JPH11136876A - Charging of lead-acid battery - Google Patents

Charging of lead-acid battery

Info

Publication number
JPH11136876A
JPH11136876A JP9295291A JP29529197A JPH11136876A JP H11136876 A JPH11136876 A JP H11136876A JP 9295291 A JP9295291 A JP 9295291A JP 29529197 A JP29529197 A JP 29529197A JP H11136876 A JPH11136876 A JP H11136876A
Authority
JP
Japan
Prior art keywords
charging
amount
charge
stage
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9295291A
Other languages
Japanese (ja)
Inventor
Yoshimi Ibuki
佳実 伊吹
Yoshio Sanada
吉男 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9295291A priority Critical patent/JPH11136876A/en
Publication of JPH11136876A publication Critical patent/JPH11136876A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent insufficient charging and overcharging by obtaining required charging quantity of electricity based on discharging quantity of electricity before charging using a multi-staged current charging method which decreases a charging current value when terminal voltage during constant- current charging reaches current switching voltage. SOLUTION: The data on the electrolyte temperature or battery atmospheric temperature T of a lead-acid battery 4 is inputted from a temperature detection circuit 8. When ambient temperature T of the battery is detected, calculation of a coefficient α and a current switching voltage can be determined by detected temperature T from one temperature detection circuit 8. The coefficient αis determined from an expression: α=PT<2> +QT+R (where P, Q, and R are characteristic values of various lead-acid batteries for the range -5 deg.C to 40 deg.C). In this case, P=5.56×10<4> , Q=-3.89×10<2> , and R=1.67 are satisfied. Calculated discharging electricity quantity: Cx=α×C1 is obtained using initial charging quantity C1 of electricity, from the start of the first stage charge until switching to the second stage charging, and a required charging electricity quantity Cy=β×α×C1 is obtained. In this case, β is within the range of 1.1 of 1.3 from the characteristic values of the various lead-acid batteries for -5 deg.C to 40 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サイクル用途に使
用される鉛蓄電池の充電方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a lead storage battery used for cycling.

【0002】[0002]

【従来の技術】定電流充電中の鉛蓄電池の端子電圧を検
出し、端子電圧が予め定めた電流切替電圧Voに達する
と充電電流値を低下させる多段定電流充電方法を用いて
多段階で充電を行う鉛蓄電池の充電方法が提案されてい
る。そしてこの充電方法を用いる場合、特開平7−78
637号公報に示されるように、サイクル用途に用いら
れる鉛蓄電池のように鉛蓄電池の放電前の放電電気量が
一定でないときに、充電前の放電電気量から必要充電電
気量を計算によって求め、過充電及び充電不足が発生し
ないようにする技術が提案されている。
2. Description of the Related Art The terminal voltage of a lead storage battery during constant current charging is detected, and when the terminal voltage reaches a predetermined current switching voltage Vo, the charging current value is reduced in a multistage constant current charging method. There is proposed a method of charging a lead storage battery that performs the following. When this charging method is used, Japanese Patent Application Laid-Open No. 7-78
As shown in JP-A-637, when the amount of discharged electricity before discharge of a lead storage battery is not constant, such as a lead storage battery used for cycle applications, the required amount of charged electricity is obtained by calculation from the amount of discharged electricity before charging, Techniques for preventing overcharging and insufficient charging have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
7−78637号公報に開示の技術では、実際に測定し
た放電電気量から必要充電電気量を算出するため、放電
電気量が不明の場合は適用できないという問題点があっ
た。
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 7-78637, the required amount of charged electricity is calculated from the actually measured amount of discharged electricity. There was a problem that it was not possible.

【0004】本発明の目的は、放電電気量が不明な鉛蓄
電池においても過充電,充電不足のない適正な充電を行
える鉛蓄電池の充電方法を提供することにある。
An object of the present invention is to provide a method of charging a lead storage battery which can perform proper charging without overcharging or insufficient charging even in a lead storage battery whose discharge amount is unknown.

【0005】[0005]

【課題を解決するための手段】本発明は、定電流充電中
の鉛蓄電池の端子電圧を検出し、端子電圧が電流切替電
圧Voに達すると充電電流値を低下させる多段階電流充
電方法を用い、充電前の放電電気量に基づいて必要充電
電気量を求め、必要充電電気量分だけ充電を行って充電
不足及び過充電を防止する鉛蓄電池の充電方法を改良の
対象とする。
The present invention uses a multi-stage current charging method which detects a terminal voltage of a lead storage battery during constant current charging and reduces the charging current value when the terminal voltage reaches a current switching voltage Vo. A method of charging a lead-acid battery, which determines a required amount of charged electricity based on the amount of discharged electricity before charging, and performs charging by the required amount of charged electricity to prevent insufficient charging and overcharging, is an object of improvement.

【0006】本発明においては、1段目の充電の開始か
ら2段目の充電に切り替わるまでの充電電気量C1 に電
解液温度または電池周囲温度Tによって定まる係数αを
乗じて放電電気量Cxを求める。発明者は、1段目の充
電の開始から2段目の充電に切り替わるまでの充電電気
量C1 及び電解液温度または電池周囲温度Tが、充電前
の放電電気量Cxと所定の関係にあることを見出した。
そこで本発明では、この所定の関係に基づいて充電電気
量C1 と電解液温度または電池周囲温度Tから放電電気
量Cxを演算により求めることにした。充電前の放電電
気量を測定せずに、演算により求めることができれば、
放電電気量が不明な鉛蓄電池においても過充電,充電不
足のない適正な充電を行える利点がある。
In the present invention, the amount of discharged electricity Cx is calculated by multiplying the amount of charged electricity C1 from the start of the first stage charging to the switching to the second stage charging by a coefficient α determined by the electrolyte temperature or the battery ambient temperature T. Ask. The inventor states that the amount of charge C1 and the electrolyte temperature or the battery ambient temperature T from the start of the first-stage charge to switching to the second-stage charge have a predetermined relationship with the amount of discharged electricity Cx before charging. Was found.
Therefore, in the present invention, based on this predetermined relationship, the amount of discharged electricity Cx is calculated from the charged amount of electricity C1 and the electrolyte temperature or the battery ambient temperature T by calculation. If the amount of discharged electricity before charging can be obtained by calculation without measuring,
There is an advantage that proper charging can be performed without overcharging or insufficient charging even in a lead storage battery whose discharge amount is unknown.

【0007】ここで係数αは電解液温度[電解液温度が
直接計れないときは鉛蓄電池または充電器の周囲温度
(本願明細書では電池周囲温度と言う)で代用する]に
よって以下の式に従って決定する。
Here, the coefficient α is determined according to the following equation according to the electrolyte temperature [when the electrolyte temperature cannot be measured directly, substitute the ambient temperature of the lead storage battery or the charger (referred to as the battery ambient temperature in this specification)]. I do.

【0008】α=PT2 +QT+R Tは電解液温度または電池周囲温度であり、係数P,
Q,Rは種々の鉛蓄電池を用いて−5〜40℃の範囲に
おいて特性確認試験を行って値を求めた。具体的には、
係数P,Q,Rは、P=5.56×10-4、Q=−3.89×10-2
T、R=1.67となる。試験結果は図3に示す通りであ
り、この試験結果より係数αは曲線AとBの範囲にある
ことがわかった。そこで係数αは、曲線A及びBの中間
値として以下の式で近似して求めることにした。
Α = PT 2 + QT + RT is the electrolyte temperature or the battery ambient temperature, and the coefficients P,
The values of Q and R were obtained by performing characteristic confirmation tests in the range of -5 to 40 ° C using various lead-acid batteries. In particular,
Coefficients P, Q and R are P = 5.56 × 10 −4 , Q = −3.89 × 10 −2
T, R = 1.67. The test results are as shown in FIG. 3, and it was found from the test results that the coefficient α was in the range between the curves A and B. Thus, the coefficient α is determined by approximating the coefficient α as an intermediate value between the curves A and B by the following equation.

【0009】α=5.56×10-42 −3.89×10-2T+1.67 この式を用いて求めた係数αは1.0〜1.8の範囲の
値となる。係数αが1.0より小さくなればなるほど充
電不足となり、1.8より大きくなればなるほど過充電
の傾向を示す。
Α = 5.56 × 10 −4 T 2 −3.89 × 10 −2 T + 1.67 The coefficient α obtained by using this equation has a value in the range of 1.0 to 1.8. As the coefficient α becomes smaller than 1.0, the battery becomes insufficiently charged. As the coefficient α becomes larger than 1.8, the battery tends to be overcharged.

【0010】演算により放電電気量を求めた後に、この
放電電気量を用いて必要充電電気量を求める方法及び必
要充電電気量を求めた後にこの必要充電電気量に基いて
どのように充電電流を段階的に減少させるのかは任意で
ある。一例としては、放電電気量Cxに一定の係数βを
乗じて必要充電電気量を算出する。そして端子電圧が電
流切替電圧Voに達するたびに充電電流値を低下させ、
1段目からn段目までの各段の充電電気量を積算して総
充電電気量を求める。なお充電電流値に最小充電電流値
を設定してもよい。そして総充電電気量が必要充電電気
量に達した時点で充電を停止する。ここでこの係数β
は、放電電気量と必要充電電気量との関係を、種々の鉛
蓄電池を用いて特性確認試験を行って求めたものであ
る。特性確認試験からは、係数βが1.1〜1.3の値
の範囲にあることがわかった。したがってこの係数βと
しては、1.1〜1.3の値の範囲から適宜に選択すれ
ばよい。例えば係数βをこの範囲の平均値である1.2
としてもよい。なお係数βが1.1に近付き更にこの値
より小さくなると充電不足の傾向が現れ、係数βが1.
3に近付き更にこの値より大きくなると過充電の傾向が
現れる。したがってこの傾向を考慮してこの係数βの値
を選択すればよい。演算より求めた放電電気量に係数を
乗じて必要充電電気量を求めるようにすると、簡単に必
要充電電気量を得ることができる。また総充電電気量が
必要充電電気量に達したことを検出して充電を停止する
ようにすると、過充電及び充電不足を確実に防止でき
る。
After calculating the amount of discharge electricity by calculation, a method of obtaining the required amount of charge by using the amount of discharge electricity, and how to calculate the charge current based on the required amount of charge after obtaining the required amount of charge electricity The stepwise reduction is optional. As an example, the required amount of charged electricity is calculated by multiplying the amount of discharged electricity Cx by a constant coefficient β. Each time the terminal voltage reaches the current switching voltage Vo, the charging current value is reduced,
The total charge amount is obtained by integrating the charge amounts of the respective stages from the first stage to the n-th stage. Note that the minimum charging current value may be set as the charging current value. Then, the charging is stopped when the total amount of charged electricity reaches the required amount of charged electricity. Where the coefficient β
Is obtained by conducting a characteristic confirmation test using various lead-acid batteries to determine the relationship between the amount of discharged electricity and the amount of required charged electricity. From the characteristic confirmation test, it was found that the coefficient β was in the range of 1.1 to 1.3. Therefore, the coefficient β may be appropriately selected from the range of values of 1.1 to 1.3. For example, the coefficient β is set to 1.2 which is the average value of this range.
It may be. When the coefficient β approaches 1.1 and becomes smaller than this value, a tendency of insufficient charging appears, and the coefficient β becomes 1.
When the value approaches 3 and becomes larger than this value, a tendency of overcharging appears. Therefore, the value of the coefficient β may be selected in consideration of this tendency. If the required amount of charged electricity is obtained by multiplying the calculated amount of discharged electricity by a coefficient, the required amount of charged electricity can be easily obtained. Further, when charging is stopped by detecting that the total amount of charged electricity has reached the required amount of charged electricity, overcharging and insufficient charging can be reliably prevented.

【0011】1セル当たりの電流切替電圧Voの設定
は、過充電、充電不足、充電時間、電池の周囲温度等の
条件を考慮して任意に定めればよい。例えば、Toを鉛
蓄電池の周囲温度としたときに、Vo=2.44+5.58 ×10
-3×Toの式により決定すると、切替段数が極端に多く
ならず、しかも過充電及び充電不足のいずれをも生じさ
せることなく良好な充電を行える。
The setting of the current switching voltage Vo per cell may be arbitrarily determined in consideration of conditions such as overcharging, insufficient charging, charging time, and ambient temperature of the battery. For example, when To is the ambient temperature of the lead storage battery, Vo = 2.44 + 5.58 × 10
When determined by the formula of −3 × To, the number of switching stages does not become extremely large, and good charging can be performed without causing either overcharging or insufficient charging.

【0012】本発明の方法をより具体的に実施する方法
を特定すると次のようになる。まず定電流充電中の鉛蓄
電池の端子電圧を検出し、端子電圧が電流切替電圧Vo
に達するたびに充電電流値を低下させ、充電電流値が最
小充電電流値まで低下した後は充電電流値の低下を停止
する多段定電流充電方法を用いて多段階で充電を行う。
予め定めた単位時間間隔で単位時間充電電気量を求め
る。そして単位時間充電電気量を積算して1段目の充電
の開始から2段目の充電に切り替わるまでの初回の充電
電気量C1 を求める。また電解液温度または電池周囲温
度をTとしたときにα=5.56×10-42 −3.89×10-2
+1.67の式で求めた係数αを初回の充電電気量C1 に乗
じて放電電気量Cxを求める。次に放電電気量Cxに
1.1〜1.3の範囲の値から選択した一定の係数βを
乗じて必要充電電気量を算出する。また単位時間充電電
気量に基づいて1段目からn段目までの各段の充電電気
量を積算して総充電電気量を求める。そして最終的に、
総充電電気量が必要充電電気量に達すると充電を停止す
る。
A more specific method for implementing the method of the present invention is as follows. First, the terminal voltage of the lead storage battery during constant current charging is detected, and the terminal voltage is changed to the current switching voltage Vo.
The charging is performed in multiple stages using a multi-stage constant current charging method in which the charging current value is reduced each time the charging current value is reached, and after the charging current value decreases to the minimum charging current value, the charging current value stops decreasing.
The amount of charged electricity per unit time is determined at predetermined unit time intervals. Then, the first-stage charge electricity amount C1 from the start of the first-stage charge to the switching to the second-stage charge is obtained by integrating the unit-time charge electricity amounts. When the electrolyte temperature or the battery ambient temperature is T, α = 5.56 × 10 −4 T 2 −3.89 × 10 −2 T
The electric charge Cx at the first time is obtained by multiplying the coefficient α obtained by the equation of +1.67 by the electric charge C1 at the first time. Next, the required amount of charged electricity is calculated by multiplying the amount of discharged electricity Cx by a constant coefficient β selected from a value in the range of 1.1 to 1.3. In addition, the total charge amount is calculated by integrating the charge amounts of the first to nth stages based on the charge amount per unit time. And finally,
When the total amount of charged electricity reaches the required amount of charged electricity, charging is stopped.

【0013】予め定めた単位時間間隔で求めた単位時間
充電電気量を基準にして、演算を実行すると、コンピュ
ータ等のデジタル機器を用いて演算処理することが容易
になって、本発明の実施が容易になる。
[0013] When the calculation is executed based on the charge amount per unit time determined at a predetermined unit time interval, the calculation can be easily performed using a digital device such as a computer. It will be easier.

【0014】[0014]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態の一例を詳細に説明する。図1は、本発明の方法
を実施する充電装置の一例の構成のブロックである。図
1において、1は商用電源等の交流電源であり、交流電
源1からの交流電力は、整流回路等から構成される直流
化回路2によって直流電力に変換される。直流化回路2
の出力は、電力供給回路3に供給される。電力供給回路
3は、鉛蓄電池4に通電する充電電流値を一定に制御し
て且つその値を可変信号に応じて多段階に可変すること
ができるように構成されている公知の多段階電流通電用
の電力供給回路である。一般的には直流化回路2と鉛蓄
電池4との間に配置される電流制御用半導体スイッチの
導通角を調整することにより充電電流値を一定に保つと
ともに、可変指令に応じてに充電電流値を段階的に変え
るように構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram illustrating an example of a configuration of a charging apparatus that implements the method of the present invention. In FIG. 1, reference numeral 1 denotes an AC power supply such as a commercial power supply. AC power from the AC power supply 1 is converted into DC power by a DC conversion circuit 2 including a rectifier circuit and the like. DC circuit 2
Is supplied to the power supply circuit 3. The power supply circuit 3 controls the value of the charging current supplied to the lead-acid battery 4 to a constant value, and can vary the value in multiple steps according to a variable signal. Power supply circuit. Generally, the charging current value is kept constant by adjusting the conduction angle of the current control semiconductor switch disposed between the DC conversion circuit 2 and the lead storage battery 4, and the charging current value is changed in accordance with the variable command. Is configured to change step by step.

【0015】5は鉛蓄電池の充電電圧即ち端子電圧を検
出する端子電圧検出回路である。この端子電圧検出回路
5は例えば抵抗分圧回路により構成される。端子電圧検
出回路5の出力は、マイクロコンピュータを主要演算手
段として構成され、充電電流値を可変にしたり、充電を
停止する等の制御指令を電力供給回路3に出力する制御
回路6に供給される。7は例えば変流器によって構成さ
れて鉛蓄電池4に通電される充電電流値を検出する電流
検出回路であり、この電流検出回路7の出力も制御回路
6に入力される。更に8は鉛蓄電池4の温度(好ましく
は鉛蓄電池4の電解液の温度、または鉛蓄電池の周囲温
度)を検出する温度検出回路であり、温度検出回路8の
出力も制御回路6に入力されている。
Reference numeral 5 denotes a terminal voltage detection circuit for detecting a charge voltage of the lead storage battery, that is, a terminal voltage. This terminal voltage detection circuit 5 is constituted by, for example, a resistance voltage dividing circuit. The output of the terminal voltage detection circuit 5 is supplied to a control circuit 6 which is constituted by a microcomputer as a main calculation means and outputs a control command to the power supply circuit 3 such as changing a charging current value or stopping charging. . Reference numeral 7 denotes a current detection circuit which is constituted by, for example, a current transformer and detects a charging current value supplied to the lead-acid battery 4. The output of the current detection circuit 7 is also input to the control circuit 6. Reference numeral 8 denotes a temperature detection circuit for detecting the temperature of the lead storage battery 4 (preferably, the temperature of the electrolyte of the lead storage battery 4 or the ambient temperature of the lead storage battery). The output of the temperature detection circuit 8 is also input to the control circuit 6. I have.

【0016】制御回路6内のマイクロコンピュータは、
本発明の方法を実施するための充電制御プログラムに従
って動作する。制御回路6内には、マイクロコンピュー
タによって単位時間間隔を計数するためのタイマが構成
されている。制御回路6は、通常は電流検出回路7で検
出した充電電流を一定に保つように定電流制御を行う定
電流制御指令を出力する。そして端子電圧検出回路5か
ら入力される定電流充電中の鉛蓄電池4の端子電圧が、
予め定めた電流切替電圧Voに達するたびに充電電流値
を低下させる電流可変指令を出力する。そして充電電流
値が予め定めた最小充電電流値まで低下した後は、充電
電流値の低下を停止し、必要充電電気量分の充電を完了
すると充電を停止する充電停止指令を出力する。この動
作は、図2に示す充電制御パターンの通りになる。
The microcomputer in the control circuit 6 includes:
It operates according to a charge control program for performing the method of the present invention. In the control circuit 6, a timer for counting unit time intervals by a microcomputer is configured. The control circuit 6 normally outputs a constant current control command for performing constant current control so as to keep the charging current detected by the current detection circuit 7 constant. Then, the terminal voltage of the lead storage battery 4 during the constant current charging input from the terminal voltage detection circuit 5 is:
Each time a predetermined current switching voltage Vo is reached, a current variable command for reducing the charging current value is output. Then, after the charging current value has decreased to the predetermined minimum charging current value, the charging current value is stopped, and a charging stop command is output to stop charging when charging for the required amount of charged electricity is completed. This operation follows the charge control pattern shown in FIG.

【0017】制御回路6のマイクロコンピュータを動作
させる充電制御プログラムのアルゴリズムの一例は図3
に示す通りである。以下このアルゴリズムと図2に従っ
て、制御回路6の動作を説明する。この例では、まずス
テップST1で鉛蓄電池4が充電器に接続されたことを
検出すると充電動作を開始する。最初に、ステップST
2で、鉛蓄電池4の電解液温度または電池周囲温度(こ
の例では充電器周囲温度即ち制御回路6が構成されてい
る回路基板上の温度、言い換えれば鉛蓄電池が置かれて
いる環境温度)Tに関するデータを、温度検出回路8か
ら入力する。電池周囲温度Tを検出すると、係数αの演
算及び電流切替電圧Voの演算を1つの温度検出回路8
からの検出温度Tによって決定できる。係数αの演算の
ために電解液温度を用いる場合には、温度検出回路8に
は更に電池周囲温度を検出する温度センサを設け、電解
液温度と電池周囲温度の両方を制御回路6に入力するよ
うにする。
An example of the algorithm of the charge control program for operating the microcomputer of the control circuit 6 is shown in FIG.
As shown in FIG. Hereinafter, the operation of the control circuit 6 will be described with reference to this algorithm and FIG. In this example, when detecting that the lead storage battery 4 is connected to the charger in step ST1, the charging operation is started. First, step ST
At 2, the electrolyte temperature of the lead-acid battery 4 or the battery ambient temperature (in this example, the charger ambient temperature, that is, the temperature on the circuit board on which the control circuit 6 is formed, in other words, the environmental temperature where the lead-acid battery is placed) T Is input from the temperature detection circuit 8. When the battery ambient temperature T is detected, the calculation of the coefficient α and the calculation of the current switching voltage Vo are performed by one temperature detection circuit 8.
From the detected temperature T. When the electrolytic solution temperature is used for calculating the coefficient α, the temperature detecting circuit 8 is further provided with a temperature sensor for detecting the battery ambient temperature, and inputs both the electrolytic solution temperature and the battery ambient temperature to the control circuit 6. To do.

【0018】ここで係数αの演算式を導いた過程を説明
する。まず本発明では1段目の充電の開始から2段目の
充電に切り替わるまでの初回の充電電気量C1 を用い
て、下記(1)式に基づいて前の放電電気量Cxを計算
により求め(計算により求める前の放電電気量を計算放
電電気量Cxと言う)、更に充電に必要な必要充電電気
量も下記(2)式により計算により求める。
The process of deriving the equation for calculating the coefficient α will now be described. First, in the present invention, using the initial charge electricity amount C1 from the start of the first-stage charge to the switch to the second-stage charge, the previous discharge electricity amount Cx is obtained by calculation based on the following equation (1) ( The amount of discharged electricity before calculation is called the calculated amount of discharged electricity Cx), and the required amount of charged electricity required for charging is also calculated by the following equation (2).

【0019】 計算放電電気量:Cx=α×C1 …(1) 必要充電電気量:Cy=β×Cx =β×α×C1 …(2) (1)式は鉛蓄電池の計算放電電気量Cxは1段目の充
電電気量C1 に係数αを乗ずることで算出できることを
意味し、また(2)式は必要充電電気量Cyは計算放電
電気量Cxに係数βを乗ずること、すなわち1段目の充
電電気量C1 に係数αと係数βを乗ずることで算出でき
ることを意味する。また、1段目の充電電気量C1 は1
段目の充電時間t1 に1段目の充電電流I1 を乗ずるこ
とによって算出することができる(図2参照)。2段目
以降も同様の方法で算出することができる。よって
(2)式は以下のようになる。
Calculated electric discharge amount: Cx = α × C1 (1) Required electric charge amount: Cy = β × Cx = β × α × C1 (2) Formula (1) is the calculated electric discharge amount Cx of the lead storage battery. Means that it can be calculated by multiplying the first stage charge amount C1 by the coefficient α, and the equation (2) indicates that the required charge amount Cy is multiplied by the calculated discharge amount Cx by the coefficient β, ie, the first stage Is multiplied by the coefficient α and the coefficient β. In addition, the charge amount C1 of the first stage is 1
It can be calculated by multiplying the charging time t1 of the first stage by the charging current I1 of the first stage (see FIG. 2). The second and subsequent stages can be calculated in the same manner. Therefore, equation (2) is as follows.

【0020】 必要充電電気量:Cy=β×α×I1 ×t1 …(3) 係数αは電解液温度(または電池周囲温度)Tによって
以下の式に従って決定する。
Required charge amount of electricity: Cy = β × α × I1 × t1 (3) The coefficient α is determined according to the following equation according to the electrolyte temperature (or the battery ambient temperature) T.

【0021】 α=PT2 +QT+R …(4) ここで係数P,Q,Rは種々の鉛蓄電池を用いて−5℃
〜40℃の範囲において特性確認試験を行って値を求め
た。その試験結果は図4に示す通りである。この試験結
果から、係数αは曲線AとBの範囲にあることがわかっ
た。従って係数αは以下の式で近似して求めた。
Α = PT 2 + QT + R (4) where coefficients P, Q and R are −5 ° C. using various lead-acid batteries.
A characteristic confirmation test was performed in the range of 4040 ° C. to determine a value. The test results are as shown in FIG. From this test result, it was found that the coefficient α was in the range between the curves A and B. Therefore, the coefficient α was obtained by approximation using the following equation.

【0022】 α=5.56×10-42 −3.89×10-2T+1.67 …(5) よって係数P,Q,Rは、P=5.56×10-4、Q=−3.89
×10-2T、R=1.67となる。充電時の一般的な温度T
は、−5℃〜40℃の範囲にあるから、上記(5)式に
これらの温度を代入して係数としたαを求めると、係数
αは1.0〜1.8の範囲の値となる。温度Tが極端に
下がって、係数αが1.0より小さくなればなるほど充
電不足が発生し、温度Tが極端に上がって1.8より大
きくなればなるほど過充電の傾向を示す。
Α = 5.56 × 10 −4 T 2 −3.89 × 10 −2 T + 1.67 (5) Therefore, the coefficients P, Q and R are P = 5.56 × 10 −4 and Q = −3.89
× 10 -2 T, R = 1.67. General temperature T during charging
Is in the range of −5 ° C. to 40 ° C., and when α is obtained as a coefficient by substituting these temperatures into the above equation (5), the coefficient α is in the range of 1.0 to 1.8. Become. As the temperature T drops extremely and the coefficient α becomes smaller than 1.0, the insufficient charge occurs. As the temperature T rises extremely and becomes higher than 1.8, the battery tends to overcharge.

【0023】なおこの例では、係数βも種々の鉛蓄電池
を用いて特性確認試験を行ってその値を決定した。この
試験からは、前述の温度Tが−5℃〜40℃の範囲にあ
る場合に、係数βは1.1〜1.3の範囲にするのが好
ましいことが分った。この例では、係数βとして、この
範囲の平均値である1.2を用いる。なおこの係数βに
ついては、制御回路6のマイクロコンピュータのメモリ
に予め記憶させてある。係数βが1.2より小さくなっ
て、1.1より小さくなればなるほど充電不足の傾向が
現われ、また1.3より大きくなればなるほど過充電の
傾向が現われる。以上のことから、に必要充電電気量C
yは、以下の式で求めることになる。
In this example, the coefficient β was also determined by conducting a characteristic confirmation test using various lead-acid batteries. From this test, it was found that when the above-mentioned temperature T is in the range of -5 ° C to 40 ° C, the coefficient β is preferably in the range of 1.1 to 1.3. In this example, 1.2, which is the average value of this range, is used as the coefficient β. The coefficient β is stored in the memory of the microcomputer of the control circuit 6 in advance. As the coefficient β becomes smaller than 1.2 and becomes smaller than 1.1, the tendency of insufficient charging appears, and as the coefficient β becomes larger than 1.3, the tendency of overcharging appears. From the above, the amount of electricity required for charging C
y is obtained by the following equation.

【0024】 Cy=1.2 ×(5.56×10-42 −3.89×10-2T+1.67)×I1 ×t1 …(6)Cy = 1.2 × (5.56 × 10 −4 T 2 −3.89 × 10 −2 T + 1.67) × I 1 × t 1 (6)

【0025】電流切替電圧Voの決定の方法または態様
は種々提案されているが、この例では、Toを周囲温度
としたときに、Vo=2.44+5.58 ×10-3×Toの式によ
り、電流切替電圧Voを決定する。この式も前述の特性
試験に基づいて導いた式である。電流切替電圧値V0
は、周囲温度が20℃のときに、2.55V/セルとな
る。なおこの例では、ステップST2において電池周囲
温度Tを入力しているので、ステップST3では係数α
及び電流切替電圧Voを同じ温度Tを用いて求めてい
る。
Various methods and modes for determining the current switching voltage Vo have been proposed. In this example, when To is the ambient temperature, the current is calculated by the equation Vo = 2.44 + 5.58 × 10 −3 × To. The switching voltage Vo is determined. This equation is also an equation derived based on the above-described characteristic test. Current switching voltage value V0
Is 2.55 V / cell when the ambient temperature is 20 ° C. In this example, since the battery ambient temperature T is input in step ST2, the coefficient α is set in step ST3.
And the current switching voltage Vo using the same temperature T.

【0026】次にステップST4で、初回即ち1段目の
充電電流I1 を設定する。なお本発明の充電方法では、
1段目の電流値を0.1〜0.2CAとし、2段目以降
の電流値を少しずつ(0.02〜0.03CAずつ)下
げていき、最小充電電流値を0.05CAとする。1段
目の電流値は、充電時間と充電器の性能に応じて決定さ
れる。1段目の電流値を大きくすると、充電時間は短縮
できるが、大電流を流し得るように回路を構成しなけれ
ばならない。これに対して1段目の電流値を小さくする
と、充電時間は長くなるが、大電流を流し得るように回
路を構成する必要がなく、回路を安価に構成できる。こ
のような事情を考慮して、1段目の電流値を0.1〜
0.2CAとした。この範囲であれば、充電時間があま
り長くならず、しかも回路の価格もあまり高くならな
い。
Next, in step ST4, the charging current I1 for the first time, that is, the first stage, is set. In the charging method of the present invention,
The current value of the first stage is set to 0.1 to 0.2 CA, and the current values of the second and subsequent stages are gradually reduced (by 0.02 to 0.03 CA), and the minimum charging current value is set to 0.05 CA. . The first-stage current value is determined according to the charging time and the performance of the charger. If the current value of the first stage is increased, the charging time can be shortened, but the circuit must be configured to allow a large current to flow. On the other hand, if the current value of the first stage is reduced, the charging time becomes longer, but the circuit does not need to be configured to allow a large current to flow, and the circuit can be configured at low cost. In consideration of such circumstances, the current value of the first stage is set to 0.1 to
0.2 CA. Within this range, the charging time will not be too long and the price of the circuit will not be too high.

【0027】次に予め定めた単位時間間隔Δtで単位時
間充電電気量を求めるために、ステップST5でタイマ
をスタートし、充電電流の通電を開始する。ステップS
T6の定電流制御ルーチンでは、ステップST4で設定
した充電電流I1 で定電流充電をするための制御指令を
電力供給回路3に出力する。ステップST6での停電流
充電制御は、充電電流検出回路7からの検出値に基づく
フィードバック制御である。ステップST7でタイマを
カウントし、ステップST8でタイマのカウント値tが
t=Δtになったことを検出すると、ステップST9で
単位時間当りの充電量即ち単位時間充電電気量CΔt
Δt=In×Δtの式で計算する。ここで本例では、
Δtを1秒に設定している。Inは、n段目の充電電流
である。
Next, in order to determine the amount of charged electricity per unit time at a predetermined unit time interval Δt, a timer is started in step ST5 to start supplying a charging current. Step S
In the constant current control routine of T6, a control command for performing constant current charging with the charging current I1 set in step ST4 is output to the power supply circuit 3. The stop current charging control in step ST6 is feedback control based on a detection value from the charging current detection circuit 7. In step ST7, the timer is counted. When it is detected in step ST8 that the count value t of the timer has reached t = Δt, in step ST9, the charge amount per unit time, that is, the unit time charge electricity amount C Δt is calculated as C Δt = In It is calculated by the formula of × Δt. Here, in this example,
Δt is set to one second. In is the charging current of the n-th stage.

【0028】そしてステップST10で、単位時間充電
電気量を積算して総充電電気量ΣCΔtを求める。すな
わちステップST10では、ΣCΔt=ΣCΔt+C
Δtの演算を実行する。ステップST11では、充電電
流値が2段目以降のものか否か、即ちInのnが2以上
であるか否かを判定する。n=1すなわち1段目であれ
ば、ステップST12へ進み、端子電圧検出回路5から
入力される鉛蓄電池の端子電圧VΔtが前述の電流切替
電圧Vo以上になっているか否かの判定が実行される。
鉛蓄電池の端子電圧VΔtが前述の電流切替電圧Vo以
上になっていなければ、ステップST13へと進んでタ
イマクリアされ、ステップST6に戻り、ステップST
6〜ST13が繰り返される。
Then, in step ST10, the total amount of charged electricity ΔC Δt is obtained by integrating the amount of charged electricity per unit time. That is, in step ST10, ΣC Δt = ΣC Δt + C
The calculation of Δt is performed. In step ST11, it is determined whether or not the charging current value is the second or subsequent stage, that is, whether or not n of In is 2 or more. If n = 1, that is, the first stage, the process proceeds to step ST12, and it is determined whether or not the terminal voltage V Δt of the lead storage battery input from the terminal voltage detection circuit 5 is equal to or higher than the above-described current switching voltage Vo. Is done.
If the terminal voltage V Δt of the lead storage battery has not become equal to or higher than the above-described current switching voltage Vo, the process proceeds to step ST13, the timer is cleared, and the process returns to step ST6.
6 to ST13 are repeated.

【0029】ステップST6〜ST13が繰り返された
結果、ステップST12で鉛蓄電池の端子電圧VΔt
前述の電流切替電圧Vo以上になったことを検出する
と、ステップST14へと進んで充電電流値が1段目で
あるか否かの判定を実行する。そして充電電流値が1段
目であれば、ステップST15で前述の計算放電電気量
Cx=α×C1 が演算され、さらに必要充電電気量Cy
=β×Cxが演算される。これらの演算に用いる1段目
の充電の開始から2段目の充電に切り替わるまでの初回
の充電電気量C1 は、ステップST10の演算結果すな
わち総充電電気量ΣCΔtを用いる。
The result of step ST6~ST13 is repeated, if in step ST12 the terminal voltage V Delta] t of the lead storage battery detects that equal to or higher than the current switching voltage Vo described above, the charging current value proceeds to step ST14 1 A determination is made as to whether or not it is a stage. If the charging current value is the first stage, the above-mentioned calculated electric discharge amount Cx = α × C1 is calculated in step ST15, and further, the necessary electric charge amount Cy is calculated.
= Β × Cx is calculated. The calculation result of step ST10, that is, the total charge amount ΣC Δt, is used as the initial charge amount C1 from the start of the first-stage charge to the switch to the second-stage charge.

【0030】ステップST15での演算が終了した後
は、ステップST16で充電電流値Inのnをn+1に
するステップが実行される。即ち充電電流値の切替が実
行される。この例では端子電圧VΔtが電流切替電圧V
oに達するたびに、充電電流値を0.02〜0.03C
Aずつ低下させる指令をステップST16で制御回路6
から電力供給回路3に出力する。そしてその後、ステッ
プST13に戻り、以後切替えられた充電電流値でステ
ップST6〜13が繰り返される。但し、充電電流値が
2段目以降(n≧2)になった場合には、ステップST
11からステップST17へと進み、ステップST17
でステップST10で求めた総充電電気量ΣCΔtがス
テップST15で求めた必要充電電気量Cyに達してた
否かの判定が実行される。そして総充電電気量ΣCΔt
<必要充電電気量Cyであれば、ステップST12に進
む。
After completion of the calculation in step ST15, a step of setting n of the charging current value In to n + 1 is performed in step ST16. That is, switching of the charging current value is executed. In this example, the terminal voltage V Δt is the current switching voltage V
o, the charging current value is reduced to 0.02-0.03C
In step ST16, the control circuit 6 issues a command to decrease A
To the power supply circuit 3. Thereafter, the process returns to step ST13, and steps ST6 to ST13 are repeated with the switched charging current value thereafter. However, when the charging current value becomes the second stage or later (n ≧ 2), step ST
The process proceeds from step 11 to step ST17 and proceeds to step ST17.
Then, it is determined whether or not the total amount of charged electricity 充電 C Δt determined in step ST10 has reached the required amount of charged electricity Cy determined in step ST15. And the total charge amount 電 気 C Δt
<If the required amount of electricity is Cy, the process proceeds to step ST12.

【0031】充電電流が2段目以降になっても、ステッ
プST6〜ST13が繰り返された結果、ステップST
12で鉛蓄電池の端子電圧VΔtが前述の電流切替電圧
Vo以上になったことを検出すると、ステップST14
へと進んで充電電流値が1段目であるか否かの判定を実
行する。そしてこの場合、充電電流が2段目以降である
から、ステップST15を飛び越えてステップST16
へと進み、充電電流の更なる切替が実行される。以後こ
の動作が繰り返される。なおこの例では、充電電流In
が0.05CA(最小充電電流値)になった時点で、ス
テップST16で電流の切替が実行されても、充電電流
値は0.05CA以下にならないようにしている。
Even if the charging current becomes the second or subsequent stage, as a result of repeating steps ST6 to ST13, step ST6 is repeated.
If it is detected in step 12 that the terminal voltage VΔt of the lead storage battery has become equal to or higher than the above-described current switching voltage Vo, step ST14
Then, it is determined whether or not the charging current value is at the first stage. In this case, since the charging current is in the second and subsequent stages, step ST15 is skipped to step ST16.
Then, further switching of the charging current is executed. Thereafter, this operation is repeated. In this example, the charging current In
Is set to 0.05 CA (minimum charging current value), the charging current value does not become 0.05 CA or less even if the current is switched in step ST16.

【0032】そしてステップST17で、総充電電気量
ΣCΔt≧必要充電電気量Cyが検出されると、充電が
完了したと判断してステップST18へと進み、充電動
作が停止される。即ちステップST18では、制御回路
6から電力供給回路3に充電停止指令が出力される。
If it is determined in step ST17 that the total amount of charged electricity ΣC Δt ≧ the required amount of charged electricity Cy has been detected, it is determined that the charging has been completed, the process proceeds to step ST18, and the charging operation is stopped. That is, in step ST18, a charge stop command is output from the control circuit 6 to the power supply circuit 3.

【0033】このようなアルゴリズムで充電を制御する
と、放電電気量が不明の鉛蓄電池の放電電気量の算出を
行うことにより、その鉛蓄電池が必要とする、最適の充
電量が算出できるので、過充電,充電不足のない適正な
充電が可能となる。
When the charging is controlled by such an algorithm, the optimum amount of charge required by the lead storage battery can be calculated by calculating the amount of discharge electricity of the lead storage battery whose discharge amount is unknown. Appropriate charging without charging and shortage is possible.

【0034】[0034]

【実施例】上記実施の形態に基づいて、ゴルフ場で使用
する電動カート用の鉛蓄電池の充電試験を行い、検討を
行った。なお、特開平7−78637号公報開示の鉛蓄
電池の充電方法は、通常ゴルフ場で使用する電動カート
用鉛蓄電池の放電電気量が不明なため使用できない。
EXAMPLE Based on the above embodiment, a charge test of a lead storage battery for an electric cart used in a golf course was conducted and examined. The method of charging a lead storage battery disclosed in Japanese Patent Application Laid-Open No. 7-78637 cannot be used because the amount of discharged electricity of a lead storage battery for an electric cart usually used at a golf course is unknown.

【0035】試験方法では平野部にあるゴルフ場Aと山
間部にあるゴルフ場Bの2ヶ所で1月,4月,7月の3
回、1ラウンド走行した電動カートの鉛蓄電池の放電電
気量及び充電電気量の測定を行った。放電電気量は通常
ゴルフ場で使用する場合不明であるが、今回は本発明の
方法の効果を確認するため特別に測定を行った。電動カ
ートには12V,65Ahの鉛蓄電池が2個搭載されて
いる。
According to the test method, golf course A in a plain area and golf course B in a mountainous area were measured at three places in January, April and July.
The amount of discharged electricity and the amount of charged electricity of the lead storage battery of the electric cart that ran one round each time were measured. Although the amount of discharge electricity is usually unknown when used in a golf course, this time a special measurement was made to confirm the effect of the method of the present invention. Two 12V, 65Ah lead storage batteries are mounted on the electric cart.

【0036】充電電流は1段目が0.125CAであ
り、2段目以降0.025CAずつ下げていった。但し
充電電流は0.05CAより小さくしないこととした。
試験結果を表1に示す。
The charging current was 0.125 CA in the first stage, and was decreased by 0.025 CA in the second and subsequent stages. However, the charging current was not smaller than 0.05 CA.
Table 1 shows the test results.

【0037】[0037]

【表1】 通常放電電気量の約1.2〜1.3倍が適正な充電電気
量であり、1.2倍未満は充電不足、1.3倍以上は過
充電である。これより、本発明の方法を実施した場合に
は、全条件において適正充電ができることが分った。そ
して本発明の方法を用いると、放電電気量が不明でも使
用環境の差異に対応し適正な充電ができることが確認で
きた。
[Table 1] Approximately 1.2 to 1.3 times the amount of normal discharged electricity is the appropriate amount of charged electricity, less than 1.2 times is insufficiently charged, and more than 1.3 times is overcharged. From this, it was found that when the method of the present invention was carried out, proper charging was possible under all conditions. Then, it was confirmed that when the method of the present invention was used, even if the amount of discharged electricity was unknown, appropriate charging could be performed according to the difference in the use environment.

【0038】[0038]

【発明の効果】上述したように本発明に係る鉛蓄電池の
充電方法では、充電中の鉛蓄電池の端子電圧を検出して
充電電流を2段または数段階に切替わる2段または多段
定電流充電方法を用いる場合において、放電電気量が不
明の鉛蓄電池においても、1段目の開始から2段目に切
り替わるまでの充電電気量に電解液温度によって定まる
係数を乗じて、放電電気量の算出を行う。そして、算出
した放電電気量に一定の係数を乗じることにより必要充
電電気量を算出することにより、鉛蓄電池に最適の充電
量を供給することとしたため、従来の鉛蓄電池の充電方
法に対し、過充電,充電不足のない適正な充電を行える
利点がある。
As described above, in the method for charging a lead-acid battery according to the present invention, the terminal voltage of the lead-acid battery being charged is detected, and the charging current is switched between two or several stages. In the case of using the method, even in a lead-acid battery having an unknown amount of discharged electricity, the amount of discharged electricity is calculated by multiplying the amount of charged electricity from the start of the first stage to the switching to the second stage by a coefficient determined by the electrolyte temperature. Do. Then, by calculating the required amount of charge by multiplying the calculated amount of discharged electricity by a constant coefficient, the optimal amount of charge is supplied to the lead-acid battery. There is an advantage that proper charging without charging and insufficient charging can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施する充電装置の一例の構成
のブロックである。
FIG. 1 is a block diagram illustrating an example of a configuration of a charging apparatus that implements a method of the present invention.

【図2】本発明の方法を実施する場合の充電パターンを
示す図である。
FIG. 2 is a diagram showing a charging pattern when the method of the present invention is performed.

【図3】制御回路のマイクロコンピュータを動作させる
充電制御プログラムのアルゴリズムの一例はを示すフロ
ーチャートである。
FIG. 3 is a flowchart illustrating an example of an algorithm of a charge control program for operating a microcomputer of a control circuit.

【図4】鉛蓄電池特性確認試験の結果を示す線図でる。FIG. 4 is a diagram showing the results of a lead storage battery characteristic confirmation test.

【符号の説明】[Explanation of symbols]

1 交流電源 2 直流化回路 3 電力供給回路 4 鉛蓄電池 5 端子電圧検出回路 6 制御回路 7 電流検出回路 8 温度検出回路 Reference Signs List 1 AC power supply 2 DC conversion circuit 3 Power supply circuit 4 Lead storage battery 5 Terminal voltage detection circuit 6 Control circuit 7 Current detection circuit 8 Temperature detection circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02J 7/04 H02J 7/04 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H02J 7/04 H02J 7/04 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 定電流充電中の鉛蓄電池の端子電圧を検
出し、前記端子電圧が電流切替電圧Voに達すると充電
電流値を低下させる多段階電流充電方法を用い、充電前
の放電電気量に基づいて必要充電電気量を求め、前記必
要充電電気量分だけ充電を行って充電不足及び過充電を
防止する鉛蓄電池の充電方法であって、1段目の充電の
開始から2段目の充電に切り替わるまでの充電電気量C
1 に電解液温度または電池周囲温度Tによって定まる係
数αを乗じて前記放電電気量Cxを求めることを特徴と
する鉛蓄電池の充電方法。
1. A multi-stage current charging method for detecting a terminal voltage of a lead storage battery during constant-current charging and reducing a charging current value when the terminal voltage reaches a current switching voltage Vo, and discharging electric power before charging. Is a charging method for a lead-acid battery, in which a required amount of charged electricity is obtained based on the above, and charging is performed for the required amount of charged electricity to prevent insufficient charging and overcharging. Charge electricity C before switching to charging
1. A method for charging a lead storage battery, wherein 1 is multiplied by a coefficient α determined by an electrolyte solution temperature or a battery ambient temperature T to obtain the amount of discharged electricity Cx.
【請求項2】 定電流充電中の鉛蓄電池の端子電圧を検
出し、前記端子電圧が電流切替電圧Voに達するたびに
充電電流値を低下させる多段階電流充電方法を用い、充
電前の放電電気量に基づいて必要充電電気量を求め、前
記必要充電電気量分だけ充電を行って充電不足及び過充
電を防止する鉛蓄電池の充電方法であって、 1段目の充電の開始から2段目の充電に切り替わるまで
の充電電気量C1 に電解液温度または電池周囲温度Tに
よって定まる係数αを乗じて前記放電電気量Cxを求
め、 前記放電電気量Cxに一定の係数βを乗じて必要充電電
気量を算出し、 1段目からn段目までの各段の充電電気量を積算して総
充電電気量を求め、 該総充電電気量が前記必要充電電気量に達すると充電を
停止することを特徴とする鉛蓄電池の充電方法。
2. A method of detecting a terminal voltage of a lead storage battery during constant current charging, and using a multi-stage current charging method in which a charging current value is reduced every time the terminal voltage reaches a current switching voltage Vo. A method for charging a lead storage battery in which a required amount of charged electricity is obtained based on the amount of charge, and charging is performed by the required amount of charged electricity to prevent insufficient charging and overcharging. Is calculated by multiplying the amount of charge C1 until the switching to the charging by a coefficient α determined by the electrolyte temperature or the battery ambient temperature T, to obtain the amount of discharged electricity Cx, and multiplying the amount of discharged electricity Cx by a constant coefficient β to obtain the required amount of charged electricity. Calculating the amount of charge, integrating the amount of charge in each stage from the first stage to the n-th stage to obtain a total amount of charge, and stopping charging when the total amount of charge reaches the required amount of charge. Method of charging lead storage battery characterized by the following
【請求項3】 前記係数αはα=5.56×10-42 −3.89
×10-2T+1.67の式により決定されることを特徴とする
請求項1または2に記載の鉛蓄電池の充電方法。
3. The coefficient α is α = 5.56 × 10 −4 T 2 −3.89
The method for charging a lead storage battery according to claim 1, wherein the method is determined by an equation of × 10 −2 T + 1.67.
【請求項4】 前記係数βは1.1〜1.3の範囲の値
から選択される請求項2に記載の鉛蓄電池の充電方法。
4. The method according to claim 2, wherein the coefficient β is selected from a value in a range of 1.1 to 1.3.
【請求項5】 定電流充電中の鉛蓄電池の端子電圧を検
出し、前記端子電圧が電流切替電圧Voに達するたびに
充電電流値を低下させ、充電電流値が最小充電電流値ま
で低下した後は充電電流値の低下を停止する多段定電流
充電方法を用いて多段階で充電を行う鉛蓄電池の充電方
法であって、 予め定めた単位時間間隔で単位時間充電電気量を求め、 前記単位時間充電電気量を積算して1段目の充電の開始
から2段目の充電に切り替わるまでの初回の充電電気量
C1 を求め、 電解液温度または電池周囲温度をTとしたときにα=5.
56×10-42 −3.89×10-2T+1.67の式で求めた係数α
を前記初回の充電電気量C1 に乗じて放電電気量Cxを
求め、 前記放電電気量Cxに1.1〜1.3の範囲の値から選
択した一定の係数βを乗じて必要充電電気量を算出し、 前記単位時間充電電気量に基づいて1段目からn段目ま
での各段の充電電気量を積算して総充電電気量を求め、 前記総充電電気量が前記必要充電電気量に達すると充電
を停止することを特徴とする鉛蓄電池の充電方法。
5. A method for detecting a terminal voltage of a lead storage battery during constant current charging, reducing a charging current value each time the terminal voltage reaches a current switching voltage Vo, and reducing the charging current value to a minimum charging current value. Is a method of charging a lead-acid battery that performs multi-stage charging using a multi-stage constant current charging method for stopping a decrease in a charging current value, wherein a unit time charging amount of electricity is obtained at a predetermined unit time interval, and The amount of charge electricity is integrated to obtain the first charge amount C1 from the start of the first-stage charge to the switch to the second-stage charge, and when the electrolyte temperature or the battery ambient temperature is T, α = 5.
56 × 10 -4 T 2 -3.89 × 10 -2 T + 1.67
Is multiplied by the initial charge amount C1 to obtain a discharge amount Cx. The discharge amount Cx is multiplied by a constant coefficient β selected from a value in a range of 1.1 to 1.3 to obtain a required charge amount. Calculating the total amount of charge in each stage from the first stage to the n-th stage based on the amount of charge per unit time to obtain a total amount of charge, and the total amount of charge becomes the required amount of charge. A charging method for a lead-acid battery, wherein charging is stopped when the battery reaches the temperature.
【請求項6】 1セル当たりの前記電流切替電圧Vo
は、Toを周囲温度としたときに、Vo=2.44+5.58 ×
10-3×Toの式により決定されることを特徴とする請求
項2または5に記載の鉛蓄電池の充電方法。
6. The current switching voltage Vo per cell.
Is, when To is the ambient temperature, Vo = 2.44 + 5.58 ×
The method for charging a lead storage battery according to claim 2, wherein the method is determined by an equation of 10 −3 × To.
【請求項7】 前記1段目の充電に用いる充電電流値
は、0.1CA〜0.2CAとし、前記最小充電電流値
を0.05CAとすることを特徴とする請求項2または
5に記載の鉛蓄電池の充電方法。
7. The charging current value used for the first-stage charging is 0.1 CA to 0.2 CA, and the minimum charging current value is 0.05 CA. How to charge a lead storage battery.
【請求項8】 前記端子電圧が前記電流切替電圧に達す
るたびに、前記充電電流値を0.02〜0.03CAず
つ低下させることを特徴とする請求項7に記載の鉛蓄電
池の充電方法。
8. The method according to claim 7, wherein the charging current value is reduced by 0.02 to 0.03 CA each time the terminal voltage reaches the current switching voltage.
JP9295291A 1997-10-28 1997-10-28 Charging of lead-acid battery Withdrawn JPH11136876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9295291A JPH11136876A (en) 1997-10-28 1997-10-28 Charging of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9295291A JPH11136876A (en) 1997-10-28 1997-10-28 Charging of lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11136876A true JPH11136876A (en) 1999-05-21

Family

ID=17818711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9295291A Withdrawn JPH11136876A (en) 1997-10-28 1997-10-28 Charging of lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11136876A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049916A (en) * 2008-08-21 2010-03-04 Sanyo Electric Co Ltd Method for controlling charge of secondary battery and secondary battery device
WO2011033700A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Nonaqueous electrolyte secondary battery charging method and charging device
WO2013051863A2 (en) * 2011-10-04 2013-04-11 주식회사 엘지화학 Apparatus and method for charging a battery
KR101301164B1 (en) * 2006-05-24 2013-09-03 야마하하쓰도키 가부시키가이샤 Charge control device
KR101303164B1 (en) * 2012-01-04 2013-09-09 엘지전자 주식회사 Battery charging device, energy stroge system having the same, and method for charging battery
JP5289576B2 (en) * 2009-09-18 2013-09-11 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method and charging device
JP2013207856A (en) * 2012-03-27 2013-10-07 Toyota Industries Corp Charger for lead acid battery
KR101332642B1 (en) * 2012-01-05 2013-11-25 (주)이피에스코리아 Hybrid energy storage apparatus
KR101469444B1 (en) * 2008-12-26 2014-12-05 린나이코리아 주식회사 Charge-discharge controlling method for battery in commercial mulit-stage rice cooker
JP2015149831A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Charger
KR20160135658A (en) * 2015-05-18 2016-11-28 에스아이아이 세미컨덕터 가부시키가이샤 Constant current charging device
CN111313116A (en) * 2020-03-20 2020-06-19 潘景宜 Quick charging method of lead-acid storage battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301164B1 (en) * 2006-05-24 2013-09-03 야마하하쓰도키 가부시키가이샤 Charge control device
JP2010049916A (en) * 2008-08-21 2010-03-04 Sanyo Electric Co Ltd Method for controlling charge of secondary battery and secondary battery device
KR101469444B1 (en) * 2008-12-26 2014-12-05 린나이코리아 주식회사 Charge-discharge controlling method for battery in commercial mulit-stage rice cooker
WO2011033700A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Nonaqueous electrolyte secondary battery charging method and charging device
JP5289576B2 (en) * 2009-09-18 2013-09-11 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method and charging device
JP5289558B2 (en) * 2009-09-18 2013-09-11 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method and charging device
US9190863B2 (en) 2011-10-04 2015-11-17 Lg Chem, Ltd. Apparatus and method for charging battery by lowering charge power in phase
WO2013051863A2 (en) * 2011-10-04 2013-04-11 주식회사 엘지화학 Apparatus and method for charging a battery
WO2013051863A3 (en) * 2011-10-04 2013-07-04 주식회사 엘지화학 Apparatus and method for charging a battery
KR101419749B1 (en) * 2011-10-04 2014-08-13 주식회사 엘지화학 Apparatus and method for battery charging
KR101303164B1 (en) * 2012-01-04 2013-09-09 엘지전자 주식회사 Battery charging device, energy stroge system having the same, and method for charging battery
KR101332642B1 (en) * 2012-01-05 2013-11-25 (주)이피에스코리아 Hybrid energy storage apparatus
JP2013207856A (en) * 2012-03-27 2013-10-07 Toyota Industries Corp Charger for lead acid battery
JP2015149831A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Charger
KR20160135658A (en) * 2015-05-18 2016-11-28 에스아이아이 세미컨덕터 가부시키가이샤 Constant current charging device
CN111313116A (en) * 2020-03-20 2020-06-19 潘景宜 Quick charging method of lead-acid storage battery
CN111313116B (en) * 2020-03-20 2022-07-19 潘景宜 Rapid charging method of lead-acid storage battery

Similar Documents

Publication Publication Date Title
CA1260058A (en) Controller for battery charger
US6495992B1 (en) Method and apparatus for charging batteries utilizing heterogeneous reaction kinetics
CN108663620B (en) Power battery pack state of charge estimation method and system
EP1353191B1 (en) Apparatus and method for detecting the state of a battery
US8040110B2 (en) Stress management of battery recharge, and method of state of charge estimation
EP1460709B1 (en) Method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
JP3043808B2 (en) Method for charging rechargeable batteries particularly quickly
CN107359376B (en) Battery charging method, device and equipment
JP3641367B2 (en) Alkaline battery capacity remaining amount estimation method and capacity estimation device
JPH11136876A (en) Charging of lead-acid battery
US5291117A (en) Method and an apparatus for charging a battery
EP0505333A2 (en) Estimating the charge of batteries
US5233284A (en) System and method for rapid charging of a battery
US6215282B1 (en) Battery charging system employing multi-mode low power fast charge process
JP2022536437A (en) Battery management system, battery pack, electric vehicle and battery management method
JP3391227B2 (en) How to charge lead storage batteries
JP2021157926A (en) Secondary battery device and secondary battery system
US20240044994A1 (en) Battery deterioration diagnosis device and battery deterioration diagnosis method
JP3707636B2 (en) Charge control method and charge control device
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery
JPH11313445A (en) Charging of lead-acid battery and apparatus thereof
JPH0980130A (en) Storage battery capacity measurement method
JPH08339834A (en) Method of determining deterioration degree of storage battery and device for determining deterioration degree
JPH1174001A (en) Charging method for lead-acid battery
JPH08182215A (en) Charging method and charging apparatus for secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104