery voltage V with respect to the SOC follows the same trajectory even when the SOC at the start of charging is different. Therefore, the voltage change rate calculated in the region C where the change of the polarization voltage (Vp) is saturated shows a substantially constant value. However, the voltage change rate differs for each battery.
Based on the voltage change rate, the full charge capacity of the secondary battery and the deterioration state of the secondary battery can be estimated and displayed (S5). At this time, the full charge capacity is corrected based on the battery temperature measured by the temperature sensor.
未使用電池と比較して劣化が進行している電池は、満充電容量が未使用電池よりも少ない。従って、満充電容量が減少している電池は、劣化していることを示す。電圧変化率が大きい二次電池ほど、満充電容量が減少しており、劣化状態は進行していることを示す。このような事象について、図6を参照して説明する。図6は、未使用状態のニッケル水素電池(未使用電池)と劣化した状態のニッケル水素電池(以下「劣化電池」という。)を1Aで定電流充電したときの電池電圧(V)の変化を示すグラフである。劣化電池と未使用電池の充電開始時のSOCは40%とし、充電終了時のSOCは80%とした。従って、充電終了時の電池電圧は、SOCが80%の電池電圧値に相当する8.317Vである。温度は、25℃である。
図6のグラフにおいて、縦軸は電池電圧(V)を示し、横軸は充電容量(Ah)を示す。図6のグラフにおいて、劣化電池の結果を実線で示し、未使用電池の結果を破線で示す。Tは、SOCが80%に達する直前期間を示す。Tは、劣化電池と未使用電池の電池電圧が一定速度で安定的に上昇する期間である。
α1は、劣化電池の電圧変化が直線的に変化している、期間Tの傾きの角度を示す。ΔV1は、劣化電池がTの期間における電圧変化率を示す。
α0は、未使用電池の電圧変化が直線的に変化している、期間Tの傾きの角度を示す。ΔV0は、未使用電池がTの期間で上昇した電圧変化率を示す。
A battery in which deterioration has progressed compared to an unused battery has less full charge capacity than an unused battery. Therefore, a battery with a reduced full charge capacity indicates that it has deteriorated. A secondary battery having a larger voltage change rate has a reduced full charge capacity, indicating that the deterioration state is progressing. Such an event will be described with reference to FIG. FIG. 6 shows changes in battery voltage (V) when a nickel-metal hydride battery (unused battery) in an unused state and a nickel-metal hydride battery in a deteriorated state (hereinafter referred to as “deteriorated battery”) are charged at a constant current of 1 A. It is a graph to show. The SOC at the start of charging of the deteriorated battery and the unused battery was 40%, and the SOC at the end of charging was 80%. Therefore, the battery voltage at the end of charging is 8.317 V corresponding to a battery voltage value with an SOC of 80%. The temperature is 25 ° C.
In the graph of FIG. 6, the vertical axis indicates the battery voltage (V), and the horizontal axis indicates the charge capacity (Ah). In the graph of FIG. 6, the result of the deteriorated battery is indicated by a solid line, and the result of the unused battery is indicated by a broken line. T indicates a period immediately before the SOC reaches 80%. T is a period during which the battery voltages of the deteriorated battery and the unused battery stably rise at a constant speed.
α1 indicates an inclination angle of the period T in which the voltage change of the deteriorated battery changes linearly. ΔV1 indicates a voltage change rate during a period when the deteriorated battery is T.
α0 indicates the angle of inclination of the period T in which the voltage change of the unused battery changes linearly. ΔV0 indicates the voltage change rate that the unused battery has increased in the period T.
分極電圧が飽和した充電後期では、充電時間に対して電池電圧が直線的に変化している。期間Tでは、電圧変化の傾きの角度は、未使用電池の傾きα0よりも劣化電池の傾きα1のほうが大きい。このことから、充電後期の充電時間に対する電池電圧の傾きがより大きい二次電池ほど、劣化が進行していると推定できる。
また、電圧変化率は、充電後期の所定期間(ここでは、期間T)に上昇した電圧変化から算出できる。劣化電池と未使用電池の電圧変化率を比較すると、未使用電池の電圧変化率V0よりも劣化電池の電圧変化率V1が大きい。このことから、充電後期の電圧変化率がより大きい二次電池ほど、劣化が進行していると推定できる。
In the latter stage of charging when the polarization voltage is saturated, the battery voltage changes linearly with respect to the charging time. In the period T, the inclination angle of the voltage change is larger for the deteriorated battery inclination α 1 than for the unused battery inclination α 0 . From this, it can be estimated that the secondary battery having a larger slope of the battery voltage with respect to the charging time in the latter charging stage is more deteriorated.
Further, the voltage change rate can be calculated from the voltage change increased in a predetermined period (here, period T) in the latter half of charging. Comparing the voltage change rates of the deteriorated battery and the unused battery, the voltage change rate V 1 of the deteriorated battery is larger than the voltage change rate V 0 of the unused battery. From this, it can be estimated that the secondary battery having a higher voltage change rate in the later stage of charging is more deteriorated.
<試験>
上記実施例の手順で算出された電圧変化率に基づいて、未使用電池と劣化電池の状態を比較する試験を行った。なお、本試験で用いた劣化電池の内部抵抗は、未使用電池の内部抵抗と同等のものを用意した。本試験は、各サンプル電池の試験前のSOCを60%に設定して行った。本試験は、25℃の恒温雰囲気下で実施した。
本試験は、以下の手順で行った。
まず、各サンプル電池を開放状態で1時間放置した。ついで、サンプル電池の充電電圧が8.371V(6セル直列接続したニッケル水素電池を1Aで定電流充電したときのSOCが80%の時の電池電圧)に到達するまで、1Aの定電流充電を行った。各サンプル電池の試験結果を図7のグラフに示す。図7の横軸は、上記の方法によって算出された電圧変化率を示し、縦軸は、他の測定手段によって算出された満充電容量を示す。図7中、白抜き表示で記しているものが未使用電池であり、塗りつぶし表示で記しているものが劣化電池である。
<Test>
Based on the voltage change rate calculated by the procedure of the above example, a test for comparing the state of the unused battery and the deteriorated battery was performed. The internal resistance of the deteriorated battery used in this test was prepared to be equivalent to the internal resistance of the unused battery. This test was performed by setting the SOC of each sample battery before the test to 60%. This test was conducted in a constant temperature atmosphere at 25 ° C.
This test was conducted according to the following procedure.
First, each sample battery was left open for 1 hour. Next, the charging voltage of the sample battery reaches 8.371V (the battery voltage when the SOC is 80% when the 6-series-connected nickel-metal hydride batteries are constant-current charged at 1A), and the constant-current charging of 1A is performed. went. The test result of each sample battery is shown in the graph of FIG. The horizontal axis of FIG. 7 shows the voltage change rate calculated by the above method, and the vertical axis shows the full charge capacity calculated by other measuring means. In FIG. 7, those indicated by white display are unused batteries, and those indicated by solid display are degraded batteries.
図7に示すように、未使用電池の満充電容量はC1よりも大きく、劣化電池の満充電容量はC1〜C2の範囲である。試験の結果、未使用電池は電圧変化率が低く、劣化電池は、電圧変化率が大きいことが確認された。電圧変化率の値に所定の閾値を設定し、電圧変化率がL1よりも小さいときの二次電池の状態を「良好」、電圧変化率がL1〜L2の範囲にあるときの二次電池の状態を「容量低下」、電圧変化率がL2よりも大きいときを「要交換」などと分けて判定してもよい。
このような方法を利用することで、二次電池の満充電容量や劣化状態を明確に推定できることがわかる。
As shown in FIG. 7, the unused full-charge capacity of the battery is greater than C 1, the full charge capacity of the deteriorated battery is in the range of C 1 -C 2. As a result of the test, it was confirmed that the unused battery had a low voltage change rate, and the deteriorated battery had a large voltage change rate. Second time to set the predetermined threshold value of the voltage change rate, the state of the secondary battery when the voltage change rate is smaller than L 1 "good", the voltage change rate in the range of L 1 ~L 2 state "capacity reduction" in the next cell, the voltage change rate may be determined separately as such "essential exchange" when greater than L 2.
It can be seen that by using such a method, the full charge capacity and the deterioration state of the secondary battery can be clearly estimated.
以上に説明した実施例は、種々の変更、修正、変形、及び/又は改良が可能である。本発明の要旨及び範囲から逸脱することなく、種々の変更を行うことができる。従って、本発明に係る装置及び方法は、全ての周知又は後に開発された変更、修正、変形、及び/又は改良を含むことを意図する。 The embodiment described above can be variously changed, modified, modified, and / or improved. Various changes can be made without departing from the spirit and scope of the invention. Accordingly, the apparatus and method according to the present invention are intended to include all known or later developed changes, modifications, variations and / or improvements.
例えば、上記実施例は、ハイブリッド自動車に搭載されている二次電池の劣化状態を検知する方法を記載したがこれに限られるものではない。例えば、電気自動車用の二次電池や、補機電池用の二次電池に適用してもよい。
また、車両搭載用の二次電池に限られず、携帯機器の電源用に用いられる小型の二次電池に適用してもよい。
二次電池の種類も、もちろん限定されない。上記実施例では、主としてニッケル水素電池を例示したが、リチウムイオン電池、ニッケルカドミウム電池、鉛蓄電池であってもよい。
For example, although the said Example described the method of detecting the deterioration state of the secondary battery mounted in the hybrid vehicle, it is not restricted to this. For example, the present invention may be applied to a secondary battery for an electric vehicle or a secondary battery for an auxiliary battery.
Further, the present invention is not limited to a secondary battery mounted on a vehicle, and may be applied to a small secondary battery used for a power source of a portable device.
Of course, the type of secondary battery is not limited. In the said Example, although the nickel hydride battery was illustrated mainly, a lithium ion battery, a nickel cadmium battery, and a lead acid battery may be sufficient.
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.
1 ハイブリッド自動車
2 エンジン
3 モータ/ジェネレータ
4 動力分配機構
5 車輪軸
6 車輪
7 インバータ
10 状態推定装置
12 温度センサ
14 電圧センサ
16 定電流電源
20 制御ユニット
22 CPU
24 ROM
26 RAM
28 タイマー
DESCRIPTION OF
24 ROM
26 RAM
28 Timer
Claims (2)
二次電池を一定電流で充電しながら、二次電池の電圧を連続的に計測する工程と、
連続的に計測した電圧を、充電時間に関連付けて記憶しておく工程と、
連続的に計測した二次電池の電圧が所定電圧に達した時に、それ以前に記憶しておいた二次電池の電圧の計時的変化を示すデータから、充電時間に対する電圧変化率を算出する工程と、
算出した電圧変化率から、前記二次電池の満充電容量を推定する工程を備えており、
前記所定電圧が、前記二次電池の分極電圧が飽和している電圧レベルに設定されていることを特徴とする二次電池の満充電容量の推定方法。 It is a method for estimating the full charge capacity of a secondary battery,
A step of continuously measuring the voltage of the secondary battery while charging the secondary battery at a constant current;
Storing the continuously measured voltage in association with the charging time;
A step of calculating a voltage change rate with respect to a charging time from data indicating a temporal change in the voltage of the secondary battery stored in advance when the voltage of the continuously measured secondary battery reaches a predetermined voltage. When,
A step of estimating a full charge capacity of the secondary battery from the calculated voltage change rate,
The method for estimating a full charge capacity of a secondary battery, wherein the predetermined voltage is set to a voltage level at which a polarization voltage of the secondary battery is saturated.
二次電池を一定電流で充電する充電手段と、
充電中の二次電池の電圧を連続的に計測する手段と、
連続的に計測した電圧を、充電時間に関連付けて記憶しておく手段と、
連続的に計測した二次電池の電圧が所定電圧に達した時に、それ以前に記憶しておいた二次電池の電圧の計時的変化を示すデータから、充電時間に対する電圧変化率を算出する手段と、
算出した電圧変化率を閾値と比較する手段を備えており、
前記所定電圧が、前記二次電池の分極電圧が飽和している電圧レベルに設定されていることを特徴とする判別装置。 It is a device that determines the secondary battery from the estimated full charge capacity,
Charging means for charging the secondary battery at a constant current;
Means for continuously measuring the voltage of the secondary battery being charged;
Means for storing continuously measured voltage in association with charging time;
Means for calculating the voltage change rate with respect to the charging time from the data indicating the time change of the voltage of the secondary battery stored before that when the voltage of the continuously measured secondary battery reaches the predetermined voltage When,
A means for comparing the calculated voltage change rate with a threshold;
The discriminating apparatus, wherein the predetermined voltage is set to a voltage level at which a polarization voltage of the secondary battery is saturated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005360164A JP2007166789A (en) | 2005-12-14 | 2005-12-14 | Method of determining fully charged capacity of secondary battery and determining device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005360164A JP2007166789A (en) | 2005-12-14 | 2005-12-14 | Method of determining fully charged capacity of secondary battery and determining device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007166789A true JP2007166789A (en) | 2007-06-28 |
Family
ID=38249061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005360164A Withdrawn JP2007166789A (en) | 2005-12-14 | 2005-12-14 | Method of determining fully charged capacity of secondary battery and determining device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007166789A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048471A1 (en) * | 2009-10-23 | 2011-04-28 | パナソニック電工株式会社 | Power supply apparatus |
JP2012503277A (en) * | 2008-09-28 | 2012-02-02 | 広州豊江電池新技術股▲ふん▼有限公司 | Quick charging method |
CN102508170A (en) * | 2011-11-09 | 2012-06-20 | 丁国营 | Method for monitoring capacity of storage battery |
EP2506025A1 (en) | 2011-03-31 | 2012-10-03 | Kabushiki Kaisha Toyota Jidoshokki | Battery control by update of current profile |
JP2013120185A (en) * | 2011-12-08 | 2013-06-17 | Hyundai Motor Co Ltd | Vehicular high-voltage battery deterioration determination method |
JPWO2011135813A1 (en) * | 2010-04-26 | 2013-07-18 | 日本電気株式会社 | Secondary battery state management system, charger, secondary battery state management method, and electrical property measurement method |
WO2013187581A1 (en) * | 2012-06-13 | 2013-12-19 | 주식회사 엘지화학 | Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material |
WO2013187582A1 (en) * | 2012-06-13 | 2013-12-19 | 주식회사 엘지화학 | Apparatus and method for estimating state of charge of secondary cell including mixed cathode material |
JP2014007919A (en) * | 2012-06-27 | 2014-01-16 | Konica Minolta Inc | Recharging system, electronic device, and recharging device |
WO2014088324A1 (en) * | 2012-12-04 | 2014-06-12 | 주식회사 엘지화학 | Method and device for estimating parameters for secondary battery |
JP2014158395A (en) * | 2013-02-18 | 2014-08-28 | Mazda Motor Corp | Charging device and charging method |
JP2015010962A (en) * | 2013-06-28 | 2015-01-19 | 古河電池株式会社 | Method for determining degradation of storage battery and device for determining degradation of storage battery |
JP2015029390A (en) * | 2013-07-30 | 2015-02-12 | 日立工機株式会社 | Charger |
CN104934650A (en) * | 2015-05-11 | 2015-09-23 | 合肥国轩高科动力能源股份公司 | Method for reusing decommissioned lithium ion power battery |
CN105609890A (en) * | 2015-12-31 | 2016-05-25 | 广州丰江电池新技术股份有限公司 | Non-constant-voltage charging method for lithium ion battery capable of correcting and compensating voltage |
US9506988B2 (en) | 2012-11-05 | 2016-11-29 | Gs Yuasa International Ltd. | Condition estimation device and method of estimating condition |
JP2018006024A (en) * | 2016-06-28 | 2018-01-11 | トヨタ自動車株式会社 | Battery system |
JP2018006027A (en) * | 2016-06-28 | 2018-01-11 | トヨタ自動車株式会社 | Battery system |
JP2018006025A (en) * | 2016-06-28 | 2018-01-11 | トヨタ自動車株式会社 | Battery system |
EP3271994A4 (en) * | 2015-03-16 | 2018-03-07 | CTEK Sweden AB | A method for operating a battery charger, and a battery charger |
CN109856551A (en) * | 2019-01-28 | 2019-06-07 | 蜂巢能源科技有限公司 | Vehicle and its battery method for detecting abnormality and device based on voltage value |
CN110690740A (en) * | 2018-07-06 | 2020-01-14 | 东芝泰格有限公司 | Charging device, control method, computer-readable storage medium, and electronic apparatus |
KR102620174B1 (en) * | 2022-09-02 | 2024-01-02 | 주식회사 엘지에너지솔루션 | Battery diagnosis apparatus, battery inspection ssytem, and battery diagnosis method |
-
2005
- 2005-12-14 JP JP2005360164A patent/JP2007166789A/en not_active Withdrawn
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012503277A (en) * | 2008-09-28 | 2012-02-02 | 広州豊江電池新技術股▲ふん▼有限公司 | Quick charging method |
US9086463B2 (en) | 2009-10-23 | 2015-07-21 | Panasonic Intellectual Property Management Co., Ltd. | Power supply apparatus |
WO2011048471A1 (en) * | 2009-10-23 | 2011-04-28 | パナソニック電工株式会社 | Power supply apparatus |
JPWO2011135813A1 (en) * | 2010-04-26 | 2013-07-18 | 日本電気株式会社 | Secondary battery state management system, charger, secondary battery state management method, and electrical property measurement method |
JP5895839B2 (en) * | 2010-04-26 | 2016-03-30 | 日本電気株式会社 | Secondary battery state management system, charger, secondary battery state management method, and electrical property measurement method |
US9287729B2 (en) | 2010-04-26 | 2016-03-15 | Nec Corporation | Secondary battery state management system, battery charger, secondary battery state management method, and electrical characteristics measurement method |
EP2506025A1 (en) | 2011-03-31 | 2012-10-03 | Kabushiki Kaisha Toyota Jidoshokki | Battery control by update of current profile |
CN102508170A (en) * | 2011-11-09 | 2012-06-20 | 丁国营 | Method for monitoring capacity of storage battery |
JP2013120185A (en) * | 2011-12-08 | 2013-06-17 | Hyundai Motor Co Ltd | Vehicular high-voltage battery deterioration determination method |
US9446677B2 (en) | 2011-12-08 | 2016-09-20 | Hyundai Motor Company | Technique of determining degradation of high-voltage battery for vehicle |
US10408886B2 (en) | 2012-06-13 | 2019-09-10 | Lg Chem, Ltd. | Apparatus and method for estimating SOC of secondary battery including blended cathode material |
CN104364669A (en) * | 2012-06-13 | 2015-02-18 | 株式会社Lg化学 | Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material |
US9720045B2 (en) | 2012-06-13 | 2017-08-01 | Lg Chem, Ltd. | Apparatus and method for estimating SOC of secondary battery including blended cathode material |
WO2013187582A1 (en) * | 2012-06-13 | 2013-12-19 | 주식회사 엘지화학 | Apparatus and method for estimating state of charge of secondary cell including mixed cathode material |
WO2013187581A1 (en) * | 2012-06-13 | 2013-12-19 | 주식회사 엘지화학 | Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material |
CN104364669B (en) * | 2012-06-13 | 2017-02-22 | 株式会社Lg 化学 | Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material |
JP2014007919A (en) * | 2012-06-27 | 2014-01-16 | Konica Minolta Inc | Recharging system, electronic device, and recharging device |
US9506988B2 (en) | 2012-11-05 | 2016-11-29 | Gs Yuasa International Ltd. | Condition estimation device and method of estimating condition |
WO2014088324A1 (en) * | 2012-12-04 | 2014-06-12 | 주식회사 엘지화학 | Method and device for estimating parameters for secondary battery |
US9720047B2 (en) | 2012-12-04 | 2017-08-01 | Lg Chem, Ltd. | Apparatus and method for estimating parameter of secondary battery |
JP2014158395A (en) * | 2013-02-18 | 2014-08-28 | Mazda Motor Corp | Charging device and charging method |
JP2015010962A (en) * | 2013-06-28 | 2015-01-19 | 古河電池株式会社 | Method for determining degradation of storage battery and device for determining degradation of storage battery |
JP2015029390A (en) * | 2013-07-30 | 2015-02-12 | 日立工機株式会社 | Charger |
EP3271994A4 (en) * | 2015-03-16 | 2018-03-07 | CTEK Sweden AB | A method for operating a battery charger, and a battery charger |
US10328807B2 (en) | 2015-03-16 | 2019-06-25 | Ctek Sweden Ab | Method for operating a battery charger, and a battery charger |
CN104934650A (en) * | 2015-05-11 | 2015-09-23 | 合肥国轩高科动力能源股份公司 | Method for reusing decommissioned lithium ion power battery |
CN105609890A (en) * | 2015-12-31 | 2016-05-25 | 广州丰江电池新技术股份有限公司 | Non-constant-voltage charging method for lithium ion battery capable of correcting and compensating voltage |
CN105609890B (en) * | 2015-12-31 | 2018-07-24 | 广州丰江电池新技术股份有限公司 | Correct the non-constant voltage charging method of lithium ion battery for making up voltage |
KR20180090242A (en) * | 2015-12-31 | 2018-08-10 | 광저우 풀리버 배터리 뉴 테크놀로지 씨오 엘티디 | Lithium-ion battery non-constant voltage charging method for voltage compensation and compensation |
KR101980495B1 (en) | 2015-12-31 | 2019-05-20 | 광저우 풀리버 배터리 뉴 테크놀로지 씨오 엘티디 | Lithium-ion battery non-constant voltage charging method for voltage compensation and compensation |
JP2018006024A (en) * | 2016-06-28 | 2018-01-11 | トヨタ自動車株式会社 | Battery system |
JP2018006025A (en) * | 2016-06-28 | 2018-01-11 | トヨタ自動車株式会社 | Battery system |
JP2018006027A (en) * | 2016-06-28 | 2018-01-11 | トヨタ自動車株式会社 | Battery system |
CN110690740A (en) * | 2018-07-06 | 2020-01-14 | 东芝泰格有限公司 | Charging device, control method, computer-readable storage medium, and electronic apparatus |
JP2020010493A (en) * | 2018-07-06 | 2020-01-16 | 東芝テック株式会社 | Charger and program |
CN109856551A (en) * | 2019-01-28 | 2019-06-07 | 蜂巢能源科技有限公司 | Vehicle and its battery method for detecting abnormality and device based on voltage value |
KR102620174B1 (en) * | 2022-09-02 | 2024-01-02 | 주식회사 엘지에너지솔루션 | Battery diagnosis apparatus, battery inspection ssytem, and battery diagnosis method |
WO2024049211A1 (en) * | 2022-09-02 | 2024-03-07 | 주식회사 엘지에너지솔루션 | Battery diagnosis apparatus, battery inspection system and battery diagnosis method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007166789A (en) | Method of determining fully charged capacity of secondary battery and determining device thereof | |
US10802080B2 (en) | Battery system in vehicle and aging deterioration estimation method for battery | |
US7355411B2 (en) | Method and apparatus for estimating state of charge of secondary battery | |
JP5009223B2 (en) | Secondary battery remaining capacity estimation method and apparatus | |
JP5515524B2 (en) | Secondary battery deterioration state determination system and secondary battery deterioration state determination method | |
US8415954B2 (en) | Apparatus for calculating polarization voltage of secondary battery and apparatus for estimating state of charge of the same | |
TWI291033B (en) | Battery capacity control method and its device, and capacity control device of a battery for vehicle power | |
JP5109304B2 (en) | Battery remaining capacity detection device | |
US7800345B2 (en) | Battery management system and method of operating same | |
JP2007178333A (en) | Method for estimating degradation state of secondary battery, and device for estimating deterioration state of on-vehicle secondary battery | |
JP5704108B2 (en) | Battery system and estimation method | |
JP2008278624A (en) | Method and device for detecting electric vehicle battery capacity and electric vehicle maintenance method | |
JP2002243813A (en) | Arithmetic unit for computing deterioration of capacity of secondary battery | |
JP5040733B2 (en) | Method for estimating chargeable / dischargeable power of battery | |
JP2001021625A (en) | Capacity measuring device for battery using gassing voltage considering temperature | |
JP6421986B2 (en) | Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device | |
JP2007017357A (en) | Method and device for detecting remaining capacity of battery | |
US20070170892A1 (en) | Method and apparatus for estimating remaining capacity of electric storage | |
JP5131533B2 (en) | Battery charge / discharge control method and charge / discharge control apparatus | |
JP2001258172A (en) | Apparatus and method for controlling charge | |
JP5040731B2 (en) | Battery remaining capacity display device | |
JP2001272444A (en) | Estimating device for remaining capacity of secondary battery | |
JP6631377B2 (en) | Charge amount calculation device, computer program, and charge amount calculation method | |
JP3692192B2 (en) | Battery remaining capacity detector | |
JPH1138107A (en) | Method for estimating residual capacity of secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090303 |