JPH06100641B2 - Battery deterioration detection circuit for uninterruptible power supply - Google Patents

Battery deterioration detection circuit for uninterruptible power supply

Info

Publication number
JPH06100641B2
JPH06100641B2 JP58067100A JP6710083A JPH06100641B2 JP H06100641 B2 JPH06100641 B2 JP H06100641B2 JP 58067100 A JP58067100 A JP 58067100A JP 6710083 A JP6710083 A JP 6710083A JP H06100641 B2 JPH06100641 B2 JP H06100641B2
Authority
JP
Japan
Prior art keywords
battery
power supply
circuit
supply circuit
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58067100A
Other languages
Japanese (ja)
Other versions
JPS59193371A (en
Inventor
徹 小屋敷
努 尾形
信昭 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58067100A priority Critical patent/JPH06100641B2/en
Publication of JPS59193371A publication Critical patent/JPS59193371A/en
Publication of JPH06100641B2 publication Critical patent/JPH06100641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、直流電力を出力する電源回路とその出力側に
電池を並列接続して成る無停電電源装置において、電池
の劣化を検出し、表示するための回路に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention detects a deterioration of a battery in an uninterruptible power supply device including a power supply circuit for outputting DC power and a battery connected in parallel on the output side, The present invention relates to a circuit for displaying.

(従来技術) 通信用端末装置と電話局とを結ぶ加入者線に光フアイバ
ケーブルが用いられるようになると、フアイバでは給電
ができないため、端末装置側に無停電電源が必要とな
る。この電源は、通常は商用電源を受電して動作し、停
電時は電源内に実装した電池により負荷に給電する形式
が一般的である。
(Prior Art) When an optical fiber cable is used for a subscriber line that connects a communication terminal device and a telephone station, power cannot be supplied by the fiber cable, so that an uninterruptible power supply is required on the terminal device side. This power source normally operates by receiving commercial power, and when a power failure occurs, a battery mounted in the power source generally supplies power to a load.

電池には、シール鉛蓄電池や、ニツケル・カドミウム電
池などの二次電池を使用するのが普通であるが、現状の
電池の寿命は数年以下である。
Secondary batteries such as sealed lead-acid batteries and nickel-cadmium batteries are usually used as batteries, but the current battery life is several years or less.

また、劣化の進んだ電池を使用することは、停電時の給
電可能時間が短くなるため好ましくない。したがつて、
完全に電池寿命がなくなる前に、容量の低下を検知し
て、電池を取替える必要がある。
In addition, it is not preferable to use a deteriorated battery because the time during which power can be supplied during a power failure is shortened. Therefore,
It is necessary to detect the decrease in capacity and replace the battery before the battery life is completely exhausted.

このような用途に対して、従来、すでに本発明者等が考
案し、昭和57年特許願第59751号として出願された劣化
検出回路が考えられていた。この従来の方法とは、電源
回路と電池を一定期間切り離して電池の開放電圧を測定
する方法もしくは両者を切り離した後、電池を短時間放
電させ、電池電圧の低下量を測定する方法で、いずれも
電圧が規定値より低くなつた事を検出して行つていた。
しかし、電池の電圧は、例えば停電回復直後など電池の
放電が進行している時は、低下しているなど、電池の充
電に関する履歴によるバラツキが大きく、さらに測定で
きる条件を電池満充電の場合等に限定する必要があると
いう欠点を有している。
For such an application, a deterioration detection circuit which has been devised by the present inventors and applied as a patent application No. 59751 in 1982 has been considered. This conventional method is a method of measuring the open circuit voltage of the battery by disconnecting the power supply circuit and the battery for a certain period of time or a method of discharging the battery for a short time after disconnecting both and measuring the amount of decrease in the battery voltage. Also detected that the voltage was lower than the specified value.
However, the voltage of the battery has a large variation due to the history of battery charging, such as when the battery is being discharged, for example immediately after the power failure is recovered. It has the drawback of being limited to

また、短時間放電時の電圧測定は、放電時間が数秒以上
必要で劣化判定の命令を入力してから、判定結果が明ら
かになるまで少なくともこの数秒間は必要で、劣化判定
結果が得られるまでの時間が長いという不便な面を有し
ていた。
In addition, voltage measurement during short-time discharge requires at least several seconds until the judgment result becomes clear after inputting the deterioration judgment command because the discharge time requires several seconds or more, until the deterioration judgment result is obtained. It had an inconvenient aspect that the time was long.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもの
で、電池の内部抵抗と劣化の関係を利用し、充電初期の
突入電流の大きさにより劣化を判定しようとしたもので
あつて、その目的は、劣化が進んで完全に電池寿命とな
る前に電池を取替え、停電時の給電可能時間を確保する
とともに、取替える電池の劣化のバラつきを少なくする
ことによつて経済性を高めることにある。
(Object of the Invention) The present invention has been proposed in order to improve the above-mentioned drawbacks, and is intended to judge the deterioration by the magnitude of the inrush current at the initial stage of charging by utilizing the relationship between the internal resistance of the battery and the deterioration. The purpose of this is to replace the battery before it deteriorates completely to reach the end of its service life, to secure the time during which power can be supplied during a power outage, and to reduce the variation in deterioration of the battery to be replaced. Is to raise.

(発明の構成) 上記の目的を達成するため、本発明は直流電力を出力す
る電源回路と、該電源回路出力側に並列に接続された電
池とを有し、該電源回路と該電池から該電池に並列に接
続された負荷に電力を供給する無停電電源装置におい
て、該電池と該電源回路との間に接続され、所定の信号
もしくは所定の動作を加えたとき、非導通あるいは導通
となるスイツチ素子と、第1の一定期間、該スイツチ素
子を非導通にさせる信号を送出する回路と、該スイツチ
素子が導通となつた直後、予め定めた第2の一定期間の
み該電池に流れ込む充電電流を検出し、該第2の一定期
間に該充電電流が、予め定められた値より大きくならな
いことを検出して、これを表示する回路とを備えたこと
を特徴とする無停電電源装置の電池劣化検出回路を発明
の要旨とするものである。
(Structure of the invention) In order to achieve the above object, the present invention has a power supply circuit that outputs DC power, and a battery connected in parallel to the output side of the power supply circuit. In an uninterruptible power supply device that supplies electric power to a load connected in parallel to a battery, connected between the battery and the power supply circuit and becomes non-conductive or conductive when a predetermined signal or a predetermined operation is applied. A switch element, a circuit for transmitting a signal that makes the switch element non-conductive for a first constant period, and a charging current that flows into the battery only for a second predetermined period immediately after the switch element becomes conductive. Of the uninterruptible power supply device for detecting the charging current and detecting that the charging current does not become larger than a predetermined value during the second constant period. Invention of deterioration detection circuit This is the purpose.

さらに本発明は、直流電力を出力する電源回路と、該電
源回路出力側に並列に接続された電池とを有し、該電源
回路と該電池から該電池に並列に接続された負荷に電力
を供給する無停電電源装置において、予め定めた一定の
期間該電源回路の出力電圧がある一定の電圧値だけ上昇
するよう制御する回路と、該一定期間のみの充電電流を
検出し、該充電電流が予め定められた値より大きくなら
ないことを検出して、これを表示する回路とを備えたこ
とを特徴とする無停電電源装置の電池劣化検出回路を発
明の要旨とするものである。
Furthermore, the present invention has a power supply circuit that outputs DC power and a battery connected in parallel to the output side of the power supply circuit, and supplies power from the power supply circuit and the battery to a load connected in parallel to the battery. In the uninterruptible power supply to be supplied, a circuit for controlling the output voltage of the power supply circuit to rise by a certain constant voltage value for a predetermined constant period, and the charging current for only the constant period is detected, and the charging current is A battery deterioration detection circuit for an uninterruptible power supply, which is provided with a circuit for detecting that the value does not become larger than a predetermined value and displaying the detected value, is the gist of the invention.

次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示であつて、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうることは云
うまでもない。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings. It is needless to say that the embodiment is merely an example, and various modifications and improvements can be made without departing from the spirit of the present invention.

第1図は本発明の実施例であつて、図において1は電源
装置、2は電池、3A,3Bは装置出力端子、4は第1のス
イツチ素子、5はスイツチ駆動信号入力回路、6はタイ
マー回路、7は電流検出素子、8は電流検出回路、およ
び9は表示回路である。第1図は電源装置1の直流出力
によつて導通している第1のスイツチ素子4を介して電
池と負荷に電力が供給されている浮動充電形式の無停電
電源の構成を示している。
FIG. 1 shows an embodiment of the present invention, in which 1 is a power supply device, 2 is a battery, 3A and 3B are device output terminals, 4 is a first switch element, 5 is a switch drive signal input circuit, and 6 is A timer circuit, 7 is a current detection element, 8 is a current detection circuit, and 9 is a display circuit. FIG. 1 shows the configuration of a floating charging type uninterruptible power supply in which power is supplied to a battery and a load through a first switch element 4 which is conducted by a DC output of a power supply device 1.

このような無停電電源のなかには、鉛蓄電池や小形シー
ル鉛蓄電池(以下鉛電池と略称する)が用いられている
ものが多い。この鉛電池に対して回復充電を行つても出
力容量がある程度以上には回復しなくなる状態を劣化と
呼ぶこととする。鉛電池の劣化の原因には、主に、過放
電後の長期間放置によつて極板上に白色PbSo4が生じて
容量低下を起こす「サルフエーシヨン」と、長期間の過
充電により極板格子が腐食し、容量低下を起こす「格子
腐食」とがある。
Among such uninterruptible power supplies, lead-acid batteries and small sealed lead-acid batteries (hereinafter abbreviated as lead-acid batteries) are often used. The state in which the output capacity does not recover to a certain extent or more even when recovery charging is performed on this lead battery is called deterioration. The main causes of deterioration of lead batteries are "sulfuration", which causes white PbSo 4 to form on the electrode plate when it is left for a long time after over-discharging, resulting in a decrease in capacity. There is a "lattice corrosion" that causes corrosion and decreases the capacity.

一般に浮動充電は、電池に自己放電を補うに必要な充電
電流よりも多くの電流を流すため、電池は過充電状態に
なり、格子腐食を起こし劣化に至る場合、および、長時
間停電等により、電池が過放電したあと、長時間放置さ
れてサルフエーシヨンを起こし劣化に至る場合の二つが
電池劣化のほとんどであると言つてよい。
In general, floating charging causes a larger current than the charging current required to compensate for self-discharge in the battery, so the battery becomes overcharged, causes lattice corrosion and deteriorates, and due to a long power failure, etc. It can be said that most of the deterioration of the battery occurs when the battery is over-discharged and left for a long period of time to cause sulfation to cause deterioration.

これらの状態においては、いずれも鉛電極内の活物質と
電極格子間の電気抵抗が等価的に大となつている。一般
に、いつたん開放状態にした電池を再び浮動充電に戻し
た直後や、停電等により放電が行われたあと停電が回復
して浮動充電に復帰したあとにおいて、劣化していない
電池すなわち活物質と電極格子間の電気抵抗の小さい電
池では極めて大きな充電電流が急激に流れる。しかし、
上記劣化により、充電反応の発生する部分の活物質と電
極格子間の電気抵抗が大となつている電池では、この充
電電流が比較的小となる傾向を示す。
In each of these states, the electrical resistance between the active material in the lead electrode and the electrode grid is equivalently large. In general, immediately after returning an open battery to floating charging, or after the power is restored due to a power failure and the power is restored to floating charging, the battery or active material that has not deteriorated In a battery with a small electric resistance between the electrode grids, an extremely large charging current flows rapidly. But,
Due to the above deterioration, in a battery in which the electric resistance between the active material in the portion where the charging reaction occurs and the electrode grid is large, the charging current tends to be relatively small.

第2図に劣化の進行した電池をいつたん開放したあと、
浮動充電に戻した直後の充電電流の特性Aと正常な電池
における同状態における充電電流の特性Bを示す。劣化
した電池の場合、電気抵抗が大きいために、正常電池に
比較し、充電電流が小さい。また、特性A,Bとも充電電
流は、時間の経過とともに、電池の充電が進行するため
に徐々に小さくなる。
As shown in Fig. 2, after releasing the deteriorated battery,
A characteristic A of the charging current immediately after returning to the floating charging and a characteristic B of the charging current in the same state in a normal battery are shown. In the case of a deteriorated battery, since the electric resistance is large, the charging current is smaller than that of a normal battery. Further, the charging currents of both the characteristics A and B gradually decrease as the charging of the battery progresses with the passage of time.

この現象は、電池をいつたん開放したあと、もしくは電
池を放電したあと、再び充電状態に戻した場合や、ある
いは通常の浮動状態から浮動充電圧を高くした時にも現
われる。
This phenomenon also appears when the battery is opened or discharged, and then returned to the charged state, or when the floating charge pressure is increased from the normal floating state.

よつて本発明では、電池の充電状態を変化させた時の充
電電流の大きさを検出し、この電流が充分大きい場合、
電池は正常、あるいはある一定の電流値より小さい場合
は電池は劣化であると判定し、表示しようとするもので
ある。
Therefore, in the present invention, the magnitude of the charging current when the state of charge of the battery is changed is detected, and when this current is sufficiently large,
When the battery is normal or smaller than a certain constant current value, it is determined that the battery is deteriorated and an attempt is made to display it.

従つて、本発明は第1のスイツチ4を開放することによ
り、電池を浮動充電状態からいつたん切り離したあと、
再び浮動充電状態に戻し、このときの充電電流の大きさ
を検出し、この電流が十分大きい場合、電池は正常、ま
たある一定の電流値より小さい場合は、電池は劣化と判
定し表示しようというものである。第1図において、電
池の劣化の有無を確認したい場合は、スイツチ素子4に
スイツチ駆動信号入力回路5からスイツチ素子4を非導
通とするための所定の外部信号、もしくは所定の動作を
加えることにより、電源装置1と電池2とを切り離し、
電池2から負荷3に給電しながら放電させ、タイマー回
路6で規定される一定の時間T0経過後、再びスイツチ素
子4を導通状態に復帰させ、電池を浮動充電状態に復帰
させる。これと同時に再びタイマー回路6を動作させ、
かつ、別の一定期間だけ電流検出回路8を動作させ、充
電電流がある一定値より大となるかどうかを監視する。
Therefore, according to the present invention, by opening the first switch 4, after disconnecting the battery from the floating charge state,
It returns to the floating charge state again, the magnitude of the charging current at this time is detected, and if this current is sufficiently large, the battery is normal, and if it is less than a certain current value, it is judged that the battery has deteriorated and it is displayed. It is a thing. In FIG. 1, when it is desired to confirm whether or not the battery has deteriorated, a predetermined external signal or a predetermined operation for making the switch element 4 non-conductive from the switch drive signal input circuit 5 is added to the switch element 4. , Disconnect the power supply 1 and the battery 2,
The battery 2 is discharged while supplying power to the load 3, and after a lapse of a certain time T 0 defined by the timer circuit 6, the switch element 4 is returned to the conducting state again, and the battery is returned to the floating charging state. At the same time, the timer circuit 6 is activated again,
At the same time, the current detection circuit 8 is operated for another fixed period to monitor whether the charging current is higher than a fixed value.

第1図に示す回路の動作をより具体的に明らかにするた
め、第1図各部の電圧,電流波形を第3図に示す。vg
スイツチ素子4の駆動信号電圧、vtはタイマー回路6を
始動させるとともに電流検出回路の動作を行わせるため
の信号電圧、i1,i2はそれぞれ電源装置1の電流および
電池2の充電電流である。
To clarify the operation of the circuit shown in FIG. 1 more specifically, FIG. 3 shows the voltage and current waveforms of the respective portions of FIG. v g is the drive signal voltage of the switch element 4, v t is the signal voltage for starting the timer circuit 6 and operating the current detection circuit, and i 1 and i 2 are the current of the power supply device 1 and the battery 2, respectively. The charging current.

スイツチ駆動信号入力回路5から信号が入力されると、
スイツチ素子4に電圧vgが印加され、i1は0に、i2は充
電時とは逆極性の放電電流となる。
When a signal is input from the switch drive signal input circuit 5,
A voltage v g is applied to the switch element 4, i 1 becomes 0, and i 2 becomes a discharge current having a polarity opposite to that at the time of charging.

また、電圧vtが印加されると同時に、タイマー回路を動
作させておき、ある所定の時間T0が経過した場合、タイ
マー回路より信号を送り、スイツチ素子4を再び導通と
し、このとき、電流検出回路8に信号を送つて検出動作
を行わせ、所定の時間T1だけ経過後タイマー回路より信
号を送り検出動作を打ち切らせる。この時間T1の間に電
池に流れ込む充電電流が所定の電流値より小さい場合、
検出回路8から表示回路9に信号を送り、電池劣化と判
断し、表示を行わせる。
Further, when the voltage v t is applied and the timer circuit is operated at the same time, and when a predetermined time T 0 has passed, a signal is sent from the timer circuit to make the switch element 4 conductive again, and at this time, A signal is sent to the detection circuit 8 to perform the detection operation, and after a predetermined time T 1 has elapsed, a signal is sent from the timer circuit to terminate the detection operation. If the charging current flowing into the battery during this time T 1 is smaller than the predetermined current value,
A signal is sent from the detection circuit 8 to the display circuit 9 to judge that the battery has deteriorated, and display is performed.

このような動作により劣化した電池の判定ができ、電池
が寿命となる前に取替える事が可能で、電池の給電可能
時間を常にある一定の水準以上に保つておくことができ
るとともに、電池の取替えも、個々の電池の状態を適確
に判定しながら行えるため、経済性も優れている。また
一たん電池の劣化を検出した場合には、この表示をホー
ルドすることにより、装置を操作する人に、電池取替を
促すことができる。この表示ホールドの機能は第1図に
おける表示回路9で行なつても、検出回路8で行なつて
もよく、また、ホールドの解除は電池の取替が行なわれ
た事を機械的に検出して行なえばよい。
It is possible to judge the deteriorated battery by such operation, and it is possible to replace the battery before it reaches the end of its life, and it is possible to always keep the power supply time of the battery above a certain level and replace the battery. However, since it can be performed while appropriately determining the state of each battery, it is also economical. Further, when the deterioration of the battery is detected, by holding this display, the person who operates the device can be prompted to replace the battery. The display hold function may be performed by the display circuit 9 or the detection circuit 8 in FIG. 1, and the hold release is performed by mechanically detecting that the battery has been replaced. You can do it.

また、いつたん電池劣化が検出された後、再び劣化判定
のための電池放電を行なう事は電池の寿命をより短くす
る虞れがある。これを防ぐためには、この表示がホール
ドされている期間中は、スイツチ素子を非導通とするた
めの信号を送らないようにして、電池の放電を防止すれ
ばよい。よつて、第1図に破線で示す制御ループを付加
し、この期間中は、スイツチ駆動信号が入力されてもこ
れが無効となるよう制御を行えばよい。
Further, once battery deterioration is detected, discharging the battery again for deterioration determination may shorten the life of the battery. In order to prevent this, it is sufficient to prevent the discharge of the battery by not sending a signal for making the switch element non-conductive while the display is held. Therefore, a control loop shown by a broken line in FIG. 1 may be added, and during this period, control may be performed so that the switch drive signal is invalid even if input.

以上は、スイツチ素子4をオフさせることにより、いつ
たん電池を放電させたあと、再び充電状態に戻す構成例
であつたが、スイツチ素子を電池に直列に接続し、スイ
ツチ素子をオフさせることにより、いつたん電池を開放
状態においたあと、再び充電状態に戻し、このときの充
電電流を検出し、同様に劣化を判定することも可能であ
る。
The above is a configuration example in which the switch element 4 is turned off to discharge the battery and then return to the charged state. However, by connecting the switch element to the battery in series and turning off the switch element. It is also possible to put the battery in the open state, return it to the charged state again, detect the charging current at this time, and similarly determine the deterioration.

第4図は本発明を電話機用無停電電源に適用したときの
実施例を示す回路図であつて、5Aが電話機である。その
他の符号は第1図の場合と同じものを示す。電話機6Aの
ハンドセツトを電話機本体から取りはずす毎に、スイツ
チ素子4を非導通とすることにより、上記容量低下判定
を行わせることができる。すなわち、電話機6Aのハンド
セツトを取り上げる毎にスイツチ素子4が非導通とな
り、電話による通話時間とは無関係な、ある一定時間経
過後は再びスイツチ素子4は導通となり、元の浮動充電
状態に戻るという劣化した電池の判別動作が行なわれ
る。
FIG. 4 is a circuit diagram showing an embodiment when the present invention is applied to an uninterruptible power supply for a telephone, and 5A is a telephone. Other reference numerals are the same as those in FIG. By making the switch element 4 non-conductive each time the handset of the telephone 6A is detached from the telephone body, it is possible to perform the capacity reduction determination. That is, every time the handset of the telephone 6A is picked up, the switch element 4 becomes non-conductive, and after a certain period of time irrelevant to the telephone call time, the switch element 4 becomes conductive again and returns to the original floating charge state. The operation of discriminating the battery that has been discharged is performed.

また、浮動充電の場合には、電池は、ほとんど過充電状
態にあるが、ハンドセツトを取り上げる毎に、短時間の
放電を頻繁に行わせることにより、電池の過充電状態を
緩和し、電池内各セルの充電状態を均一化できるため、
電池寿命を延ばすことができるという効果も生まれる。
Also, in the case of floating charging, the battery is almost overcharged, but by frequently discharging a short time every time the handset is picked up, the overcharged state of the battery is relieved and Since the charging status of the cells can be made uniform,
It also has the effect of extending battery life.

第5図は本発明の他の実施例であつて、第1図の回路に
AND回路10を付加したものである。この構成によれば、A
ND回路10に電源装置1の出力電圧が入力されている状態
で、スイツチ駆動信号入力回路5からスイツチ駆動信号
が入力された時のみ、スイツチ素子4を非導通とし、電
池劣化判定を行うようにしたものである。
FIG. 5 shows another embodiment of the present invention, in which the circuit of FIG.
The AND circuit 10 is added. According to this configuration, A
Only when a switch drive signal is input from the switch drive signal input circuit 5 while the output voltage of the power supply device 1 is input to the ND circuit 10, the switch element 4 is made non-conductive and battery deterioration determination is performed. It was done.

したがつて、この実施例によれば、電源装置1から電圧
が出力されている時のみスイツチ素子の開閉動作が行わ
れ、停電等により電源装置1が出力されない時は、スイ
ツチの開閉は行われない。したがつて、タイマー回路6
やスイツチ開閉に必要な回路へは電源装置1から給電す
ればよく、電池から給電する必要がないため、電池の消
耗を少なくすることができるという利点がある。
Therefore, according to this embodiment, the switching element is opened / closed only when the voltage is output from the power supply 1, and the switch is opened / closed when the power supply 1 is not output due to a power failure or the like. Absent. Therefore, timer circuit 6
It is sufficient to supply power from the power supply device 1 to the circuit necessary for opening and closing the switch, and it is not necessary to supply power from the battery, so that there is an advantage that the consumption of the battery can be reduced.

また、この実施例ではAND回路を用いて説明したが、NAN
D回路等の他の論理回路を用いても同様に構成できる。
Although the AND circuit is used in this embodiment, the NAN
The same configuration can be achieved by using another logic circuit such as a D circuit.

第6図は本発明の他の実施例を示すものであつて、第1
図の如き、スイツチ素子を付加することなく、電池2の
充電状態に変化を与えるようにしたもので、駆動回路5B
およびタイマー回路6より電源回路1に信号を送り、所
定の期間T2において電源回路1の出力電圧v1を所定の電
圧だけ上昇させるもので、このT2の間の充電電流を検出
するものである。このように、充電電圧を上昇させた直
後においても、正常な電池と劣化した電池とでは第2図
に示したと同様な充電電流の傾向を示すことから、電池
劣化検出に利用できる。第6図の構成の各部動作波形を
第7図に示す。ここにvtはタイマを始動させると共に、
電流検出回路の動作を行わせるための信号電圧、v1は電
源回路の出力電圧、i2は充電電流を示す。第6図の構成
によれば、第1図に比べ、スイツチ素子が省略でき、タ
イマーによる時間設定のタイミングが単一ですむため、
回路は簡素化できる。
FIG. 6 shows another embodiment of the present invention.
As shown in the figure, the charging circuit of the battery 2 is changed without adding a switching element.
Also, the timer circuit 6 sends a signal to the power supply circuit 1 to increase the output voltage v 1 of the power supply circuit 1 by a predetermined voltage in a predetermined period T 2 , and detects the charging current during this T 2. is there. As described above, even immediately after the charging voltage is increased, the normal battery and the deteriorated battery show the same tendency of the charging current as shown in FIG. 2, which can be used for the battery deterioration detection. FIG. 7 shows the operation waveform of each part of the configuration of FIG. Where v t starts the timer and
The signal voltage for operating the current detection circuit, v 1 is the output voltage of the power supply circuit, and i 2 is the charging current. According to the configuration of FIG. 6, as compared with FIG. 1, the switch element can be omitted, and the timing of the time setting by the timer is only one.
The circuit can be simplified.

第6図における電源回路1の出力電圧を所定の電圧値だ
け上昇させるための具体的構成例を第8図に示す。
FIG. 8 shows a specific configuration example for increasing the output voltage of the power supply circuit 1 in FIG. 6 by a predetermined voltage value.

第8図はスイツチング電源による構成例であつて交流入
力端子11A,11Bより交流電力が入力され、整流器12によ
り直流に変換され、トランス13,スイツチングトランジ
スタ14で再び高周波の交流とした後、整流回路15で整流
し、フイルタ16で平滑する。出力電圧の定電圧制御は出
力電圧を検出して、制御駆動回路17を介して、トランジ
スタ14のベースに帰還して行う。電源への信号入力回路
5Bから信号が入力されると、出力電圧と比較を行うため
の、回路17のオペアンプのツエナーダイオード18,19で
構成された基準電圧をスイツチ素子20で切り換える方式
であり、常時はスイツチ20をオンさせて、基準電圧を低
く設定しておき、信号入力回路5Bから信号が入力される
と、スイツチ20をオフさせ基準電圧を高める。これによ
り、制御駆動回路17から信号が送られ、電源回路は出力
電圧が上昇するよう制御される。また、5Bから信号が入
ると同時にタイマー回路6を動作させて、検出回路8へ
も信号を送り、電流の検出を行わせ、充電電流がある一
定値より大きくなるかどうかを監視する。なお、本発明
にて説明したスイツチ素子4を用いる代わりに、電源回
路1の起動停止を制御して、充電電圧の変化を起こさせ
る方法を用いても全く同じ効果がある。
FIG. 8 shows an example of a configuration using a switching power supply. AC power is input from the AC input terminals 11A and 11B, converted to DC by the rectifier 12, converted to high frequency AC by the transformer 13 and the switching transistor 14, and then rectified. It is rectified by the circuit 15 and smoothed by the filter 16. The constant voltage control of the output voltage is performed by detecting the output voltage and feeding it back to the base of the transistor 14 via the control drive circuit 17. Signal input circuit to power supply
When a signal is input from 5B, the switch element 20 switches the reference voltage composed of the zener diodes 18 and 19 of the operational amplifier of the circuit 17 for comparison with the output voltage, and the switch 20 is normally turned on. Then, the reference voltage is set low, and when a signal is input from the signal input circuit 5B, the switch 20 is turned off and the reference voltage is increased. As a result, a signal is sent from the control drive circuit 17 and the power supply circuit is controlled so that the output voltage rises. Further, at the same time when a signal is input from 5B, the timer circuit 6 is operated to send a signal to the detection circuit 8 to detect the current and monitor whether the charging current becomes larger than a certain value. It should be noted that, instead of using the switch element 4 described in the present invention, the same effect can be obtained by using a method of controlling the start / stop of the power supply circuit 1 to cause the change of the charging voltage.

また、第3図におけるT0とT1の長さは、充電電流検出レ
ベルとの関係により定まるもので、検出レベルの設定に
よりT0=T1とすることも可能であり、これにより、タイ
マーによる時間設定を単一にすることができ、さらに構
成を簡易化できるという効果がある。
Further, the lengths of T 0 and T 1 in FIG. 3 are determined by the relationship with the charging current detection level, and it is also possible to set T 0 = T 1 by setting the detection level. There is an effect that the time setting by can be made single and the configuration can be further simplified.

(発明の効果) 以上、説明したように、本発明によれば短時間で、かつ
正確に電池の劣化を検出し、表示でき、電池取替を行な
うことができるため、停電時等に電池から給電できる時
間を一定の水準以上に保つことができ、無停電電源によ
り給電される装置の信頼性を著しく高めることができ
る。
(Effects of the Invention) As described above, according to the present invention, deterioration of a battery can be detected and displayed accurately in a short time, and the battery can be replaced. The time during which power can be supplied can be maintained at a certain level or higher, and the reliability of the device supplied by the uninterruptible power supply can be significantly improved.

また、電池取替を、定期的に行う必要がなく、電池個々
の状況に応じて行えばよいため、経済性も高まる。
Further, it is not necessary to periodically replace the battery, and it is sufficient to replace the battery according to the condition of each battery, so that the economical efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の回路図、第2図は第1図の
電池2の特性を示す原理図、第3図は第1図回路の各部
動作波形、第4図,第5図,第6図は本発明の一実施例
の回路図、第7図は第6図回路の各部動作波形、第8図
は第6図の電源回路の具体的構成例を示す回路図であ
る。 1……電源装置、2……電池、3A,3B……出力端子、4
……スイツチ素子、5,5B……スイツチ駆動信号入力回
路、5A……電話機、6……スイツチ素子駆動用タイマー
回路、7……電流検出素子、8……検出回路、9……表
示回路、10……AND回路、11A,11B……交流入力端子、12
……整流回路、13……トランス、14……スイツチングト
ランジスタ、15……整流回路、16……フイルタ、17……
制御駆動回路、18,19……基準電圧源、20……スイツチ
回路
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is a principle diagram showing the characteristics of the battery 2 of FIG. 1, and FIG. 3 is an operation waveform of each part of the circuit of FIG. 1, FIGS. 6 and 6 are circuit diagrams of one embodiment of the present invention, FIG. 7 is an operation waveform of each portion of the circuit of FIG. 6, and FIG. 8 is a circuit diagram showing a concrete configuration example of the power supply circuit of FIG. . 1 ... Power supply device, 2 ... Battery, 3A, 3B ... Output terminal, 4
...... Switch element, 5,5B ...... Switch drive signal input circuit, 5A ...... Telephone, 6 ...... Switch element drive timer circuit, 7 ...... Current detection element, 8 ...... Detection circuit, 9 ...... Display circuit, 10 …… AND circuit, 11A, 11B …… AC input terminal, 12
...... Rectifier circuit, 13 ...... Transformer, 14 …… Switching transistor, 15 …… Rectifier circuit, 16 …… Filter, 17 ……
Control drive circuit, 18, 19 ... Reference voltage source, 20 ... Switch circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】直流電力を出力する電源回路と、該電源回
路出力側に並列に接続された電池とを有し、該電源回路
と該電池から該電池に並列に接続された負荷に電力を供
給する無停電電源装置において、該電池と該電源回路と
の間に接続され、所定の信号もしくは所定の動作を加え
たとき、非導通あるいは導通となるスイツチ素子と、第
1の一定期間、該スイツチ素子を非導通にさせる信号を
送出する回路と、該スイツチ素子が導通となつた直後、
予め定めた第2の一定期間のみ該電池に流れ込む充電電
流を検出し、該第2の一定期間に該充電電流が予め定め
られた値より大きくならないことを検出して、これを表
示する回路とを備えたことを特徴とする無停電電源装置
の電池劣化検出回路。
1. A power supply circuit for outputting DC power, and a battery connected in parallel on the output side of the power supply circuit. Power is supplied from the power supply circuit and the battery to a load connected in parallel to the battery. In the uninterruptible power supply for supplying, a switch element which is connected between the battery and the power supply circuit and becomes non-conductive or conductive when a predetermined signal or a predetermined operation is applied, and a first constant period, A circuit that sends out a signal that makes the switch element non-conductive, and immediately after the switch element becomes conductive,
A circuit for detecting a charging current flowing into the battery only during a second predetermined period, detecting that the charging current does not exceed a predetermined value during the second constant period, and displaying the detected current. A battery deterioration detection circuit for an uninterruptible power supply, characterized by being equipped with.
【請求項2】直流電力を出力する電源回路と、該電源回
路出力側に並列に接続された電池とを有し、該電源回路
と該電池から該電池に並列に接続された負荷に電力を供
給する無停電電源装置を有する電話機において、該電池
と該電源回路との間に接続され、所定の信号もしくは所
定の動作を加えたとき、非導通あるいは導通となるスイ
ツチ素子を備え、該電話機のハンドセツトを外した時、
該スイツチ素子を非導通とすることを特徴とする特許請
求の範囲第1項記載の無停電電源装置の電池劣化検出回
路。
2. A power supply circuit for outputting DC power, and a battery connected in parallel to the output side of the power supply circuit. Power is supplied from the power supply circuit and the battery to a load connected in parallel to the battery. In a telephone having an uninterruptible power supply for supplying, provided with a switch element which is connected between the battery and the power supply circuit and becomes non-conducting or conducting when a predetermined signal or a predetermined operation is applied, When you remove the handset,
The battery deterioration detection circuit of the uninterruptible power supply according to claim 1, wherein the switch element is made non-conductive.
【請求項3】直流電力を出力する電源回路と、該電源回
路出力側に並列に接続された電池とを有し、該電源回路
と該電池から該電池に並列に接続された負荷に電力を供
給する無停電電源装置において、該電池と該電源回路と
の間に接続され、所定の信号もしくは所定の動作を加え
たとき、非導通あるいは導通となるスイツチ素子と、第
1の一定期間、該スイツチ素子を非導通にさせる信号を
送出する回路と、該スイツチ素子が導通となつた直後、
予め定めた第2の一定期間のみ該電池に流れ込む充電電
流を検出し、該第2の一定期間に該充電電流が、予め定
められた値より大きくならないことを検出して、これを
表示する回路とを備え、さらに該電源回路の出力電圧
と、スイツチ素子を非導通とさせるための所定の信号も
しくは動作とを入力する論理回路を付加し、該電源回路
から所定の電圧が該論理回路に入力され、かつ該所定の
信号が該論理回路に入力された時のみ該スイツチ素子を
非導通とすることを特徴とする特許請求の範囲第1項記
載の無停電電源装置の電池劣化検出回路。
3. A power supply circuit for outputting DC power, and a battery connected in parallel on the output side of the power supply circuit, and supplying power from the power supply circuit and the battery to a load connected in parallel to the battery. In the uninterruptible power supply for supplying, a switch element which is connected between the battery and the power supply circuit and becomes non-conductive or conductive when a predetermined signal or a predetermined operation is applied, and a first constant period, A circuit that sends out a signal that makes the switch element non-conductive, and immediately after the switch element becomes conductive,
A circuit for detecting a charging current flowing into the battery only for a second predetermined period of time, detecting that the charging current does not become larger than a predetermined value for the second constant period of time, and displaying this. And a logic circuit for inputting the output voltage of the power supply circuit and a predetermined signal or operation for making the switch element non-conductive, and the predetermined voltage is input to the logic circuit from the power supply circuit. The battery deterioration detection circuit for an uninterruptible power supply according to claim 1, wherein the switch element is made non-conductive only when the predetermined signal is input to the logic circuit.
【請求項4】直流電力を出力する電源回路と、該電源回
路出力側に並列に接続された電池とを有し、該電源回路
と該電池から該電池に並列に接続された負荷に電力を供
給する無停電電源装置において、該電池と該電源回路と
の間に接続され、所定の信号もしくは所定の動作を加え
たとき、非導通あるいは導通となるスイツチ素子と、第
1の一定期間、該スイツチ素子を非導通にさせる信号を
送出する回路と、該スイツチ素子が導通となつた直後、
予め定めた第2の一定期間のみ該電池に流れ込む充電電
流を検出し、該第2の一定期間に該充電電流が、予め定
められた値より大きくならないことを検出して、これを
表示する回路とを備え、該表示回路に表示をホールドす
る機能を付加し、電池のとりかえが行われた時に該表示
を解除するようにしたことを特徴とする特許請求の範囲
第1項記載の無停電電源装置の電池劣化検出回路。
4. A power supply circuit for outputting DC power, and a battery connected in parallel to the output side of the power supply circuit, wherein power is supplied from the power supply circuit and the battery to a load connected in parallel to the battery. In the uninterruptible power supply for supplying, a switch element which is connected between the battery and the power supply circuit and becomes non-conductive or conductive when a predetermined signal or a predetermined operation is applied, and a first constant period, A circuit that sends out a signal that makes the switch element non-conductive, and immediately after the switch element becomes conductive,
A circuit for detecting a charging current flowing into the battery only for a second predetermined period of time, detecting that the charging current does not become larger than a predetermined value for the second constant period of time, and displaying this. The uninterruptible power supply according to claim 1, further comprising: a display function added to the display circuit for canceling the display when the battery is replaced. Device battery deterioration detection circuit.
【請求項5】直流電力を出力する電源回路と、該電源回
路出力側に並列に接続された電池とを有し、該電源回路
と該電池から該電池に並列に接続された負荷に電力を供
給する無停電電源装置において、該電池と該電源回路と
の間に接続され、所定の信号もしくは所定の動作を加え
たとき、非導通あるいは導通となるスイツチ素子と、第
1の一定期間、該スイツチ素子を非導通にさせる信号を
送出する回路と、該スイツチ素子が導通となつた直後、
予め定めた第2の一定期間のみ該電池に流れ込む充電電
流を検出し、該第2の一定期間に該充電電流が予め定め
られた値より大きくならないことを検出して、これを表
示する回路とを備え、電池の充電電流が予め定めた電流
値より大きくならないことを検出して、これを表示して
いる期間は、該スイツチ素子を非導通としないようにし
たことを特徴とする特許請求の範囲第1項記載の無停電
電源装置の電池劣化検出回路。
5. A power supply circuit for outputting DC power, and a battery connected in parallel on the output side of the power supply circuit. Power is supplied from the power supply circuit and the battery to a load connected in parallel to the battery. In the uninterruptible power supply for supplying, a switch element which is connected between the battery and the power supply circuit and becomes non-conductive or conductive when a predetermined signal or a predetermined operation is applied, and a first constant period, A circuit that sends out a signal that makes the switch element non-conductive, and immediately after the switch element becomes conductive,
A circuit for detecting a charging current flowing into the battery only during a second predetermined period, detecting that the charging current does not exceed a predetermined value during the second constant period, and displaying the detected current. And detecting that the charging current of the battery does not become larger than a predetermined current value and not displaying the switch element in a non-conducting period while displaying this. A battery deterioration detection circuit of the uninterruptible power supply according to the first range.
【請求項6】直流電力を出力する電源回路と、該電源回
路出力側に並列に接続された電池とを有し、該電源回路
と該電池から該電池に並列に接続された負荷に電力を供
給する無停電電源装置において、予め定めた一定の期間
該電源回路の出力電圧がある一定の電圧値だけ上昇する
よう制御する回路と、該一定期間のみの充電電流を検出
し、該充電電流が予め定められた値より大きくならない
ことを検出して、これを表示する回路とを備えたことを
特徴とする無停電電源装置の電池劣化検出回路。
6. A power supply circuit for outputting DC power, and a battery connected in parallel to the output side of the power supply circuit, and supplying power from the power supply circuit and the battery to a load connected in parallel to the battery. In the uninterruptible power supply to be supplied, a circuit for controlling the output voltage of the power supply circuit to rise by a certain constant voltage value for a predetermined constant period, and the charging current for only the constant period is detected, and the charging current is A battery deterioration detection circuit for an uninterruptible power supply, comprising: a circuit that detects that the value does not become larger than a predetermined value and displays this.
JP58067100A 1983-04-18 1983-04-18 Battery deterioration detection circuit for uninterruptible power supply Expired - Lifetime JPH06100641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067100A JPH06100641B2 (en) 1983-04-18 1983-04-18 Battery deterioration detection circuit for uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067100A JPH06100641B2 (en) 1983-04-18 1983-04-18 Battery deterioration detection circuit for uninterruptible power supply

Publications (2)

Publication Number Publication Date
JPS59193371A JPS59193371A (en) 1984-11-01
JPH06100641B2 true JPH06100641B2 (en) 1994-12-12

Family

ID=13335125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067100A Expired - Lifetime JPH06100641B2 (en) 1983-04-18 1983-04-18 Battery deterioration detection circuit for uninterruptible power supply

Country Status (1)

Country Link
JP (1) JPH06100641B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123924A (en) * 1985-11-20 1987-06-05 日本電信電話株式会社 Discrimination circuit of secondary battery
JP4258348B2 (en) 2003-10-23 2009-04-30 日産自動車株式会社 Battery deterioration diagnosis device and on-vehicle power supply control device
JP5773609B2 (en) * 2010-10-18 2015-09-02 株式会社Nttファシリティーズ Battery pack management apparatus, battery pack management method, and battery pack system
JP2020057565A (en) * 2018-10-04 2020-04-09 日立化成株式会社 Diagnosis method and diagnosis system for deteriorated condition of storage battery

Also Published As

Publication number Publication date
JPS59193371A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
US3930192A (en) Stand-by power system
US5397974A (en) Rechargeable battery overdischarge prevention circuit
JPH077866A (en) Circuit for charging secondary battery
JP3239794B2 (en) Battery pack charger
JP3249261B2 (en) Battery pack
JPH10270092A (en) Secondary battery deterioration judging method and its device
GB2414873A (en) Battery charger with disconnection
JP3796918B2 (en) Battery device
JPH06100641B2 (en) Battery deterioration detection circuit for uninterruptible power supply
JPH05244727A (en) Improving means for battery charging
JP2004320924A (en) Overcharge protection device for secondary battery, power supply device, and charging control method of secondary battery
JP3625676B2 (en) How to charge multiple battery units
JP2000060006A (en) Charging and discharging system, battery pack, and charger and discharger
JPH09159738A (en) Device for testing charge and discharge of secondary battery
JPH05276682A (en) Charge controller for battery
JPH09117074A (en) Intermittent charging circuit for secondary battery
GB2271228A (en) Controlling charging of a battery in an uninterruptible power supply
JP3739820B2 (en) Charger
CN218633374U (en) Electronic equipment and positive terminal protection circuit
JPH11185824A (en) Primary battery compatible battery pack
CN209913571U (en) Uninterrupted power supply device
JPH10271696A (en) Charging circuit
JPH05146087A (en) Charger
JP2677072B2 (en) Rechargeable battery charging circuit
JP2000175376A (en) Operating method for power supply in communication equipment, and power supply