JPH1092473A - Method and device for controlling charge of battery - Google Patents

Method and device for controlling charge of battery

Info

Publication number
JPH1092473A
JPH1092473A JP8268006A JP26800696A JPH1092473A JP H1092473 A JPH1092473 A JP H1092473A JP 8268006 A JP8268006 A JP 8268006A JP 26800696 A JP26800696 A JP 26800696A JP H1092473 A JPH1092473 A JP H1092473A
Authority
JP
Japan
Prior art keywords
charging
storage battery
battery
internal impedance
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8268006A
Other languages
Japanese (ja)
Inventor
Tokunori Honma
徳則 本間
Toshiaki Yabumoto
俊昭 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8268006A priority Critical patent/JPH1092473A/en
Publication of JPH1092473A publication Critical patent/JPH1092473A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To charge a storage battery at high precision, so as to prevent overcharge, by controlling charging through a process of detecting that the change amount of the inner impedance per unit time in the charging last stage of the storage battery exceeds a specified value. SOLUTION: The inner impedance of a storage battery, the battery voltage, the battery temperature are changed around 140 minutes after charge is started, in particular, the inner impedance is suddenly changed. The change amount of the inner impedance per unit time is approximately half as large as the inner impedance in 140 minutes and larger than that of the battery voltage and the battery temperature. Therefore, control of charge by the detection of the change amount of the inner impedance per unit time is more reliable than that by the detection of the charge of the battery voltage and the battery temperature, the risk of overcharge is low, and charge can be controlled at high precision. When the change amount of the inner impedance exceeds 2.0MΩ/min., that is detected, charging is stopped, and the charging electric amount is 95% of the discharging amount, and overcharge can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電池の充電制御
方法及び装置に関する。
The present invention relates to a method and an apparatus for controlling charging of a storage battery.

【0002】[0002]

【従来の技術】従来、蓄電池の充電制御方式としては、
充電中の単位時間当たりの蓄電池の上昇温度(ΔT/Δ
t)を検出したり、或いは、単位時間当たりに上昇した
電池電圧(ΔV/Δt)を検出することにより充電を制
御する方式が一般に知られている。
2. Description of the Related Art Conventionally, as a charge control method of a storage battery,
Temperature rise of storage battery per unit time during charging (ΔT / Δ
There is generally known a method of controlling charging by detecting t) or detecting a battery voltage (ΔV / Δt) increased per unit time.

【0003】[0003]

【発明が解決しようとする課題】前述した従来の蓄電池
制御方式は、環境や充電条件の影響を受け易いため蓄電
池の温度や電池電圧の変化が一定でなく、又、その変化
量が小さい。そのため、この方式では、蓄電池の充電末
期が検出し難く、過充電になってしまうことがあるとい
う不具合があった。本発明は、上記の不具合を解消し、
より高い精度で充電を制御することができ、過充電にな
ることがない蓄電池充電制御方法及び装置を提供するこ
とを課題とするものである。
The conventional storage battery control system described above is susceptible to the environment and charging conditions, so that the temperature and battery voltage of the storage battery are not constantly changed, and the amount of change is small. For this reason, this method has a problem in that it is difficult to detect the end of charging of the storage battery, and the battery may be overcharged. The present invention solves the above disadvantages,
It is an object of the present invention to provide a storage battery charging control method and device that can control charging with higher accuracy and do not become overcharged.

【0004】[0004]

【課題を解決するための手段】本発明の充電制御方法
は、前記の課題を解決するために、蓄電池の充電末期に
おける単位時間当たりの内部インピーダンスの変化量が
規定値を越えた時又は内部インピーダンスが規定値を越
えた時これを検出して充電を制御することを特徴とす
る。前記充電の制御は、充電を休止するか、或いは定電
流充電をより小さい定電流充電に切り換え、その後所定
時間継続するか、或いは定電流充電を定電圧充電に切り
換えて電流を垂下させ、その後所定時間継続することで
ある。本発明の充電制御装置は、充電中の蓄電池の内部
インピーダンスを測定するインピーダンス測定器と、該
インピーダンス測定器によって測定された蓄電池の内部
インピーダンス又は該内部インピーダンスの単位時間当
たりの変化量が規定値を越えた時これを検出して充電回
路を制御する制御部を備えることを特徴とする。本発明
は、蓄電池の充電時の内部インピーダンスが充電末期の
ガスの発生時に急激に上昇するという特性を利用したも
ので、その構成によれば、充電末期が確実に検出されて
充電が制御される。
In order to solve the above-mentioned problems, the charge control method according to the present invention provides a method for controlling the internal impedance when the amount of change in internal impedance per unit time at the end of charging of a storage battery exceeds a specified value, or When the value exceeds a specified value, charging is controlled by detecting this. The charging is controlled by pausing the charging or by switching the constant current charging to a smaller constant current charging and thereafter continuing for a predetermined time, or by switching the constant current charging to the constant voltage charging and drooping the current, and thereafter, Is to continue for hours. The charging control device according to the present invention includes an impedance measuring device that measures the internal impedance of the storage battery being charged, and a storage battery whose internal impedance measured by the impedance measuring device or a variation per unit time of the internal impedance has a specified value. It is characterized in that a control unit is provided for detecting this when it is exceeded and controlling the charging circuit. The present invention makes use of the characteristic that the internal impedance of the storage battery during charging rises abruptly when gas is generated at the end of charging. According to this configuration, the end of charging is reliably detected and charging is controlled. .

【0005】[0005]

【発明の実施の形態】次に、本発明の上記の充電制御方
法の実施形態を詳述する。完全放電状態の密閉型鉛蓄電
池を定電流で充電し乍ら、インピーダンス測定器を用い
て交流電流を該鉛蓄電池に流して交流インピーダンス法
により充電中の蓄電池の内部インピーダンスを測定し
た。この時の電池電圧及び電池温度も同時に測定した。
その結果を図1に示す。図1から明らかなように、蓄電
池の充電開始からその充電が末期になり蓄電池内部での
水の電解によるガス発生が生じるまでは、蓄電池の内部
インピーダンスの変化は非常に小さく、通常は減少傾向
となるが、ガスが発生し始め、電池電圧が上昇するとこ
ろで蓄電池の内部インピーダンスが急激に立上がり、そ
の後下降し、そのため、鋭い内部インピーダンスのピー
クが現れる。この内部インピーダンスが急激に立ち上が
る理由として、充電が進み水の電解によるガス発生が起
こると、このガスが極板の活物質の細孔中に充満して電
解液と活物質との接触が妨げられるため内部インピーダ
ンスの増加が起こり、その後、ガスが細孔中から排出さ
れ、電解液と活物質との接触面積が大きくなるために内
部インピーダンスが減少するものと考えられる。この内
部インピーダンスの増加量は、電池電圧及び電池温度の
増加量と比較すると、明らかにこれらより大きくしかも
短時間で急激に内部インピーダンスの増減が起こる。例
えば、通常の定電流充電を行い、内部インピーダンスが
規定値より大きくなったときこれを検出し、或いは単位
時間当たりの内部インピーダンスの増加量が規定値より
も大きくなったときこれを検出して充電電流を休止し、
その後定期的に均等充電を行い充電量の不足を補うか、
又は、定電流充電をより小さい定電流充電に切り換え、
その後ある所定時間充電を継続させるか又は、定電流充
電を定電圧充電に切り換えて充電電流を垂下させた後、
ある一定時間充電を継続させることで充電を制御する。
この本発明の方法によれば、内部抵抗の小さい蓄電池で
も、この変化を検出することにより高い精度で蓄電池の
充電末期の検出が可能であり、過充電になることがな
い。
Next, an embodiment of the above-described charge control method of the present invention will be described in detail. While charging the sealed lead-acid battery in a completely discharged state with a constant current, an alternating current was passed through the lead-acid battery using an impedance measuring instrument, and the internal impedance of the battery being charged was measured by the AC impedance method. At this time, the battery voltage and the battery temperature were measured at the same time.
The result is shown in FIG. As is clear from FIG. 1, the change in the internal impedance of the storage battery is very small from the start of charging of the storage battery to the end of the charging and the generation of gas due to the electrolysis of water inside the storage battery. However, when gas starts to be generated and the battery voltage rises, the internal impedance of the storage battery rises sharply and then falls, so that a sharp internal impedance peak appears. The reason why the internal impedance rises rapidly is that, when charging proceeds and gas generation occurs due to electrolysis of water, the gas fills the pores of the active material of the electrode plate and prevents contact between the electrolyte and the active material. Therefore, it is considered that the internal impedance increases, and thereafter, the gas is discharged from the pores, and the contact area between the electrolyte and the active material increases, so that the internal impedance decreases. This increase in the internal impedance is clearly larger than the increase in the battery voltage and the battery temperature, and the internal impedance rapidly increases and decreases in a short time. For example, normal constant-current charging is performed, and when the internal impedance becomes larger than a specified value, this is detected. Pause the current,
After that, charge the battery regularly and make up for the shortage of charge.
Or, switch the constant current charging to a smaller constant current charging,
After that, the charging is continued for a predetermined time or after the constant current charging is switched to the constant voltage charging and the charging current is dropped,
The charging is controlled by continuing the charging for a certain period of time.
According to the method of the present invention, even if the storage battery has a small internal resistance, the end of charging of the storage battery can be detected with high accuracy by detecting this change, and the battery is not overcharged.

【0006】[0006]

【実施例】【Example】

(実施例1)6セルを一体に形成して成るモノブロック
タイプの密閉型鉛蓄電池を25℃の恒温槽の中に配置
し、26Aの電流で90分間(蓄電池容量の約50%)
放電し、蓄電池の安定化の為に2時間静置した後15A
の定電流で190分間(放電容量の約120%)充電を
行い、この時の蓄電池の内部インピーダンス、電池電圧
及び電池温度を測定した。インピーダンス測定器は、例
えば、17.5Hz、0.1Aの交流電流を流して交流
インピーダンス法によりインピーダンスを測定するもの
で、例えば八千代電子株式会社製のものを用いた(以下
同様)。図2に示すように、蓄電池の内部インピーダン
ス、電池電圧及び電池温度は共に充電開始後140分付
近で変化するも、特に内部インピーダンスは急激に変化
している。この変化が起こる前の140分目の内部イン
ピーダンス、電池電圧及び電池温度と各値が最大の値を
示すときの各値とその時間を測定した。下記表1はその
測定結果を示す。
(Example 1) A monoblock type sealed lead-acid battery formed integrally with six cells is placed in a thermostat at 25 ° C, and a current of 26 A is used for 90 minutes (about 50% of the battery capacity).
15A after discharging and standing for 2 hours to stabilize the storage battery
The battery was charged at a constant current of 190 minutes (about 120% of the discharge capacity), and the internal impedance, battery voltage, and battery temperature of the storage battery at this time were measured. The impedance measuring device is, for example, a device for measuring the impedance by an AC impedance method by passing an AC current of 17.5 Hz and 0.1 A, and for example, a device manufactured by Yachiyo Electronics Co., Ltd. (hereinafter the same). As shown in FIG. 2, the internal impedance, the battery voltage, and the battery temperature of the storage battery all change around 140 minutes after the start of charging, but particularly the internal impedance changes rapidly. The internal impedance, battery voltage and battery temperature at the 140th minute before this change occurred, and each value when each value showed the maximum value and its time were measured. Table 1 below shows the measurement results.

【0007】[0007]

【表1】 [Table 1]

【0008】上記の表1に示すように、単位時間当たり
の内部インピーダンスの変化量は、140分目の内部イ
ンピーダンスの約0.5倍で電池電圧及び電池温度のそ
れよりも大きい。従って、単位時間当たりの内部インピ
ーダンスの変化量を検出して充電を制御すれば、電池電
圧や電池温度の変化を検出して充電制御するよりも確実
で過充電の危険性が小さく、高い精度で充電制御をする
ことができる。そこで、単位時間当たりの内部インピー
ダンスの変化量が2.0mΩ/分を越えたとき、これを
検出して充電を休止したところ、充電電気量は放電量の
95%であり、過充電とはならなかった。
As shown in Table 1 above, the amount of change in the internal impedance per unit time is about 0.5 times the internal impedance at 140 minutes, which is larger than that of the battery voltage and the battery temperature. Therefore, if the charge is controlled by detecting the amount of change in the internal impedance per unit time, the risk of overcharging is smaller and the risk of overcharging is smaller than that of controlling the charge by detecting the change in the battery voltage or the battery temperature, and with high accuracy Charge control can be performed. Then, when the change amount of the internal impedance per unit time exceeds 2.0 mΩ / min, this is detected and the charging is stopped, and the charged electricity amount is 95% of the discharged amount. Did not.

【0009】(実施例2)劣化度合いの異なる6セル・
モノブロックタイプの密閉型鉛蓄電池3個を用意し、夫
々26Aの電流で9.9Vまで放電し、2時間放置した
後、放電容量の120%を15Aの定電流で充電を行
い、内部インピーダンスの最大値を測定した。下記表2
はその試験結果を示す。
(Embodiment 2) Six cells having different degrees of deterioration
Three monoblock type sealed lead-acid batteries were prepared, each was discharged to 9.9 V with a current of 26 A, left for 2 hours, and then charged to 120% of the discharge capacity with a constant current of 15 A to reduce the internal impedance. The maximum value was measured. Table 2 below
Indicates the test results.

【0010】[0010]

【表2】 [Table 2]

【0011】又、前記試験電池−1において、26Aの
電流で放電深度を変えて同様の試験を行った。その試験
結果を下記表3に示す。
In the test cell-1, a similar test was conducted by changing the depth of discharge at a current of 26 A. The test results are shown in Table 3 below.

【0012】[0012]

【表3】 [Table 3]

【0013】上記の表2及び表3から分かるように、蓄
電池の実容量が小さくなるほど、また放電深度が浅くな
るほど内部インピーダンスが大きくなる。従って、この
試験に用いた蓄電池の場合、放電深度100%の時の内
部インピーダンス値を基準にして充電中の内部インピー
ダンス値が8.2mΩより若干小さな値で、例えば7.
0mΩを越えた時にその値を検出して充電を休止したと
ころ、この時点での充電電気量は、放電容量の97.3
%であった。
As can be seen from Tables 2 and 3, the internal impedance increases as the actual capacity of the storage battery decreases and as the depth of discharge decreases. Therefore, in the case of the storage battery used in this test, the internal impedance value during charging is slightly smaller than 8.2 mΩ based on the internal impedance value at a discharge depth of 100%.
When the value exceeded 0 mΩ, the charging was stopped by detecting the value, and the amount of electricity charged at this point was 97.3 of the discharge capacity.
%Met.

【0014】(実施例3)6セル・モノブロックタイプ
の密閉型鉛蓄電池を25℃の恒温槽の中に配置し、26
Aの電流で9.9Vまで放電し、2時間静置した後内部
インピーダンスを測定しながら15Aの定電流充電を行
った。充電中、蓄電池の内部インピーダンス値が7.0
mΩ以上の値を検出した時、充電電流を4Aに下げて2
時間充電を行った。図3はこの実施例における充電時間
に対する蓄電池の内部インピーダンス、電池電圧及び充
電電流特性、下記表4は充電特性を示す。
Example 3 A 6-cell monoblock type sealed lead-acid battery was placed in a thermostat at 25 ° C.
The battery was discharged at a current of A to 9.9 V, allowed to stand for 2 hours, and then charged at a constant current of 15 A while measuring the internal impedance. During charging, the internal impedance value of the storage battery is 7.0
When a value of mΩ or more is detected, the charging current is reduced to 4 A and
Charged for hours. FIG. 3 shows the internal impedance, battery voltage and charging current characteristics of the storage battery with respect to the charging time in this embodiment. Table 4 below shows the charging characteristics.

【0015】[0015]

【表4】 [Table 4]

【0016】図3及び上記の表4から明らかなように、
内部インピーダンスの設定値7.0mΩを検出した時の
放電容量に対する充電電気量は96.8%であり、検出
後、充電電流を4Aに下げて2時間充電を行ったときの
充電電気量は108.6%で蓄電池をほゞ完全に充電で
きた。前記検出をしたところで充電を休止した場合、若
干充電不足であるが、過充電を防止し減液量を低減せし
めて蓄電池の長寿命化が図れる。充電量の不足分は定期
的に均等充電を行うことにより補う。尚、図3に示す充
電特性は、電池電圧は内部インビーダンスと同様4時間
付近で急激に変化しているが、電池電圧が7.0mΩの
時点で最大値であるのに対して、内部インピーダンスは
充電制御を行わなければもっと大きな値となるので、変
化量は電池電圧と比べてはるかに大きい。
As is evident from FIG. 3 and Table 4 above,
When the set value of the internal impedance is detected to be 7.0 mΩ, the amount of charged electricity with respect to the discharge capacity is 96.8%. After the detection, the amount of charged electricity when the charging current is reduced to 4 A and charging is performed for 2 hours is 108. The battery was almost completely charged at 0.6%. When the charging is stopped after the detection, the battery is slightly undercharged. However, overcharging is prevented and the amount of liquid reduction is reduced to extend the life of the storage battery. The shortage of the charge amount is compensated for by performing equal charge periodically. In the charging characteristics shown in FIG. 3, the battery voltage rapidly changes around 4 hours as in the case of the internal impedance, but the maximum value is obtained when the battery voltage is 7.0 mΩ. If the charge control is not performed, the impedance has a larger value, so that the amount of change is much larger than the battery voltage.

【0017】図4は、本発明充電制御装置のブロック図
を示す。同図において、1は商用電源に接続された充電
回路、2は充電制御される前記蓄電池、3はインピーダ
ンス測定器、4は演算、比較及びデータ記録部、5は前
記演算、比較及びデータ記録部4に条件等を入力する操
作部、6は前記演算、比較及びデータ記録部4の出力を
入力し、充電回路1を制御する制御信号及び充電回路1
を所定時間作動するタイマー7の起動信号を出力する制
御出力部である。前記インピーダンス測定器3は、例え
ば、17.5Hz、0.1Aの交流電流を蓄電池2に流
す周波数発生器及び電力増幅部8と、交流インピーダン
ス法により前記交流電流による蓄電池2の端子電圧と該
交流電流とから蓄電池2の内部インピーダンスを算出す
るインピーダンス演算部9とから成るものを用いた。前
記演算、比較及びデータ記録部4は例えばマイクロコン
ピュータで構成され、前記インピーダンス測定器3で測
定した蓄電池2の内部インピーダンスが逐次入力され、
操作部5によりメモリに予め設定された例えば7.0m
Ωと比較し、これを越えたことを検出したとき、制御信
号を出力するように成っている。前記制御出力部6は、
前記演算、比較及びデータ記録部4から出力した制御信
号により充電回路1を4Aの定電流制御をすると共にタ
イマー7を起動し、設定した所定時間例えば2時間経過
後に充電回路1をオフにして充電を停止するように成っ
ている。
FIG. 4 shows a block diagram of the charge control device of the present invention. In the figure, 1 is a charging circuit connected to a commercial power supply, 2 is the storage battery whose charging is controlled, 3 is an impedance measuring device, 4 is an operation, comparison and data recording unit, and 5 is an operation, comparison and data recording unit. An operation unit 4 inputs conditions and the like to 4, and a control signal and a charging circuit 1 for inputting the output of the arithmetic, comparison and data recording unit 4 for controlling the charging circuit 1.
Is a control output unit that outputs a start signal of the timer 7 that operates for a predetermined time. The impedance measuring device 3 includes, for example, a frequency generator and a power amplifying unit 8 for supplying an alternating current of 17.5 Hz and 0.1 A to the storage battery 2, a terminal voltage of the storage battery 2 by the AC current by an AC impedance method, and the AC voltage. An impedance calculator 9 for calculating the internal impedance of the storage battery 2 from the current is used. The calculation, comparison and data recording unit 4 is composed of, for example, a microcomputer, and the internal impedance of the storage battery 2 measured by the impedance measuring device 3 is sequentially input,
For example, 7.0 m preset in the memory by the operation unit 5
Compared with Ω, a control signal is output when it is exceeded. The control output unit 6 includes:
The charging circuit 1 is controlled at a constant current of 4 A by the control signal output from the calculation, comparison and data recording unit 4 and the timer 7 is started, and after a predetermined time, for example, 2 hours, the charging circuit 1 is turned off to charge. It is made to stop.

【0018】図5はこの充電制御装置の作動のフローチ
ャートの1例を示す。充電回路1を作動して定電流充電
を行う(ステップS1)。次で、ステップS2でインピ
ーダンス測定器3により蓄電池2の内部インピーダンス
の測定を開始して内部インピーダンスが規定値例えば、
7.0mΩを越えているかどうかを判断し、規定値を越
えた時はステップS3でステップS1における定電流充
電のときより小さい電流値の定電流充電に切り換える。
ステップS2で内部インピーダンスが規定値を越えない
時は再びステップS1に戻る。ステップS4で、切り換
えからタイマー7で設定した所定時間例えば2時間経過
したと判断した時は充電を休止する(ステップS5)。
尚、この実施例では、内部インピーダンスの設定値を検
出した後、電流を小さくして定電流充電を行ったが、同
様に内部インピーダンスの設定値を検出後充電電圧を任
意に設定しておき、定電圧により充電をすることも可能
である。この時のフローチャートは、図5のステップS
3の定電流充電が定電圧充電に置き換わっただけで後は
図5と同じである。
FIG. 5 shows an example of a flowchart of the operation of the charging control device. The charging circuit 1 is operated to perform constant current charging (step S1). Next, in step S2, measurement of the internal impedance of the storage battery 2 is started by the impedance measuring device 3 so that the internal impedance becomes a specified value, for example,
It is determined whether the value exceeds 7.0 mΩ. If the value exceeds the specified value, the current value is switched to a constant current charge having a smaller current value in step S1 in step S1.
If the internal impedance does not exceed the specified value in step S2, the process returns to step S1. If it is determined in step S4 that a predetermined time set by the timer 7, for example, 2 hours, has elapsed since the switching, the charging is stopped (step S5).
In this embodiment, after detecting the set value of the internal impedance, constant current charging was performed by reducing the current, but similarly, after detecting the set value of the internal impedance, the charging voltage was set arbitrarily. It is also possible to charge with a constant voltage. The flowchart at this time corresponds to step S in FIG.
3 is the same as FIG. 5 except that the constant current charging is replaced by the constant voltage charging.

【0019】(実施例4)6セル・モノブロックタイプ
の密閉型鉛蓄電池を25℃恒温槽中に入れ、26Aの電
流で9.9Vまで放電し、2時間静置した後蓄電池の内
部インピーダンスを測定しながら80Aの電流で定電流
充電を行い、内部インピーダンスが最大値付近の20.
0mΩに達した時設定電圧を15.0Vの定電流充電に
切換えて合計1時間充電を行った。試験結果を図6及び
下記表5に示す。図6から明らかなように、充電開始か
ら47分目付近で蓄電池の内部インピーダンスの急激な
立上がりが現れた。この時の電圧変化、温度変化と比較
しても明らかなように蓄電池の内部インピーダンスの変
化の方が大きい。該表5から明らかなように、蓄電池の
内部インピーダンスの最大値検出時の放電容量に対する
充電電気量は90.6%であり、蓄電池の充電末期状態
を確実に検出できる。
Example 4 A 6-cell, monoblock type sealed lead-acid battery was placed in a thermostat at 25 ° C., discharged to 9.9 V with a current of 26 A, allowed to stand for 2 hours, and then the internal impedance of the battery was measured. Perform constant current charging with a current of 80 A while measuring, and set the internal impedance to 20.
When the voltage reached 0 mΩ, the set voltage was switched to constant current charging of 15.0 V, and charging was performed for a total of 1 hour. The test results are shown in FIG. 6 and Table 5 below. As is apparent from FIG. 6, a sharp rise in the internal impedance of the storage battery appeared around 47 minutes after the start of charging. As is clear from comparison with the voltage change and the temperature change at this time, the change in the internal impedance of the storage battery is larger. As is clear from Table 5, the amount of charged electricity with respect to the discharge capacity at the time of detection of the maximum value of the internal impedance of the storage battery is 90.6%, and the end-of-charge state of the storage battery can be reliably detected.

【0020】[0020]

【表5】 [Table 5]

【0021】(実施例5)定格容量120Ah、1.2
Vのニッケル水素蓄電池を25℃恒温槽中に入れ、0.
33CAで1.0Vまで放電し、2時間静置した後蓄電
池の内部インピーダンスを測定しながら1.2CAで5
時間、0.05CAで4時間の2段の定電流充電を行っ
た。
(Embodiment 5) Rated capacity 120 Ah, 1.2
V nickel-metal hydride storage battery in a 25 ° C. constant temperature bath.
The battery was discharged to 1.0 V at 33 CA and allowed to stand for 2 hours.
Two-stage constant current charging was performed at 0.05 CA for 4 hours.

【0022】図7は、この時測定した蓄電池の内部イン
ピーダンス、電池電圧、電池内圧及び電池温度を示す。
この図から分かるように、ニッケル水素蓄電池でも鉛蓄
電池と同様に充電末期に内部インピーダンスの急激な立
上がりが現れている。この時の内部インピーダンスの変
化量は他の電池電圧、電池内圧及び電池温度の変化量よ
りも大きいため高い精度で充電末期を検知し、充電制御
を行う事ができる。図4に示す充電制御装置において、
演算、比較、データ記録部4はインピーダンス測定器3
で測定した内部インピーダンスが規定値を越えた時制御
信号を出力するものであるが、単位時間当たりの内部イ
ンピーダンスの変化量が規定値を越えた時制御信号を出
力するものにすれば、前記実施例3と同様な充電制御を
行うことができる。又、同図に示す装置の構成におい
て、タイマー7を用いないで、演算、比較、データ記録
部4の出力する制御信号により充電回路1をオフにして
充電を休止するようにすることができる。
FIG. 7 shows the internal impedance, battery voltage, battery internal pressure and battery temperature of the storage battery measured at this time.
As can be seen from this figure, a sharp rise in the internal impedance of the nickel-metal hydride storage battery appears at the end of charging as in the case of the lead storage battery. Since the amount of change in the internal impedance at this time is larger than the amount of change in the other battery voltage, battery internal pressure, and battery temperature, the end of charging can be detected with high accuracy, and charge control can be performed. In the charge control device shown in FIG.
The calculation, comparison, and data recording unit 4 includes the impedance measuring device 3
The control signal is output when the internal impedance measured in step 2 exceeds the specified value.If the control signal is output when the amount of change in internal impedance per unit time exceeds the specified value, The same charge control as in Example 3 can be performed. Further, in the configuration of the apparatus shown in FIG. 3, the charging circuit 1 can be turned off by a control signal output from the calculation, comparison and data recording unit 4 to suspend charging without using the timer 7.

【0023】[0023]

【発明の効果】上記の本発明の蓄電池充電制御方法によ
り、蓄電池の充電を高い精度で行うことができ、過充電
を防止できる等の効果を有する。
According to the storage battery charge control method of the present invention described above, the storage battery can be charged with high accuracy, and there is an effect that overcharging can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明蓄電池充電方法を説明するための充電
時の蓄電池の内部インピーダンス、電池電圧及び電池温
度を示す図。
FIG. 1 is a view showing an internal impedance, a battery voltage, and a battery temperature of a storage battery at the time of charging for explaining the storage battery charging method of the present invention.

【図2】 本発明の実施例1における充電時の蓄電池の
内部インピーダンス、電池電圧及び電池温度を示す図。
FIG. 2 is a diagram showing an internal impedance, a battery voltage, and a battery temperature of a storage battery during charging according to the first embodiment of the present invention.

【図3】 実施例2における充電時の蓄電池の内部イン
ピーダンス、電池電圧及び充電電流を示す図。
FIG. 3 is a diagram illustrating an internal impedance, a battery voltage, and a charging current of a storage battery during charging according to a second embodiment.

【図4】 本発明の充電制御装置のブロック図。FIG. 4 is a block diagram of a charge control device according to the present invention.

【図5】 前記充電制御装置の作動のフローチャート。FIG. 5 is a flowchart of an operation of the charge control device.

【図6】 実施例4における充電時の蓄電池の内部イン
ピーダンス、電池電圧及び電池温度を示す図。
FIG. 6 is a diagram showing an internal impedance, a battery voltage, and a battery temperature of a storage battery during charging according to a fourth embodiment.

【図7】 実施例5における充電時の蓄電池の内部イン
ピーダンス、電池電圧、電池温度及び電池電圧を示す
図。
FIG. 7 is a diagram showing an internal impedance, a battery voltage, a battery temperature, and a battery voltage of a storage battery during charging according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

1 充電回路 2 蓄電池 3 インピーダンス測定器 4 演算、比
較、データ記録部 6 制御出力部
DESCRIPTION OF SYMBOLS 1 Charging circuit 2 Storage battery 3 Impedance measuring device 4 Calculation, comparison, data recording part 6 Control output part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池の充電末期における単位時間当た
りの内部インピーダンスの変化量が規定値を越えた時こ
れを検出して充電を制御することを特徴とする蓄電池充
電制御方法。
1. A charge control method for a storage battery, comprising: detecting a change amount of an internal impedance per unit time at a final stage of charge of the storage battery when the change amount exceeds a specified value, and controlling the charge.
【請求項2】 蓄電池の充電末期における内部インピー
ダンスが規定値を越えた時これを検出して充電を制御す
ることを特徴とする蓄電池充電制御方法。
2. A method for controlling charging of a storage battery, wherein when the internal impedance of the storage battery at the end of charging exceeds a specified value, this is detected and charging is controlled.
【請求項3】 充電中の蓄電池の内部インピーダンスを
測定するインピーダンス測定器と、該インピーダンス測
定器によって測定された蓄電池の内部インピーダンス又
は該内部インピーダンスの単位時間当たりの変化量が規
定値を越えた時これを検出して充電回路を制御する制御
部を備えることを特徴とする蓄電池充電制御装置。
3. An impedance measuring device for measuring an internal impedance of a storage battery during charging, and when an internal impedance of the storage battery measured by the impedance measuring device or an amount of change per unit time of the internal impedance exceeds a prescribed value. A storage battery charging control device comprising a control unit that detects this and controls a charging circuit.
JP8268006A 1996-09-18 1996-09-18 Method and device for controlling charge of battery Pending JPH1092473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8268006A JPH1092473A (en) 1996-09-18 1996-09-18 Method and device for controlling charge of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8268006A JPH1092473A (en) 1996-09-18 1996-09-18 Method and device for controlling charge of battery

Publications (1)

Publication Number Publication Date
JPH1092473A true JPH1092473A (en) 1998-04-10

Family

ID=17452606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8268006A Pending JPH1092473A (en) 1996-09-18 1996-09-18 Method and device for controlling charge of battery

Country Status (1)

Country Link
JP (1) JPH1092473A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078180A (en) * 2009-09-29 2011-04-14 Nec Personal Products Co Ltd Charge controller, charge control method, program, and recording medium
JP2013210206A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device
JP2017157373A (en) * 2016-03-01 2017-09-07 株式会社豊田中央研究所 Detector and detection method
WO2023176288A1 (en) 2022-03-18 2023-09-21 大阪瓦斯株式会社 Gas detection method and gas detection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078180A (en) * 2009-09-29 2011-04-14 Nec Personal Products Co Ltd Charge controller, charge control method, program, and recording medium
JP2013210206A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device
JP2017157373A (en) * 2016-03-01 2017-09-07 株式会社豊田中央研究所 Detector and detection method
WO2023176288A1 (en) 2022-03-18 2023-09-21 大阪瓦斯株式会社 Gas detection method and gas detection apparatus

Similar Documents

Publication Publication Date Title
US5694023A (en) Control and termination of a battery charging process
US6172487B1 (en) Method and apparatus for charging batteries
US6366056B1 (en) Battery charger for lithium based batteries
JP3198439B2 (en) Method and apparatus for charging a rechargeable battery
JP3539123B2 (en) Method and apparatus for determining deterioration of secondary battery
KR19990028876A (en) Control and Termination of Battery Charging Process
JPH04502099A (en) Battery quick charging device and method
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP3774995B2 (en) Lithium ion secondary battery charging method and charging device therefor
JPH0956080A (en) Battery charger
JPH1092473A (en) Method and device for controlling charge of battery
JP3739820B2 (en) Charger
JPH10248177A (en) Charging circuit
CN115298878B (en) Electrochemical device management method, electrochemical device management system, electrochemical device and electronic equipment
JPH10322917A (en) Deterioration discrimination for secondary battery and device thereof
JP4013289B2 (en) Non-aqueous secondary battery charging method and charging device therefor
JPH1174001A (en) Charging method for lead-acid battery
JPH08149709A (en) Charger for secondary battery
JPH0479732A (en) Boosting charger
JPH1066278A (en) Charging device
JP3286357B2 (en) Charger
JPH02250274A (en) Method for charging sealed lead-acid battery
JP2003134687A (en) Method for controlling charging of secondary battery and electrical equipment using the same
JPH05146087A (en) Charger
JP2002010504A (en) Power supply device for electric vehicle