JP2014068467A - Charge control device - Google Patents

Charge control device Download PDF

Info

Publication number
JP2014068467A
JP2014068467A JP2012211922A JP2012211922A JP2014068467A JP 2014068467 A JP2014068467 A JP 2014068467A JP 2012211922 A JP2012211922 A JP 2012211922A JP 2012211922 A JP2012211922 A JP 2012211922A JP 2014068467 A JP2014068467 A JP 2014068467A
Authority
JP
Japan
Prior art keywords
soc
charging
rate
resistance value
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012211922A
Other languages
Japanese (ja)
Inventor
Mika Kirimoto
美香 桐本
Yuji Abe
裕司 阿部
Kazuyoshi Okura
計美 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012211922A priority Critical patent/JP2014068467A/en
Publication of JP2014068467A publication Critical patent/JP2014068467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To charge an assembled battery efficiently and suppress a deterioration thereof.SOLUTION: An assembled battery has a series circuit of a plurality of cells. As to each cell, a relationship between an internal resistance value and an SOC (State Of Charge) is measured and an SOC that locally maximizes the internal resistance value is detected as a peak SOC (SOC[1], SOC[2]). An SOC range including each peak SOC is set as a peak SOC range, and when the assembled battery is charged, a current rate (I) in the peak SOC range is made lower than a current rate (I) in an SOC range on a lower SOC side of the peak SOC range and a current rate (I) in an SOC range on a higher SOC side of the peak SOC range.

Description

本発明は、充電制御装置に関する。   The present invention relates to a charge control device.

図15に、リチウムイオン電池等の蓄電池のSOC(State Of Charge)及び内部抵抗値間の関係例を示す。リチウムイオン電池等の蓄電池では、基本的に充電率であるSOCが高くなるにつれて内部抵抗値が減少することが多いが、SOCが中程度の領域で蓄電池内の電流の伝達メカニズムが変化し、その変化の前後において蓄電池内のイオンが動きにくくなって内部抵抗値が局所的に大きくなることがある。この局所的な増大に対応する、蓄電池の内部抵抗値に極大値をとらせるSOCをピークSOC(ピーク充電率)と呼ぶ。内部抵抗値が大きい状態で比較的大きな充電電流を流せば発熱等の影響により蓄電池の劣化が促進されるであろうとの考えの下、充電時において組電池の内部抵抗値を逐次測定し、内部抵抗値が高いときには充電電流を抑制する方法も提案されている(下記特許文献1参照)。   FIG. 15 shows an example of the relationship between the SOC (State Of Charge) and the internal resistance value of a storage battery such as a lithium ion battery. In a storage battery such as a lithium ion battery, the internal resistance value often decreases as the SOC, which is a charging rate, basically increases. However, the current transmission mechanism in the storage battery changes in a medium SOC range. Before and after the change, ions in the storage battery may not move easily, and the internal resistance value may locally increase. The SOC corresponding to this local increase and taking the maximum value in the internal resistance value of the storage battery is called peak SOC (peak charge rate). Based on the idea that if a relatively large charging current is applied with a large internal resistance value, deterioration of the storage battery will be promoted due to the influence of heat generation, etc., the internal resistance value of the assembled battery is measured sequentially during charging. A method of suppressing the charging current when the resistance value is high has been proposed (see Patent Document 1 below).

特開平9−84277号公報JP-A-9-84277

ピークSOCが存在する中SOC範囲において比較的大きな充電電流を流すと蓄電池の劣化が促進されるが、低SOC範囲では内部抵抗値が高かったとしても蓄電池内のイオン(リチウムイオン等)が固体として析出しにくい等の理由から比較的大きな充電電流を流しても劣化は進みにくい。組電池の内部抵抗値の大小だけに注目して充電電流の抑制制御を行う方法では、必要以上に充電電流が抑制されることがあり、効率的な充電が阻害される。充電電流の過度の抑制は充電に必要な時間を増大させるため好ましくない。内部抵抗値とSOCとの関係を考慮し、真に必要なタイミング(例えば上記ピークSOCに対応するタイミング)において充電電流を抑制することが、効率的な充電と劣化抑制の両立には肝要と考えられる。   When a relatively large charging current is applied in the SOC range where the peak SOC exists, deterioration of the storage battery is promoted. However, in the low SOC range, even if the internal resistance value is high, ions (lithium ions, etc.) in the storage battery are solid. Deterioration is unlikely to proceed even when a relatively large charging current is passed due to reasons such as difficulty in precipitation. In the method of performing charging current suppression control by paying attention only to the internal resistance value of the assembled battery, the charging current may be suppressed more than necessary, and efficient charging is hindered. Excessive suppression of the charging current is not preferable because it increases the time required for charging. Considering the relationship between the internal resistance value and the SOC, suppressing the charging current at a truly necessary timing (for example, the timing corresponding to the above peak SOC) is considered to be important for achieving both efficient charging and suppression of deterioration. It is done.

そこで本発明は、複数の蓄電池から成る組電池の充電の効率化と充電に伴う劣化の抑制に寄与する充電制御装置を提供することを目的とする。   Then, an object of this invention is to provide the charge control apparatus which contributes to efficiency improvement of the assembled battery which consists of a some storage battery, and suppression of the deterioration accompanying charging.

本発明に係る充電制御装置は、組電池を形成する直列接続された複数の蓄電池の夫々の充電率である蓄電池充電率、又は、前記組電池全体の充電率である組電池充電率を導出する充電率導出部と、各蓄電池の内部抵抗値である蓄電池抵抗値の蓄電池充電率依存性に応じた第1データに基づき、前記蓄電池ごとに前記蓄電池充電率の増加に伴って前記蓄電池抵抗値が増加から減少に転じるときの前記蓄電池充電率をピーク充電率として検出し、又は、前記組電池全体の内部抵抗値である組電池抵抗値の組電池充電率依存性に応じた第2データに基づき、前記組電池充電率の増加に伴って前記組電池抵抗値が増加から減少に転じるときの前記組電池充電率を前記ピーク充電率として検出し、各ピーク充電率を含み且つ下限がゼロよりも大きなピーク充電率範囲を設定する設定部と、前記組電池の充電を制御する制御部と、を備え、前記制御部は、前記組電池充電率又は何れかの蓄電池の蓄電池充電率が前記ピーク充電率範囲に属するタイミングにおいて、前記組電池の充電電流レートを、他のタイミングよりも低くする。   The charge control device according to the present invention derives a storage battery charge rate that is a charge rate of each of a plurality of storage batteries connected in series forming an assembled battery, or an assembled battery charge rate that is a charge rate of the entire assembled battery. Based on the first data according to the storage battery charge rate dependency of the storage battery resistance value, which is the internal resistance value of each storage battery, the storage battery resistance value increases with the increase of the storage battery charge rate for each storage battery. The storage battery charging rate when turning from increasing to decreasing is detected as a peak charging rate, or based on the second data corresponding to the assembled battery charging rate dependency of the assembled battery resistance value which is the internal resistance value of the entire assembled battery The battery pack charging rate when the battery pack resistance value changes from increasing to decreasing as the battery pack charging rate increases is detected as the peak battery charging rate, and each peak charging rate is included and the lower limit is less than zero. Big pea A setting unit configured to set a charging rate range; and a control unit configured to control charging of the assembled battery, wherein the control unit is configured such that the assembled battery charging rate or a storage battery charging rate of any storage battery is within the peak charging rate range. At the timing belonging to, the charging current rate of the assembled battery is made lower than other timings.

本発明に係る他の充電制御装置は、組電池を形成する直列接続された複数の蓄電池の夫々の充電率である蓄電池充電率、又は、前記組電池全体の充電率である組電池充電率を導出する充電率導出部と、前記組電池の充電期間中に、前記組電池全体の内部抵抗値である組電池抵抗値又は各蓄電池の内部抵抗値である各蓄電池抵抗値を測定する測定部と、各蓄電池の蓄電池抵抗値の蓄電池充電率依存性に応じた第1データ、又は、前記組電池抵抗値の組電池充電率依存性に応じた第2データに基づき、基準抵抗値を設定する設定部と、前記組電池の充電を制御する制御部と、を備え、前記制御部は、前記組電池充電率又は何れかの蓄電池充電率が所定値以上であって且つ前記測定部によって測定された組電池抵抗値又は何れかの蓄電池抵抗値が前記基準抵抗値よりも大きいタイミングにおいて、前記組電池の充電電流レートを、他のタイミングよりも低くする。   Another charge control device according to the present invention provides a storage battery charge rate that is a charge rate of each of a plurality of series-connected storage batteries that form an assembled battery, or an assembled battery charge rate that is a charge rate of the entire assembled battery. A charging rate deriving unit for deriving, and a measuring unit for measuring an assembled battery resistance value that is an internal resistance value of the entire assembled battery or each storage battery resistance value that is an internal resistance value of each storage battery during a charging period of the assembled battery; The reference resistance value is set based on the first data corresponding to the storage battery charging rate dependency of the storage battery resistance value of each storage battery or the second data corresponding to the assembled battery charging rate dependency of the assembled battery resistance value. And a control unit for controlling charging of the assembled battery, wherein the control unit is measured by the measuring unit when the assembled battery charging rate or any of the storage battery charging rates is equal to or greater than a predetermined value. The battery resistance value or any battery resistance value is In greater timing than the reference resistance value, the charge current rate of the battery pack, is lower than the other timing.

本発明によれば、複数の蓄電池から成る組電池の充電の効率化と充電に伴う劣化の抑制に寄与する充電制御装置を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the charge control apparatus which contributes to efficiency improvement of the assembled battery which consists of a some storage battery, and suppression of the deterioration accompanying charging.

本発明の第1実施形態に係る組電池及び複数の電圧センサを示す図である。It is a figure which shows the assembled battery and several voltage sensor which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係る蓄電システムの全体構成図である。1 is an overall configuration diagram of a power storage system according to a first embodiment of the present invention. 1つのセルに関する、内部抵抗値とSOCとの関係例を示す図である。It is a figure which shows the example of a relationship between internal resistance value and SOC regarding one cell. 蓄電システムに関与する抵抗特性測定部を示す図である。It is a figure which shows the resistance characteristic measurement part in connection with an electrical storage system. 測定用期間と充電期間との時間的関係を示す図である。It is a figure which shows the time relationship between the period for a measurement, and a charge period. 各セルの内部抵抗値のSOC依存性及び組電池の内部抵抗値のSOC依存性の例を示す図である。It is a figure which shows the example of SOC dependence of the internal resistance value of each cell, and SOC dependence of the internal resistance value of an assembled battery. 各セルの内部抵抗値のSOC依存性及び組電池の内部抵抗値のSOC依存性に応じた、第1〜第3SOC範囲の設定例を示す図である。It is a figure which shows the example of a setting of the 1st-3rd SOC range according to the SOC dependence of the internal resistance value of each cell, and the SOC dependence of the internal resistance value of an assembled battery. 本発明の第1実施形態に係り、充電の電流パターンの例を示す図である。It is a figure which concerns on 1st Embodiment of this invention and shows the example of the electric current pattern of charging. 本発明の第1実施形態に係り、充電の電流パターンの他の例を示す図である。It is a figure which concerns on 1st Embodiment of this invention and shows the other example of the electric current pattern of charging. 制御ユニットに設けられうる機能部を示す図である。It is a figure which shows the function part which can be provided in a control unit. 本発明の第2実施形態に係り、充電期間の詳細を示す図である。It is a figure which concerns on 2nd Embodiment of this invention and shows the detail of a charging period. 本発明の第3実施形態に係る制御ユニットの内部ブロック図である。It is an internal block diagram of the control unit which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係り、基準抵抗値及び充電の電流パターンの第1例を示す図である。It is a figure which concerns on 3rd Embodiment of this invention and shows the 1st example of the reference resistance value and the electric current pattern of charge. 本発明の第3実施形態に係り、基準抵抗値及び充電の電流パターンの第2例を示す図である。It is a figure which concerns on 3rd Embodiment of this invention and shows the 2nd example of the reference resistance value and the electric current pattern of charge. 従来技術に係り、蓄電池のSOC及び内部抵抗値間の関係例を示す図である。It is a figure which concerns on a prior art and is a figure which shows the example of a relationship between SOC of a storage battery, and internal resistance value.

以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。   Hereinafter, an example of an embodiment of the present invention will be specifically described with reference to the drawings. In each of the drawings to be referred to, the same part is denoted by the same reference numeral, and redundant description regarding the same part is omitted in principle. In this specification, for simplification of description, a symbol or reference that refers to information, signal, physical quantity, state quantity, member, or the like is written to indicate information, signal, physical quantity, state quantity or Names of members and the like may be omitted or abbreviated.

<<第1実施形態>>
本発明の第1実施形態を説明する。図1には、本発明の第1実施形態に係る組電池11TTと複数の電圧センサ13が示されている。組電池11TTは、互いに直列接続されたn個の蓄電池11を有する。nは2以上の任意の整数である。組電池11TTに、n個の蓄電池11の直列回路以外の蓄電池が更に含まれていても構わない。各蓄電池11は、任意の種類の蓄電池(二次電池)であり、例えば、リチウムイオン電池、ニッケル水素電池である。蓄電池の最小単位であるセルを複数個組み合わせて各蓄電池11を形成しても良いが、以下では、蓄電池11が1つのセルから成ると考えて、蓄電池11をセル11と呼ぶ。本明細書において、放電及び充電とは、特に記述無き限り、セル11又は組電池11TTの放電及び充電を指す。複数の電圧センサ13は、各セル11の端子電圧を測定する。
<< First Embodiment >>
A first embodiment of the present invention will be described. FIG. 1 shows an assembled battery 11 TT and a plurality of voltage sensors 13 according to the first embodiment of the present invention. The assembled battery 11 TT has n storage batteries 11 connected in series with each other. n is an arbitrary integer of 2 or more. The assembled battery 11 TT may further include a storage battery other than the series circuit of the n storage batteries 11. Each storage battery 11 is an arbitrary type of storage battery (secondary battery), for example, a lithium ion battery or a nickel metal hydride battery. Although each storage battery 11 may be formed by combining a plurality of cells, which are the minimum unit of the storage battery, hereinafter, the storage battery 11 is referred to as a cell 11 on the assumption that the storage battery 11 is composed of one cell. In this specification, the discharge and charge, unless otherwise described, refers to a discharge and charge of the cell 11 or the assembled battery 11 TT. The plurality of voltage sensors 13 measure the terminal voltage of each cell 11.

図2は、本発明の第1実施形態に係る蓄電システム1の全体構成図である。蓄電システム1は、図2に示される各部位を備えている。以下では、図2に示す如く、n個のセル11を互いに区別する必要がある場合、n個のセル11をセル11[1]〜11[n]と呼ぶ。セル11[1]〜11[n]の夫々に対して電圧センサ13が接続されている。セル11[i]に接続された電圧センサ13である電圧センサ13[i]は、セル11[i]の端子電圧を測定し、測定電圧値を表す信号を出力する。iは任意の整数である。セル11[i]の端子電圧及びその電圧値を記号V[i]にて表す。セル11[i]に流れる電流(以下、セル電流ともいう)及びその電流値を記号I[i]にて表す。組電池11TTの全体に流れる電流(以下、組電池電流ともいう)及びその電流値を記号ITTにて表す。セル11[1]〜11[n]は互いに直列接続されているため、ITT=I[i]である。 FIG. 2 is an overall configuration diagram of the power storage system 1 according to the first embodiment of the present invention. The power storage system 1 includes each part shown in FIG. In the following, when n cells 11 need to be distinguished from each other as shown in FIG. 2, the n cells 11 are referred to as cells 11 [1] to 11 [n]. A voltage sensor 13 is connected to each of the cells 11 [1] to 11 [n]. The voltage sensor 13 [i], which is the voltage sensor 13 connected to the cell 11 [i], measures the terminal voltage of the cell 11 [i] and outputs a signal representing the measured voltage value. i is an arbitrary integer. The terminal voltage and the voltage value of the cell 11 [i] are represented by the symbol V [i]. A current flowing through the cell 11 [i] (hereinafter also referred to as a cell current) and its current value are represented by a symbol I [i]. The current flowing through the entire assembled battery 11 TT (hereinafter also referred to as an assembled battery current) and its current value are represented by the symbol I TT . Since the cells 11 [1] to 11 [n] are connected to each other in series, I TT = I [i].

組電池電流を測定する電流センサ14が組電池11TTに接続されており、電流センサ14は測定した電流値ITTを表す信号を出力する。制御ユニット30は、電圧センサ13[1]〜13[n]の出力信号及び電流センサ14の出力信号から、各セル11の端子電圧値(V[1]〜V[n])及び電流値ITTを認識する。但し、定電流充電時においては、制御ユニット30内の主制御部33が電力変換回路16を制御することによって電流値ITTを指定することができるため、制御ユニット30は、電流センサ14の出力信号に頼ることなく電流値ITTを認識できる。尚、セル11[i]の正極から負極に向かって流れる方向の電流の極性が正であると考える。 A current sensor 14 for measuring the assembled battery current is connected to the assembled battery 11 TT , and the current sensor 14 outputs a signal representing the measured current value I TT . The control unit 30 determines the terminal voltage value (V [1] to V [n]) and current value I of each cell 11 from the output signals of the voltage sensors 13 [1] to 13 [n] and the output signal of the current sensor 14. Recognize TT . However, during constant current charging, the main control unit 33 in the control unit 30 can specify the current value I TT by controlling the power conversion circuit 16, so that the control unit 30 outputs the current sensor 14. The current value I TT can be recognized without depending on the signal. It is assumed that the polarity of the current flowing in the direction from the positive electrode to the negative electrode of the cell 11 [i] is positive.

充電源15は、組電池11TTに充電電力を供給可能な任意の電力源であり、例えば、自然エネルギ(太陽光、水力、風力、地熱等)に基づく発電を行って発電電力を出力する電力源、又は、商用交流電源(若しくは商用交流電源に接続された電力系統)である。電力変換回路16は、主制御部33の制御の下、充電源15から供給される充電用の電力に対し電力変換(直流/直流変換又は交流/直流変換)を行い、得られた直流電力を充電電力として組電池11TTに供給する。組電池11TTは、電力変換回路16を介して任意の負荷(不図示)に対し放電電力を供給することもできるが、以下では、特に記述無き限り、組電池11TTの充電に関わる動作及び構成を説明する。 The charging source 15 is an arbitrary power source that can supply charging power to the assembled battery 11 TT . For example, the power that generates power based on natural energy (solar, hydro, wind, geothermal, etc.) and outputs the generated power. Or a commercial AC power source (or a power system connected to the commercial AC power source). The power conversion circuit 16 performs power conversion (DC / DC conversion or AC / DC conversion) on the charging power supplied from the charging source 15 under the control of the main control unit 33, and uses the obtained DC power. It supplies to assembled battery 11TT as charging electric power. The assembled battery 11 TT can also supply discharge power to an arbitrary load (not shown) via the power conversion circuit 16, but in the following, unless otherwise specified, operations related to charging of the assembled battery 11 TT and The configuration will be described.

蓄電システム1に設けられた制御ユニット30は、符号31〜34によって参照される各部位を備える。データ保持部31は、セル11の内部抵抗値とセル11の充電率との関係、即ち、セル11の内部抵抗値の充電率依存性を示すデータ(以下、抵抗特性データともいう)をセル11ごとに保持している。セル11[i]についての抵抗特性データを記号RCR[i]にて表す。セル11の充電率は、セル11のSOC(State Of Charge)として表現される。セル11[i]のSOCを記号SOC[i]にて表す。周知の如く、SOC[i]は、セル11[i]の満充電容量に対するセル11[i]の残容量の比である。 The control unit 30 provided in the power storage system 1 includes each part referred to by reference numerals 31 to 34. The data holding unit 31 stores data indicating the relationship between the internal resistance value of the cell 11 and the charging rate of the cell 11, that is, the charging rate dependency of the internal resistance value of the cell 11 (hereinafter also referred to as resistance characteristic data). Hold every. The resistance characteristic data for the cell 11 [i] is represented by the symbol R CR [i]. The charging rate of the cell 11 is expressed as SOC (State Of Charge) of the cell 11. The SOC of the cell 11 [i] is represented by the symbol SOC [i]. As is well known, SOC [i] is the ratio of the remaining capacity of the cell 11 [i] to the full charge capacity of the cell 11 [i].

図3に、抵抗特性データRCR[i]の例を示す。抵抗特性データRCR[i]は、セル11[i]の内部抵抗値とSOC[i]との関係を示している。セル11[i]の内部抵抗値を記号R[i]にて表す。蓄電システム1の内部又は外部に設けられた抵抗特性測定部40(図4(a)参照)は、所定の測定用期間310において、抵抗特性データRCR[i]を取得することができる。図5に示す如く、測定用期間310は後述の充電期間320の前にある。測定用期間310は、蓄電システム1、制御ユニット30、組電池11TT又はセル11の設計、製造又は出荷時に設けられる期間であっても良い。この場合、図4(b)に示す如く、抵抗特性測定部40は、蓄電システム1の外部に設けられた実験用装置であっても良い(但し、抵抗特性測定部40を蓄電システム1又は制御ユニット30に設けておくことも可能である)。測定用期間310は、蓄電システム1、制御ユニット30、組電池11TT又はセル11の製造及び出荷後に設けられる期間であっても良い。この場合、図4(c)に示す如く、抵抗特性測定部40は制御ユニット30内に設けられる。 FIG. 3 shows an example of the resistance characteristic data R CR [i]. The resistance characteristic data R CR [i] indicates the relationship between the internal resistance value of the cell 11 [i] and the SOC [i]. The internal resistance value of the cell 11 [i] is represented by the symbol R [i]. The resistance characteristic measurement unit 40 (see FIG. 4A) provided inside or outside the power storage system 1 can acquire the resistance characteristic data R CR [i] in a predetermined measurement period 310. As shown in FIG. 5, the measurement period 310 is before the charging period 320 described later. The measurement period 310 may be a period provided at the time of designing, manufacturing, or shipping the power storage system 1, the control unit 30, the assembled battery 11 TT, or the cell 11. In this case, as shown in FIG. 4B, the resistance characteristic measuring unit 40 may be an experimental device provided outside the power storage system 1 (however, the resistance characteristic measuring unit 40 may be connected to the power storage system 1 or the control). It can also be provided in the unit 30). The measurement period 310 may be a period provided after manufacture and shipment of the power storage system 1, the control unit 30, the assembled battery 11 TT, or the cell 11. In this case, as shown in FIG. 4C, the resistance characteristic measuring unit 40 is provided in the control unit 30.

測定用期間310において、抵抗特性測定部40は、セル11[i]のSOC[i]を所定の評価SOCにした状態でセル電流値I[i]を第1電流値(例えばゼロ)から第2電流値へ変動させ、この変動前後におけるセル11[i]の端子電圧の変動量ΔV[i]を電圧センサ13[i]の出力信号から取得する第1工程と、端子電圧の変動量ΔV[i]をセル電流値I[i]の変動量ΔI[i](即ち、第1及び第2電流値間の差)にて除することで、当該評価SOCに対応する内部抵抗値R[i]を算出する第2工程と、を実行する(即ち、R[i]=ΔV[i]/ΔI[i])。第1及び第2工程の組を1回分実行することで、1つの評価SOCに対応する内部抵抗値R[i]が求まる。測定用期間310において、抵抗特性測定部40は、評価SOCを順次変更しながら(例えば、SOCの1%刻みで変化させながら)第1及び第2工程を繰り返し実行することで、抵抗特性データRCR[i]を得ることができる。抵抗特性測定部40は、セル11[1]〜11[n]の夫々に対して上述の処理を行うことで、抵抗特性データRCR[1]〜RCR[n]を求める。データ保持部31は、求められた抵抗特性データRCR[1]〜RCR[n]を保持する。 In the measurement period 310, the resistance characteristic measurement unit 40 changes the cell current value I [i] from the first current value (for example, zero) to the first value in a state where the SOC [i] of the cell 11 [i] is set to the predetermined evaluation SOC. A first step of obtaining the terminal voltage fluctuation amount ΔV [i] of the cell 11 [i] before and after the fluctuation from the output signal of the voltage sensor 13 [i], and a terminal voltage fluctuation amount ΔV. By dividing [i] by the variation ΔI [i] of the cell current value I [i] (that is, the difference between the first and second current values), the internal resistance value R [ i] is calculated (that is, R [i] = ΔV [i] / ΔI [i]). The internal resistance value R [i] corresponding to one evaluation SOC is obtained by executing the first and second process groups one time. In the measurement period 310, the resistance characteristic measurement unit 40 repeatedly executes the first and second steps while sequentially changing the evaluation SOC (for example, while changing the evaluation SOC in increments of 1%), whereby the resistance characteristic data R CR [i] can be obtained. The resistance characteristic measurement unit 40 obtains the resistance characteristic data R CR [1] to R CR [n] by performing the above-described processing on each of the cells 11 [1] to 11 [n]. The data holding unit 31 holds the obtained resistance characteristic data R CR [1] to R CR [n].

リチウムイオン電池等の蓄電池では、基本的にSOCが高くなるにつれて内部抵抗値が減少することが多いが、SOCが中程度の領域で蓄電池内の電流の伝達メカニズムが変化し、その変化の前後において蓄電池内のイオンが動きにくくなって内部抵抗値が局所的に大きくなることがある。そのような特性を持った蓄電池がセル11[i]として想定されており、実際、セル11[i]の内部抵抗値はSOCが中程度の領域で極大値をとる。セル11の内部抵抗値に極大値をとらせるSOCをピークSOC(ピーク充電率)という(図3参照)。セル11[i]についてのピークSOCを記号SOCPK[i]で表し、SOC[i]がSOCPK[i]と一致しているときの内部抵抗値R[i]を特にピーク抵抗値と呼ぶと共に記号RPK[i]にて表す。尚、“極大値”という用語の意義から明らかであるが、セル11[i]に関し、SOC[i]の増加に伴って内部抵抗値R[i]が増加から減少に転じるときの内部抵抗値R[i]は極大値である。 In a storage battery such as a lithium ion battery, the internal resistance value generally decreases as the SOC increases. However, the current transmission mechanism in the storage battery changes in the medium SOC range, and before and after the change. The ions in the storage battery may be difficult to move and the internal resistance value may locally increase. A storage battery having such characteristics is assumed as the cell 11 [i]. In fact, the internal resistance value of the cell 11 [i] takes a maximum value in a region where the SOC is medium. The SOC that takes the maximum value in the internal resistance value of the cell 11 is called peak SOC (peak charge rate) (see FIG. 3). The peak SOC for the cell 11 [i] is represented by the symbol SOC PK [i], and the internal resistance value R [i] when the SOC [i] matches the SOC PK [i] is particularly called a peak resistance value. Together with the symbol R PK [i]. In addition, although it is clear from the meaning of the term “maximum value”, regarding the cell 11 [i], the internal resistance value when the internal resistance value R [i] changes from increasing to decreasing with increasing SOC [i]. R [i] is a local maximum.

データ保持部31は、抵抗特性データRCR[1]〜RCR[n]の代わりに、又は、抵抗特性データRCR[1]〜RCR[n]に加えて、抵抗特性データRCRTTを保持していても良い(図2参照)。抵抗特性データRCRTTは、組電池11TT全体における内部抵抗値の充電率依存性を示すデータである。組電池11TT全体の充電率は、組電池11TT全体のSOC(State Of Charge)として表現される。組電池11TT全体のSOCを記号SOCTTにて表す。周知の如く、SOCTTは、組電池11TT全体の満充電容量に対する組電池11TT全体の残容量の比である。 Data holding unit 31, instead of the resistance characteristic data R CR [1] ~R CR [ n], or, in addition to the resistance characteristic data R CR [1] ~R CR [ n], the resistance characteristic data R CRTT You may hold | maintain (refer FIG. 2). The resistance characteristic data R CRTT is data indicating the charging rate dependency of the internal resistance value in the entire assembled battery 11 TT . Charging rate of the entire assembled battery 11 TT is expressed as the assembled battery 11 TT overall SOC (State Of Charge). The SOC of the entire assembled battery 11 TT is represented by the symbol SOC TT . As is well known, SOC TT is the ratio of the assembled battery 11 TT total remaining capacity to the full charge capacity of the entire battery pack 11 TT.

図6に、抵抗特性データRCR[1]及びRCR[2]の例と共に、抵抗特性データRCRTTの例を示す。組電池11TT全体の内部抵抗値を記号RTTにて表す。抵抗特性データRCRTTは、組電池11TTの内部抵抗値RTTと組電池11TTのSOCTTとの関係を示している。内部抵抗値RTTは内部抵抗値R[1]〜R[n]の合計である。組電池11TTのSOCTTはSOC[1]〜SOC[n]の平均である。故に、抵抗特性データRCR[1]〜RCR[n]が定まれば抵抗特性データRCRTTが定まる。 FIG. 6 shows an example of the resistance characteristic data R CRTT together with examples of the resistance characteristic data R CR [1] and R CR [2]. The internal resistance value of the entire assembled battery 11 TT is represented by the symbol R TT . Resistance characteristic data R CRTT shows the relationship between the SOC TT of the assembled battery 11 internal resistance value of TT R TT and the assembled battery 11 TT. The internal resistance value R TT is the sum of the internal resistance values R [1] to R [n]. The SOC TT of the assembled battery 11 TT is an average of SOC [1] to SOC [n]. Therefore, if the resistance characteristic data R CR [1] to R CR [n] is determined, the resistance characteristic data R CRTT is determined.

従って、抵抗特性測定部40(図4(a)等参照)は、上述の如く抵抗特性データRCR[1]〜RCR[n]を求めた後、抵抗特性データRCR[1]〜RCR[n]から抵抗特性データRCRTTを求めることができる。データ保持部31に抵抗特性データRCR[1]〜RCR[n]が保持されている場合、後述のSOC範囲設定部32により抵抗特性データRCR[1]〜RCR[n]から抵抗特性データRCRTTが導出されても良い。 Accordingly, the resistance characteristic measuring unit 40 (see FIG. 4A and the like) obtains the resistance characteristic data R CR [1] to R CR [n] as described above, and then the resistance characteristic data R CR [1] to R Resistance characteristic data R CRTT can be obtained from CR [n]. If the data holding unit 31 resistance characteristic data R CR [1] ~R CR [ n] is maintained, the resistance characteristic data R CR [1] by SOC range setting unit 32 described later resistor from to R CR [n] The characteristic data R CRTT may be derived.

或いは、抵抗特性測定部40は、抵抗特性データRCR[1]〜RCR[n]を求めることなく、抵抗特性データRCRTTを直接求めるようにしても良い。この場合、組電池11TT全体の端子電圧を測定して、測定電圧値を表す信号を出力する組電池電圧センサ(不図示)を組電池11TTに接続しておくと良い。電圧センサ13[1]〜13[n]にて組電池電圧センサが形成されていても良い。測定用期間310において、抵抗特性測定部40は、SOCTTを所定の評価SOCにした状態で電流値ITTを第1電流値(例えばゼロ)から第2電流値へ変動させ、この変動前後における組電池11TTの端子電圧の変動量ΔVTTを組電池電圧センサの出力信号から取得する第1工程と、端子電圧の変動量ΔVTTを電流値ITTの変動量ΔITT(即ち、第1及び第2電流値間の差)にて除することで、当該評価SOCに対応する内部抵抗値RTTを算出する第2工程と、を実行する(即ち、RTT=ΔVTT/ΔITT)。第1及び第2工程の組を1回分実行することで、1つの評価SOCに対応する内部抵抗値RTTが求まる。測定用期間310において、抵抗特性測定部40は、評価SOCを順次変更しながら(例えば、SOCTTの1%刻みで変化させながら)第1及び第2工程を繰り返し実行することで、抵抗特性データRCRTTを得ることができる。 Alternatively, the resistance characteristic measurement unit 40 may directly obtain the resistance characteristic data R CRTT without obtaining the resistance characteristic data R CR [1] to R CR [n]. In this case, an assembled battery voltage sensor (not shown) that measures the terminal voltage of the entire assembled battery 11 TT and outputs a signal representing the measured voltage value may be connected to the assembled battery 11 TT . The assembled battery voltage sensor may be formed by the voltage sensors 13 [1] to 13 [n]. In the measurement period 310, the resistance characteristic measurement unit 40 changes the current value I TT from the first current value (for example, zero) to the second current value in a state where the SOC TT is set to the predetermined evaluation SOC, and before and after the change. assembled battery 11 and the first step of obtaining the variation amount [Delta] V TT of TT of the terminal voltage from the output signal of the battery pack voltage sensor, variation of the variation amount [Delta] V TT current value I TT terminal voltage [Delta] I TT (i.e., first And the second step of calculating the internal resistance value R TT corresponding to the evaluation SOC (ie, R TT = ΔV TT / ΔI TT ). . A set of first and second step by performing one time, the internal resistance value R TT corresponding to one evaluation SOC is obtained. In the measurement period 310, the resistance characteristic measurement unit 40 repeatedly executes the first and second steps while sequentially changing the evaluation SOC (for example, changing the SOC TT in increments of 1%), whereby the resistance characteristic data R CRTT can be obtained.

セル11[i]の内部抵抗値R[i]がSOC[i]の変化に対して極大値を持つという特性に対応して、組電池11TTの内部抵抗値RTTもSOCTTの変化に対して極大値を持つ。内部抵抗値RTTに極大値をとらせるSOCTTもピークSOC(ピーク充電率)と呼ぶ。本実施形態では、図6に示す如く、SOCTTがSOCPK[1]と一致しているときに内部抵抗値RTTが極大値RPKTT[1]をとり、且つ、SOCTTがSOCPK[2]と一致しているときに内部抵抗値RTTが極大値RPKTT[2]をとるものとする。内部抵抗値R[i]の極大値と同様、内部抵抗値RTTの極大値もピーク抵抗値と呼ぶ。尚、“極大値”という用語の意義から明らかであるが、SOCTTの増加に伴って内部抵抗値RTTが増加から減少に転じるときの内部抵抗値RTTは極大値である。 Corresponding to the characteristic that the internal resistance value R [i] of the cell 11 [i] has a maximum value with respect to the change of the SOC [i], the internal resistance value RTT of the assembled battery 11TT also changes to the SOC TT . On the other hand, it has a maximum value. The SOC TT that makes the internal resistance value R TT maximum is also called peak SOC (peak charge rate). In this embodiment, as shown in FIG. 6, when SOC TT matches SOC PK [1], the internal resistance value R TT takes a maximum value R PKTT [1], and SOC TT becomes SOC PK [1]. the internal resistance value R TT when consistent with 2] is assumed to take a maximum value R PKTT [2]. As with the maximum value of the internal resistance value R [i], the maximum value of the internal resistance value R TT also called peak resistance value. Although it is clear from the meaning of the term "maximum value", the internal resistance value R TT when the internal resistance value R TT with increasing SOC TT turns from increase to decrease is maximum value.

データ保持部31に抵抗特性データRCR[1]〜RCR[n]を少なくとも保持させる方法を第1データ保持方法と呼ぶ。第1データ保持方法の採用時において、制御ユニット30は、データRCR[1]〜RCR[n]に基づき、各セル11のピークSOC及びピーク抵抗値を各セル11に対応付けて認識することができる。即ち、第1データ保持方法の採用時において、制御ユニット30は、SOCPK[i]及びRPK[i]がセル11[i]にとってのピークSOC及びピーク抵抗値であることを認識できる。 A method of causing the data holding unit 31 to hold at least the resistance characteristic data R CR [1] to R CR [n] is referred to as a first data holding method. When adopting the first data holding method, the control unit 30 recognizes the peak SOC and peak resistance value of each cell 11 in association with each cell 11 based on the data R CR [1] to R CR [n]. be able to. That is, when the first data holding method is adopted, the control unit 30 can recognize that SOC PK [i] and R PK [i] are the peak SOC and peak resistance value for the cell 11 [i].

データ保持部31に抵抗特性データRCRTTのみを保持させる方法を第2データ保持方法と呼ぶ。第2データ保持方法の採用時において、制御ユニット30は、SOCPK[1]及びSOCPK[2]が内部抵抗値RTTに極大値をとらせるピークSOCであることは認識できるものの、SOCPK[i]がセル11[i]にとってのピークSOCであることまでは認識できない。 A method of causing the data holding unit 31 to hold only the resistance characteristic data R CRTT is referred to as a second data holding method. At the time of adopting the second data holding method, the control unit 30 can recognize that SOC PK [1] and SOC PK [2] are peak SOCs that cause the internal resistance value RTT to be a maximum value, but the SOC PK It cannot be recognized that [i] is the peak SOC for the cell 11 [i].

SOC範囲設定部(充電率範囲設定部)32は、データ保持部31から取得した抵抗特性データRCR[1]〜RCR[n]に基づき、セル11ごとにセル11のピークSOC(即ち、セル11のSOCの増加に伴ってセル11の内部抵抗値が増加から減少に転じるときのセル11のSOC)を検出する検出動作、或いは、データ保持部31から取得した抵抗特性データRCRTTに基づき、組電池11TTのピークSOC(即ち、組電池11TTのSOCの増加に伴って組電池11TTの内部抵抗値が増加から減少に転じるときの組電池11TTのSOC)を検出する検出動作を行う。 The SOC range setting unit (charge rate range setting unit) 32 is based on the resistance characteristic data R CR [1] to R CR [n] acquired from the data holding unit 31, and the peak SOC (that is, the cell 11) of each cell 11 (that is, Based on the detection operation for detecting the SOC of the cell 11 when the internal resistance value of the cell 11 changes from increasing to decreasing as the SOC of the cell 11 increases, or based on the resistance characteristic data R CRTT acquired from the data holding unit 31 the assembled battery 11 TT peak SOC (i.e., SOC of the assembled battery 11 TT when the internal resistance of the battery pack 11 TT with increasing SOC of the battery pack 11 TT turns from increase to decrease) the detection operation of detecting I do.

設定部32は、検出した各ピークSOCを含むSOC範囲をピークSOC範囲(ピーク充電率範囲)として設定する(図7参照)。この際、設定部32は、上記検出動作によって検出された複数のピークSOCの内、最大のピークSOCをSOCPKMAXとして特定すると共に最小のピークSOCをSOCPKMINとして特定し、下記式(1)及び(2)に従って、ピークSOC範囲の下限SOCであるSOCST及びピークSOC範囲の上限SOCであるSOCEDを決定する(図7参照)。ΔSOCA及びΔSOCBは0より大きな所定値(例えば10%)を持つが、SOCSTが0%以下に設定されたり、SOCEDが100%以上に設定されたりすることは無い。ΔSOCA及びΔSOCBの一致、不一致は問わない。以下では、特に記述無き限り、SOCPKMIN=SOCPK[1]且つSOCPKMAX=SOCPK[2]であることを想定する。
SOCST=SOCPKMIN−ΔSOCA …(1)
SOCED=SOCPKMAX+ΔSOCB …(2)
The setting unit 32 sets the SOC range including each detected peak SOC as a peak SOC range (peak charge rate range) (see FIG. 7). At this time, the setting unit 32 specifies the maximum peak SOC as SOC PKMAX among the plurality of peak SOCs detected by the detection operation, and specifies the minimum peak SOC as SOC PKMIN. According to (2), SOC ST which is the lower limit SOC of the peak SOC range and SOC ED which is the upper limit SOC of the peak SOC range are determined (see FIG. 7). ΔSOC A and ΔSOC B have a predetermined value (for example, 10%) larger than 0, but SOC ST is not set to 0% or less, and SOC ED is not set to 100% or more. The coincidence or disagreement between ΔSOC A and ΔSOC B does not matter. In the following, it is assumed that SOC PKMIN = SOC PK [1] and SOC PKMAX = SOC PK [2] unless otherwise specified .
SOC ST = SOC PKMIN −ΔSOC A (1)
SOC ED = SOC PKMAX + ΔSOC B (2)

また、ピークSOC範囲を、便宜上、第2SOC範囲と呼ぶ。そうすると、設定部32により第1〜第3SOC範囲が設定されると考えることができる。SOC範囲とは、セル11又は組電池11TTのSOCが属すべき数値範囲を指す。図7に示す如く、第1〜第3SOC範囲は互いに重なり合わず、第2SOC範囲に属するSOCは常に第1SOC範囲に属するSOCよりも高く且つ第3SOC範囲に属するSOCよりも低い。SOCSTは第1及び第2SOC範囲間の境界値であり、SOCEDは第2及び第3SOC範囲間の境界値である。第1SOC範囲の下限SOCは0%であるが、0%よりも大きな所定値(例えば5%)に設定されうる。第3SOC範囲の上限SOCは100%未満の所定値SOCCV(例えば80%)とされる。 Further, the peak SOC range is referred to as a second SOC range for convenience. Then, it can be considered that the first to third SOC ranges are set by setting unit 32. The SOC range refers to a numerical range to which the SOC of the cell 11 or the assembled battery 11 TT should belong. As shown in FIG. 7, the first to third SOC ranges do not overlap each other, and the SOC belonging to the second SOC range is always higher than the SOC belonging to the first SOC range and lower than the SOC belonging to the third SOC range. SOC ST is a boundary value between the first and second SOC ranges, and SOC ED is a boundary value between the second and third SOC ranges. The lower limit SOC of the first SOC range is 0%, but can be set to a predetermined value (for example, 5%) larger than 0%. The upper limit SOC of the third SOC range is a predetermined value SOC CV (for example, 80%) less than 100%.

設定部32は、抵抗特性データRCR[1]〜RCR[n]に基づき、セル11ごとに正の所定値(例えば30%)以上を有するセル充電率の範囲の中からセル11のピークSOCを検出及び抽出すると良く、或いは、抵抗特性データRCRTTに基づき、正の所定値(例えば30%)以上を有する組電池充電率の範囲の中から組電池11TTのピークSOCを検出及び抽出すると良い。これにより、第2SOC範囲の下限(即ちSOCST)を0%より大きくすることができる(例えば、第2SOC範囲の下限を正の所定値(例えば20%)以上にすることができる)。セル充電率の範囲はセル11のSOCの範囲を指し、組電池充電率の範囲は組電池11TTのSOCの範囲を指す。 Based on the resistance characteristic data R CR [1] to R CR [n], the setting unit 32 sets the peak of the cell 11 from the range of the cell charge rate having a positive predetermined value (for example, 30%) or more for each cell 11. well if the SOC detection and extracts, or, on the basis of the resistance characteristic data R CRTT, positive detection and extraction peaks SOC of the battery pack 11 TT from the scope of the assembled battery charging rate with more than a predetermined value (e.g. 30%) Good. Thereby, the lower limit of the second SOC range (that is, SOC ST ) can be made larger than 0% (for example, the lower limit of the second SOC range can be set to a positive predetermined value (for example, 20%) or more). The range of the cell charging rate indicates the SOC range of the cell 11, and the range of the assembled battery charging rate indicates the SOC range of the assembled battery 11TT .

図2の主制御部33は、設定部32の検出及び設定結果に基づき充電期間320中における組電池11TTの電流パターンを設定する。図8において、波形350は、充電期間320中における組電池11TTの電流パターンの例を表している。充電期間320において、SOCTTが第1、第2、第3SOC範囲に属しているとき、夫々、第1、第2、第3目標電流レートで組電池11TTが充電されるべきことを電流パターン350は規定している。第1、第2、第3目標電流レートでの組電池11TTの充電は、夫々、電流値ITTを電流値ICC1、ICC2、ICC3と一致させた状態で組電池11TTを定電流充電することを指す。ここで、“ICC1>ICC2”且つ“ICC2<ICC3”である。即ち、第2目標電流レートは第1及び第3目標電流レートよりも低い。図8では、“ICC1>ICC3”となっているが、“ICC1<ICC3”又は“ICC1=ICC3”であっても構わない。 The main control unit 33 of FIG. 2 sets the assembled battery 11 TT of current patterns during the charging period 320 based on the detection and the setting result of the setting unit 32. In FIG. 8, a waveform 350 represents an example of a current pattern of the assembled battery 11 TT during the charging period 320. In the charging period 320, when the SOC TT belongs to the first, second, and third SOC ranges, the current pattern indicates that the assembled battery 11 TT should be charged at the first, second, and third target current rates, respectively. 350 stipulates. Charging the assembled battery 11 TT at the first, second, and third target current rates determines the assembled battery 11 TT in a state where the current value I TT matches the current values I CC1 , I CC2 , and I CC3 , respectively. It refers to current charging. Here, “I CC1 > I CC2 ” and “I CC2 <I CC3 ”. That is, the second target current rate is lower than the first and third target current rates. In FIG. 8, “I CC1 > I CC3 ”, but “I CC1 <I CC3 ” or “I CC1 = I CC3 ” may be used.

主制御部33は、充電期間320において、組電池11TTの充電電流が設定電流パターンに規定された電流となるように、換言すれば、実際の充電電流レートが目標電流レートと一致するように電力変換回路16を制御する。充電電流レートは、充電期間320において組電池11TTの定電流充電を行う際における組電池11TTの充電電流値を指す。例えば、電流パターン350が設定された場合、充電期間320中においてSOCTTが第1、第2、第3SOC範囲に属しているとき、夫々、電流値ITTが電流値ICC1、ICC2、ICC3と一致した状態で組電池11TTの定電流充電が行われる。 In the charging period 320, the main control unit 33 adjusts the charging current of the assembled battery 11TT to the current defined in the set current pattern, in other words, the actual charging current rate matches the target current rate. The power conversion circuit 16 is controlled. The charging current rate refers to a charging current value of the assembled battery 11 TT when performing constant current charging of the assembled battery 11 TT during the charging period 320. For example, when the current pattern 350 is set, when the SOC TT belongs to the first, second, and third SOC ranges during the charging period 320, the current value I TT is the current value I CC1 , I CC2 , I The battery pack 11 TT is charged with constant current in a state consistent with CC3 .

充電期間320において、組電池11TTの端子電圧VTTがSOCCVに対応する所定電圧に達すると、組電池11TTの充電が定電流充電から定電圧充電に切り替えられる。組電池11TTの端子電圧VTTがSOCCVに対応する所定電圧に達する状態は、SOCTTが所定値SOCCVに達する状態に相当する。図8では、便宜上、電流パターン350の中に定電圧充電中の電流変化が示されているが(定電圧充電中の電流値ITTの具体的値が、あたかも、電流パターン350にて規定されているように見えるが)、実際には、定電圧充電では、電流パターン350に従ってセル電流の具体的値が制御されるわけではない(後述の他の電流パターンについても同様)。 In the charging period 320, the assembled battery 11 TT terminal voltage V TT of reaches a predetermined voltage corresponding to SOC CV, charging of the assembled battery 11 TT is switched to the constant voltage charging from the constant current charging. State terminal voltage V TT of the assembled battery 11 TT reaches a predetermined voltage corresponding to SOC CV corresponds to the state SOC TT reaches a predetermined value SOC CV. In FIG. 8, for the sake of convenience, a current change during constant voltage charging is shown in the current pattern 350 (a specific value of the current value I TT during constant voltage charging is defined by the current pattern 350. Actually, in constant voltage charging, the specific value of the cell current is not controlled according to the current pattern 350 (the same applies to other current patterns described later).

図2のSOC算出部(充電率導出部)34は、セル11[1]〜11[n]のSOC、即ち、SOC[1]〜SOC[n]を求める。SOC算出部34は、セル11[1]〜11[n]の夫々について、電圧センサ13[i]にて測定された電圧値V[i]に基づき、又は、電圧センサ13[i]にて測定された電圧値V[i]及び電流センサ14にて測定された電流値ITTに基づき、公知の任意のSOC算出方法に従って各時刻のSOC[i]を算出することができる。 The SOC calculation unit (charge rate deriving unit) 34 in FIG. 2 obtains SOCs of the cells 11 [1] to 11 [n], that is, SOC [1] to SOC [n]. The SOC calculation unit 34 uses the voltage sensor 13 [i] based on the voltage value V [i] measured by the voltage sensor 13 [i] for each of the cells 11 [1] to 11 [n]. Based on the measured voltage value V [i] and the current value I TT measured by the current sensor 14, the SOC [i] at each time can be calculated according to any known SOC calculation method.

例えば、充電期間320の開始前において、SOC算出部34は、セル11[i]に電流を流していない状態での電圧値V[i]を、セル11[i]の開放電圧値として電圧センサ13[i]から取得し、所定のテーブルデータ(セル11の開放電圧値とセル11のSOCとの関係を示す既知データ)を用いて、開放電圧値として取得した電圧値V[i]をSOC[i]に変換し、この変換によって得られたSOC[i]を、充電期間320の開始時点のセル11[i]のSOCとして取り扱う。その後、充電期間320において、SOC算出部34は、電流センサ14にて測定された電流値ITTを順次取得して、任意の積算対象期間中の電流値ITTを積算することにより当該積算対象期間中におけるセル11[i]の充電電流の総量ΣIを求め、その総量ΣIと、当該積算対象期間の開始時点におけるセル11[i]のSOCと、セル11[i]の満充電容量とから、当該積算対象期間の終了時点におけるセル11[i]のSOCを求めることができる。これにより、任意の時刻のセル11[i]のSOCを導出可能である。 For example, before the start of the charging period 320, the SOC calculation unit 34 uses the voltage value V [i] in a state where no current is flowing in the cell 11 [i] as the open circuit voltage value of the cell 11 [i]. 13 [i], and using predetermined table data (known data indicating the relationship between the open circuit voltage value of the cell 11 and the SOC of the cell 11), the voltage value V [i] acquired as the open circuit voltage value is determined as the SOC. [I], and the SOC [i] obtained by this conversion is handled as the SOC of the cell 11 [i] at the start of the charging period 320. Thereafter, in the charging period 320, the SOC calculation unit 34 sequentially acquires the current value I TT measured by the current sensor 14, and integrates the current value I TT during an arbitrary integration target period to thereby calculate the integration target. The total amount ΣI of the charging current of the cell 11 [i] during the period is obtained, and from the total amount ΣI, the SOC of the cell 11 [i] at the start of the integration target period, and the full charge capacity of the cell 11 [i]. The SOC of the cell 11 [i] at the end of the integration target period can be obtained. Thereby, the SOC of the cell 11 [i] at an arbitrary time can be derived.

主制御部33は、SOC算出部34にて算出されたSOC[i]を各時刻におけるSOC[i]として認識する。主制御部33において、各時刻のSOC[1]〜SOC[n]から各時刻のSOCTTを求めることができる。或いは、SOC算出部34は、算出したSOC[1]〜SOC[n]からSOCTTを求めて、SOC[1]〜SOC[n]及びSOCTTを、又は、SOCTTのみを主制御部33に送るようにしても良い。主制御部33は、充電期間320において、各時刻で算出されたSOC[1]〜SOC[n]又はSOCTTに基づき電力変換回路16を制御することで各時刻における充電電流値を制御する。例えば、組電池11TTの充電電流が電流パターン350に規定された電流となるように電力変換回路16を制御する。 The main control unit 33 recognizes the SOC [i] calculated by the SOC calculation unit 34 as the SOC [i] at each time. The main control unit 33 can obtain the SOC TT at each time from the SOC [1] to SOC [n] at each time. Alternatively, the SOC calculation unit 34 obtains the SOC TT from the calculated SOC [1] to SOC [n], and obtains the SOC [1] to SOC [n] and SOC TT , or only the SOC TT, from the main control unit 33. You may make it send to. The main control unit 33 controls the charging current value at each time by controlling the power conversion circuit 16 based on the SOC [1] to SOC [n] or SOC TT calculated at each time in the charging period 320. For example, the power conversion circuit 16 is controlled so that the charging current of the assembled battery 11 TT becomes the current defined in the current pattern 350.

内部抵抗値が大きい状態で比較的大きな充電電流を流せば発熱等の影響により蓄電池の劣化が促進する。故に、内部抵抗値が大きいときには充電電流を抑制した方が好ましいが、低SOC範囲では内部抵抗値が高くとも蓄電池内のイオン(リチウムイオン等)が固体として析出しにくい等の理由から比較的大きな充電電流を流しても劣化は進みにくい。一方、充電電流の過度の抑制は充電に必要な時間を増大させる。このため、上記極大値が現れるときにおいて充電電流を抑制する方法が検討される。しかしながら、上記極大値が現れるSOCがセル11ごとに相違することも十分にあるため、或るセル11だけに注目して組電池11TT全体に対する充電電流を抑制することは好ましくない。これを考慮し、主制御部33は、上述の各ピークSOCを含んだ第2SOC範囲(ピーク充電率範囲)を設定し、SOCTTが第2SOC範囲に属しているときの充電電流レートを、SOCTTが第1又は第3SOC範囲に属しているときの充電電流レートよりも低くする。これにより、充電電流を高めると何れかのセル11にて劣化の促進が予想される中SOC範囲において充電電流が抑制され、組電池全体の劣化が抑制される。ピークSOCが存在せず、内部抵抗値が高くとも劣化が進みにくい低SOC範囲では充電電流が比較的大きくされるので、充電必要時間が不必要に伸びることもない。ピークSOC(ピーク抵抗値)の存在を考慮することなく、組電池全体の内部抵抗値のみに基づいて一律に充電電流を制御する従来の方式では過度に充電電流が抑制されることがある。 If a relatively large charging current is passed in a state where the internal resistance value is large, deterioration of the storage battery is promoted due to the influence of heat generation or the like. Therefore, it is preferable to suppress the charging current when the internal resistance value is large. However, in the low SOC range, even if the internal resistance value is high, ions (lithium ions, etc.) in the storage battery are not easily precipitated as solids. Deterioration is unlikely to progress even when charging current is passed. On the other hand, excessive suppression of the charging current increases the time required for charging. For this reason, a method of suppressing the charging current when the maximum value appears is examined. However, since the SOC of the maximum value appears is also sufficient to differ for each cell 11, to suppress the charging current for the entire battery pack 11 TT focuses only on one cell 11 is not desirable. Considering this, the main control unit 33 sets the second SOC range (peak charge rate range) including each of the above-described peak SOCs, and determines the charge current rate when the SOC TT belongs to the second SOC range as the SOC. The charging current rate is set lower than when TT belongs to the first or third SOC range. As a result, when the charging current is increased, the charging current is suppressed in the middle SOC range where deterioration of the cell 11 is expected to be accelerated, and the deterioration of the entire assembled battery is suppressed. The charge current is relatively large in the low SOC range where there is no peak SOC and the deterioration does not easily progress even if the internal resistance value is high, so that the required charge time does not unnecessarily increase. In the conventional method in which the charging current is uniformly controlled based only on the internal resistance value of the entire assembled battery without considering the existence of the peak SOC (peak resistance value), the charging current may be excessively suppressed.

図8の電流パターン350では、SOCTTが第2SOC範囲に属するときの充電電流レートが一定(ICC2)になっているが、それを変動させても良い。図9を参照し、この方法を、“RPKTT[1]>RPKTT[2]”が成立するという仮定の下で説明する。この仮定の下、設定部32は、ピーク抵抗値RPKTT[1]に対応する組電池11TTのピークSOC(即ちSOCPK[1])を含み且つ所定の充電率幅を持ったSOC範囲371、及び、ピーク抵抗値RPKTT[2]に対応する組電池11TTのピークSOC(即ちSOCPK[2])を含み且つ所定の充電率幅を持ったSOC範囲372を、第2SOC範囲(ピーク充電率範囲)内に設定する。典型的には例えば、SOC範囲371の中心値がSOCPK[1]と一致し、SOC範囲372の中心値がSOCPK[2]と一致する。ここでは、SOCPK[1]とSOCPK[2]が互いに十分に離れている結果、SOC範囲371及び372が互いに重複しないものとする。SOCPKMIN=SOCPK[1]且つSOCPKMAX=SOCPK[2]であることに対応して、SOC範囲371の下限をSOCSTと一致させ、SOC範囲372の上限をSOCEDと一致させると良い。 In the current pattern 350 of FIG. 8, the charging current rate when SOC TT belongs to the second SOC range is constant (I CC2 ), but it may be varied. With reference to FIG. 9, this method will be described under the assumption that “R PKTT [1]> R PKTT [2]” holds. Under this assumption, the setting unit 32 includes an SOC range 371 that includes the peak SOC (that is, SOC PK [1]) of the assembled battery 11 TT corresponding to the peak resistance value R PKTT [1] and has a predetermined charging rate width. And an SOC range 372 including the peak SOC (that is, SOC PK [2]) of the battery pack 11 TT corresponding to the peak resistance value R PKTT [2] and having a predetermined charging rate width, the second SOC range (peak Set within the charging rate range). Typically, for example, the center value of the SOC range 371 matches SOC PK [1], and the center value of the SOC range 372 matches SOC PK [2]. Here, it is assumed that SOC ranges 371 and 372 do not overlap each other as a result of SOC PK [1] and SOC PK [2] being sufficiently separated from each other. Corresponding to SOC PKMIN = SOC PK [1] and SOC PKMAX = SOC PK [2], the lower limit of the SOC range 371 should match the SOC ST, and the upper limit of the SOC range 372 should match the SOC ED. .

図9の電流パターン360は、主制御部33が設定可能な、充電期間320中における組電池11TTの電流パターンの例を表している。電流パターン360が設定された場合、充電期間320中においてSOCTTが第1、第3SOC範囲に属しているとき、夫々、電流値ITTが電流値ICC1、ICC3と一致した状態で組電池11TTの定電流充電が行われるように、且つ、充電期間320中においてSOCTTがSOC範囲371、372に属しているとき、夫々、電流値ITTが電流値ICC2A、ICC2Bと一致した状態で組電池11TTの定電流充電が行われるように、且つ、充電期間320中においてSOCTTがSOC範囲371とSOC範囲372との間のSOC範囲373に属しているとき、電流値ITTが電流値“ICC2A+k・(ICC2B−ICC2A)”と一致した状態で組電池11TTの定電流充電が行われるように、主制御部33は電力変換回路16を制御する。ここで、“ICC1>ICC2B>ICC2A”且つ“ICC3>ICC2B>ICC2A”である。係数kの値は、SOCTTがSOC範囲371の上限からSOC範囲372の下限に向かうにつれて、0から1に線形的に増加する。 A current pattern 360 in FIG. 9 represents an example of a current pattern of the assembled battery 11 TT during the charging period 320 that can be set by the main control unit 33. When the current pattern 360 is set, when the SOC TT belongs to the first and third SOC ranges during the charging period 320, the assembled battery is in a state where the current value I TT matches the current values I CC1 and I CC3 , respectively. When the constant current charging of 11 TT is performed and the SOC TT belongs to the SOC ranges 371 and 372 during the charging period 320, the current value I TT coincides with the current values I CC2A and I CC2B , respectively. Current value I TT so that constant current charging of assembled battery 11 TT is performed in the state and SOC TT belongs to SOC range 373 between SOC range 371 and SOC range 372 during charging period 320 The main control unit 33 controls the power conversion circuit 16 so that constant current charging of the assembled battery 11 TT is performed in a state where the current value “I CC2A + k · (I CC2B −I CC2A )” matches. Here, “I CC1 > I CC2B > I CC2A ” and “I CC3 > I CC2B > I CC2A ”. The value of the coefficient k increases linearly from 0 to 1 as the SOC TT moves from the upper limit of the SOC range 371 toward the lower limit of the SOC range 372.

このように、SOC範囲371に対応するピーク抵抗値RPKTT[1]がSOC範囲372に対応するピーク抵抗値RPKTT[2]よりも高い場合、SOCTTがSOC範囲371に属しているときの充電電流レート(ICC2A)を、SOCTTがSOC範囲372に属しているときの充電電流レート(ICC2B)よりも低くする。これにより、より大きなピーク抵抗値に対応する部分においてより充電電流が抑制され、組電池の劣化が効果的に抑制される。 Thus, when the peak resistance value R PKTT [1] corresponding to the SOC range 371 is higher than the peak resistance value R PKTT [2] corresponding to the SOC range 372, the SOC TT belongs to the SOC range 371. The charging current rate (I CC2A ) is set lower than the charging current rate (I CC2B ) when SOC TT belongs to the SOC range 372. Thereby, a charging current is further suppressed in a portion corresponding to a larger peak resistance value, and deterioration of the assembled battery is effectively suppressed.

また、抵抗特性データRCR[1]〜RCR[n]から成る第1データと、抵抗特性データRCRTTとしての第2データの内、少なくとも一方は、主制御部33を用いた組電池11TTの充電を行う前に、予めデータ保持部31に保持されていると良い。 In addition, at least one of the first data including the resistance characteristic data R CR [1] to R CR [n] and the second data as the resistance characteristic data R CRTT is the assembled battery 11 using the main control unit 33. Before charging TT , it is preferable to hold the data in the data holding unit 31 in advance.

また、制御ユニット30は、時系列上において、測定用期間310(図5参照)を、複数個、間欠的に(例えば周期的に)設けるようにしても良い。即ち、抵抗特性測定部40は、抵抗特性データRCR[1]〜RCR[n]を得るための上述の動作(セル11ごとにセル11の内部抵抗値のSOC依存性を測定する動作)、又は、抵抗特性データRCRTTを得るための上述の動作(組電池11TTの内部抵抗値のSOC依存性を測定する動作)を、間欠的に(例えば周期的に)繰り返し行うようにしても良い。この場合、図10に示す如く、制御ユニット30内に、データ保持部31に加えて、抵抗特性測定部40とデータ更新部41を設けておくと良い。データ更新部41は、抵抗特性測定部40の測定によって得られた最新の抵抗特性データRCR[1]〜RCR[n]又は最新の抵抗特性データRCRTTにて、データ保持部31の保持データを更新する(即ち、データ保持部31に保持されるデータRCR[1]〜RCR[n]、RCRTTは、最新のデータRCR[1]〜RCR[n]、RCRTTにて更新される)。設定部32は、この更新を介した最新の保持データRCR[1]〜RCR[n]、RCRTTを用いて、第1〜第3SOC範囲を含む任意のSOC範囲を設定することができる。組電池11TTの充放電の繰り返しの中で、時系列上に充電期間320が繰り返し設けられることになるが、例えば、時系列上において、第1回目の充電期間320の前に第1回目の測定用期間310を設け、その後、第j回目の充電期間320と第(j+1)回目の充電期間320との間に第2回目の測定用期間310を設けることができる(jは自然数)。セル11の内部抵抗値のSOC依存性は、セル11の劣化状態や組電池11TTの使用環境に依存して変化しうる。上述の如く、抵抗特性データを更新すれば、セル11の劣化等に伴うピークSOCの変化にも適応した充電電流レート制御が可能となる。 Further, the control unit 30 may provide a plurality of measurement periods 310 (see FIG. 5) intermittently (for example, periodically) in time series. That is, the resistance characteristic measurement unit 40 performs the above-described operation for obtaining the resistance characteristic data R CR [1] to R CR [n] (operation for measuring the SOC dependency of the internal resistance value of the cell 11 for each cell 11). Alternatively, the above-described operation for obtaining the resistance characteristic data R CRTT (operation for measuring the SOC dependency of the internal resistance value of the assembled battery 11 TT ) may be repeated intermittently (for example, periodically). good. In this case, as shown in FIG. 10, a resistance characteristic measuring unit 40 and a data updating unit 41 may be provided in the control unit 30 in addition to the data holding unit 31. The data updating unit 41 holds the data holding unit 31 with the latest resistance characteristic data R CR [1] to R CR [n] obtained by the measurement of the resistance characteristic measuring unit 40 or the latest resistance characteristic data R CRTT . The data R CR [1] to R CR [n] and R CRTT held in the data holding unit 31 are updated to the latest data R CR [1] to R CR [n] and R CRTT . Updated.) The setting unit 32 can set an arbitrary SOC range including the first to third SOC ranges using the latest retained data R CR [1] to R CR [n] and R CRTT through this update. . While charging and discharging of the assembled battery 11 TT are repeated, the charging period 320 is repeatedly provided on the time series. For example, on the time series, the first time before the first charging period 320 is the first time. The measurement period 310 can be provided, and then the second measurement period 310 can be provided between the jth charging period 320 and the (j + 1) th charging period 320 (j is a natural number). The SOC dependency of the internal resistance value of the cell 11 can change depending on the deterioration state of the cell 11 and the use environment of the assembled battery 11TT . As described above, when the resistance characteristic data is updated, the charge current rate control adapted to the change in the peak SOC accompanying the deterioration of the cell 11 or the like can be performed.

<<第2実施形態>>
本発明の第2実施形態を説明する。第2実施形態及び後述の第3実施形態は第1実施形態を基礎とする実施形態であり、第2及び第3実施形態において特に述べない事項に関しては、特に記述無き限り且つ矛盾の無い限り、第1実施形態の記載が第2及び第3実施形態にも適用される。
<< Second Embodiment >>
A second embodiment of the present invention will be described. The second embodiment and the third embodiment which will be described later are embodiments based on the first embodiment. Regarding matters not particularly described in the second and third embodiments, unless otherwise specified and there is no contradiction, The description of the first embodiment also applies to the second and third embodiments.

第2実施形態は、上述の第1及び第2データ保持方法の内、第1データ保持方法が採用されていることを前提とする。第1実施形態では、組電池11TTのSOC(即ちSOCTT)が第2SOC範囲(ピーク充電率範囲)に属するタイミングにおいて、充電電流レートを、他のタイミングよりも低くしているが、第2実施形態では、何れかのセル11のSOCが第2SOC範囲(ピーク充電率範囲)に属するタイミングにおいて、充電電流レートを、他のタイミングよりも低くする。 The second embodiment is based on the premise that the first data holding method is adopted among the first and second data holding methods described above. In the first embodiment, at the timing when the SOC of the assembled battery 11 TT (that is, SOC TT ) belongs to the second SOC range (peak charge rate range), the charging current rate is set lower than the other timings. In the embodiment, at the timing when the SOC of any cell 11 belongs to the second SOC range (peak charge rate range), the charging current rate is set lower than other timings.

上述したように、SOCPKMIN=SOCPK[1]且つSOCPKMAX=SOCPK[2]である場合、SOCPK[1]及びSOCPK[2]に基づきSOCST及びSOCEDが設定される。主制御部33は、図11に示す如く期間321〜324から成る充電期間320において、SOC算出部34にて算出されたSOC[1]及びSOC[2]を個別に監視し、期間321、322、323においては電流値ITTが夫々電流値ICC1、ICC2、ICC3と一致した状態で組電池11TTの定電流充電が行われるように、且つ、期間324においては組電池11TTの定電圧充電が行われるように電力変換回路16を制御する。 As described above, when SOC PKMIN = SOC PK [1] and SOC PKMAX = SOC PK [2], SOC ST and SOC ED are set based on SOC PK [1] and SOC PK [2]. The main control unit 33 individually monitors the SOC [1] and SOC [2] calculated by the SOC calculation unit 34 in the charging period 320 including the periods 321 to 324 as shown in FIG. 323 so that the constant current charging of the assembled battery 11 TT is performed in a state where the current value I TT coincides with the current values I CC1 , I CC2 , and I CC3 , and in the period 324, the assembled battery 11 TT The power conversion circuit 16 is controlled so that constant voltage charging is performed.

時間が進行するにつれて、期間321、322、323、324が、この順番で訪れる。期間321は、SOC[1]、SOC[2]及びSOCTTが第2SOC範囲の下限SOCSTに達していない期間である。主制御部33は、SOCPKMIN(=SOCPK[1])に対応するセル11のSOC(従ってSOC[1])に基づき期間322の開始時点を定め、SOCPKMAX(=SOCPK[2])に対応するセル11のSOC(従ってSOC[2])に基づき期間322の終了時点を定める。具体的には、期間322は、SOC[1]がSOCSTに達した時点から、その後にSOC[2]が上昇してSOC[2]が第2SOC範囲の上限SOCEDに達する時点までの期間である。期間323は、SOC[2]がSOCEDに達した後、組電池11TTの端子電圧VTTがSOCCVに対応する所定電圧に達するまでの期間である。ここでは、SOC[2]がSOCEDに達する前にSOC[1]がSOCSTに達する程度に、各時刻におけるSOC[1]及びSOC[2]間の差は大きくないものとする(単純には例えば、常にSOC[1]=SOC[2])。 As time progresses, periods 321, 322, 323, 324 come in this order. Period 321 is a period in which SOC [1], SOC [2], and SOC TT do not reach the lower limit SOC ST of the second SOC range. The main control unit 33 determines the start point of the period 322 based on the SOC of the cell 11 corresponding to SOC PKMIN (= SOC PK [1]) (and therefore SOC [1]), and SOC PKMAX (= SOC PK [2]). The end point of the period 322 is determined based on the SOC of the cell 11 corresponding to (accordingly, SOC [2]). Specifically, the period 322 is a period from the time when SOC [1] reaches SOC ST until the time when SOC [2] increases and SOC [2] reaches the upper limit SOC ED of the second SOC range. It is. The period 323 is a period until the terminal voltage V TT of the assembled battery 11 TT reaches a predetermined voltage corresponding to the SOC CV after the SOC [2] reaches the SOC ED . Here, it is assumed that the difference between SOC [1] and SOC [2] at each time is not so large that SOC [1] reaches SOC ST before SOC [2] reaches SOC ED (simply For example, SOC [1] = SOC [2]).

第2実施形態によっても第1実施形態と同様の効果が得られる。また、SOCST及びSOCEDの元になったSOCPK[1]及びSOCPK[2]に対応するセル11[1]及び11[2]のSOCに基づき、充電電流レートを上げ下げするタイミング(期間321及び322間の境界タイミングと期間322及び323間の境界タイミング)を決定するため、セル単位で充電電流抑制が適正化される。なぜなら、SOCSTの元になったSOCPK[1]に対応するセル11[1]の内部抵抗値が極大値をとる部分において充電電流を抑制することがセル11[1]の劣化抑制には適していると共に、SOCEDの元になったSOCPK[2]に対応するセル11[2]の内部抵抗値が極大値をとる部分において充電電流を抑制することがセル11[2]の劣化抑制には適しているからであり、また、SOCSTの元になったSOCPK[1]に対応するセル11[1]のSOCがSOCSTに達するまでの期間321及びSOCEDの元になったSOCPK[2]に対応するセル11[2]のSOCがSOCEDに達した後の期間323においては、各セル11のSOCが各々のピークSOC付近にないため、充電電流の抑制の必要性は低いからである。 According to the second embodiment, the same effect as that of the first embodiment can be obtained. Further, the timing (period) for increasing or decreasing the charging current rate based on the SOCs of the cells 11 [1] and 11 [2] corresponding to the SOC PK [1] and SOC PK [2] that are the sources of the SOC ST and SOC ED. In order to determine the boundary timing between 321 and 322 and the boundary timing between periods 322 and 323), charging current suppression is optimized in cell units. This is because suppressing the charging current in the portion where the internal resistance value of the cell 11 [1] corresponding to the SOC PK [1] that is the basis of the SOC ST has the maximum value is to suppress the deterioration of the cell 11 [1]. It is suitable to suppress the charging current in the portion where the internal resistance value of the cell 11 [2] corresponding to the SOC PK [2] that is the basis of the SOC ED takes the maximum value. It is because is suitable for suppression, also is the source of the period 321 and SOC ED until the SOC of the cell 11 [1] corresponding to the SOC PK [1] which was the source of the SOC ST reaches SOC ST In the period 323 after the SOC of the cell 11 [2] corresponding to the SOC PK [2] reaches the SOC ED , the SOC of each cell 11 is not in the vicinity of each peak SOC, so it is necessary to suppress the charging current. This is because the nature is low.

また、第2実施形態で上述した想定の下、“RPKTT[1]>RPKTT[2]”が成立する場合(図6等参照;即ち、SOCTTがSOCPK[1]と一致するときの組電池11TTの内部抵抗値RTTが、SOCTTがSOCPK[2]と一致するときのRTTよりも大きい場合)、又は、“RPK[1]>RPK[2]”が成立する場合(図6等参照;即ち、SOC[1]がSOCPK[1]と一致するときのセル11[1]の内部抵抗値R[1]がSOC[2]がSOCPK[2]と一致するときのセル11[2]の内部抵抗値R[2]よりも大きい場合)、設定部32は、図9に示す如く、ピーク抵抗値RPKTT[1]又はRPK[1]に対応するセル11[1]のピークSOC(即ちSOCPK[1])を含み且つ所定の充電率幅を持ったSOC範囲371、及び、ピーク抵抗値RPKTT[2]又はRPK[2]に対応するセル11[2]のピークSOC(即ちSOCPK[2])を含み且つ所定の充電率幅を持ったSOC範囲372を第2SOC範囲(ピーク充電率範囲)内に設定しても良い。SOC範囲371及び372は、第1実施形態で述べたものと同様である(図9参照)。 In addition, when “R PKTT [1]> R PKTT [2]” is satisfied under the assumption described above in the second embodiment (see FIG. 6 and the like; that is, when SOC TT matches SOC PK [1]) the internal resistance value R TT of the assembled battery 11 TT is greater than R TT when the SOC TT matches the SOC PK [2]), or, "R PK [1]> R PK [2]" is When established (see FIG. 6 etc.), that is, when SOC [1] coincides with SOC PK [1], the internal resistance value R [1] of the cell 11 [1] is SOC [2] is SOC PK [2]. , The setting unit 32 sets the peak resistance value R PKTT [1] or R PK [1] to the peak resistance value R PKTT [1], as shown in FIG. corresponding cells 11 [1] of the peak SOC (i.e. SOC PK [1]) SOC range 371 and having a predetermined charging rate width comprises, Beauty, cell 11 [2] SOC range 372 and having a predetermined charging rate width comprises peaks SOC (i.e. SOC PK [2]) that corresponds to the peak resistance value R PKTT [2] or R PK [2] It may be set within the second SOC range (peak charge rate range). The SOC ranges 371 and 372 are the same as those described in the first embodiment (see FIG. 9).

そして、“RPKTT[1]>RPKTT[2]”又は“RPK[1]>RPK[2]”が成立する場合、主制御部33は、図11の期間322において、SOC算出部34にて算出されたSOC[1]がSOC範囲371に属しているときの充電電流レートを、SOC算出部34にて算出されたSOC[2]がSOC範囲372に属しているときの充電電流レートよりも低くしても良い。具体的には例えば、期間322中においてSOC[1]がSOC範囲371に属しているとき、電流値ITTが電流値ICC2Aと一致した状態で組電池11TTの定電流充電が行われるように、且つ、期間322中においてSOC[2]がSOC範囲372に属しているとき、電流値ITTが電流値ICC2Bと一致した状態で組電池11TTの定電流充電が行われるように、且つ、期間322中の他のタイミングにおいては、電流値ITTが電流値“ICC2A+k・(ICC2B−ICC2A)”と一致した状態で組電池11TTの定電流充電が行われるように、主制御部33は電力変換回路16を制御しても良い(0<k<1;図9参照)。但し、ここでは、SOC[1]がSOC範囲371に属するタイミングの後にSOC[2]がSOC範囲372に属するタイミングが訪れ、且つ、前者のタイミングと後者のタイミングが重複しないことを想定している。 When “R PKTT [1]> R PKTT [2]” or “R PK [1]> R PK [2]” is satisfied, the main control unit 33 determines the SOC calculation unit in the period 322 of FIG. The charging current rate when the SOC [1] calculated in 34 belongs to the SOC range 371, and the charging current when the SOC [2] calculated in the SOC calculation unit 34 belongs to the SOC range 372 It may be lower than the rate. Specifically, for example, when SOC [1] belongs to the SOC range 371 during the period 322, the battery pack 11 TT is charged with constant current while the current value I TT matches the current value I CC2A. In addition, when SOC [2] belongs to the SOC range 372 during the period 322, the battery pack 11 TT is charged with constant current while the current value I TT matches the current value I CC2B . In addition, at other timings during the period 322, the battery pack 11 TT is charged with constant current while the current value I TT matches the current value “I CC2A + k · (I CC2B −I CC2A )”. The main control unit 33 may control the power conversion circuit 16 (0 <k <1; see FIG. 9). However, here, it is assumed that the timing at which SOC [2] belongs to the SOC range 372 comes after the timing at which SOC [1] belongs to the SOC range 371, and the former timing and the latter timing do not overlap. .

このように、セル11[1]及びSOC範囲371に対応するピーク抵抗値(RPKTT[1]、RPK[1])がセル11[2]及びSOC範囲372に対応するピーク抵抗値(RPKTT[2]、RPK[2])よりも高い場合、図9の方法と類似して、セル11[1]のSOCがSOC範囲371に属しているときの充電電流レート(ICC2A)を、セル11[2]のSOCがSOC範囲372に属しているときの充電電流レート(ICC2B)よりも低くする。これにより、より大きなピーク抵抗値に対応する部分においてより充電電流が抑制され、組電池の劣化が効果的に抑制される。 Thus, the peak resistance values (R PKTT [1], R PK [1]) corresponding to the cell 11 [1] and the SOC range 371 are the peak resistance values (R RKK [1], R PK [1]) corresponding to the cell 11 [2] and the SOC range 372. PKTT [2], R PK [2]), the charge current rate (I CC2A ) when the SOC of the cell 11 [1] belongs to the SOC range 371 is similar to the method of FIG. The charging current rate (I CC2B ) when the SOC of the cell 11 [2] belongs to the SOC range 372 is set to be lower. Thereby, a charging current is further suppressed in a portion corresponding to a larger peak resistance value, and deterioration of the assembled battery is effectively suppressed.

<<第3実施形態>>
本発明の第3実施形態を説明する。第3実施形態に係る蓄電システム1には、図12の制御ユニット30Aが設けられる。制御ユニット30Aは、符号31、34、36〜38によって参照される各部位を備える。制御ユニット30Aに、第1又は第2実施形態の制御ユニット30の構成及び機能が内包されていても良い。
<< Third Embodiment >>
A third embodiment of the present invention will be described. The power storage system 1 according to the third embodiment is provided with a control unit 30A shown in FIG. The control unit 30 </ b> A includes each part referred to by reference numerals 31, 34, 36 to 38. The configuration and function of the control unit 30 of the first or second embodiment may be included in the control unit 30A.

データ保持部31は、主制御部38を用いた組電池11TTの充電を行う前に、抵抗特性データRCR[1]〜RCR[n]から成る第1データと抵抗特性データRCRTTとしての第2データの内の少なくとも一方を、予め保持している。図10の抵抗特性測定部40及びデータ更新部41を制御ユニット30Aに設けて、第1実施形態に述べた方法に従い、データ保持部31の保持データを更新するようにしても良い。 Prior to charging the assembled battery 11 TT using the main control unit 38, the data holding unit 31 uses first resistance data R CR [1] to R CR [n] and resistance characteristic data R CRTT. At least one of the second data is held in advance. The resistance characteristic measuring unit 40 and the data updating unit 41 of FIG. 10 may be provided in the control unit 30A, and the data held in the data holding unit 31 may be updated according to the method described in the first embodiment.

基準抵抗値設定部36は、所定の基準抵抗値RREFを設定する。この際、設定部36は、データ保持部31の保持データに基づき基準抵抗値RREFを設定することができる。データ保持部31の保持データに基づき基準抵抗値RREFを設定する方法として第1又は第2設定方法を採用できる。
第1設定方法において、設定部36は、データ保持部31から取得した抵抗特性データRCRTTに基づき、ピーク抵抗値RPKTT[1]及びRPKTT[2]を含む組電池11TTのピーク抵抗値を検出し、検出した複数のピーク抵抗値に基づく基準抵抗値RREF1を基準抵抗値RREFとして設定する。例えば、図13のように、検出した複数のピーク抵抗値の内の最小値から所定の正の値を差し引いた値を基準抵抗値RREF1に設定することができる。
第2設定方法において、設定部36は、データ保持部31から取得した抵抗特性データRCR[1]〜RCR[n]に基づき、ピーク抵抗値RPK[1]及びRPK[2]を含む各セル11のピーク抵抗値を検出し、検出した複数のピーク抵抗値に基づく基準抵抗値RREF2を基準抵抗値RREFとして設定する。例えば、図14のように、検出した複数のピーク抵抗値の内の最小値から所定の正の値を差し引いた値を基準抵抗値RREF2に設定することができる。
The reference resistance value setting unit 36 sets a predetermined reference resistance value R REF . At this time, the setting unit 36 can set the reference resistance value R REF based on the data held in the data holding unit 31. As a method for setting the reference resistance value R REF based on the data held in the data holding unit 31, the first or second setting method can be adopted.
In the first setting method, the setting unit 36 is based on the resistance characteristic data R CRTT acquired from the data holding unit 31, and the peak resistance value of the assembled battery 11 TT including the peak resistance values R PKTT [1] and R PKTT [2]. And a reference resistance value R REF1 based on the detected plurality of peak resistance values is set as the reference resistance value R REF . For example, as shown in FIG. 13, a value obtained by subtracting a predetermined positive value from the minimum value among a plurality of detected peak resistance values can be set as the reference resistance value R REF1 .
In the second setting method, the setting unit 36 calculates the peak resistance values R PK [1] and R PK [2] based on the resistance characteristic data R CR [1] to R CR [n] acquired from the data holding unit 31. The peak resistance value of each cell 11 that is included is detected, and the reference resistance value R REF2 based on the detected plurality of peak resistance values is set as the reference resistance value R REF . For example, as shown in FIG. 14, a value obtained by subtracting a predetermined positive value from the minimum value among a plurality of detected peak resistance values can be set as the reference resistance value R REF2 .

内部抵抗値測定部37は、充電期間320中に、各セル11の内部抵抗値及び組電池11TTの内部抵抗値を測定するリアルタイム測定処理を実行する。測定部37は、リアルタイム測定処理において、セル11[1]〜11[n]の内部抵抗値のみ、又は、組電池11TTの内部抵抗値のみを測定しても良い。測定部37は、充電期間320中の定電流充電が行われている期間中において、リアルタイム測定処理を間欠的に(例えば周期的に)繰り返し実行する。定電流充電の実行中にセルの内部抵抗値を測定する方法として公知の方法を利用可能である。 The internal resistance value measurement unit 37 performs real-time measurement processing for measuring the internal resistance value of each cell 11 and the internal resistance value of the assembled battery 11 TT during the charging period 320. Measurement unit 37, the real-time measurement processing, the internal resistance of the cell 11 [1] ~11 [n] only, or may be measured only the internal resistance of the battery pack 11 TT. The measurement unit 37 repeatedly executes the real-time measurement process intermittently (for example, periodically) during the period in which the constant current charging is performed in the charging period 320. A known method can be used as a method of measuring the internal resistance value of the cell during execution of constant current charging.

例えば、リアルタイム測定処理では、定電流充電での電流値ITTを一時的に設定電流パターン及び目標電流レートに従った電流値ITT1から電流値ITT2へ変動させ(減少又は増加させ)、この変動前後におけるセル11[i]の端子電圧の変動量ΔV[i]を電圧センサ13[i]の出力信号から取得する工程PR1と、工程PR1にて求めた変動量ΔV[i]をセル電流値I[i]の変動量ΔI[i](即ち、電流値ITT1及びITT2間の差)にて除することで、セル11[i]の内部抵抗値R[i]を算出する工程PR2と(即ち、R[i]=ΔV[i]/ΔI[i])、を実行する。工程PR1及びPR2を各セル11に対して実行することで、内部抵抗値R[1]〜R[n]を求めることができる。 For example, in the real-time measurement process, the current value I TT in constant current charging is temporarily changed (decreased or increased) from the current value I TT1 to the current value I TT2 according to the set current pattern and the target current rate. A step PR1 for obtaining the fluctuation amount ΔV [i] of the terminal voltage of the cell 11 [i] before and after the fluctuation from the output signal of the voltage sensor 13 [i], and the fluctuation amount ΔV [i] obtained in the step PR1 are represented by the cell current. A step of calculating the internal resistance value R [i] of the cell 11 [i] by dividing by the variation amount ΔI [i] of the value I [i] (that is, the difference between the current values I TT1 and I TT2 ). And PR2 (ie, R [i] = ΔV [i] / ΔI [i]). By executing steps PR1 and PR2 for each cell 11, internal resistance values R [1] to R [n] can be obtained.

測定部37は、工程PR2にて求められた内部抵抗値R[1]〜R[n]の合計値を組電池11TTの内部抵抗値RTTとして求めることができる。但し、内部抵抗値RTTを直接求めるようにしても良い。この場合、先に述べた組電池電圧センサ(不図示)を組電池11TTに接続しておく。そして、リアルタイム測定処理において、測定部37は、定電流充電での電流値ITTを電流値ITT1から電流値ITT2へ変動させ(減少又は増加させ)、この変動前後における組電池11TTの端子電圧の変動量ΔVTTを組電池電圧センサの出力信号から取得し、変動量ΔVTTを電流値ITTの変動量ΔITT(即ち、電流値ITT1及びITT2間の差)にて除することで、組電池11TTの内部抵抗値RTTを求めても良い(即ち、RTT=ΔVTT/ΔITT)。 Measurement unit 37 can obtain the total value of the internal resistance value obtained at step PR2 R [1] ~R [n ] as the internal resistance value R TT of the assembled battery 11 TT. However, the internal resistance value RTT may be obtained directly. In this case, a connecting battery pack voltage sensor described earlier (not shown) to the assembled battery 11 TT. In the real-time measurement process, the measurement unit 37 changes (decreases or increases) the current value I TT in constant current charging from the current value I TT1 to the current value I TT2, and the assembled battery 11 TT before and after the change. get the variation amount [Delta] V TT of the terminal voltage from the output signal of the battery pack voltage sensor, dividing the variation amount [Delta] V TT at a current value I TT variation amount [Delta] I TT (i.e., the difference between the current value I TT1 and I TT2) by may be calculated internal resistance value R TT of the assembled battery 11 TT (i.e., R TT = ΔV TT / ΔI TT).

測定部37によって求められた内部抵抗値を特に測定抵抗値と呼ぶ。制御ユニット30A内のSOC算出部34の機能は、上述したものと同様である。主制御部38は、設定部36にて設定された基準抵抗値RREF、測定部37からの測定抵抗値及び算出部34による算出SOC(SOC[1]〜SOC[n]、SOCTT)に基づき、組電池11TTの充電を制御する。主制御部38は、電力変換回路16を制御することで定電流充電における電流値ITTを任意に制御することができる。主制御部38は、第1又は第2実施形態の主制御部33と同等の機能を有していても良いが、以下では、主制御部38に特有の機能を説明する。 The internal resistance value obtained by the measurement unit 37 is particularly called a measurement resistance value. The function of the SOC calculation unit 34 in the control unit 30A is the same as that described above. The main control unit 38 sets the reference resistance value R REF set by the setting unit 36, the measured resistance value from the measurement unit 37, and the calculated SOC (SOC [1] to SOC [n], SOC TT ) by the calculation unit 34. Based on this, the charging of the assembled battery 11 TT is controlled. The main control unit 38 can arbitrarily control the current value I TT in constant current charging by controlling the power conversion circuit 16. The main control unit 38 may have a function equivalent to that of the main control unit 33 of the first or second embodiment. Hereinafter, functions unique to the main control unit 38 will be described.

第1設定方法の採用時には、組電池11TTのピーク抵抗値を元に設定された基準抵抗値REF1が基準抵抗値RREFになっている。故に、第1設定方法の採用時において、主制御部38は、測定抵抗値RTTと基準抵抗値RREF1を比較し、測定抵抗値RTTが基準抵抗値RREF1よりも大きいタイミングにおいて充電電流レートを下げる。但し、低SOC範囲で充電電流レートを下げる必要性は少ないため、主制御部38は充電電流レートを下げるSOC範囲に限定を加える。 When adopting the first setting method, the reference resistance value REF1 that is set based on the peak resistance value of the assembled battery 11 TT is set to the reference resistance R REF. Thus, at the time of the adoption of the first setting method, the controller 38, the measured resistance value is compared with R TT and the reference resistance value R REF1, the charging current at larger time than the measured resistance value R TT is the reference resistance value R REF1 Reduce the rate. However, since there is little need to lower the charging current rate in the low SOC range, the main control unit 38 limits the SOC range in which the charging current rate is lowered.

第2設定方法の採用時には、各セル11のピーク抵抗値を元に設定された基準抵抗値REF2が基準抵抗値RREFになっている。故に、第2設定方法の採用時において、主制御部38は、測定抵抗値R[1]〜R[n]と基準抵抗値RREF2を比較し、測定抵抗値R[1]〜R[n]の何れかが基準抵抗値RREF2よりも大きいタイミングにおいて充電電流レートを下げる。但し、低SOC範囲で充電電流レートを下げる必要性は少ないため、主制御部38は充電電流レートを下げるSOC範囲に限定を加える。 When adopting the second setting method, the reference resistance value REF2 is set to a reference resistance value R REF, which is set based on the peak resistance value of each cell 11. Therefore, when adopting the second setting method, the main control unit 38 compares the measured resistance values R [1] to R [n] with the reference resistance value R REF2 to measure the measured resistance values R [1] to R [n]. The charging current rate is lowered at a timing when any one of them is larger than the reference resistance value R REF2 . However, since there is little need to lower the charging current rate in the low SOC range, the main control unit 38 limits the SOC range in which the charging current rate is lowered.

まず、第1設定方法を採用した場合における、充電期間320中の具体的な動作の流れを説明する。充電期間320の開始時点では組電池11TTのSOCは十分に低いものとする(0%であると考えても良い)。主制御部38は、充電期間320の開始時点における組電池11TT及び各セル11のSOCが第1SOC範囲に属しているとみなすことができ、充電期間320の開始時点及び少なくとも開始直後では、“ITT=ICC1”での定電流充電(図8参照)を組電池11TTに行う。 First, a specific flow of operation during the charging period 320 when the first setting method is adopted will be described. It is assumed that the SOC of the assembled battery 11 TT is sufficiently low at the start of the charging period 320 (it may be considered to be 0%). The main control unit 38 can consider that the assembled battery 11 TT and the SOC of each cell 11 at the start of the charging period 320 belong to the first SOC range, and at least immediately after the start of the charging period 320, “ The battery pack 11 TT is subjected to constant current charging (see FIG. 8) with I TT = I CC1 ″.

その後、主制御部38は、図13に示す如く、SOC算出部34からのSOCTTが所定の閾値SOCTH(例えば30%)に達するまで、測定抵抗値RTTに関わらず“ITT=ICC1”での定電流充電を維持し、SOCTTが閾値SOCTH以上になった後において、基準抵抗値RREF1を順次得られる測定抵抗値RTTと比較する(0<SOCTH<1)。主制御部38は、比較の開始後、基準抵抗値RREF1より大きな測定抵抗値RTTが得られた時点で、SOCTTの属するSOC範囲が第1SOC範囲から第2SOC範囲に移行したと判断して、定電流充電における電流値ITTをICC1からICC2へと下げる。尚、抵抗の特性によっては、図13の例のように、比較の開始直後において“RREF1<RTT”が成立することもある。 Thereafter, as shown in FIG. 13, the main control unit 38 determines that “I TT = I regardless of the measured resistance value R TT until the SOC TT from the SOC calculation unit 34 reaches a predetermined threshold SOC TH (for example, 30%). After the constant current charging at CC1 ″ is maintained and the SOC TT becomes equal to or higher than the threshold SOC TH , the reference resistance value R REF1 is sequentially compared with the obtained measured resistance value R TT (0 <SOC TH <1). The main control unit 38 determines that the SOC range to which the SOC TT belongs has shifted from the first SOC range to the second SOC range when a measured resistance value R TT greater than the reference resistance value R REF1 is obtained after the start of the comparison. Thus, the current value I TT in constant current charging is lowered from I CC1 to I CC2 . Depending on the resistance characteristics, “R REF1 <R TT ” may be established immediately after the start of the comparison, as in the example of FIG.

主制御部38は、電流値ITTをICC1からICC2へと下げた後、基準抵抗値RREF1以下の測定抵抗値RTTが得られた時点で、SOCTTの属するSOC範囲が第2SOC範囲から第3SOC範囲に移行したと判断して、定電流充電における電流値ITTをICC2からICC3へと上げる。その後、組電池11TTの端子電圧VTTがSOCCVに対応する所定電圧に達すると、組電池11TTの充電が定電流充電から定電圧充電に切り替えられる。 The main control unit 38 reduces the current value I TT from I CC1 to I CC2 , and then when the measured resistance value R TT equal to or lower than the reference resistance value R REF1 is obtained, the SOC range to which the SOC TT belongs is the second SOC. It is determined that the range has shifted to the third SOC range, and the current value I TT in constant current charging is increased from I CC2 to I CC3 . Thereafter, when the assembled battery 11 TT terminal voltage V TT of reaches a predetermined voltage corresponding to SOC CV, charging of the assembled battery 11 TT is switched to the constant voltage charging from the constant current charging.

次に、第2設定方法を採用した場合における、充電期間320中の具体的な動作の流れを説明する。充電期間320の開始時点では各セル11のSOCは十分に低いものとする(0%であると考えても良い)。主制御部38は、充電期間320の開始時点における組電池11TT及び各セル11のSOCが第1SOC範囲に属しているとみなすことができ、充電期間320の開始時点及び少なくとも開始直後では、“ITT=ICC1”での定電流充電(図8参照)を組電池11TTに行う。 Next, a specific flow of operation during the charging period 320 when the second setting method is adopted will be described. It is assumed that the SOC of each cell 11 is sufficiently low at the start of the charging period 320 (may be considered to be 0%). The main control unit 38 can consider that the assembled battery 11 TT and the SOC of each cell 11 at the start of the charging period 320 belong to the first SOC range, and at least immediately after the start of the charging period 320, “ The battery pack 11 TT is subjected to constant current charging (see FIG. 8) with I TT = I CC1 ″.

その後、主制御部38は、図14に示す如く、SOC算出部34からのSOC[1]〜SOC[n]の何れかが閾値SOCTHに達するまで(或いは、SOCTTが閾値SOCTHに達するまで)、測定抵抗値R[1]〜R[n]に関わらず“ITT=ICC1”での定電流充電を維持し、SOC[1]〜SOC[n]の何れか(又はSOCTT)が閾値SOCTH以上になった後において、基準抵抗値RREF2を順次得られる測定抵抗値R[1]〜R[n]と比較する。比較の開始後、測定抵抗値R[1]〜R[n]の内の何れかが基準抵抗値RREF2より大きいことが確認された時点で、主制御部38は、SOC[1]〜SOC[n]の何れかの属するSOC範囲が第1SOC範囲から第2SOC範囲に移行したと判断して、定電流充電における電流値ITTをICC1からICC2へと下げる。尚、抵抗の特性によっては、図14の例のように、比較の開始直後において“RREF2<R[i]”が成立することもある。 Thereafter, as shown in FIG. 14, main controller 38 until SOC [1] to SOC [n] from SOC calculator 34 reaches threshold SOC TH (or SOC TT reaches threshold SOC TH) . ), Constant current charging at “I TT = I CC1 ” is maintained regardless of the measured resistance values R [1] to R [n], and any one of SOC [1] to SOC [n] (or SOC TT ) Becomes equal to or higher than the threshold SOC TH , the reference resistance value R REF2 is sequentially compared with the obtained measurement resistance values R [1] to R [n]. After starting the comparison, when it is confirmed that any one of the measured resistance values R [1] to R [n] is larger than the reference resistance value R REF2 , the main control unit 38 sets the SOC [1] to SOC. It is determined that the SOC range to which any of [n] belongs has shifted from the first SOC range to the second SOC range, and the current value I TT in constant current charging is lowered from I CC1 to I CC2 . Depending on the resistance characteristics, “R REF2 <R [i]” may be satisfied immediately after the start of the comparison, as in the example of FIG.

主制御部38は、電流値ITTをICC1からICC2へと下げた後、測定抵抗値R[1]〜R[n]を基準抵抗値RREF2と比較し、測定抵抗値R[1]〜R[n]の全てが基準抵抗値RREF2以下になったことが確認された時点で、SOC[1]〜SOC[n]の属するSOC範囲が第2SOC範囲から第3SOC範囲に移行したと判断して、定電流充電における電流値ITTをICC2からICC3へと上げる。その後、組電池11TTの端子電圧VTTがSOCCVに対応する所定電圧に達すると、組電池11TTの充電が定電流充電から定電圧充電に切り替えられる。 The main control unit 38 decreases the current value I TT from I CC1 to I CC2 , compares the measured resistance values R [1] to R [n] with the reference resistance value R REF2, and measures the measured resistance value R [1 ] To R [n] are confirmed to be equal to or lower than the reference resistance value R REF2 , the SOC range to which the SOC [1] to SOC [n] belong has shifted from the second SOC range to the third SOC range. Therefore , the current value I TT in constant current charging is increased from I CC2 to I CC3 . Thereafter, when the assembled battery 11 TT terminal voltage V TT of reaches a predetermined voltage corresponding to SOC CV, charging of the assembled battery 11 TT is switched to the constant voltage charging from the constant current charging.

上述の如く、第3実施形態では、SOCTTが閾値SOCTH以上であって且つ測定抵抗値RTTが基準抵抗値RREF1よりも大きいタイミングにおいて、組電池11TTの充電電流レートが他のタイミングよりも低くされる、或いは、SOC[1]〜SOC[n]の何れかが閾値SOCTH以上であって且つ測定抵抗値R[1]〜R[n]の何れかが基準抵抗値RREF2よりも大きいタイミングにおいて、組電池11TTの充電電流レートが他のタイミングよりも低くされる。これにより、充電電流を高めるとセル11の劣化の促進が予想される高抵抗領域において充電電流が抑制され、組電池全体の劣化が抑制される。内部抵抗値が高くとも劣化が進みにくい低SOC範囲では充電電流が比較的大きくされるので、充電必要時間が不必要に伸びることもない(即ち、効率的な充電が可能である)。また、リアルタイムに測定された内部抵抗値を用いて充電電流レートを制御できるため、組電池11TT又は各セル11の劣化状態や使用環境(温度等)に適応した最適な充電制御が可能となる。故に、第3実施形態に係る蓄電システム1は、電気自動車、ハイブリッド電気自動車にも好適である(勿論、第1又は第2実施形態に係る蓄電システム1も、電気自動車、ハイブリッド電気自動車に適用可能である)。 As described above, in the third embodiment, when the SOC TT is equal to or greater than the threshold SOC TH and the measured resistance value R TT is larger than the reference resistance value R REF1 , the charging current rate of the assembled battery 11 TT is set to another timing. Or any of SOC [1] to SOC [n] is greater than or equal to the threshold SOC TH and any of the measured resistance values R [1] to R [n] is greater than the reference resistance value R REF2 . At a larger timing, the charging current rate of the assembled battery 11TT is made lower than the other timings. Thereby, when the charging current is increased, the charging current is suppressed in the high resistance region where the deterioration of the cell 11 is expected to be accelerated, and the deterioration of the entire assembled battery is suppressed. Since the charging current is relatively large in the low SOC range where deterioration does not easily proceed even if the internal resistance value is high, the required charging time does not unnecessarily increase (that is, efficient charging is possible). In addition, since the charging current rate can be controlled using the internal resistance value measured in real time, optimal charging control adapted to the deterioration state and use environment (temperature, etc.) of the assembled battery 11TT or each cell 11 is possible. . Therefore, the power storage system 1 according to the third embodiment is also suitable for electric vehicles and hybrid electric vehicles (of course, the power storage system 1 according to the first or second embodiment can also be applied to electric vehicles and hybrid electric vehicles. Is).

また、充電電流レートの増減の境界を定める基準電流値を組電池11TT又は各セル11の抵抗特性データに基づいて設定することで、劣化の抑制と充電の効率化をバランス良く実現することができる。抵抗特性データを参照すれば、組電池11TT又は各セル11の内部抵抗値が極大値をとる部分において充電電流レートが下げられるように、基準抵抗値を定めることができるからである。 In addition, by setting a reference current value that defines the boundary of increase / decrease of the charging current rate based on the assembled battery 11TT or the resistance characteristic data of each cell 11, it is possible to achieve a good balance between suppression of deterioration and efficient charging. it can. This is because, by referring to the resistance characteristic data, the reference resistance value can be determined so that the charging current rate can be lowered at the portion where the assembled battery 11 TT or the internal resistance value of each cell 11 takes the maximum value.

<<変形等>>
本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態に適用可能な注釈事項として、以下に、注釈1〜注釈4を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
<< Deformation, etc. >>
The embodiment of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims. The above embodiment is merely an example of the embodiment of the present invention, and the meaning of the term of the present invention or each constituent element is not limited to that described in the above embodiment. The specific numerical values shown in the above description are merely examples, and as a matter of course, they can be changed to various numerical values. As annotations applicable to the above-described embodiment, notes 1 to 4 are described below. The contents described in each comment can be arbitrarily combined as long as there is no contradiction.

[注釈1]
上述の実施形態では、説明の簡略化上、各セル11に関しピークSOCが1つだけ存在することを想定したが、各セル11に関しピークSOCが複数存在する場合においても、上述の主旨に沿って充電における電流レートを制御すれば良い。例えば、セル11[i]に関してピークSOCが複数存在する場合には、セル11[i]以外の各セル11のピークSOCとセル11[i]についての複数のピークSOCとを含んだ第2SOC範囲を設定すれば良い。
[Note 1]
In the above-described embodiment, it is assumed that only one peak SOC exists for each cell 11 for simplification of description. However, even when a plurality of peak SOCs exist for each cell 11, the above-described main points are satisfied. What is necessary is just to control the current rate in charge. For example, when a plurality of peak SOCs exist for the cell 11 [i], the second SOC range including the peak SOC of each cell 11 other than the cell 11 [i] and the plurality of peak SOCs for the cell 11 [i]. Should be set.

[注釈2]
上述の実施形態では、組電池11TT又は各セル11の残容量を組電池11TT又は各セル11の満充電容量に対する比に換算したSOCを元にして電流レートの制御等を行っているが、組電池11TT又は各セル11のSOCの代わりに組電池11TT又は各セル11の残容量を用いて、電流レートの制御を含む上述の任意の各処理を行うようにしても良い。当然のことながら、組電池11TTにおいて、満充電容量を1に正規化して考えればSOCと残容量は同じ値を持つため、SOCに基づく制御と残容量に基づく制御は等価なものである(セル11についても同様)。
[Note 2]
In the embodiment described above, control is performed such current rate based on the SOC converted to the ratio of the residual capacity of the assembled battery 11 TT or each cell 11 for the full charge capacity of the battery pack 11 TT or each cell 11 using the remaining capacity of the battery pack 11 TT or the assembled battery 11 TT or each cell 11 in place of SOC of each cell 11 may be performed any of the processes described above, including the control of the current rate. As a matter of course, in the assembled battery 11 TT , if the full charge capacity is normalized to 1, the SOC and the remaining capacity have the same value, so the control based on the SOC and the control based on the remaining capacity are equivalent ( The same applies to the cell 11).

[注釈3]
制御ユニット30又は30Aを、ハードウェア、或いは、ハードウェアとソフトウェアの組み合わせによって構成することができる。制御ユニット30又は30Aにて実現される機能の全部又は一部である任意の特定の機能をプログラムとして記述して、該プログラムを制御ユニット30又は30Aに搭載可能なフラッシュメモリに保存しておき、該プログラムをプログラム実行装置(例えば、制御ユニット30又は30Aに搭載可能なマイクロコンピュータ)上で実行することによって、その特定の機能を実現するようにしてもよい。上記プログラムは任意の記録媒体(不図示)に記憶及び固定されうる。上記プログラムを記憶及び固定する記録媒体(不図示)は制御ユニット30又は30Aと異なる機器(サーバ機器等)に搭載又は接続されても良い。
[Note 3]
The control unit 30 or 30A can be configured by hardware or a combination of hardware and software. Arbitrary specific functions that are all or part of the functions realized by the control unit 30 or 30A are described as a program, and the program is stored in a flash memory that can be mounted on the control unit 30 or 30A. The specific function may be realized by executing the program on a program execution device (for example, a microcomputer mountable in the control unit 30 or 30A). The program can be stored and fixed in an arbitrary recording medium (not shown). A recording medium (not shown) for storing and fixing the program may be mounted or connected to a device (such as a server device) different from the control unit 30 or 30A.

[注釈4]
例えば、以下のように考えることができる。蓄電システム1には、充電制御を行う充電制御装置が内包されている。充電制御装置は、少なくとも制御ユニット30又は30Aを備え、上述の抵抗特性測定部40を備えうる。充電制御装置は、電力変換回路16、電圧センサ13[1]〜[n]及び電流センサ14の内、少なくとも1つを更に備えていると考えても良い。充電時において、電力変換回路16は、組電池11TTに対する電流供給回路として機能する。
[Note 4]
For example, it can be considered as follows. The power storage system 1 includes a charge control device that performs charge control. The charge control device includes at least the control unit 30 or 30A, and may include the above-described resistance characteristic measurement unit 40. The charging control device may be considered to further include at least one of the power conversion circuit 16, the voltage sensors 13 [1] to [n], and the current sensor 14. At the time of charging, the power conversion circuit 16 functions as a current supply circuit for the assembled battery 11TT .

1 蓄電システム
11TT 組電池
11 セル(蓄電池)
13、13[i] 電圧センサ
14 電流センサ
15 充電源
16 電力変換回路
30、30A 制御ユニット
31 データ保持部
32 SOC範囲設定部
33、38 主制御部
34 SOC算出部
36 基準抵抗値設定部
37 内部抵抗値測定部
40 抵抗特性測定部
41 データ更新部
1 Power Storage System 11 TT Battery 11 Cell (Storage Battery)
13, 13 [i] Voltage sensor 14 Current sensor 15 Charging source 16 Power conversion circuit 30, 30A Control unit 31 Data holding unit 32 SOC range setting unit 33, 38 Main control unit 34 SOC calculation unit 36 Reference resistance value setting unit 37 Inside Resistance measurement unit 40 Resistance characteristic measurement unit 41 Data update unit

Claims (9)

組電池を形成する直列接続された複数の蓄電池の夫々の充電率である蓄電池充電率、又は、前記組電池全体の充電率である組電池充電率を導出する充電率導出部と、
各蓄電池の内部抵抗値である蓄電池抵抗値の蓄電池充電率依存性に応じた第1データに基づき、前記蓄電池ごとに前記蓄電池充電率の増加に伴って前記蓄電池抵抗値が増加から減少に転じるときの前記蓄電池充電率をピーク充電率として検出し、又は、前記組電池全体の内部抵抗値である組電池抵抗値の組電池充電率依存性に応じた第2データに基づき、前記組電池充電率の増加に伴って前記組電池抵抗値が増加から減少に転じるときの前記組電池充電率を前記ピーク充電率として検出し、各ピーク充電率を含み且つ下限がゼロよりも大きなピーク充電率範囲を設定する設定部と、
前記組電池の充電を制御する制御部と、を備え、
前記制御部は、前記組電池充電率又は何れかの蓄電池の蓄電池充電率が前記ピーク充電率範囲に属するタイミングにおいて、前記組電池の充電電流レートを、他のタイミングよりも低くする
充電制御装置。
A charge rate deriving unit for deriving a storage battery charge rate that is a charge rate of each of a plurality of storage batteries connected in series forming an assembled battery, or an assembled battery charge rate that is a charge rate of the entire assembled battery;
When the storage battery resistance value changes from increasing to decreasing as the storage battery charging rate increases for each storage battery based on the first data corresponding to the storage battery charging rate dependency of the storage battery resistance value that is the internal resistance value of each storage battery The storage battery charging rate is detected as a peak charging rate, or based on the second data corresponding to the assembled battery charging rate dependency of the assembled battery resistance value, which is the internal resistance value of the entire assembled battery, the assembled battery charging rate The battery pack charge rate when the battery pack resistance value changes from increase to decrease as the battery charge increases is detected as the peak charge rate, and a peak charge rate range including each peak charge rate and having a lower limit greater than zero A setting section to be set;
A control unit for controlling charging of the assembled battery,
The said control part is a charge control apparatus which makes the charging current rate of the said assembled battery lower than other timings in the timing when the said battery charging rate or the storage battery charging rate of any storage battery belongs to the said peak charging rate range.
前記組電池充電率の増加に伴って前記組電池抵抗値が増加から減少に転じるときの前記組電池充電率が第1及び第2ピーク充電率を含み、且つ、前記組電池充電率が前記第1ピーク充電率と一致するときの前記組電池抵抗値が、前記組電池充電率が前記第2ピーク充電率と一致するときの前記組電池抵抗値よりも大きい場合、
前記設定部は、前記第1ピーク充電率を含み且つ所定の充電率幅を持った第1充電率範囲及び前記第2ピーク充電率を含み且つ所定の充電率幅を持った第2ピーク充電率範囲を前記ピーク充電率範囲内に設定し、前記制御部は、前記組電池充電率が前記第1充電率範囲に属しているときの充電電流レートを前記組電池充電率が前記第2充電率範囲に属しているときの充電電流レートよりも低くする
請求項1に記載の充電制御装置。
The assembled battery charging rate when the assembled battery resistance value changes from increasing to decreasing with an increase in the assembled battery charging rate includes first and second peak charging rates, and the assembled battery charging rate is the first When the assembled battery resistance value when it coincides with one peak charging rate is larger than the assembled battery resistance value when the assembled battery charging rate coincides with the second peak charging rate,
The setting unit includes a first charging rate range including the first peak charging rate and having a predetermined charging rate range, and a second peak charging rate including the second peak charging rate and having a predetermined charging rate range. The range is set within the peak charging rate range, and the control unit determines a charging current rate when the assembled battery charging rate belongs to the first charging rate range, and the assembled battery charging rate is the second charging rate. The charging control device according to claim 1, wherein the charging current rate is lower than a charging current rate when belonging to the range.
前記複数の蓄電池は第1及び第2蓄電池を含み、
前記設定部は、前記第1データに基づき、前記第1及び第2蓄電池についてのピーク充電率である第1及び第2ピーク充電率を含む各蓄電池のピーク充電率を検出し、
前記複数の蓄電池について検出された複数のピーク充電率の内、前記第1ピーク充電率が最小であって且つ第2ピーク充電率が最大である場合、
前記設定部は、前記第1及び第2ピーク充電率に基づいて前記ピーク充電率範囲の下限及び上限を設定し、前記制御部は、前記第1蓄電池の充電率が前記ピーク充電率範囲の下限に達してから前記第2蓄電池の充電率が前記ピーク充電率範囲の上限に達するまでの充電電流レートを、他のタイミングの充電電流レートよりも低くする
請求項1に記載の充電制御装置。
The plurality of storage batteries include first and second storage batteries,
The setting unit detects a peak charge rate of each storage battery including first and second peak charge rates that are peak charge rates for the first and second storage batteries based on the first data,
Of the plurality of peak charge rates detected for the plurality of storage batteries, when the first peak charge rate is minimum and the second peak charge rate is maximum,
The setting unit sets a lower limit and an upper limit of the peak charge rate range based on the first and second peak charge rates, and the control unit sets the charge rate of the first storage battery to a lower limit of the peak charge rate range. 2. The charge control device according to claim 1, wherein a charging current rate until the charging rate of the second storage battery reaches the upper limit of the peak charging rate range after reaching the upper limit is lower than charging current rates at other timings.
前記組電池充電率が前記第1ピーク充電率と一致するときの前記組電池抵抗値が、前記組電池充電率が前記第2ピーク充電率と一致するときの前記組電池抵抗値よりも大きい場合、又は、前記第1蓄電池の充電率が前記第1ピーク充電率と一致するときの前記第1蓄電池の内部抵抗値が、前記第2蓄電池の充電率が前記第2ピーク充電率と一致するときの前記第2蓄電池の内部抵抗値よりも大きい場合、
前記設定部は、前記第1ピーク充電率を含み且つ所定の充電率幅を持った第1充電率範囲及び前記第2ピーク充電率を含み且つ所定の充電率幅を持った第2充電率範囲を前記ピーク充電率範囲内に設定し、前記制御部は、前記第1蓄電池の充電率が前記第1充電率範囲に属しているときの充電電流レートを前記第2蓄電池の充電率が前記第2充電率範囲に属しているときの充電電流レートよりも低くする
請求項3に記載の充電制御装置。
When the assembled battery resistance value when the assembled battery charging rate matches the first peak charging rate is larger than the assembled battery resistance value when the assembled battery charging rate matches the second peak charging rate Or, when the charging rate of the first storage battery matches the first peak charging rate, the internal resistance value of the first storage battery matches the charging rate of the second storage battery with the second peak charging rate. If it is larger than the internal resistance value of the second storage battery,
The setting unit includes a first charging rate range including the first peak charging rate and having a predetermined charging rate range and a second charging rate range including the second peak charging rate and having a predetermined charging rate range. Is set within the peak charging rate range, and the control unit determines a charging current rate when the charging rate of the first storage battery belongs to the first charging rate range. The charging control device according to claim 3, wherein the charging control device is set to be lower than a charging current rate when belonging to the two charging rate range.
前記制御部を用いた前記組電池の充電に先立って、前記第1及び第2データの内の少なくとも一方を予め保持するデータ保持部を更に備え、
前記設定部は、前記第1及び第2データの内の少なくとも一方を、前記データ保持部から取得する
請求項1〜請求項4の何れかに記載の充電制御装置。
Prior to charging the assembled battery using the control unit, the battery pack further includes a data holding unit that holds in advance at least one of the first and second data,
The charge control device according to claim 1, wherein the setting unit acquires at least one of the first and second data from the data holding unit.
前記組電池の充電期間と異なる測定用期間において、前記蓄電池ごとに前記蓄電池抵抗値の蓄電池充電率依存性を測定する第1測定動作、又は、前記組電池抵抗値の組電池充電率依存性を測定する第2測定動作を間欠的に繰り返し実行する抵抗特性測定部と、
前記抵抗特性測定部の測定結果を用いて前記データ保持部の保持データを更新するデータ更新部と、を更に備えた
請求項5に記載の充電制御装置。
In a measurement period different from the charging period of the assembled battery, a first measurement operation for measuring the storage battery charging rate dependency of the storage battery resistance value for each storage battery, or the assembled battery charging rate dependency of the assembled battery resistance value A resistance characteristic measurement unit that intermittently repeatedly executes the second measurement operation to be measured;
The charge control device according to claim 5, further comprising: a data update unit that updates data held in the data holding unit using a measurement result of the resistance characteristic measurement unit.
前記設定部は、前記蓄電池ごとに前記第1データに基づき所定値以上を有する蓄電池充電率の範囲の中から前記ピーク充電率を検出する、又は、前記第2データに基づき所定値以上を有する組電池充電率の範囲の中から前記ピーク充電率を検出する
請求項1〜請求項6の何れかに記載の充電制御装置。
The setting unit detects the peak charge rate from a range of storage battery charge rates having a predetermined value or more based on the first data for each storage battery, or a set having a predetermined value or more based on the second data. The charge control apparatus according to any one of claims 1 to 6, wherein the peak charge rate is detected from a range of battery charge rates.
組電池を形成する直列接続された複数の蓄電池の夫々の充電率である蓄電池充電率、又は、前記組電池全体の充電率である組電池充電率を導出する充電率導出部と、
前記組電池の充電期間中に、前記組電池全体の内部抵抗値である組電池抵抗値又は各蓄電池の内部抵抗値である各蓄電池抵抗値を測定する測定部と、
各蓄電池の蓄電池抵抗値の蓄電池充電率依存性に応じた第1データ、又は、前記組電池抵抗値の組電池充電率依存性に応じた第2データに基づき、基準抵抗値を設定する設定部と、
前記組電池の充電を制御する制御部と、を備え、
前記制御部は、前記組電池充電率又は何れかの蓄電池充電率が所定値以上であって且つ前記測定部によって測定された組電池抵抗値又は何れかの蓄電池抵抗値が前記基準抵抗値よりも大きいタイミングにおいて、前記組電池の充電電流レートを、他のタイミングよりも低くする
充電制御装置。
A charge rate deriving unit for deriving a storage battery charge rate that is a charge rate of each of a plurality of storage batteries connected in series forming an assembled battery, or an assembled battery charge rate that is a charge rate of the entire assembled battery;
During the charging period of the assembled battery, a measuring unit that measures an assembled battery resistance value that is an internal resistance value of the entire assembled battery or each storage battery resistance value that is an internal resistance value of each storage battery;
A setting unit that sets a reference resistance value based on the first data corresponding to the storage battery charge rate dependency of the storage battery resistance value of each storage battery or the second data corresponding to the battery pack charge rate dependency of the battery pack resistance value When,
A control unit for controlling charging of the assembled battery,
The control unit is configured such that the assembled battery charging rate or any storage battery charging rate is equal to or greater than a predetermined value, and the assembled battery resistance value or any storage battery resistance value measured by the measuring unit is greater than the reference resistance value. A charging control device that makes a charging current rate of the assembled battery lower than other timings at a large timing.
前記設定部は、前記第1データに基づき、前記蓄電池ごとに前記蓄電池充電率の増加に伴って前記蓄電池抵抗値が増加から減少に転じるときの前記蓄電池抵抗値を検出し、又は、前記第2データに基づき、前記組電池充電率の増加に伴って前記組電池抵抗値が増加から減少に転じるときの前記組電池抵抗値を検出し、検出抵抗値に基づき前記基準抵抗値を設定する
請求項8に記載の充電制御装置。
The setting unit detects, based on the first data, the storage battery resistance value when the storage battery resistance value changes from increasing to decreasing with an increase in the storage battery charging rate for each storage battery, or the second data The assembled battery resistance value when the assembled battery resistance value changes from increasing to decreasing with an increase in the assembled battery charging rate is detected based on data, and the reference resistance value is set based on the detected resistance value. 9. The charge control device according to 8.
JP2012211922A 2012-09-26 2012-09-26 Charge control device Pending JP2014068467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012211922A JP2014068467A (en) 2012-09-26 2012-09-26 Charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012211922A JP2014068467A (en) 2012-09-26 2012-09-26 Charge control device

Publications (1)

Publication Number Publication Date
JP2014068467A true JP2014068467A (en) 2014-04-17

Family

ID=50744359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012211922A Pending JP2014068467A (en) 2012-09-26 2012-09-26 Charge control device

Country Status (1)

Country Link
JP (1) JP2014068467A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104163A1 (en) * 2014-12-25 2016-06-30 日立マクセル株式会社 Charging method for lithium ion secondary cell and charging control system therefor, and electronic apparatus and cell pack having charging control system
JP2018063115A (en) * 2016-10-11 2018-04-19 トヨタ自動車株式会社 Charged state estimation system for secondary battery
JP2018190706A (en) * 2017-05-05 2018-11-29 致茂電子股▲分▼有限公司Chroma Ate Inc. Method for testing semi-finished battery cell
US10404077B2 (en) 2016-11-29 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for balancing battery
JP2022541431A (en) * 2020-01-31 2022-09-26 エルジー エナジー ソリューション リミテッド Battery charge/discharge control device and method
CN115832474A (en) * 2021-11-29 2023-03-21 宁德时代新能源科技股份有限公司 Battery charging method, battery and electric energy equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104163A1 (en) * 2014-12-25 2016-06-30 日立マクセル株式会社 Charging method for lithium ion secondary cell and charging control system therefor, and electronic apparatus and cell pack having charging control system
JP2016123251A (en) * 2014-12-25 2016-07-07 日立マクセル株式会社 Method for charging lithium ion secondary battery, and charge control system therefor
US10320038B2 (en) 2014-12-25 2019-06-11 Maxell Holdings, Ltd. Charging method for lithium ion secondary battery and charging control system therefor, and electronic apparatus and battery pack having charging control system
JP2018063115A (en) * 2016-10-11 2018-04-19 トヨタ自動車株式会社 Charged state estimation system for secondary battery
US10404077B2 (en) 2016-11-29 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for balancing battery
JP2018190706A (en) * 2017-05-05 2018-11-29 致茂電子股▲分▼有限公司Chroma Ate Inc. Method for testing semi-finished battery cell
JP2022541431A (en) * 2020-01-31 2022-09-26 エルジー エナジー ソリューション リミテッド Battery charge/discharge control device and method
CN115832474A (en) * 2021-11-29 2023-03-21 宁德时代新能源科技股份有限公司 Battery charging method, battery and electric energy equipment
WO2023092984A1 (en) * 2021-11-29 2023-06-01 宁德时代新能源科技股份有限公司 Charging method for battery, and battery and electrical energy device
JP7524338B2 (en) 2021-11-29 2024-07-29 寧徳時代新能源科技股▲分▼有限公司 Battery charging method, battery, and electric energy device

Similar Documents

Publication Publication Date Title
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
US10126369B2 (en) Secondary battery capacity measurement system and secondary battery capacity measurement method
JP6567582B2 (en) Charge / discharge control device, use condition creation device, program, and power storage system
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
CN107576918B (en) Method and system for estimating residual electric quantity of lithium battery
JP6158195B2 (en) Battery state estimation device and storage battery system
JP6729985B2 (en) Storage battery system charge control device, storage battery system and storage battery charge control method
JP6548387B2 (en) Method and apparatus for estimating state of charge of secondary battery
TWI474532B (en) Systems, controllers and methods for battery controlling
JP2014068468A (en) Charge control device
CN103248083A (en) Balancing circuit for balancing cells, balancing method and controller
JP2014025738A (en) Residual capacity estimation device
JP5619744B2 (en) Method and apparatus for detecting state of power storage device
CN104051810A (en) Rapid correction method for SOC (state of charge) estimation of energy storage lithium ion battery system
CN110596604B (en) Lithium battery SOC estimation method based on ampere-hour integration method
CN110058177B (en) Power battery electric quantity SOC correction method
Purwadi et al. State of Charge estimation method for lithium battery using combination of Coulomb Counting and Adaptive System with considering the effect of temperature
JP2014068467A (en) Charge control device
JP2013250071A (en) Full charge capacity detection device and storage battery system
US20140320085A1 (en) Charging device and control method thereof
JP2014045626A (en) Charging controller
KR101745633B1 (en) Apparatus for Cell Balancing by Connecting Reference Battery in Consecutive Order and Method thereof
WO2013002343A1 (en) Battery state detection device
WO2019187680A1 (en) Secondary battery control device