JPH08149709A - Charger for secondary battery - Google Patents

Charger for secondary battery

Info

Publication number
JPH08149709A
JPH08149709A JP28697994A JP28697994A JPH08149709A JP H08149709 A JPH08149709 A JP H08149709A JP 28697994 A JP28697994 A JP 28697994A JP 28697994 A JP28697994 A JP 28697994A JP H08149709 A JPH08149709 A JP H08149709A
Authority
JP
Japan
Prior art keywords
charging
battery
current
pulse waveform
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28697994A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
健司 高橋
Toru Sugawara
徹 菅原
Kenichiro Tsuru
憲一朗 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP28697994A priority Critical patent/JPH08149709A/en
Publication of JPH08149709A publication Critical patent/JPH08149709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To charge a nickel-cadmium battery and a nickel-hydrogen battery while suppressing the memory effect. CONSTITUTION: Sections where no current flow (pause sections) and pulse charging and discharging current sections are combined while setting the charging section t1 =7ms, the pause section t2 =2ms, the discharge section t3 =1ms and the charge/discharge current at 1.5A thus charging a nickel-hydrogen battery. Subsequent battery voltage variation amount is then detected based on the temperature, a temperature rise rate, a voltage and the maximum voltage of battery during the charging operation. Finally, a decision is made whether the charging operation is stopped or a transition is made to trickle charging based on the detected values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
電池、ニッケル・水素電池、シール鉛蓄電池等の密閉形
二次電池の充電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for sealed secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries and sealed lead-acid batteries.

【0002】[0002]

【従来の技術】ポータブル機器の電源として主に用いら
れている二次電池には、ニッケル・カドミウム電池、及
びシール鉛蓄電池がある。また、最近はニッケル・水素
電池が盛んに使われるようになった。これらの中で、ニ
ッケル・カドミウム電池、ニッケル・水素電池は、浅い
放電深度で充電と放電を繰り返すと、放電初期に電圧が
急降下する(以下、この現象を「メモリー効果」と記
す)。この状態になると、実際には電池内部に電気エネ
ルギーが残っているにもかかわらず、十分にこれを取り
出すことができなくなってしまう。これを解消するため
に特開平5−227671号公報では、充電対象電池を
完全放電してから充電することを提案している。これは
図13のフローチャートに示すように、充電対象の電池
の電圧が基準電圧Aよりも低いときは直ちに充電をし、
基準電圧Aよりも高いとき、放電抵抗により放電させて
基準電圧Aより低くなったとき充電するようにしたもの
である。そして、基準電圧Bより高くなったときに充電
を終了する。また、これらの二次電池を充電するにはそ
れぞれの二次電池に適した充電方法で充電しなければな
らない。図11はニッケル・カドミウム電池の充電特性
を示したものである。ここでは、充電末期に生じる電池
電圧の降下特性を利用して、ピーク電圧を検出し、そこ
から電池電圧が所定値Vcだけ下がったことを検出す
る、いわゆる−ΔV方式により充電電流を制御してい
る。ニッケル・水素電池についても同様に−ΔV方式を
用いるが、ニッケル・水素電池は、充電において温度上
昇が大きく、発熱による電池内圧上昇で漏液する危険性
があるため、充電時の温度を監視し、必要に応じて充電
を停止することが主流である。図12はシール鉛蓄電池
の充電特性を示し、電池電圧が一定電圧に達すると充電
電流を制御している。
2. Description of the Related Art Secondary batteries mainly used as a power source for portable devices include nickel-cadmium batteries and sealed lead-acid batteries. Also, recently nickel-hydrogen batteries have been widely used. Among these, the nickel-cadmium battery and the nickel-hydrogen battery have a sharp drop in voltage at the initial stage of discharge when charging and discharging are repeated at a shallow depth of discharge (hereinafter, this phenomenon is referred to as "memory effect"). In this state, although electric energy actually remains inside the battery, it cannot be sufficiently extracted. In order to solve this, Japanese Patent Laid-Open No. 5-227671 proposes that the battery to be charged is completely discharged and then charged. As shown in the flowchart of FIG. 13, when the voltage of the battery to be charged is lower than the reference voltage A, the battery is charged immediately,
When it is higher than the reference voltage A, it is discharged by a discharge resistor and when it becomes lower than the reference voltage A, it is charged. Then, when the voltage becomes higher than the reference voltage B, the charging is terminated. Moreover, in order to charge these secondary batteries, they must be charged by a charging method suitable for each secondary battery. FIG. 11 shows the charging characteristics of the nickel-cadmium battery. Here, the charging current is controlled by the so-called −ΔV method, which utilizes the battery voltage drop characteristic occurring at the end of charging to detect the peak voltage and detect that the battery voltage has dropped by a predetermined value Vc. There is. Similarly, the -ΔV method is also used for nickel-hydrogen batteries, but the temperature of the nickel-hydrogen battery is monitored during charging because the temperature rises significantly during charging and there is a risk of leakage due to an increase in battery internal pressure due to heat generation. The mainstream is to stop charging when necessary. FIG. 12 shows the charging characteristics of the sealed lead-acid battery, in which the charging current is controlled when the battery voltage reaches a constant voltage.

【0003】[0003]

【発明が解決しようとする課題】上記メモリー効果が現
われたニッケル・カドミウム電池やニッケル・水素電池
を、上記特開平5−227671号公報に示されている
技術で充電しても、電池がメモリー効果の状態から十分
に回復されない。また、上記のように、ニッケル・カド
ミウム電池と、ニッケル・水素電池と、シール鉛蓄電池
では充電特性が異なるため、一つの充電装置でそれぞれ
の電池に適切な充電をすることが困難であった。また、
ニッケル・カドミウム電池、ニッケル・水素電池におい
て電池温度が常温に比べ高い状態で従来の−△V方式の
充電装置で充電した場合、電圧降下Vcが出にくくな
る。また、電池温度が常温に比べ低い状態で充電しよう
とすると、内部インピーダンスが高くなるため、発熱が
大きくなる また、短絡した電池を従来の−△V方式の充電装置で充
電した場合、当然電圧変化、電池温度変化が起こらない
ため電圧降下Vcが出ず、電池温度が高温にもならない
ため、いつまでたっても充電が終わらない。また、長期
放置したニッケル・カドミウム電池、ニッケル・水素電
池は電極が不活性化するため、上記−△V方式の充電装
置で充電した場合電圧降下Vcを検出することができず
過充電になったり、充電開始直後(数分以内)にピーク
電圧が現れ、電圧降下Vcを検出したものと誤判定して
充電を停止し、必要な充電を行うことができないという
欠点がある。
Even if the nickel-cadmium battery or the nickel-hydrogen battery having the above-mentioned memory effect is charged by the technique disclosed in the above-mentioned Japanese Patent Laid-Open No. 5-227671, the battery has the memory effect. Not fully recovered from the state of. Further, as described above, since the charging characteristics of the nickel-cadmium battery, the nickel-hydrogen battery, and the sealed lead-acid battery are different, it is difficult to properly charge each battery with one charging device. Also,
Nickel-cadmium batteries, the battery temperature in the nickel-hydrogen battery is conventional in a state of high compared with the normal temperature - when charged by the charging device of △ V system, the voltage drop V c hardly appear. In addition, if the battery temperature is lower than that of the normal temperature, the internal impedance increases and the heat generation increases, and when the short-circuited battery is charged by the conventional −ΔV type charging device, the voltage changes naturally. not out voltage drop V c for the battery temperature change does not occur, since the battery temperature does not become high temperature, the charging does not end even after forever. Moreover, long-term standing nickel-cadmium batteries, for nickel-hydrogen batteries having electrodes inactivate, the - △ if charged by the charging device of the V type not capable of sensing the voltage drop V c overcharged Alternatively, a peak voltage appears immediately after the start of charging (within a few minutes), and it is erroneously determined that the voltage drop V c has been detected, so that charging is stopped and necessary charging cannot be performed.

【0004】本発明の第1の目的は、ニッケル・カドミ
ウム電池、ニッケル・水素電池におけるメモリー効果を
低減する充電装置を提供することである。本発明の第2
の目的は、上記第1の目的を達成し、且つ、ニッケル・
カドミウム電池、ニッケル・水素電池、シール鉛蓄電池
等の密閉形二次電池を種類を問わず適切に充電する充電
装置を提供することである。本発明の第3の目的は、上
記第1、第2の目的を達成し、且つ、充電前の電池温度
が常温に比べ高い場合や常温に比べ低い場合、電池が短
絡している場合に電池を充電させないような保護機能を
備えた充電装置を提供することである。本発明の第4の
目的は、上記第1〜3の目的を達成し、且つ、電池を長
期放置して電極が不活性化したものに対しても適切な充
電を行うことのできる充電装置を提供することである。
A first object of the present invention is to provide a charging device which reduces the memory effect in nickel-cadmium batteries and nickel-hydrogen batteries. Second of the present invention
The purpose of achieving the above-mentioned first purpose, and
It is an object of the present invention to provide a charging device that appropriately charges sealed secondary batteries such as cadmium batteries, nickel-hydrogen batteries, and sealed lead-acid batteries regardless of type. A third object of the present invention is to achieve the above first and second objects, and to provide a battery when the battery temperature before charging is higher or lower than room temperature, or when the battery is short-circuited. An object of the present invention is to provide a charging device having a protection function that prevents the battery from being charged. A fourth object of the present invention is to provide a charging device which achieves the above-mentioned first to third objects and is capable of performing appropriate charging even for a battery whose electrodes are inactivated by leaving it for a long time. Is to provide.

【0005】[0005]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明における充電装置は、パルス波形をな
す充電電流と、パルス波形をなす放電電流とを組み合わ
せ、前記充電電気量を放電電気量より大きくした第1の
充電手段を備えたことを特徴とする。ここでは、パルス
波形に電流の流れない区間が含まれていてもかまわな
い。上記第2の目的を達成するためには、第1の充電手
段の動作中に、電池温度T0を検出する手段及びT0の上
昇率ΔT0を検出する手段と、第1の充電手段の動作中
に、電流の流れない区間で電池電圧Voffを検出する手
段及び所定時間の間におけるVoffの変動ΔVを検出す
る手段と、次の(a)〜(d)のいずれかの場合に第1
の充電手段を停止するか、あるいは第1の充電手段を停
止後、微小電流によるトリクル充電を行う第2の充電手
段を備えていること特徴とする。 (a)ΔVが負の値になってからの電池電圧の降下Vc
が、Vc≧所定電圧量Va (b)T0≧所定温度Tc (c)ΔT0≧所定値ΔTa (d)所定の設定時間tの間、|ΔV|≦所定の設定値V
上記第3の目的を達成するために、第1の充電手段の動
作前に電池電圧Vを検出する手段及び電池温度Tを検出
する手段と、次の(e)〜(f)のいずれかの場合に第
1の充電手段を動作させない手段を備えていることを特
徴とする。 (e)V≧所定値Vでない (f)所定の設定温度TH≧T≧所定の設定温度TL(但
しTH>TL)でない 上記第4の目的を達成するためには、パルス波形をなす
充電電流が流れている区間で電池電圧Vonを検出する手
段と、前記電池電圧Von、電池電圧Voff、パルス波形
をなす充電電流Iにより電池の内部インピーダンスを演
算する手段と、前記インピーダンスの値により、前記パ
ルス波形をなす充電電流と、パルス波形をなす放電電流
を流す時間の割合を変化させる手段及び/または前記パ
ルス波形をなす充電電流と前記パルス波形をなす放電電
流の大きさを相対的に変化させる手段とを備えているこ
とを特徴とする。
In order to achieve the above first object, the charging device according to the present invention combines a charging current having a pulse waveform and a discharging current having a pulse waveform to obtain the charging electricity amount. It is characterized in that it is provided with a first charging means that is larger than the amount of discharged electricity. Here, the pulse waveform may include a section in which no current flows. Above to achieve the second object, during operation of the first charging means, means for detecting the increase rate [Delta] T 0 means and T 0 that detects a battery temperature T 0, the first charging means During operation, a means for detecting the battery voltage V off in a section where no current flows, a means for detecting a variation ΔV of V off during a predetermined time, and any one of the following (a) to (d): First
The second charging means is provided for performing trickle charging with a small current after stopping the charging means or after stopping the first charging means. (A) Battery voltage drop V c after ΔV becomes negative
, V c ≧ predetermined voltage amount V a (b) T 0 ≧ predetermined temperature T c (c) ΔT 0 ≧ predetermined value ΔT a (d) | ΔV | ≦ predetermined set value V for a predetermined set time t
d To achieve the third object, a means for detecting the battery voltage V and a means for detecting the battery temperature T before the operation of the first charging means, and one of the following (e) to (f): In this case, the first charging means is not operated. (E) V ≧ predetermined value VL is not satisfied (f) Predetermined set temperature T H ≧ T ≧ predetermined set temperature T L (provided that TH > T L ) is not satisfied. In order to achieve the fourth object, a pulse is used. Means for detecting the battery voltage V on in a section where a charging current having a waveform flows, means for calculating the internal impedance of the battery by the battery voltage V on , the battery voltage V off , and the charging current I having a pulse waveform, Means for changing the ratio of the charging current having the pulse waveform to the discharge current having the pulse waveform and / or the magnitude of the charging current having the pulse waveform and the discharging current having the pulse waveform according to the impedance value. And a means for relatively changing the height.

【0006】[0006]

【作用】本発明ではパルス波形をなす電流による充電を
行っている。この時、パルス波形における放電電気量に
対し、充電電気量を大きくすることで充電の進行が可能
となる。
In the present invention, charging is performed by the current having a pulse waveform. At this time, the charging can be advanced by increasing the charging amount of electricity with respect to the discharging amount of electricity in the pulse waveform.

【0007】パルス波形をなす電流の例を図1に示す。
図1(a)は、充電区間t1、放電区間t3がそれぞれ所
定時間の値を持ち、交互に連続して繰り返すものであ
る。図1(b)は、充電区間t1、電流の流れない区間
(以下、「休止区間」と記す)t2、放電区間t3がそれ
ぞれ所定時間の値を持ち、周期的に連続して繰り返すも
のである。図1(c)は、充電区間t1、放電区間t3
休止区間t2、がそれぞれ所定時間の値を持ち、周期的
に連続して繰り返すものである。図1(d)は、充電区
間t1、休止区間t2、放電区間t3、休止区間t2、がそ
れぞれ所定時間の値を持ち、周期的に連続して繰り返す
ものである。本発明によれば、二次電池の充電中に放電
を入れるため、ニッケル・カドミウム電池、ニッケル・
水素電池におけるメモリー効果を低減できる。この理由
は明らかではないが、特開昭64−81628号公報に
示される、パルス波形をなす電流による充電と、充電休
止の繰り返しにより二次電池の充電を行う方法では前記
低減効果がみられないことから、二次電池の充電中に放
電を入れることが何らかの作用をしていると考えられ
る。
An example of a current having a pulse waveform is shown in FIG.
In FIG. 1A, the charging section t 1 and the discharging section t 3 each have a value of a predetermined time, and are alternately and continuously repeated. In FIG. 1B, a charging section t 1 , a section in which no current flows (hereinafter referred to as “pause section”) t 2 , and a discharging section t 3 each have a value of a predetermined time, and are repeated continuously in a cyclic manner. It is a thing. FIG. 1C shows a charging section t 1 , a discharging section t 3 ,
Each of the pause sections t 2 has a value of a predetermined time, and is periodically repeated. In FIG. 1D, the charging section t 1 , the rest section t 2 , the discharging section t 3 , and the rest section t 2 each have a value of a predetermined time, and are cyclically and continuously repeated. According to the present invention, since the secondary battery is discharged during charging, a nickel-cadmium battery, a nickel-cadmium battery,
The memory effect in a hydrogen battery can be reduced. The reason for this is not clear, but the method of charging the secondary battery by repeating charging with a current having a pulse waveform and charging suspension as shown in JP-A-64-81628 does not show the above-mentioned reduction effect. From this, it is considered that discharging the secondary battery during charging has some effect.

【0008】本発明による充電装置の充電の制御は、ニ
ッケル・カドミウム電池、ニッケル・水素電池などの場
合は、請求項3記載の(a)の条件判断で充電末期に生
じる所定の電圧降下Vcを検出することで充電停止とす
るか、または、(b)(c)の条件判断で充電中の電池
温度が高くなりすぎたりあるいは電池温度の上昇量が著
しくなった場合充電停止とする。シール鉛蓄電池等の場
合は、(d)の条件判断により充電停止とする。そのよ
うにすることで、電池の種類を問わず密閉形二次電池の
充電を適切に行うことができる。上記充電制御の際に検
出する電池電圧は、休止区間t2で行うのが好ましい。
その理由の一つは、パルス波形をなす電流による充電
時、または放電時には、ノイズの影響を受けて、正確な
電池電圧の検出を行いにくいからである。もう一つの理
由は、電流の流れていない区間に電池電圧を検出するた
め、電池の内部抵抗、電池と接続する接続端子の接触抵
抗等の影響を受けにくいからである。
[0008] Control of the charging of the charging device according to the invention, a nickel-cadmium batteries, in the case of such a nickel-hydrogen battery, a predetermined voltage drop V c caused the end of charging in the condition judgment of Claim 3 wherein (a) Is detected to stop charging, or if the battery temperature during charging becomes too high or the battery temperature rises significantly according to the conditions (b) and (c), charging is stopped. In the case of a sealed lead-acid battery or the like, charging is stopped according to the condition judgment of (d). By doing so, the sealed secondary battery can be appropriately charged regardless of the type of the battery. It is preferable that the battery voltage detected during the charge control is performed in the rest period t 2 .
One of the reasons is that it is difficult to accurately detect the battery voltage due to the influence of noise during charging or discharging with a current having a pulse waveform. Another reason is that the battery voltage is detected in a section in which no current flows, so that it is unlikely to be affected by the internal resistance of the battery and the contact resistance of the connection terminal connected to the battery.

【0009】さらに第1の充電手段を動作させる前に電
池電圧を検出する手段を設けることにより請求項5記載
の(e)の条件判断で電池が短絡していることを検出し
て、無駄な充電を避けることができる。さらに充電開始
前に電池温度を検出する手段を設けることにより請求項
5記載の(f)の条件判断で、充電操作に適さない温度
条件で第1の充電手段による充電を行うことを回避する
ことができる。
Further, by providing a means for detecting the battery voltage before operating the first charging means, it is detected that the battery is short-circuited by the condition judgment of (e) of claim 5 and it is useless. You can avoid charging. Further, by providing a means for detecting the battery temperature before the start of charging, it is possible to avoid performing the charging by the first charging means under the temperature condition not suitable for the charging operation in the condition judgment of (f) according to claim 5. You can

【0010】長期放置した電池は、電池の内部インピー
ダンスが通常よりも高くなっている。そこで充電開始直
後に電池の内部インピーダンスを測定し、その値が高い
時、パルス充電の一単位中での放電時間の割合を大きく
とることで適切な充電をできる。この理由は明らかでは
ないが、放電時間の割合を大きくすることで長期放置に
より不活性化した極板が活性化されるためと考えられ
る。また、前記インピーダンスの値が高い時、パルス波
形の充電電流値より、パルス波形の放電電流値を大きく
することでも前記と同様の効果が得られる。また、電池
の内部インピーダンスは、充電区間t1での電池電圧、
休止区間t2での電池電圧を検出し、それらの値と充電
区間t1での充電電流Iとで演算することで行う。充電
のON、OFF、放電のON、OFFはマイクロコンピ
ュータの信号により制御部のスイッチ回路によって行う
ため、充電、放電電流の変更は容易に行える。
A battery that has been left for a long time has a higher internal impedance than usual. Therefore, the internal impedance of the battery is measured immediately after the start of charging, and when the value is high, appropriate charging can be performed by increasing the ratio of the discharge time in one unit of pulse charging. The reason for this is not clear, but it is considered that the electrode plate that has been inactivated by being left for a long time is activated by increasing the ratio of the discharge time. Further, when the impedance value is high, the same effect as described above can be obtained by making the discharge current value of the pulse waveform larger than the charging current value of the pulse waveform. Further, the internal impedance of the battery is the battery voltage in the charging section t 1 ,
It is performed by detecting the battery voltage in the pause section t 2 and calculating the value of the battery voltage and the charging current I in the charging section t 1 . Since the switch circuit of the control unit turns on and off the charge and turns on and off the discharge by the signal of the microcomputer, the change of the charge and discharge currents can be easily performed.

【0011】[0011]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図5は本発明の一実施例の充電装置概略構成を示す
ブロック図である。電池温度測定部2はサーミスタ等の
温度検出素子であり、これにより二次電池1の電池温度
が測定される。マイクロコンピュータ3は、CPU(セ
ントラル・プロセッシング・ユニット)31、メモリ3
2、出力ポート33、入力ポートのA/D変換器(アナ
ログ・デジタル変換器)34等を内蔵しており、電池電
圧測定部7により測定された電池の電圧、及び電池温度
測定部2によって測定された電池温度の信号をA/D変
換器34に入力する。この入力をCPU31及びメモリ
32によって信号処理し、出力ポート33より出力信号
を発生する。制御部4では、マイクロコンピュータ3か
らの出力信号を受けて第1の充電手段を停止するかどう
かの制御と、充電区間、休止区間、放電区間の切り替え
の制御をしている。充電部5は二次電池1に充電電流を
供給する。放電部6は二次電池1を放電するための放電
抵抗である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 is a block diagram showing a schematic configuration of a charging device according to an embodiment of the present invention. The battery temperature measuring unit 2 is a temperature detecting element such as a thermistor, and the battery temperature of the secondary battery 1 is measured by this. The microcomputer 3 includes a CPU (Central Processing Unit) 31, a memory 3
2. Built-in A / D converter (analog / digital converter) 34 for the output port 33 and the input port, and the like. Measured by the battery voltage measured by the battery voltage measuring unit 7 and the battery temperature measuring unit 2. The battery temperature signal thus generated is input to the A / D converter 34. This input is subjected to signal processing by the CPU 31 and the memory 32, and an output signal is generated from the output port 33. The control unit 4 controls whether to stop the first charging means in response to the output signal from the microcomputer 3 and controls switching between the charging section, the rest section, and the discharging section. The charging unit 5 supplies a charging current to the secondary battery 1. The discharging unit 6 is a discharging resistor for discharging the secondary battery 1.

【0012】(実施例1 請求項1、2に対応) (実験1)ニッケル・カドミウム電池、ニッケル・水素
電池を用い充電した時のメモリー効果低減効果を示す。 (実施例1a)本実施例では図1(b)に示されるパル
ス波形をなす電流において充電区間t1=7ms、休止
区間t2=2ms、放電区間t3=1msとし、そのとき
の充電、放電電流を1.5Aとしてニッケル・水素電池
(公称容量1100mAh)の単電池を充電し、充電停
止後に放電を1Cで終止電圧1.0Vまで行う。これを
1サイクル目だけ行う。その後、2サイクル目から10
0サイクル目までは上記と同じ充電条件で充電し、放電
を1Cで終止電圧を1.2Vまで行う充放電を繰り返し
た。その後101、102サイクル目は1サイクル目と
同様の充放電を行なった。
Example 1 Corresponding to Claims 1 and 2 (Experiment 1) The effect of reducing the memory effect when a nickel-cadmium battery or a nickel-hydrogen battery is charged is shown. (Embodiment 1a) In this embodiment, the charging section t 1 = 7 ms, the rest section t 2 = 2 ms, and the discharging section t 3 = 1 ms in the current having the pulse waveform shown in FIG. A nickel-hydrogen battery (nominal capacity: 1100 mAh) is charged with a discharge current of 1.5 A, and after the charging is stopped, discharging is performed at 1 C up to a final voltage of 1.0 V. This is done only in the first cycle. Then from the second cycle, 10
Up to the 0th cycle, charging was carried out under the same charging conditions as above, and discharging was repeated at 1 C and a final voltage of 1.2 V was repeated. After that, the 101st and 102nd cycles were charged and discharged in the same manner as the first cycle.

【0013】(比較例1)充電時のパルス波形をなす電
流の充電区間t1=7ms、休止区間t2=3msとし、
放電区間を入れなかった(t3=0)。それ以外は実施
例1aと全く同じ条件で充放電サイクル試験を行った。
(Comparative Example 1) A charging period t 1 = 7 ms and a rest period t 2 = 3 ms of a current having a pulse waveform during charging are set,
No discharge section was inserted (t 3 = 0). A charge / discharge cycle test was conducted under the same conditions as in Example 1a except for the above.

【0014】図6に上記条件で充放電サイクル試験を行
ったときの放電カーブを示した。図中の放電カーブに付
した数字は、その放電を行ったときの充放電サイクル数
を示す。100サイクル目の放電容量を比べると、実施
例1aは比較例1より容量低下が少ない。従って、本発
明による充電装置で充電した電池は、放電終止電圧を
1.2Vとした、浅い放電を繰り返した場合に現われる
メモリー効果が明らかに低減されていることがわかる。
また、101サイクル目に終止電圧1.0Vまで深く放
電した後の102サイクル目の電池電圧及び放電容量の
回復が、実施例1aの方が明らかに良いという効果もみ
られた。これは、実施例1aの充電装置による場合は充
電時の温度上昇が少なく、電池の劣化が抑えられ、また
電極が不活性になることを抑えているからであると考え
られる。上記のメモリー効果の低減効果は、ニッケル・
カドミウム電池を用いた場合でも同様に得られた。ま
た、この効果は図1(a)(c)(d)のパルス波形を
なす電流とした場合にも同様に得られた。
FIG. 6 shows a discharge curve when a charge / discharge cycle test was conducted under the above conditions. The number attached to the discharge curve in the figure indicates the number of charge / discharge cycles when the discharge is performed. Comparing the discharge capacities at the 100th cycle, Example 1a shows less decrease in capacity than Comparative Example 1. Therefore, it can be seen that the battery charged by the charging device according to the present invention has a clear reduction in the memory effect that appears when the discharge is repeated and the discharge is repeated at a shallow discharge.
In addition, the effect of clearly improving the battery voltage and the discharge capacity at the 102nd cycle after the deep discharge to the final voltage of 1.0V at the 101st cycle was found in Example 1a. This is considered to be because the temperature rise during charging was small in the case of the charging device of Example 1a, battery deterioration was suppressed, and electrode inactivation was suppressed. The above memory effect reduction effect is
Similar results were obtained when using a cadmium battery. Further, this effect was similarly obtained when the currents having the pulse waveforms of FIGS. 1 (a) (c) (d) were used.

【0015】次にパルス波形をなす電流による充電時
間、放電時間を変化させたときのメモリー効果の低減効
果を以下に示す。 (実施例1b)ニッケル・カドミウム電池(公称700
mAh)に対し、実施例1aの充電装置を用い、充放電
サイクル試験を行った。試験条件は実施例1aと全く同
様とした。
Next, the effect of reducing the memory effect when the charging time and the discharging time are changed by the current having the pulse waveform is shown below. (Example 1b) Nickel-cadmium battery (nominal 700
mAh) was subjected to a charge / discharge cycle test using the charging device of Example 1a. The test conditions were exactly the same as in Example 1a.

【0016】(実施例1c)実施例1bにおいて、t1
=5ms、t2=2ms、t3=3msとし、それ以外は
実施例1bと全く同様に充放電サイクル試験を行った。
(Example 1c) In Example 1b, t 1
= 5 ms, t 2 = 2 ms, t 3 = 3 ms, and a charge / discharge cycle test was performed in the same manner as in Example 1b except for the above.

【0017】図7に上記条件で充放電サイクル試験を行
ったときの放電カーブを示した。図中の放電カーブに付
した数字はその放電を行ったときの充放電サイクル数を
示す。1.2V終止による浅い充放電を繰り返した結
果、放電時間の割合を多くした実施例1cのほうが実施
例1bよりも放電容量が大きく、また、サイクルによる
容量低下が少ない。これは放電時間の割合を多くするこ
とにより、電極の活性化が促進されるためと考えられ
る。本実施例ではパルスの充電、放電時間を変化させた
が、放電電流を大きくすることでも同様の結果が得られ
た。従って、放電電気量を増加させることで前記効果が
促進されると考えられる。この効果は、ニッケル・水素
電池を用いた場合でも同様に得られた。また、この効果
は図1(a)(c)(d)のパルス波形を用いた場合に
も同様に得られた。
FIG. 7 shows a discharge curve when a charge / discharge cycle test was conducted under the above conditions. The number attached to the discharge curve in the figure indicates the number of charge / discharge cycles when the discharge is performed. As a result of repeating the shallow charge and discharge by the termination of 1.2 V, the discharge capacity of Example 1c in which the ratio of the discharge time was increased was larger than that of Example 1b, and the capacity decrease due to the cycle was less. It is considered that this is because the activation of the electrode is promoted by increasing the ratio of the discharge time. In this embodiment, the pulse charging / discharging time was changed, but the same result was obtained by increasing the discharging current. Therefore, it is considered that the above effect is promoted by increasing the amount of discharged electricity. This effect was similarly obtained when a nickel-hydrogen battery was used. Further, this effect was similarly obtained when the pulse waveforms of FIGS. 1A, 1C and 1D were used.

【0018】(実施例2 請求項3、4に対応)図2は
本実施例の充電制御アルゴリズムを示すフローチャート
である。本実施例では図1(b)に示されるパルス波形
をなす電流を用いた。第1の充電手段を動作させると、
図5におけるマイクロコンピュータ3が温度測定部2に
より検出した電池温度T0を読み込み、T0≧Tc(Tc
制限温度上限値)であるか否かの判定を行う。次に、マ
イクロコンピュータ3に読み込まれた電池温度T0と、
その前に読み込まれているT0から、温度上昇率ΔT0
求め、△T0≧△Ta(△Ta:温度上昇率上限)である
か否かの判定行う。次に、マイクロコンピュータが休止
区間の二次電池の電池電圧Voffを読み込み、読み込ま
れた電池電圧Voffとその前に読み込まれているVoff
ら、電池電圧変化量ΔVを求める。ΔVが第1の充電操
作中に正の値から負の値へなった時点から後に電池電圧
の降下Vc≧Va(Va:設定した電池電圧値)となるか
否かの判定を行う。また、所定時間tの間に|ΔV|≦所
定設定値Vdであるかの判定も行う。ここで、電池電圧
offはひとつの休止区間の中で経時的に減衰するが、
前述したように一つの休止区間がm秒レベルであるた
め、ほとんど変化しない。しかし本実施例では一つの休
止区間の中で電圧を4回サンプリングし、その平均値を
求めた。次に放電区間に移り、二次電池を一定時間放電
する。そして放電区間から充電区間に戻る。また、本実
施例では、第1の充電手段を開始した後、図2のフロー
チャートのサイクルにおいてT0の測定を1000回に
1回の割合で行い、残りは素通りさせた。それに伴い、
0≧Tcの判定と△T0≧△Taを判定した。また、図2
におけるVoffの測定はフローチャートのサイクルの2
0回に1回の割合で行い、残りは素通りさせ、Voff
4回測定した後、その4回の平均値を測定値とした。そ
のような操作を第1の充電中に繰り返し、そこで測定さ
れた最大の電池電圧値をメモリに取り込み、そこからの
電圧の降下VcをとることでVc≧Va、|ΔV|≦所定設
定値Vd(所定時間tの間)の判定を行った。このよう
に充電、休止、放電を一単位として繰り返し、その間に
おいて、T0≧Tc、△T0≧△Ta、Vc≧Va、所定時間
tの間に|ΔV|≦Vdの条件を満足するか否か監視す
る。
(Second Embodiment Corresponding to Claims 3 and 4) FIG. 2 is a flowchart showing a charge control algorithm of the present embodiment. In this example, the current having the pulse waveform shown in FIG. 1B was used. When the first charging means is operated,
The battery temperature T 0 detected by the temperature measuring unit 2 is read by the microcomputer 3 in FIG. 5, and T 0 ≧ T c (T c :
It is determined whether or not it is the upper limit value of the temperature limit). Next, the battery temperature T 0 read by the microcomputer 3 and
The temperature increase rate ΔT 0 is obtained from T 0 read before that, and it is determined whether or not ΔT 0 ≧ ΔT a (ΔT a : upper limit of temperature increase rate). Next, read the battery voltage V off of the secondary battery of the microcomputer pause interval from V off that are loaded in front loaded battery voltage V off and obtains a battery voltage variation [Delta] V. It is determined whether or not ΔV becomes a battery voltage drop V c ≧ V a (V a : a set battery voltage value) after the time when ΔV changes from a positive value to a negative value during the first charging operation. . Also, it is determined whether or not | ΔV | ≦ predetermined set value V d during the predetermined time t. Here, the battery voltage V off decays with time in one rest period,
As described above, since one pause section is on the msec level, it hardly changes. However, in this embodiment, the voltage was sampled four times in one rest period, and the average value was obtained. Next, the discharge section is started, and the secondary battery is discharged for a certain period of time. Then, the discharge section is returned to the charging section. Further, in this example, after the first charging means was started, T 0 was measured once every 1000 times in the cycle of the flowchart of FIG. 2, and the rest was passed through. with this,
The judgment of T 0 ≧ T c and the judgment of ΔT 0 ≧ ΔT a were made. Also, FIG.
The measurement of V off in
The measurement was performed once every 0 times, the rest was allowed to pass through, V off was measured 4 times, and the average value of the 4 times was taken as the measured value. Such operation is repeated in the first charging, where the measured uptake maximum battery voltage value to the memory, V c ≧ V a by taking drop V c voltage therefrom, | [Delta] V | ≦ predetermined The set value V d (for a predetermined time t) was judged. Thus charged, pause, discharging repeating as one unit, in the meantime, T 0 ≧ T c, △ T 0 ≧ △ T a, V c ≧ V a, during the predetermined time period t | [Delta] V | of ≦ V d Monitor whether the conditions are met.

【0019】以上のような条件判断を行い、次のいずれ
かの場合に第1の充電手段を停止して第2の充電手段
(微小電流によるトリクル充電)に移る。T0≧Tcの場
合は第1の充電手段を停止する。制限温度上限値T
cは、本実施例の場合、充電可能温度を0〜40℃とし
たので、充電時、温度上昇することを考慮し、充電可能
上限温度より20℃高い60℃とした。△T0≧△Ta
場合、充電完了と判断して第1の充電手段を停止する。
本実施例の場合、温度上昇率上限値△Taの値を1分間
に2℃とした。Vc≧Vaが、設定時間tの間に満たされ
た場合、第1の充電手段を停止する。つまりニッケル・
カドミウム電池、ニッケル・水素電池における−ΔV制
御を行う。電圧設定値Vaは周囲温度が20℃の場合は
10〜20mV/セルが適当であり、本実施例では15
mV/セルとした。また、所定時間tの間に|ΔV|≦V
dの条件を満足する場合にも、第1の充電手段を停止す
る。つまり小形密閉鉛蓄電池を充電する場合の第1の充
電手段停止の制御である。本実施例では前記設定時間t
を10分とした。本実施例の場合、第1の充電手段停止
後に第2の充電手段の開始に移行したが、そのまま充電
停止してもよい。以上の充電操作、制御を行なうこと
で、ニッケル・カドミウム電池、ニッケル・水素電池、
シール鉛蓄電池等の密閉形二次電池を適切に充電するこ
とができた。
The above condition judgment is performed, and in any of the following cases, the first charging means is stopped and the second charging means (trickle charging by a minute current) is started. When T 0 ≧ T c , the first charging means is stopped. Limit temperature upper limit value T
In the case of the present example, since the chargeable temperature was 0 to 40 ° C., c was set to 60 ° C., which was 20 ° C. higher than the chargeable upper limit temperature, in consideration of the temperature increase during charging. When ΔT 0 ≧ ΔT a , it is determined that charging is completed, and the first charging means is stopped.
In this embodiment, the value of the temperature increasing rate upper limit value △ T a was 2 ℃ per minute. When V c ≧ V a is satisfied during the set time t, the first charging means is stopped. In other words, nickel
Performs -ΔV control for cadmium batteries and nickel-hydrogen batteries. The voltage setting value V a is suitably 10 to 20 mV / cell when the ambient temperature is 20 ° C., and is 15 in this embodiment.
mV / cell. In addition, | ΔV | ≦ V during the predetermined time t
Even when the condition of d is satisfied, the first charging means is stopped. That is, it is the control of stopping the first charging means when charging the small sealed lead acid battery. In this embodiment, the set time t
Was set to 10 minutes. In the case of the present embodiment, the second charging means is started after the first charging means is stopped, but the charging may be stopped as it is. By performing the above charging operation and control, nickel-cadmium battery, nickel-hydrogen battery,
It was possible to properly charge a sealed secondary battery such as a sealed lead acid battery.

【0020】また、この結果は図1(c)(d)のパル
ス波形を用いた場合にも同様に得られた。
Further, this result was similarly obtained when the pulse waveforms of FIGS. 1 (c) and 1 (d) were used.

【0021】(実施例3 請求項5に対応)図3は本実
施例の充電制御アルゴリズムを示すフローチャートであ
る。二次電池1を接続し充電装置をスタートすると、第
1の充電操作を開始する前に図5におけるマイクロコン
ピュータ3は、二次電池1に取り付けた温度センサ2に
よって検出した電池温度Tが、TH≧T≧TL(TH:充
電可能上限温度、T:電池温度、TL:充電可能下限温
度)であるか否かの判定を行う。TH≧T≧TLの条件を
満たさなければ温度異常により充電を行わない。本実施
例ではTH=40℃、TL=0℃とした。また、第1の充
電手段を開始する前に電池電圧Vの測定を行い、V≧V
L(VL:設定電圧)であるか否かの判定を行う。V≧V
Lが満たされなかった場合は電池が短絡しているものと
し、第1の充電手段を開始させない。本実施例ではV≧
Lが満たされなかった場合予備充電(例えば10ms
充電)を行い、これを数回(例えば3回)繰り返しても
設定電圧を超えない場合、第1の充電手段を開始させな
いこととした。以上の制御を付与することにより、充電
に適さない状態の電池の充電を開始させない機能を有す
る充電装置を提供できる。
Third Embodiment (corresponding to claim 5) FIG. 3 is a flow chart showing a charge control algorithm of the present embodiment. When the secondary battery 1 is connected and the charging device is started, the microcomputer 3 in FIG. 5 detects that the battery temperature T detected by the temperature sensor 2 attached to the secondary battery 1 is T before the first charging operation is started. It is determined whether or not H ≧ T ≧ TL ( TH : chargeable upper limit temperature, T: battery temperature, TL : chargeable lower limit temperature). If the condition of T H ≧ T ≧ T L is not satisfied, charging is not performed due to temperature abnormality. In this example, T H = 40 ° C. and T L = 0 ° C. In addition, the battery voltage V is measured before starting the first charging means, and V ≧ V
It is determined whether it is L ( VL : set voltage). V ≧ V
If L is not satisfied, the battery is considered to be short-circuited, and the first charging means is not started. In this embodiment, V ≧
If V L is not met, precharge (eg 10ms
If the set voltage is not exceeded even if the charging is performed and this is repeated several times (for example, three times), the first charging unit is not started. By providing the above control, it is possible to provide a charging device having a function of not starting the charging of the battery in a state not suitable for charging.

【0022】(実施例4 請求項6に対応)図4は本実
施例の充電制御アルゴリズムを示すフローチャートであ
る。ここでも図1(b)に示されるパルス波形をなす電
流を用いた。第1の充電手段を動作させると、実施例2
において説明した手順に加えて、充電区間における電池
電圧Vonを読み込み記憶する過程と、放電区間の後にV
on、Voff、充電区間の電流Iからインピーダンス演算
する過程と、それに従いパルス波形をなす電流の設定を
変更するか否かの判断が追加される。内部インピーダン
スZは、上記Vonと、上記Voff、充電電流Iにより演
算され、次式(1)によって求める。 Z=(Von−Voff)/I・・・(1) この(1)式によって求められた二次電池の内部インピ
ーダンスによりパルス波形の充電、休止、放電の区間の
間隔を変化させる。求められた内部インピーダンスが大
きければ放電区間に対する充電区間の割合を小さくし、
逆にインピーダンスが小さければ放電区間に対する充電
区間の割合を大きくする。図8は本発明の充電装置にお
けるインピーダンスと充電区間に対する放電区間の割合
の一例を示したものである。本実施例で用いた通常の状
態のニッケル・水素電池の内部インピーダンスは20〜
40mΩ程度である。本実施例では、内部インピーダン
スが90mΩまでは充電区間に対する放電区間の割合
(放電/充電)を0.02〜0.9まで変化させ、90
mΩ以上は0.9で一定とした。また、本実施例では、
充電、休止、放電の区間からなる1サイクルの合計の時
間を10msとし、そのうちの休止区間t2=2msで
一定とした。
Fourth Embodiment (corresponding to claim 6) FIG. 4 is a flow chart showing a charge control algorithm of the present embodiment. Also in this case, the current having the pulse waveform shown in FIG. 1B was used. When the first charging means is operated, the second embodiment
In addition to the procedure described above, the process of reading and storing the battery voltage V on in the charging section and V after the discharging section
The process of calculating the impedance from on , V off , and the current I in the charging section and the determination as to whether or not to change the setting of the current forming the pulse waveform according to the process are added. The internal impedance Z is calculated by the above V on , the above V off , and the charging current I, and is obtained by the following equation (1). Z = (V on −V off ) / I (1) The interval between the charge, pause, and discharge sections of the pulse waveform is changed by the internal impedance of the secondary battery obtained by the equation (1). If the calculated internal impedance is large, reduce the ratio of the charging section to the discharging section,
On the contrary, if the impedance is small, the ratio of the charging section to the discharging section is increased. FIG. 8 shows an example of the impedance and the ratio of the discharge section to the charging section in the charging device of the present invention. The internal impedance of the nickel-metal hydride battery in the normal state used in this example is 20 to
It is about 40 mΩ. In this example, the ratio of the discharge section to the charge section (discharge / charge) was changed from 0.02 to 0.9 until the internal impedance was 90 mΩ, and
The value of mΩ or more was fixed at 0.9. Further, in this embodiment,
The total time of one cycle consisting of the charge, pause, and discharge sections was set to 10 ms, of which the rest section t 2 = 2 ms was set constant.

【0023】(実験2)長期放置の電池を本実施例にお
ける充電装置で充電したときの充電特性について以下に
説明する。 (実施例4a)本実施例では長期放置により内部インピ
ーダンスが70mΩになったニッケル・水素電池を用い
た。このため第1の充電手段開始時は充電区間に対する
放電区間の割合は図8より0.6となり、充電区間t1
=5ms、休止区間t2=2ms、放電区間t3=3ms
で充電が開始される。充電が進み、内部インピーダンス
が下がるに伴い、充電区間に対する放電区間の割合を図
8に示す関係に従って変化させ、充電を行った。
(Experiment 2) Charging characteristics when a battery left for a long period of time is charged by the charging device of this embodiment will be described below. (Example 4a) In this example, a nickel-hydrogen battery having an internal impedance of 70 mΩ after being left for a long time was used. Therefore, at the start of the first charging means, the ratio of the discharging section to the charging section is 0.6 from FIG. 8, and the charging section t 1
= 5 ms, rest period t 2 = 2 ms, discharge period t 3 = 3 ms
Will start charging. As the charging progressed and the internal impedance decreased, the ratio of the discharge section to the charging section was changed according to the relationship shown in FIG. 8 to perform charging.

【0024】(実施例4b)実施例4aと同じ電池を充
電区間t1=7ms、休止区間t2=2ms、放電区間t
3=1msに固定したパルス波形により充電した。
(Embodiment 4b) The same battery as in Embodiment 4a is used for the charging section t 1 = 7 ms, the rest section t 2 = 2 ms, and the discharging section t.
It was charged with a pulse waveform fixed at 3 = 1 ms.

【0025】図9は実施例4aにおいて充電を周囲温度
20℃で行ったときの電池電圧と内部インピーダンス及
び電池温度上昇量の経時変化を示したものである。充電
が進みインピーダンスが下がった(b)点ではインピー
ダンスが35mΩなので、充電区間t1=7ms、休止
区間t2=2ms、放電区間t3=1msとなる。その際
の電池温度上昇量は図10に示す実施例4bに比較し、
抑さえられているのがわかる。図には示さなかったが、
従来の放電区間を入れないパルス波形(充電区間t1
7ms、休止区間t2=3ms)で充電した場合には電
池温度上昇量は充電操作中に40℃を越えた。ニッケル
・カドミウム電池、シール鉛蓄電池を用いた場合には、
本実施例のような顕著な効果はみられなかったが、同様
に温度上昇を抑制することができた。このように電池の
内部インピーダンスによって充電パターンを変化させる
ので電池にダメージをあたえることなく、また十分な充
電が可能である。また、この効果は図1(c)(d)の
パルス波形を用いた場合にも同様に得られた。本実施例
ではパルス波形をなす電流の充電区間、放電区間の割合
を変化させたが、放電区間の電流を変化させることでも
同様の結果が得られた。従って、放電電気量を増加させ
ることで前記効果が得られると考えられる。また、実施
例2では第1の充電手段開始前に電池温度が0℃より低
い場合、充電を行わないようにしたが、必ずしもその必
要はなく、そのような低温時において内部インピーダン
スが高い場合は、本実施例による手段で適切に充電が行
うことができると考えられる。
FIG. 9 shows changes with time in the battery voltage, the internal impedance, and the battery temperature rise amount when charging was performed at an ambient temperature of 20 ° C. in Example 4a. Since the impedance is 35 mΩ at the point (b) where the charging progresses and the impedance decreases, the charging section t 1 = 7 ms, the rest section t 2 = 2 ms, and the discharging section t 3 = 1 ms. The amount of increase in battery temperature at that time was compared with Example 4b shown in FIG.
You can see that they are being suppressed. Although not shown in the figure,
A pulse waveform that does not include the conventional discharge section (charge section t 1 =
When the battery was charged for 7 ms and the rest period t 2 = 3 ms), the battery temperature rise amount exceeded 40 ° C. during the charging operation. When using nickel-cadmium batteries and sealed lead-acid batteries,
Although the remarkable effect as in this example was not observed, the temperature rise could be suppressed similarly. Since the charging pattern is changed according to the internal impedance of the battery as described above, sufficient charging can be performed without damaging the battery. Further, this effect was similarly obtained when the pulse waveforms of FIGS. 1C and 1D were used. In this embodiment, the ratio of the charge section and the discharge section of the current having the pulse waveform was changed, but the same result was obtained by changing the current of the discharge section. Therefore, it is considered that the above effect can be obtained by increasing the amount of discharged electricity. In the second embodiment, charging is not performed when the battery temperature is lower than 0 ° C. before starting the first charging means, but this is not always necessary, and when the internal impedance is high at such low temperature, It is considered that charging can be appropriately performed by the means according to the present embodiment.

【0026】[0026]

【発明の効果】請求項1の発明に係る充電装置を用いる
ことで、ニッケル・カドミウム電池、ニッケル・水素電
池にみられるメモリー効果を低減できた。また、請求項
3の発明に係る充電装置を用いることで、ニッケル・カ
ドミウム電池、ニッケル・水素電池、シール鉛蓄電池等
の密閉形二次電池の種類を問わず適切に充電できた。ま
た、請求項5の発明に係る充電装置を用いることで、充
電される二次電池の状態により、充電を開始させない保
護機能を備えることができた。また、請求項6の発明に
係る充電装置を用いることで、電池が長期放置され、電
極が不活性化したものに対しても適切な充電を行うこと
ができた。
By using the charging device according to the first aspect of the present invention, the memory effect found in the nickel-cadmium battery and the nickel-hydrogen battery can be reduced. Further, by using the charging device according to the invention of claim 3, it was possible to appropriately charge regardless of the type of the sealed secondary battery such as a nickel-cadmium battery, a nickel-hydrogen battery, and a sealed lead acid battery. Further, by using the charging device according to the invention of claim 5, it is possible to provide a protection function that does not start charging depending on the state of the secondary battery to be charged. Further, by using the charging device according to the invention of claim 6, it was possible to perform appropriate charging even for a battery in which the battery was left for a long time and the electrodes were inactivated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る充電装置のパルス波形をなす電流
の例を示す図。
FIG. 1 is a diagram showing an example of a current having a pulse waveform of a charging device according to the present invention.

【図2】本発明の一実施例の充電制御アルゴリズムを示
すフローチャート。
FIG. 2 is a flowchart showing a charge control algorithm according to an embodiment of the present invention.

【図3】本発明の一実施例の充電制御アルゴリズムの要
部を示すフローチャート。
FIG. 3 is a flowchart showing a main part of a charge control algorithm according to an embodiment of the present invention.

【図4】本発明の一実施例の充電制御アルゴリズムを示
すフローチャート。
FIG. 4 is a flowchart showing a charge control algorithm according to an embodiment of the present invention.

【図5】本発明に係る充電装置のブロック図。FIG. 5 is a block diagram of a charging device according to the present invention.

【図6】本発明の実施例に係る充電装置と比較例1の充
電装置により充電したニッケル・水素電池の放電特性を
示した図。
FIG. 6 is a diagram showing discharge characteristics of a nickel-hydrogen battery charged by a charging device according to an example of the present invention and a charging device of Comparative Example 1.

【図7】本発明の実施例に係る充電装置により充電した
ニッケル・カドミウム電池の放電特性を示した図。
FIG. 7 is a diagram showing discharge characteristics of a nickel-cadmium battery charged by the charging device according to the example of the present invention.

【図8】本発明の実施例に係る充電装置において電池の
内部インピーダンスに対し充電区間に対する放電区間の
割合の設定例を示した図。
FIG. 8 is a diagram showing an example of setting the ratio of the discharge section to the charge section with respect to the internal impedance of the battery in the charging device according to the embodiment of the present invention.

【図9】本発明の実施例に係る充電装置によりニッケル
・水素電池を充電したときの電池電圧と電池の内部イン
ピーダンスと電池温度の経時変化を示した図。
FIG. 9 is a diagram showing changes with time in battery voltage, battery internal impedance, and battery temperature when a nickel-hydrogen battery is charged by the charging device according to the embodiment of the present invention.

【図10】本発明の実施例に係る充電装置により充電し
たときの電池電圧と電池の内部インピーダンスと電池温
度の経時変化を示した図。
FIG. 10 is a diagram showing changes with time in battery voltage, battery internal impedance, and battery temperature when charged by the charging device according to the embodiment of the present invention.

【図11】ニッケル・カドミウム電池の一般的な充電特
性を示した図。
FIG. 11 is a diagram showing general charging characteristics of a nickel-cadmium battery.

【図12】シール鉛蓄電池の一般的な充電特性を示した
図。
FIG. 12 is a diagram showing general charging characteristics of a sealed lead-acid battery.

【図13】従来の充電装置の充電動作を示すフローチャ
ート。
FIG. 13 is a flowchart showing a charging operation of a conventional charging device.

【符号の説明】[Explanation of symbols]

1は二次電池、2は電池温度測定部、3はマイクロコン
ピュータ、31はCPU、32はメモリ、33は出力ポ
ート、34は入力ポートのA/D変換器、4は制御部、
5は充電部、6は放電部、7は電池電圧測定部
1 is a secondary battery, 2 is a battery temperature measuring unit, 3 is a microcomputer, 31 is a CPU, 32 is a memory, 33 is an output port, 34 is an A / D converter of an input port, 4 is a control unit,
5 is a charging unit, 6 is a discharging unit, 7 is a battery voltage measuring unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】パルス波形をなす充電電流と、パルス波形
をなす放電電流とを組み合わせ、前記充電電気量を放電
電気量より大きくした第1の充電手段を備えたことを特
徴とする二次電池の充電装置。
1. A secondary battery comprising a first charging means in which a charging current having a pulse waveform and a discharging current having a pulse waveform are combined to make the charged electricity amount larger than the discharged electricity amount. Charging device.
【請求項2】第1の充電手段がパルス波形をなす充電電
流と、パルス波形をなす放電電流との組み合わせに、電
流の流れない区間を含ませたものであることを特徴とす
る請求項1記載の二次電池の充電装置。
2. The first charging means is characterized in that a combination of a charging current having a pulse waveform and a discharging current having a pulse waveform includes a section in which no current flows. The rechargeable battery charging device described.
【請求項3】第1の充電手段の動作中に、電池温度T0
を検出する手段及びT0の上昇率ΔT0を検出する手段
と、第1の充電手段の動作中に、電流の流れない区間で
電池電圧Voffを検出する手段及び所定時間の間におけ
るVoffの変動ΔVを検出する手段と、 次の(a)〜(d)のいずれかの場合に第1の充電手段
を停止する手段を備えたことを特徴とする請求項2記載
の二次電池の充電装置。 (a)ΔVが負の値になってからの電池電圧の降下Vc
が、Vc≧所定電圧値Va (b)T0≧所定温度Tc (c)ΔT0≧所定値ΔTa (d)所定の設定時間tの間、|ΔV|≦所定の設定値V
d
3. The battery temperature T 0 during the operation of the first charging means.
Means for detecting the increase rate [Delta] T 0 means and T 0 for detecting, during the operation of the first charging means, V off between means and a predetermined time to detect the battery voltage V off in a section that does not carry current 3. The rechargeable battery according to claim 2, further comprising: a means for detecting the fluctuation ΔV of the above, and a means for stopping the first charging means in any of the following cases (a) to (d). Charging device. (A) Battery voltage drop V c after ΔV becomes negative
, V c ≧ predetermined voltage value V a (b) T 0 ≧ predetermined temperature T c (c) ΔT 0 ≧ predetermined value ΔT a (d) | ΔV | ≦ predetermined set value V for a predetermined set time t
d
【請求項4】第1の充電手段を停止後、微小電流による
トリクル充電を行う第2の充電手段を備えていることを
特徴とする請求項1〜3のいずれかに記載の二次電池の
充電装置。
4. The secondary battery according to claim 1, further comprising second charging means for performing trickle charging with a small current after stopping the first charging means. Charging device.
【請求項5】第1の充電手段の動作前に電池電圧V及び
電池温度Tを検出する手段と、 次の(e)〜(f)のいずれかの場合に第1の充電手段
を動作させない手段を備えたことを特徴とする請求項1
〜4のいずれかに記載の二次電池の充電装置。 (e)V≧所定値VLでない (f)所定の設定温度TH≧T≧所定の設定温度TL(但
しTH>TL)でない
5. A means for detecting a battery voltage V and a battery temperature T before the operation of the first charging means, and a means for not operating the first charging means in any of the following cases (e) to (f): A means is provided.
The charging device for the secondary battery according to any one of 1 to 4. (E) V ≧ predetermined value VL is not satisfied (f) Predetermined set temperature T H ≧ T ≧ predetermined set temperature T L (however, T H > T L ).
【請求項6】パルス波形をなす充電電流が流れている区
間で電池電圧Vonを検出する手段と、 前記電池電圧Von、電池電圧Voff、パルス波形をなす
充電電流Iにより電池の内部インピーダンスを演算する
手段と、 前記インピーダンスの値により、前記パルス波形をなす
充電電流と、パルス波形をなす放電電流を流す時間の割
合を変化させる手段及び/または前記パルス波形をなす
充電電流と前記パルス波形をなす放電電流の大きさを相
対的に変化させる手段とを備えていることを特徴とする
請求項2〜5いずれかに記載の二次電池の充電装置。
6. A means for detecting a battery voltage V on in a section in which a charging current having a pulse waveform flows, and an internal impedance of the battery by the battery voltage V on , the battery voltage V off , and a charging current I having a pulse waveform. And means for changing the ratio of the time for flowing the charging current having the pulse waveform and the discharging current having the pulse waveform and / or the charging current having the pulse waveform and the pulse waveform according to the impedance value. 6. A charging device for a secondary battery according to claim 2, further comprising means for relatively changing the magnitude of the discharge current that forms
JP28697994A 1994-11-21 1994-11-21 Charger for secondary battery Pending JPH08149709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28697994A JPH08149709A (en) 1994-11-21 1994-11-21 Charger for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28697994A JPH08149709A (en) 1994-11-21 1994-11-21 Charger for secondary battery

Publications (1)

Publication Number Publication Date
JPH08149709A true JPH08149709A (en) 1996-06-07

Family

ID=17711449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28697994A Pending JPH08149709A (en) 1994-11-21 1994-11-21 Charger for secondary battery

Country Status (1)

Country Link
JP (1) JPH08149709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998968A (en) * 1997-01-07 1999-12-07 Ion Control Solutions, Llc Method and apparatus for rapidly charging and reconditioning a battery
JP2000350370A (en) * 1999-06-04 2000-12-15 Nec Mobile Energy Kk Battery pack power supply
JP2020128910A (en) * 2019-02-08 2020-08-27 学校法人同志社 Voltage drop estimation method and voltage drop estimation device
JP2022186760A (en) * 2013-03-28 2022-12-15 株式会社半導体エネルギー研究所 Electrochemical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998968A (en) * 1997-01-07 1999-12-07 Ion Control Solutions, Llc Method and apparatus for rapidly charging and reconditioning a battery
JP2000350370A (en) * 1999-06-04 2000-12-15 Nec Mobile Energy Kk Battery pack power supply
JP2022186760A (en) * 2013-03-28 2022-12-15 株式会社半導体エネルギー研究所 Electrochemical device
JP2020128910A (en) * 2019-02-08 2020-08-27 学校法人同志社 Voltage drop estimation method and voltage drop estimation device

Similar Documents

Publication Publication Date Title
US6097172A (en) Method and apparatus for determining when to terminate charging of a battery
US5694023A (en) Control and termination of a battery charging process
US6043631A (en) Battery charger and method of charging rechargeable batteries
US6172487B1 (en) Method and apparatus for charging batteries
CA2285353C (en) Method and apparatus for charging batteries utilizing heterogeneous reaction kinetics
US5489836A (en) Battery charging circuit for charging NIMH and NICD batteries
WO2000076049A1 (en) Battery charger for lithium based batteries
WO2004095611A1 (en) Combination battery and battery pack using combination battery
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
KR19990028876A (en) Control and Termination of Battery Charging Process
Gonzalez et al. Considerations to improve the practical design of universal and full-effective NiCd/NiMH battery fast-chargers
EP1125116A1 (en) Apparatus and method for detecting memory effect in nickel-cadmium batteries
WO1991007000A1 (en) A method and a charger circuit for the charging of alkaline manganese dioxide-zinc rechargeable batteries
US6249107B1 (en) Method of charging a battery in a mobile charger
JPH08149709A (en) Charger for secondary battery
JP3678045B2 (en) Battery charging method
JPH07336908A (en) Charger of nonaqueous secondary battery
JP2002199606A (en) Battery pack and charging method of the battery
Gonzalez et al. Ni-Cd and Ni-MH battery optimized fast-charge method for portable telecommunication applications
JPH04267078A (en) Combined battery and charging method thereof
KR100718514B1 (en) Battery recharging process for the small size rechargable battery
JPH10322917A (en) Deterioration discrimination for secondary battery and device thereof
JPH1174001A (en) Charging method for lead-acid battery
JPH1092473A (en) Method and device for controlling charge of battery
JP3101117B2 (en) Rechargeable battery charging method