JP3539123B2 - Method and apparatus for determining deterioration of secondary battery - Google Patents

Method and apparatus for determining deterioration of secondary battery Download PDF

Info

Publication number
JP3539123B2
JP3539123B2 JP08886697A JP8886697A JP3539123B2 JP 3539123 B2 JP3539123 B2 JP 3539123B2 JP 08886697 A JP08886697 A JP 08886697A JP 8886697 A JP8886697 A JP 8886697A JP 3539123 B2 JP3539123 B2 JP 3539123B2
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
charging
open circuit
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08886697A
Other languages
Japanese (ja)
Other versions
JPH10270092A (en
Inventor
和彦 竹野
幹夫 山崎
亨 鈴木
誠一 室山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08886697A priority Critical patent/JP3539123B2/en
Publication of JPH10270092A publication Critical patent/JPH10270092A/en
Application granted granted Critical
Publication of JP3539123B2 publication Critical patent/JP3539123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無停電電源に関するものであり、ニッケルカドミニウム電池、ニッケル水素電池、リチウムイオン電池等の二次電池を予備電力源とする装置において、上記二次電池の容量低下に伴う劣化を検出する方法および装置に関するものである。
【0002】
【従来の技術】
従来、バックアップ電源に用いられているニッケルカドミニウム電池等の二次電池は、常時微少電流を流して充電を行うトリクル充電が行われている。
【0003】
しかし、このトリクル充電は、電池に常時電流を流しているので、電池にとっては過充電状態が長時間続くことになり、電池の電解液や電極板の劣化を進行し、電池寿命が短くなるという問題がある。このために、トリクル充電によっては劣化しにくいトリクル充電用電池を使用する必要があるが、このトリクル充電用電池は、充電電荷が全て放電された後に充電するサイクル用電池よりも高価であるという問題がある。
【0004】
また、ニッケルカドミニウム電池よりも高エネルギー密度である二次電池としては、ニッケル水素電池が知られているが、このニッケル水素電池は、トリクル充電方式を採用することができないという問題がある。
【0005】
これらの問題を解決するには、安価なサイクル用電池を二次電池として使用し、この二次電池を間欠的に充電すればよい。
【0006】
つまり、定電流回路から二次電池を充電し、二次電池の電圧が最大閾値電圧に達したときに、充電用スイッチをオフにして充電を止めるとともに二次電池を開回路状態にし、二次電池の電圧が自己放電によって最低閾値電圧まで低下したときに二次電池の充電を開始し、上記充電状態と上記開回路状態とを繰り返す間欠充電を行えばよい。そして、この間欠充電において、二次電池の劣化を判定するには、二次電池を負荷から切り離し、二次電池の放電を実際に行い、二次電池の容量を測定することによって、二次電池の劣化を判定する方法、または、二次電池を負荷から切り離した状態で、二次電池の内部抵抗を測定することによって、二次電池の劣化を判定する方法を実行する。
【0007】
【発明が解決しようとする課題】
しかし、上記従来例においては、二次電池に間欠充電を行いながら、その二次電池の劣化を判定しようとすると、その二次電池を負荷から切り離す必要があるので、二次電池を負荷から切り離している間、バックアップできないという問題がある。
【0008】
本発明は、間欠充電によって二次電池を充電する場合、二次電池を負荷から切り離さずに、二次電池の劣化を判定することができる二次電池の劣化判定方法およびその装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、定電流回路から二次電池を充電し、二次電池の電圧が最大閾値電圧に達したときに、充電用スイッチをオフにして充電を止めるとともに二次電池を開回路状態にし、二次電池の電圧が自己放電によって最低閾値電圧まで低下したときに二次電池の充電を開始し、上記充電状態と上記開回路状態とを繰り返す二次電池の間欠充電において、充電状態から開回路状態に切り替えてから所定時間以内に、開回路状態における二次電池の電圧である開回路電圧を測定し、最大閾値電圧から開回路電圧を差し引いた差電圧と所定の閾値とを比較し、差電圧が所定の閾値に達したときに、二次電池が劣化したと判定するものである。
【0010】
【発明の実施の形態および実施例】
図1は、本発明の第1の実施例である二次電池の劣化判定回路DC1を示す図である。
【0011】
二次電池の劣化判定回路DC1は、二次電池1と、二次電池1を充電する定電流回路2と、充電状態を制御する充電用スイッチであるMOSFET3と、基準電圧源4と、コンパレータ5と、抵抗R1、R2と、電圧判定回路を実現するシュミット・トリガ回路8と、直流電源回路9と、コンパレータ11と、アナログスイッチ12と、インバータ回路13と、矩形波発生回路14と、シュミット・トリガ回路の最大閾値電圧V1を発生する基準電圧源15と、基準電圧ΔVqを発生する基準電圧源16と、抵抗19と、減算器21とを有する。減算器21は、オペアンプ10、抵抗17、18、20で構成されている。
【0012】
二次電池1は、ニッケルカドミニウム電池、ニッケル水素電池、リチウムイオン電池等である。
【0013】
なお、AC電源31のAC電圧がAC−DCコンバータ32によって直流電圧に変換され、この直流電圧が負荷33に印加されている。また、二次電池1の+電極がダイオード34のアノード側に接続され、このダイオード34のカソード側が負荷33の入力端子に接続されている。そして、常時はAC電源から負荷33に電力が供給されるが、AC電源が停電した場合には、ダイオード34を介して、二次電池1に充電された電荷が負荷33に供給される。
【0014】
次に、二次電池の劣化判定回路DC1の動作について説明する。
【0015】
図2は、二次電池の劣化判定回路DC1の動作波形を示す図である。
【0016】
図2において、縦軸に電圧、横軸に時間が示されている。Vaは、二次電池1の端子電圧波形であり、Vbはシュミット・トリガ回路8の出力電圧であり、Vcはインバータ13の出力電圧波形であり、Vdは矩形波発生回路14の出力電圧波形であり、Veはアナログスイッチ12の出力波形信号であり、Vfはコンパレータ11の出力電圧波形である。
【0017】
二次電池1は、MOSFET3がオンしている場合、すなわち、Vbがオン信号レベルである場合、定電流回路2から電流が流れ込み充電が行われる(充電状態)。この充電状態において、抵抗R1、R2、基準電圧源4が出力する最大閾値電圧(充電終止電圧)V1と最小閾値電圧(充電開始電圧)V2において、シュミット・トリガ回路8の最大閾値電圧(充電終止電圧)V1まで、二次電池1の電圧が上昇した時点でコンパレータ5の出力はオフ信号を発生し、充電用スイッチ3がオフ状態になり、定電流回路2と二次電池1との間が開回路になる(開回路状態)。この開回路状態において、定電流回路2からの充電電流が停止し、二次電池1への充電が停止される。
【0018】
開回路状態になった二次電池は自己放電によって、蓄えられた電気容量が徐々に低下し、この自己放電とともに開回路電圧V3(開回路状態における二次電池1の電圧)も低下する。そして、開回路電圧が、シュミット・トリガ回路8の最小閾値電圧(充電開始電圧)V2まで低下した時点で、コンパレータ5の出力信号がオン信号になる。これによって、充電用スイッチ3がオン状態になり、定電流回路2からの充電電流が二次電池1に流れ込み、二次電池1への充電が開始される。上記開回路状態と充電状態とを繰り返すことによって、間欠充電が行われ、二次電池1の容量が、所定の容量以上に常時保持される。
【0019】
図3は、二次電池としてのニッケル水素電池を間欠充電したときにおける電圧波形を拡大して示す図である。
【0020】
充電停止直後に測定する電圧V3は、時間が経つに従って、自己放電によって低下していく。この現象は劣化とは無関係の現象であり、その影響を軽減する必要がある。一般に、充電停止直後に測定する電圧V3の時間的変化は、充電停止後1分以内では緩やかな変化であるが、1分を越えると、自己放電によって、大きく変化する。したがって、充電停止直後に電圧V3を測定する場合、充電停止から1分以内に測定を行うことを条件とし、これによって自己放電の影響を軽減する。
つまり、上記開回路電圧V3は、充電状態から開回路状態に切り替えてから所定時間内に測定された開回路状態における二次電池の電圧である。
【0021】
図4は、二次電池としてのニッケル水素電池の劣化に伴って低下する二次電池の容量Qと、差電圧ΔVとの関係を示す図である。
【0022】
二次電池1を間欠充電する場合、充電状態から開回路状態へ移行する瞬間、二次電池1の端子電圧Vaは急激に降下する。この急激な電圧降下による差電圧ΔV(=V1−V3)は、図4に示してあるように、差電圧ΔVと二次電池1の容量Qとに相関があるので、二次電池1の劣化と、判定する容量Qqに対応する差電圧の閾値ΔVqを決定し、差電圧ΔVが閾値ΔVqに達した時点で劣化と判定する。
【0023】
すなわち、基準電圧源15が出力する充電終止電圧V1から、開回路電圧V3を引いた差電圧V1−V3を、減算器21が出力する。一方、充電状態から開回路状態に移行するときに、シュミット・トリガ回路8の出力電圧Vbの値がオフ信号状態になり、電圧Vbを入力したインバータ13の出力電圧Vcはオン信号状態になる。矩形波発生回路14は、立ち上がり信号が入力された場合、パルス時間T0の矩形波信号Vdを出力するので、電圧Vcがオン信号に立ち上がったことを検出して、パルス時間T0の矩形波信号Vdが出力される。
【0024】
そして、アナログスイッチ12のゲートに、矩形波発生回路14からオン信号が入力されると、アナログスイッチ12の切り替え接片がA側に切り替わり、アナログスイッチ12のゲートにオフ信号が入力されると、その切り替え接片がB側に切り替わる。パルス時間T0の矩形波信号Vdがアナログスイッチ12のゲートに入力されると、アナログスイッチ12がB側からA側に切り替わる。これによって、減算器21からの信号Veが、コンパレータ11の+入力端子に入力される。コンパレータ11は、減算器21からの信号Ve(=V1−V3)と閾値ΔVqの値とを比較して、信号Veの値が閾値ΔVqよりも大きくなったときに、出力電圧波形Vfの信号がオンレベルになり、二次電池1が劣化したことを知らせる。
【0025】
なお、差電圧ΔVは、充電停止から短い時間T0が経過したときにおける電圧V3を、間欠充電における充電終止電圧V1から差し引いた差の電圧である。つまり、差電圧ΔV=V1−V3である。そして、充電状態から開回路状態に移行してから、1分以内においては、二次電池1の電圧波形はほぼ一定であることが図3に示されている。したがって、充電停止直後に電圧V3を測定する時間(パルス時間T0)を1分以内に設定することによって、自己放電の影響を排除し、差電圧ΔVを精度よく測定することができる。
【0026】
上記実施例は、図4に示すように、二次電池1の容量Qの低下に伴って、差電圧ΔVが大きくなり、この特性を利用して、二次電池1が劣化していると判断される容量Qqに対応する差電圧の閾値ΔVqを設定し、間欠充電中に、差電圧ΔVを監視し、差電圧ΔVが、閾値Vqになったときに、その二次電池1が劣化していると判定する。
【0027】
なお、上記劣化判定動作が実行されているときに、二次電池1が負荷から切り離されないので、停電時(AC電源31の故障時)に、上記劣化判定動作が実行されたとしても、バックアップが停止されることはない。
【0028】
図5は、本発明の第2の実施例である二次電池の劣化判定回路DC2を示す図である。
【0029】
二次電池の劣化判定回路DC2は、基本的には二次電池の劣化判定回路DC1と同じであり、二次電池の劣化判定回路DC1において、基準電圧源16と直列に、抵抗22とサーミスタ23との直列回路が接続され、サーミスタ23が二次電池1の温度を検出するようになっている点が、二次電池の劣化判定回路DC1とは異なる。
【0030】
つまり、二次電池の劣化判定回路DC2において、サーミスタ23が、劣化判定電圧における差電圧の閾値ΔVqを温度補正している。
【0031】
具体的には、二次電池1にサーミスタ23を接触させ、このサーミスタ23によって二次電池1の温度を測定し、このときに、二次電池1の温度変化に応じてサーミスタ23の抵抗値が変化し、抵抗22とサーミスタ23とによって電圧分割された閾値ΔVqが、温度によって変化される。
【0032】
図6は、劣化に伴って低下するニッケル水素電池の容量Qと、差電圧ΔVとの関係が、温度依存性を有することを示す特性図である。
【0033】
図6に示す特性図によれば、容量QとΔVとの関係が、温度の変化に対して変化している。この特性から、劣化と判断する容量Qqに対応する閾値ΔVqの値を、温度変化とともに変化させて、温度補正を行う。
【0034】
【発明の効果】
本発明によれば、間欠充電によって二次電池を充電する場合に、二次電池を負荷から切り離さずに、二次電池の劣化を判定することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施例である二次電池の劣化判定回路DC1の図である。
【図2】二次電池の劣化判定回路DC1の動作波形を示す図である。
【図3】二次電池としてのニッケル水素電池を間欠充電したときにおける電圧波形を拡大して示す図である。
【図4】二次電池としてのニッケル水素電池の劣化に伴って低下する二次電池の容量Qと、差電圧ΔVとの関係を示す図である。
【図5】本発明の第2の実施例である二次電池の劣化判定回路DC2の図である。
【図6】劣化に伴って低下するニッケル水素電池の容量Qと、差電圧ΔVとの関係が、温度依存性を有することを示す特性図である。
【符号の説明】
DC1、DC2…二次電池の劣化判定回路、
1…二次電池、
2…定電流回路、
3…MOSFET、
4…基準電圧源、
8…シュミット・トリガ回路、
9…直流電源回路、
11…コンパレータ11、
12…アナログスイッチ、
14…矩形波発生回路、
21…減算器、
23…サーミスタ、
31…AC電源、
33…負荷、
34…ダイオード。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an uninterruptible power supply, and in a device using a secondary battery such as a nickel-cadmium battery, a nickel-metal hydride battery, and a lithium-ion battery as a standby power source, detects deterioration due to a decrease in the capacity of the secondary battery. The present invention relates to a method and an apparatus.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a trickle charge, in which a secondary battery such as a nickel cadmium battery used as a backup power supply is charged by passing a small current at all times, is performed.
[0003]
However, in trickle charging, current always flows through the battery, so that the battery is overcharged for a long time, and the battery electrolyte and electrode plates are deteriorated, and the battery life is shortened. There's a problem. For this reason, it is necessary to use a trickle charging battery that is not easily deteriorated by trickle charging. However, this trickle charging battery is more expensive than a cycle battery that is charged after all the charge has been discharged. There is.
[0004]
As a secondary battery having a higher energy density than a nickel-cadmium battery, a nickel-metal hydride battery is known. However, this nickel-metal hydride battery has a problem that a trickle charging method cannot be adopted.
[0005]
To solve these problems, an inexpensive cycle battery may be used as a secondary battery, and the secondary battery may be intermittently charged.
[0006]
That is, the secondary battery is charged from the constant current circuit, and when the voltage of the secondary battery reaches the maximum threshold voltage, the charging switch is turned off to stop charging, and the secondary battery is opened, and the secondary battery is opened. The charging of the secondary battery may be started when the voltage of the battery drops to the minimum threshold voltage due to self-discharge, and the intermittent charging may be performed by repeating the above-described charging state and the above-described open circuit state. Then, in this intermittent charging, to determine the deterioration of the secondary battery, the secondary battery is disconnected from the load, the secondary battery is actually discharged, and the capacity of the secondary battery is measured. Of the deterioration of the secondary battery or a method of determining the deterioration of the secondary battery by measuring the internal resistance of the secondary battery with the secondary battery disconnected from the load.
[0007]
[Problems to be solved by the invention]
However, in the above conventional example, while performing intermittent charging of the secondary battery and trying to determine the deterioration of the secondary battery, it is necessary to disconnect the secondary battery from the load. While backup is not possible.
[0008]
An object of the present invention is to provide a secondary battery deterioration determination method and device capable of determining secondary battery deterioration without disconnecting the secondary battery from a load when the secondary battery is charged by intermittent charging. The purpose is.
[0009]
[Means for Solving the Problems]
The present invention charges a rechargeable battery from a constant current circuit, and when the voltage of the rechargeable battery reaches a maximum threshold voltage, turns off a charging switch to stop charging and puts the rechargeable battery into an open circuit state, When the voltage of the secondary battery is reduced to the minimum threshold voltage by self-discharge, charging of the secondary battery is started, and in the intermittent charging of the secondary battery that repeats the above-mentioned charged state and the above-mentioned open circuit state, the open circuit from the charged state Within a predetermined time after switching to the state, the open circuit voltage, which is the voltage of the secondary battery in the open circuit state, is measured, and a difference voltage obtained by subtracting the open circuit voltage from the maximum threshold voltage is compared with a predetermined threshold value. When the voltage reaches a predetermined threshold value, it is determined that the secondary battery has deteriorated.
[0010]
Embodiments and Examples of the Invention
FIG. 1 is a diagram illustrating a deterioration determination circuit DC1 of a secondary battery according to a first embodiment of the present invention.
[0011]
The secondary battery deterioration determination circuit DC1 includes a secondary battery 1, a constant current circuit 2 for charging the secondary battery 1, a MOSFET 3 serving as a charging switch for controlling the state of charge, a reference voltage source 4, and a comparator 5 , Resistors R1 and R2, a Schmitt trigger circuit 8 for realizing a voltage determination circuit, a DC power supply circuit 9, a comparator 11, an analog switch 12, an inverter circuit 13, a rectangular wave generation circuit 14, a Schmitt The trigger circuit includes a reference voltage source 15 that generates a maximum threshold voltage V 1, a reference voltage source 16 that generates a reference voltage ΔVq, a resistor 19, and a subtractor 21. The subtracter 21 includes the operational amplifier 10 and the resistors 17, 18, and 20.
[0012]
The secondary battery 1 is a nickel cadmium battery, a nickel hydrogen battery, a lithium ion battery, or the like.
[0013]
The AC voltage of the AC power supply 31 is converted into a DC voltage by the AC-DC converter 32, and the DC voltage is applied to the load 33. The positive electrode of the secondary battery 1 is connected to the anode of the diode 34, and the cathode of the diode 34 is connected to the input terminal of the load 33. Then, power is always supplied from the AC power supply to the load 33. However, when the AC power supply is interrupted, the charge charged in the secondary battery 1 is supplied to the load 33 via the diode 34.
[0014]
Next, the operation of the secondary battery deterioration determination circuit DC1 will be described.
[0015]
FIG. 2 is a diagram showing operation waveforms of the secondary battery deterioration determination circuit DC1.
[0016]
In FIG. 2, the vertical axis represents voltage and the horizontal axis represents time. Va is the terminal voltage waveform of the secondary battery 1, Vb is the output voltage of the Schmitt trigger circuit 8, Vc is the output voltage waveform of the inverter 13, and Vd is the output voltage waveform of the rectangular wave generation circuit 14. Ve is an output waveform signal of the analog switch 12, and Vf is an output voltage waveform of the comparator 11.
[0017]
When the MOSFET 3 is on, that is, when Vb is at the ON signal level, the secondary battery 1 is charged by flowing current from the constant current circuit 2 (charge state). In this charging state, the maximum threshold voltage (charging end voltage) of the Schmitt trigger circuit 8 is determined by the maximum threshold voltage (charging end voltage) V1 and the minimum threshold voltage (charging start voltage) V2 output from the resistors R1 and R2 and the reference voltage source 4. When the voltage of the secondary battery 1 rises to the voltage of V1), the output of the comparator 5 generates an off signal, the charging switch 3 is turned off, and the connection between the constant current circuit 2 and the secondary battery 1 is established. Open circuit (open circuit state). In this open circuit state, the charging current from the constant current circuit 2 stops, and the charging of the secondary battery 1 stops.
[0018]
The stored electric capacity of the secondary battery in the open circuit state gradually decreases due to self-discharge, and the open circuit voltage V3 (the voltage of the secondary battery 1 in the open circuit state) also decreases along with the self-discharge. Then, when the open circuit voltage decreases to the minimum threshold voltage (charging start voltage) V2 of the Schmitt trigger circuit 8, the output signal of the comparator 5 becomes an ON signal. As a result, the charging switch 3 is turned on, the charging current from the constant current circuit 2 flows into the secondary battery 1, and the charging of the secondary battery 1 is started. By repeating the open circuit state and the charging state, intermittent charging is performed, and the capacity of the secondary battery 1 is constantly maintained at a predetermined capacity or more.
[0019]
FIG. 3 is an enlarged diagram showing a voltage waveform when a nickel-metal hydride battery as a secondary battery is intermittently charged.
[0020]
The voltage V3 measured immediately after the stop of charging gradually decreases due to self-discharge over time. This phenomenon is irrelevant to deterioration, and its effects need to be reduced. In general, the temporal change of the voltage V3 measured immediately after the stop of charging is a gradual change within one minute after the stop of charging, but greatly changes after 1 minute due to self-discharge. Therefore, when the voltage V3 is measured immediately after the charging is stopped, the measurement is performed within one minute after the charging is stopped, thereby reducing the influence of self-discharge.
That is, the open circuit voltage V3 is the voltage of the secondary battery in the open circuit state measured within a predetermined time after switching from the charging state to the open circuit state.
[0021]
FIG. 4 is a diagram showing the relationship between the capacity Q of the secondary battery, which decreases with the deterioration of the nickel-metal hydride battery as the secondary battery, and the difference voltage ΔV.
[0022]
In the case where the secondary battery 1 is intermittently charged, the terminal voltage Va of the secondary battery 1 sharply drops at the moment of transition from the charging state to the open circuit state. The difference voltage ΔV (= V1−V3) due to the sudden voltage drop is correlated with the difference voltage ΔV and the capacity Q of the secondary battery 1 as shown in FIG. Is determined, the threshold value ΔVq of the difference voltage corresponding to the capacity Qq to be determined is determined.
[0023]
That is, the subtractor 21 outputs a difference voltage V1−V3 obtained by subtracting the open circuit voltage V3 from the charge termination voltage V1 output by the reference voltage source 15. On the other hand, when the state changes from the charging state to the open circuit state, the value of the output voltage Vb of the Schmitt trigger circuit 8 becomes an off signal state, and the output voltage Vc of the inverter 13 to which the voltage Vb is input becomes an on signal state. When the rising signal is input, the rectangular wave generating circuit 14 outputs the rectangular wave signal Vd of the pulse time T0. Therefore, the rectangular wave generating circuit 14 detects that the voltage Vc has risen to the ON signal, and detects the rectangular wave signal Vd of the pulse time T0. Is output.
[0024]
When an ON signal is input to the gate of the analog switch 12 from the rectangular wave generation circuit 14, the switching contact of the analog switch 12 switches to the A side, and when an OFF signal is input to the gate of the analog switch 12, The switching contact switches to the B side. When the rectangular wave signal Vd of the pulse time T0 is input to the gate of the analog switch 12, the analog switch 12 switches from the B side to the A side. As a result, the signal Ve from the subtractor 21 is input to the + input terminal of the comparator 11. The comparator 11 compares the signal Ve (= V1−V3) from the subtractor 21 with the value of the threshold value ΔVq, and when the value of the signal Ve becomes larger than the threshold value ΔVq, the signal of the output voltage waveform Vf It goes to the on level, and notifies that the secondary battery 1 has deteriorated.
[0025]
Note that the difference voltage ΔV is a voltage obtained by subtracting the voltage V3 when a short time T0 has elapsed from the stop of charging from the charge end voltage V1 in intermittent charging. That is, the difference voltage ΔV = V1−V3. FIG. 3 shows that the voltage waveform of the secondary battery 1 is substantially constant within one minute from the transition from the charging state to the open circuit state. Therefore, by setting the time (pulse time T0) for measuring the voltage V3 immediately after the charging is stopped to within 1 minute, the influence of self-discharge can be eliminated, and the difference voltage ΔV can be measured accurately.
[0026]
In the above embodiment, as shown in FIG. 4, as the capacity Q of the secondary battery 1 decreases, the difference voltage ΔV increases, and by utilizing this characteristic, it is determined that the secondary battery 1 has deteriorated. The threshold value ΔVq of the difference voltage corresponding to the capacity Qq to be performed is set, the difference voltage ΔV is monitored during the intermittent charging, and when the difference voltage ΔV becomes the threshold value Vq, the secondary battery 1 is deteriorated. It is determined that there is.
[0027]
Since the secondary battery 1 is not disconnected from the load when the above-described deterioration determination operation is being performed, even if the above-described deterioration determination operation is performed at the time of a power failure (when the AC power supply 31 fails), a backup is performed. Will not be stopped.
[0028]
FIG. 5 is a diagram showing a secondary battery deterioration determination circuit DC2 according to a second embodiment of the present invention.
[0029]
The deterioration judgment circuit DC2 of the secondary battery is basically the same as the deterioration judgment circuit DC1 of the secondary battery. In the deterioration judgment circuit DC1 of the secondary battery, the resistor 22 and the thermistor 23 are connected in series with the reference voltage source 16. Is different from the secondary battery deterioration determination circuit DC1 in that the series circuit is connected and the thermistor 23 detects the temperature of the secondary battery 1.
[0030]
That is, in the deterioration determination circuit DC2 of the secondary battery, the thermistor 23 corrects the temperature difference ΔVq of the difference voltage in the deterioration determination voltage.
[0031]
Specifically, the thermistor 23 is brought into contact with the secondary battery 1, and the temperature of the secondary battery 1 is measured by the thermistor 23. At this time, the resistance of the thermistor 23 is changed according to the temperature change of the secondary battery 1. The threshold value ΔVq that changes and is voltage-divided by the resistor 22 and the thermistor 23 is changed by the temperature.
[0032]
FIG. 6 is a characteristic diagram showing that the relationship between the capacity Q of the nickel-metal hydride battery that decreases with deterioration and the difference voltage ΔV has temperature dependency.
[0033]
According to the characteristic diagram shown in FIG. 6, the relationship between the capacitance Q and ΔV changes with a change in temperature. From this characteristic, the temperature correction is performed by changing the value of the threshold value ΔVq corresponding to the capacity Qq determined to be deteriorated with the temperature change.
[0034]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, when a secondary battery is charged by intermittent charging, it is possible to determine the deterioration of the secondary battery without disconnecting the secondary battery from a load.
[Brief description of the drawings]
FIG. 1 is a diagram of a secondary battery deterioration determination circuit DC1 according to a first embodiment of the present invention.
FIG. 2 is a diagram showing operation waveforms of a secondary battery deterioration determination circuit DC1.
FIG. 3 is an enlarged view showing a voltage waveform when a nickel-metal hydride battery as a secondary battery is intermittently charged.
FIG. 4 is a diagram showing a relationship between the capacity Q of the secondary battery, which decreases with the deterioration of a nickel-metal hydride battery as a secondary battery, and a difference voltage ΔV.
FIG. 5 is a diagram of a secondary battery deterioration determination circuit DC2 according to a second embodiment of the present invention.
FIG. 6 is a characteristic diagram showing that the relationship between the capacity Q of the nickel-metal hydride battery, which decreases with deterioration, and the difference voltage ΔV has temperature dependency.
[Explanation of symbols]
DC1, DC2 ... rechargeable battery deterioration determination circuit,
1 ... secondary battery,
2. Constant current circuit
3 ... MOSFET,
4: Reference voltage source,
8 ... Schmitt trigger circuit
9 DC power supply circuit,
11 ... Comparator 11,
12. Analog switch,
14 ... Square wave generation circuit,
21 ... Subtractor,
23 ... Thermistor,
31 ... AC power supply,
33 ... load,
34 ... Diode.

Claims (6)

定電流回路から二次電池を充電し、上記二次電池の電圧が最大閾値電圧に達したときに、充電用スイッチをオフにして充電を停止するとともに上記二次電池を上記定電流回路から切り離して開回路状態にし、上記二次電池の電圧が自己放電によって最低閾値電圧まで低下したときに上記二次電池の充電を開始し、上記充電状態と上記開回路状態とを繰り返す二次電池の間欠充電において、
上記充電状態から上記開回路状態に切り替えてから所定時間以内に、上記開回路状態における上記二次電池の電圧である開回路電圧を測定する開回路電圧測定段階と;
上記最大閾値電圧から上記開回路電圧を差し引いた差電圧を演算する差電圧演算段階と;
上記差電圧と所定の閾値とを比較する比較段階と;
上記差電圧が上記所定の閾値に達したときに、上記二次電池が劣化したと判定する劣化判定段階と;
を有することを特徴とする二次電池の劣化判定方法。
The secondary battery is charged from the constant current circuit, and when the voltage of the secondary battery reaches the maximum threshold voltage, the charging switch is turned off to stop charging and the secondary battery is disconnected from the constant current circuit. To open the circuit, and when the voltage of the secondary battery drops to the minimum threshold voltage due to self-discharge, charging of the secondary battery is started, and the intermittent operation of the secondary battery is repeated between the charging state and the open circuit state. In charging,
An open circuit voltage measuring step of measuring an open circuit voltage that is a voltage of the secondary battery in the open circuit state within a predetermined time after switching from the charge state to the open circuit state;
Calculating a difference voltage obtained by subtracting the open circuit voltage from the maximum threshold voltage;
A comparing step of comparing the difference voltage with a predetermined threshold;
A deterioration determining step of determining that the secondary battery has deteriorated when the difference voltage has reached the predetermined threshold;
A method for judging deterioration of a secondary battery, comprising:
請求項1において、
上記所定の閾値に、上記二次電池の使用温度の依存性を持たせることを特徴とする二次電池の劣化判定方法。
In claim 1,
A method for determining deterioration of a secondary battery, wherein the predetermined threshold value has a dependency on a use temperature of the secondary battery.
請求項1または請求項2において
上記充電状態から上記開回路状態に切り替えてからの上記所定時間は、1分間であることを特徴とする二次電池の劣化判定方法。
3. The method according to claim 1, wherein the predetermined time after switching from the charging state to the open circuit state is one minute.
定電流回路から二次電池を充電し、上記二次電池の電圧が最大閾値電圧に達したときに、充電用スイッチをオフにして充電を停止するとともに上記二次電池を上記定電流回路から切り離して開回路状態にし、上記二次電池の電圧が自己放電によって最低閾値電圧まで低下したときに上記二次電池の充電を開始し、上記充電状態と上記開回路状態とを繰り返す二次電池の間欠充電回路において、
上記最大閾値電圧から、上記充電状態から上記開回路状態に切り替えてから所定時間内に測定された上記開回路状態における上記二次電池の電圧である開回路電圧を差し引いた差電圧を演算する差電圧演算手段と;
上記差電圧と所定の閾値とを比較し、上記差電圧が上記所定の閾値に達したときに、上記二次電池が劣化したと判定する劣化判定手段と;
を有することを特徴とする二次電池の劣化判定装置。
The secondary battery is charged from the constant current circuit, and when the voltage of the secondary battery reaches the maximum threshold voltage, the charging switch is turned off to stop charging and the secondary battery is disconnected from the constant current circuit. To open the circuit, and when the voltage of the secondary battery drops to the minimum threshold voltage due to self-discharge, charging of the secondary battery is started, and the intermittent operation of the secondary battery is repeated between the charging state and the open circuit state. In the charging circuit,
A difference for calculating a difference voltage obtained by subtracting an open circuit voltage that is a voltage of the secondary battery in the open circuit state measured within a predetermined time after switching from the charge state to the open circuit state from the maximum threshold voltage. Voltage calculation means;
Degradation determination means for comparing the difference voltage with a predetermined threshold value, and determining that the secondary battery has deteriorated when the difference voltage has reached the predetermined threshold value;
A degradation determination device for a secondary battery, comprising:
請求項4において、
上記劣化判定手段は、上記差電圧演算手段が出力した差電圧と上記所定の閾値とを比較するコンパレータによって構成され、
上記二次電池の電圧が上記最大閾値電圧に達したときにパルスを発生するパルス発生手段と;
上記パルス発生手段が上記パルスを発生したときにのみ、上記差電圧演算手段が出力した差電圧を、上記コンパレータへ供給するスイッチ手段と;
を有することを特徴とする二次電池の劣化判定装置。
In claim 4,
The deterioration determination unit is configured by a comparator that compares the difference voltage output by the difference voltage calculation unit with the predetermined threshold,
Pulse generation means for generating a pulse when the voltage of the secondary battery reaches the maximum threshold voltage;
Switch means for supplying the difference voltage output by the difference voltage calculation means to the comparator only when the pulse generation means generates the pulse;
A degradation determination device for a secondary battery, comprising:
請求項4または請求項5において、
上記劣化判定手段は、上記二次電池の使用温度を保証する温度補償手段を有する回路であることを特徴とする二次電池の劣化判定装置。
In claim 4 or claim 5,
The said deterioration judgment means is a circuit which has a temperature compensation means which guarantees the use temperature of the said secondary battery, The deterioration judgment apparatus of the secondary battery characterized by the above-mentioned.
JP08886697A 1997-03-24 1997-03-24 Method and apparatus for determining deterioration of secondary battery Expired - Fee Related JP3539123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08886697A JP3539123B2 (en) 1997-03-24 1997-03-24 Method and apparatus for determining deterioration of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08886697A JP3539123B2 (en) 1997-03-24 1997-03-24 Method and apparatus for determining deterioration of secondary battery

Publications (2)

Publication Number Publication Date
JPH10270092A JPH10270092A (en) 1998-10-09
JP3539123B2 true JP3539123B2 (en) 2004-07-07

Family

ID=13954940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08886697A Expired - Fee Related JP3539123B2 (en) 1997-03-24 1997-03-24 Method and apparatus for determining deterioration of secondary battery

Country Status (1)

Country Link
JP (1) JP3539123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107236A1 (en) 2008-02-29 2009-09-03 テクノコアインターナショナル株式会社 Charging device and quality judging device of pack cell

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142380A (en) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd Charging apparatus
JP4537617B2 (en) * 2001-05-29 2010-09-01 株式会社Gsユアサ Life determination method and life determination device for lead acid battery
JP5365118B2 (en) * 2008-09-22 2013-12-11 日産自動車株式会社 Lithium secondary battery charge control method, charge control device, and vehicle
JP5401884B2 (en) * 2008-09-22 2014-01-29 日産自動車株式会社 Lithium secondary battery charge control method, charge control device, and vehicle
JP5447029B2 (en) * 2010-03-12 2014-03-19 三菱自動車工業株式会社 DCDC converter control method and control apparatus
US9531037B2 (en) 2011-08-23 2016-12-27 Servato Corp. Battery management
JP2013148452A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Soh estimation device
JP2013160582A (en) * 2012-02-03 2013-08-19 Ntt Facilities Inc Battery pack system and management method of battery pack system
KR102633756B1 (en) * 2016-04-28 2024-02-05 삼성에스디아이 주식회사 battery pack and battery pack charging method
JP7302557B2 (en) * 2020-09-04 2023-07-04 カシオ計算機株式会社 Method and program for detecting deterioration of electronic device and secondary battery
CN112086699B (en) * 2020-09-07 2022-02-15 苏州清陶新能源科技有限公司 Lithium battery charging and discharging method and device and application thereof
CN113671391B (en) * 2021-06-28 2024-03-12 国联汽车动力电池研究院有限责任公司 Detection method for lithium ion battery micro/short circuit signal identification and early warning
CN114397582B (en) * 2022-01-11 2024-04-30 东莞新能安科技有限公司 Lithium precipitation detection method, electronic device, charging device and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107236A1 (en) 2008-02-29 2009-09-03 テクノコアインターナショナル株式会社 Charging device and quality judging device of pack cell

Also Published As

Publication number Publication date
JPH10270092A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3580828B2 (en) Pulse charging method and charging device
US8134342B2 (en) Method for pulsed charging of a battery in an autonomous system comprising a supercapacitance
JP3539123B2 (en) Method and apparatus for determining deterioration of secondary battery
Bhatt et al. A new approach to intermittent charging of valve-regulated lead-acid batteries in standby applications
US5321347A (en) Battery charger device and method
JPH11150884A (en) Charging control for secondary battery and charger therefor
KR19990028876A (en) Control and Termination of Battery Charging Process
KR101497549B1 (en) Recovering method for charging capacity of battery and the charging device
CN110828913A (en) Battery charging method and charging system thereof
JPH0956080A (en) Battery charger
US5537023A (en) Charging method for storage batteries
JPH09117074A (en) Intermittent charging circuit for secondary battery
JPH1023683A (en) Charger
JPH10322917A (en) Deterioration discrimination for secondary battery and device thereof
JPH05219655A (en) Battery charger
US11855474B2 (en) Battery charging method and system
JPH04281334A (en) Quick charger
JP3739820B2 (en) Charger
JPH1092473A (en) Method and device for controlling charge of battery
JP3216595B2 (en) Rechargeable battery charger
KR100536216B1 (en) Method for charging of battery pack
JPH06105477A (en) Charging circuit
JPH06100641B2 (en) Battery deterioration detection circuit for uninterruptible power supply
JP2000341873A (en) Charger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees