JP5807128B1 - ブレード制御装置、作業車両、及びブレード制御方法 - Google Patents

ブレード制御装置、作業車両、及びブレード制御方法 Download PDF

Info

Publication number
JP5807128B1
JP5807128B1 JP2014554110A JP2014554110A JP5807128B1 JP 5807128 B1 JP5807128 B1 JP 5807128B1 JP 2014554110 A JP2014554110 A JP 2014554110A JP 2014554110 A JP2014554110 A JP 2014554110A JP 5807128 B1 JP5807128 B1 JP 5807128B1
Authority
JP
Japan
Prior art keywords
time point
height
blade
cutting edge
target height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014554110A
Other languages
English (en)
Other versions
JPWO2015083469A1 (ja
Inventor
大地 登尾
大地 登尾
昌也 田中
昌也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Application granted granted Critical
Publication of JP5807128B1 publication Critical patent/JP5807128B1/ja
Publication of JPWO2015083469A1 publication Critical patent/JPWO2015083469A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • E02F3/7613Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers with the scraper blade adjustable relative to the pivoting arms about a vertical axis, e.g. angle dozers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7622Scraper equipment with the scraper blade mounted on a frame to be hitched to the tractor by bars, arms, chains or the like, the frame having no ground supporting means of its own, e.g. drag scrapers
    • E02F3/7627Scraper equipment with the scraper blade mounted on a frame to be hitched to the tractor by bars, arms, chains or the like, the frame having no ground supporting means of its own, e.g. drag scrapers with the scraper blade adjustable relative to the frame about a vertical axis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7622Scraper equipment with the scraper blade mounted on a frame to be hitched to the tractor by bars, arms, chains or the like, the frame having no ground supporting means of its own, e.g. drag scrapers
    • E02F3/7631Scraper equipment with the scraper blade mounted on a frame to be hitched to the tractor by bars, arms, chains or the like, the frame having no ground supporting means of its own, e.g. drag scrapers with the scraper blade adjustable relative to the frame about a horizontal axis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Operation Control Of Excavators (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)

Abstract

ブレード制御装置は、油圧シリンダを駆動する駆動指令を出力するブレード制御部と、絶対位置データと車体傾斜角データと設計面データとに基づいて、刃先の目標高さを算出する目標高さ生成装置と、第1時点の目標高さを示す目標高さデータを取得する目標高さデータ取得部と、絶対位置データと車体傾斜角データとシリンダ長データとに基づいて、第1時点の刃先の実高さを算出する実高さ演算部と、第1時点よりも前の第2時点でブレード制御部から出力された駆動指令と、第1時点又は第1時点よりも前の時点の刃先の実高さを示す実高さデータとに基づいて、第1時点よりも後の第3時点の刃先の予測高さを推定する推定部と、を備える。ブレード制御部は、第3時点の予測高さと、第1時点の目標高さとに基づいて、第1時点において、予測高さと目標高さとの偏差が小さくなるように、駆動指令を出力する。

Description

本発明は、ブレード制御装置、作業車両、及びブレード制御方法に関する。
ブレードを有する作業車両は、地面の掘削、整地、及び土砂の運搬などに使用される。ブレードの刃先を設計面に追従させる作業車両の一例が特許文献1及び特許文献2に開示されている。設計面とは、施工対象の目標形状を示す3次元の設計地形をいう。
特許第5161403号 特許第5285805号
ブレードは、油圧システムによって作動する。油圧システムは、ブレード制御装置から出力される制御信号によって制御される。ブレードを目標高さに制御するとき、応答性を高めようとすると、車速及びブレード負荷の変動に対して制御が追従できなくなる可能性がある。
本発明の態様は、ブレードの制御性を向上して、所望の形状に整地できるブレード制御装置、作業車両、及びブレード制御方法を提供することを目的とする。
本発明の第1の態様に従えば、作業車両の車体に上下方向に移動可能に支持されるブレードの刃先の高さを制御するブレード制御装置であって、前記ブレードを上下方向に移動可能な油圧シリンダを駆動する駆動指令を出力するブレード制御部と、前記車体の絶対位置を示す絶対位置データと、前記車体の傾斜角を示す車体傾斜角データと、掘削対象の目標形状の3次元の設計地形である設計面を示す設計面データとに基づいて、前記刃先の目標高さを算出する目標高さ生成装置と、前記目標高さ生成装置で算出された第1時点の目標高さを示す目標高さデータを取得する目標高さデータ取得部と、前記第1時点の前記絶対位置データと、前記車体傾斜角データと、前記油圧シリンダのストローク長さを示すシリンダ長データとに基づいて、前記第1時点の前記刃先の実高さを算出する実高さ演算部と、前記第1時点よりも前の第2時点で前記ブレード制御部から出力された前記駆動指令と、前記第1時点又は前記第1時点よりも前の時点の前記刃先の実高さを示す実高さデータとに基づいて、前記第1時点よりも後の第3時点の前記刃先の予測高さを推定する推定部と、を備え、前記ブレード制御部は、前記第3時点の前記予測高さと、前記第1時点の前記目標高さとに基づいて、前記第1時点において、前記予測高さと前記目標高さとの偏差が小さくなるように、第1駆動指令を出力する、ブレード制御装置が提供される。
本発明の第1の態様において、前記実高さ演算部は、所定の周期で前記実高さを算出し、前記第2時点は、前記第1時点よりも1周期前の時点を含み、前記第3時点は、前記第1時点よりも1周期後の時点を含んでもよい。
本発明の第1の態様において、前記第2時点の前記駆動指令は、前記油圧シリンダの目標シリンダ速度指令を含み、前記推定部は、前記第1時点又は前記第1時点よりも前の時点の実高さと、前記第2時点の駆動指令と、前記周期とに基づいて、前記予測高さを推定してもよい。
本発明の第1の態様において、前記ブレードにかかる負荷を示すブレード負荷データを取得するブレード負荷データ取得部を備え、前記推定部は、前記ブレード負荷データに基づいて、前記予測高さを算出するためのゲインを調整してもよい。
本発明の第1の態様において、前記第1時点の前記目標高さと前記実高さとの第1偏差が、前記第2時点の前記目標高さと前記実高さとの第2偏差よりも大きいか否かを判定する判定部を備え、前記ブレード制御部は、前記第1偏差が前記第2偏差よりも小さいと判定されたとき、前記第1駆動指令を出力し、前記第1偏差が前記第2偏差よりも大きいと判定されたとき、前記第1時点の実高さと、前記第1時点の目標高さとに基づいて、前記第1時点において、前記実高さと前記目標高さとの偏差が小さくなるように、第2駆動指令を出力してもよい。
本発明の第1の態様において、前記第1時点で前記目標高さデータ取得部が前記目標高さ生成装置から取得した前記目標高さと、前記第2時点で前記目標高さデータ取得部が前記目標高さ生成装置から取得した前記目標高さとに基づいて、前記第3時点の前記目標高さを推定する目標高さ補正部を備え、前記ブレード制御部は、前記第3時点の前記予測高さと、前記目標高さ補正部で推定された前記第3時点の前記目標高さとに基づいて、前記第1時点において、前記予測高さと前記目標高さとの偏差が小さくなるように、第1駆動指令を出力してもよい。
本発明の第2の態様に従えば、車体と、前記車体に上下方向に移動可能に支持される刃先を有するブレードと、第1の態様のブレード制御装置と、を備える作業車両が提供される。
本発明の第3の態様に従えば、作業車両の車体に上下方向に移動可能に支持されるブレードの刃先の高さを制御するブレード制御方法であって、前記ブレードを上下方向に移動可能な油圧シリンダを駆動する駆動指令を出力することと、前記車体の絶対位置を示す絶対位置データと、前記車体の傾斜角を示す車体傾斜角データと、掘削対象の目標形状の3次元の設計地形である設計面を示す設計面データとに基づいて、前記刃先の目標高さを算出することと、第1時点の前記目標高さを示す目標高さデータを取得することと、前記第1時点の前記絶対位置データと、前記車体傾斜角データと、前記油圧シリンダのストローク長さを示すシリンダ長データとに基づいて、前記第1時点の前記刃先の実高さを算出することと、前記第1時点よりも前の第2時点で出力された前記駆動指令と、前記第1時点又は前記第1時点よりも前の時点の前記刃先の実高さを示す実高さデータとに基づいて、前記第1時点よりも後の第3時点の前記刃先の予測高さを推定することと、を含み、前記第1時点において、前記第3時点の前記予測高さと、前記第1時点の前記目標高さとに基づいて、前記予測高さと前記目標高さとの偏差が小さくなるように、第1駆動指令が出力される、ブレード制御方法が提供される。
本発明の態様によれば、ブレードの応答性を向上して、所望の形状に整地できるブレード制御装置、作業車両、及びブレード制御方法が提供される。
図1は、本実施形態に係る作業車両の一例を示す図である。 図2は、本実施形態に係る作業車両を模式的に示す図である。 図3は、本実施形態に係るブレード制御装置の一例を示すブロック図である。 図4は、本実施形態に係るブレードコントローラ及び目標高さ生成装置の一例を示す機能ブロック図である。 図5は、本実施形態に係るブレード制御方法の一例を示すフローチャートである。 図6は、本実施形態に係る目標高さの一例を説明するための図である。 図7は、本実施形態に係る目標高さの一例を説明するための図である。 図8は、本実施形態に係る予測高さの一例を説明するための図である。 図9は、本実施形態に係る目標高さの一例を説明するための図である。 図10は、比較例に係る刃先の高さ及び本実施形態に係る刃先の高さの一例を説明するための図である。
以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
図1は、本実施形態に係る作業車両100の一例を示す図である。本実施形態においては、作業車両100がブルドーザ100である例について説明する。なお、作業車両100は、例えばモータグレーダでもよい。
以下の説明においては、「上」「下」「前」「後」「左」「右」の用語を使用して、各部の位置関係について説明する。「上」「下」「前」「後」「左」「右」とは、ブルドーザ(作業車両)100の運転室11の運転席に着座したオペレータを基準とする用語である。
(ブルドーザ100の全体構成)
本実施形態に係るブルドーザ100の全体構成について説明する。図1に示すように、ブルドーザ100は、車体10と、走行装置20と、リフトフレーム30と、ブレード40と、リフトシリンダ50と、アングルシリンダ60と、チルトシリンダ70と、GPSレシーバ80と、IMU(Inertial Measurement Unit)90と、スプロケット95と、油圧ポンプ240と、油圧モータ241と、油圧ポンプ245と、油圧センサ250と、を備える。
また、ブルドーザ100は、ブレード制御装置200を搭載する。ブレード制御装置200は、ブレード40の刃先40Pの高さを制御する。ブレード制御装置200の構成及び動作については後述する。
車体10は、運転室11とエンジン室12とを有する。運転室11には、運転席が設けられる。運転室11には、各種の操作装置が配置される。運転席に着座したオペレータは、操作装置を操作可能である。エンジン室12は、運転室11の前方に配置される。
走行装置20は、クローラ21を含む。走行装置20は、車体10の下部に配置される。スプロケット95の駆動により、クローラ21が回転することによって、ブルドーザ100は走行する。
リフトフレーム30は、車幅方向(左右方向)において走行装置20の内側に配置される。リフトフレーム30は、車幅方向に平行な軸線Xを中心に上下方向に回動可能に車体10に支持される。リフトフレーム30は、球関節部31と、ピッチ支持リンク32と、支柱部33とを介して、ブレード40を支持する。
ブレード40は、車体10に上下方向に移動可能に支持される。ブレード40は、リフトフレーム30を介して、車体10に支持される。ブレード40は、車体10の前方に配置される。ブレード40は、球関節部31に当接される自在継手41と、ピッチ支持リンク32に当接されるピッチング継手42と、を有する。ブレード40は、リフトフレーム30の上下方向の回動に伴って上下方向に移動する。
ブレード40は、刃先40Pを有する。刃先40Pは、ブレード40の下端部に配置される。整地作業及び掘削作業において、刃先40Pが地面に挿入される。
リフトシリンダ50は、ブレード40を上下方向(リフト方向)に移動可能な油圧シリンダである。リフトシリンダ50は、車体10とリフトフレーム30とに連結される。リフトシリンダ50が伸縮することによって、リフトフレーム30及びブレード40は、軸線Xを中心に上下方向に回動される。
アングルシリンダ60は、ブレード40を回転方向(アングル方向)に移動可能な油圧シリンダである。アングルシリンダ60は、リフトフレーム30とブレード40とに連結される。アングルシリンダ60が伸縮することによって、ブレード40は、自在継手41及びピッチング継手42それぞれの回動中心を通る軸線Yを中心に回動する。
チルトシリンダ70は、ブレード40を回転方向(チルト方向)に移動可能な油圧シリンダである。チルトシリンダ70は、リフトフレーム30の支柱部33とブレード40の右上端部とに連結される。チルトシリンダ70が伸縮することによって、ブレード40は、球関節部31とピッチ支持リンク32の下端部とを結ぶ軸線Zを中心に回動する。リフトフレーム30、ブレード40、リフトシリンダ50、アングルシリンダ60、チルトシリンダ70の実施例は一例でこの構成に限定はされない。
GPSレシーバ80は、運転室11上に配置される。GPSレシーバ80は、GPS(Global Positioning System;全地球測位システム)用のアンテナである。GPSレシーバ80は、自機の絶対位置を示すGPSデータ(絶対位置データ)を取得する。
IMU(Inertial Measurement Unit)90は、慣性計測装置である。IMU90は、前後方向及び左右方向の車体10の傾斜角を示す車体傾斜角データを取得する。
スプロケット95は、エンジン室12に収容されるエンジン(不図示)からの動力がトランスミッションを介して伝達されることによって駆動される。トランスミッションはエンジンと接続され、エンジンの回転運動により発生する軸動力をスプロケット95に伝達する。これにより、スプロケット95が駆動する。スプロケット95の駆動により、走行装置20が作動する。
本実施形態において、油圧ポンプ240は、走行装置20を走行させるための油圧ポンプ(走行用油圧ポンプ)である。油圧ポンプ240は、エンジンに接続される。油圧モータ241は、走行装置20を走行させるための油圧モータ(走行用油圧モータ)である。油圧モータ241は、スプロケット95に接続される。トランスミッションは、エンジンに接続される油圧ポンプ240と、スプロケット95に接続される油圧モータ241と、を有するHST(Hydraulic Static Transmission)を含む。油圧ポンプ240から油圧モータ241に作動油が供給される。これにより、油圧モータ241が作動し、スプロケット95が駆動する。
油圧ポンプ240の駆動により作動油が油圧モータ241に供給される。油圧モータ241は供給された作動油により動力を発生する。油圧モータ241が発生した動力は、油圧モータ241に接続されたスプロケット95に伝達される。
なお、トランスミッションは、HSTでなくてもよい。トランスミッションは、トルクコンバータでもよいし、油圧ポンプ240及び油圧モータ241を発電機及び電動機に置き換えたディーゼルエレクトリックでもよい。また、上記機構に遊星歯車機構を組み合わせた構成としてもよい。
油圧ポンプ245は、ブレード40を動かすための油圧ポンプ(作業機用油圧ポンプ)である。油圧ポンプ245は、リフトシリンダ50に作動油を供給する。これにより、リフトシリンダ50が作動する。油圧ポンプ245は、アングルシリンダ60に作動油を供給する。これにより、アングルシリンダ60が作動する。油圧ポンプ245は、チルトシリンダ70に作動油を供給する。これにより、チルトシリンダ70が作動する。
油圧センサ250は、油圧ポンプ245からリフトシリンダ50に供給される作動油の圧力を検出する。油圧センサ250は、作動油の圧力を示す圧力データを取得する。油圧センサ250によって検出される圧力は、走行装置20の牽引力に基づいて変化する。油圧センサ250で検出された圧力に基づいて、ブレード40にかかる負荷(ブレード負荷)が求められる。すなわち、本実施形態において、油圧センサ250は、ブレードにかかる負荷を示すブレード負荷データを取得するブレード負荷センサとして機能する。
なお、油圧センサ250は、油圧ポンプ240から油圧モータ241に供給される作動油の圧力を検出してもよい。油圧センサ250は、作動油の圧力を示す圧力データを取得する。油圧センサ250によって検出される圧力は、ブレード40にかかる負荷に基づいて変化する。油圧センサ250で検出された圧力に基づいて、ブレード40にかかる負荷(ブレード負荷)が求められる。すなわち、リフトシリンダ50に供給される作動油の圧力を検出する場合においても、油圧センサ250は、ブレードにかかる負荷を示すブレード負荷データを取得するブレード負荷センサとして機能する。
なお、ブレード負荷センサが、スプロケット95の駆動トルクを検出する駆動トルクセンサを含んでもよい。スプロケット95の駆動トルクは、走行装置20の牽引力に基づいて変化する。駆動トルクセンサで検出された駆動トルクに基づいて、ブレード負荷が求められる。すなわち、ブレード負荷データが、スプロケット95の駆動トルクを示す駆動トルクデータを含んでもよい。
図2は、本実施形態に係るブルドーザ100を模式的に示す図である。図2において、リフトフレーム30の原点位置が二点鎖線で示されている。リフトフレーム30が原点位置に位置する場合、ブレード40の刃先40Pは地面に接地する。
図2に示すように、ブルドーザ100は、リフトシリンダセンサ50Sを備える。リフトシリンダセンサ50Sは、ロッドの位置を検出する回転ローラと、ロッドの位置を原点復帰する磁力センサと、を有する。リフトシリンダセンサ50Sは、リフトシリンダ50のストローク長さLを検出する。以下の説明において、リフトシリンダ50のストローク長さLを適宜、リフトシリンダ長L、と称する。リフトシリンダセンサ50Sは、リフトシリンダ50のストローク長さ(リフトシリンダ長)Lを示すリフトシリンダ長データを取得する。
リフトシリンダ長データに基づいて、ブレード40のリフト角θが算出される。リフト角θは、ブレード40の原点位置からの下降角度、すなわち、刃先40Pの地中への貫入深さに対応する。ブレード40を原点位置から下降させた状態で前進することによって、ブルドーザ100による整地作業及び掘削作業が行われる。
なお、ブルドーザ100は、アングルシリンダ60のストローク長さ(アングルシリンダ長)を検出するアングルシリンダセンサと、チルトシリンダ70のストローク長さ(チルトシリンダ長)を検出するチルトシリンダセンサと、を更に備える。アングルシリンダセンサ及びチルトシリンダセンサのそれぞれは、ロッドの位置を検出する回転ローラと、ロッドの位置を原点復帰する磁力センサと、を有する。アングルシリンダセンサは、アングルシリンダ長を示すアングルシリンダ長データを取得する。チルトシリンダセンサは、チルトシリンダ長を示すチルトシリンダ長データを取得する。
以下においては、リフト角θの用途について主に説明し、アングル角及びチルト角の用途についての説明は省略する。
(ブレード制御装置200の構成)
次に、本実施形態に係るブレード制御装置200の一例について説明する。図3は、本実施形態に係るブレード制御装置200の一例を示すブロック図である。
ブレード制御装置200は、リフトシリンダ50と、スプロケット95と、比例制御弁230と、油圧ポンプ240と、油圧モータ241と、油圧ポンプ245と、インプット装置260と、を備える。ブレード制御装置200は、油圧センサ250と、リフトシリンダセンサ50Sと、GPSレシーバ80と、IMU90と、を備える。ブレード制御装置200は、ブレードコントローラ210と、目標高さ生成装置220と、を備える。
油圧ポンプ240は、走行装置20を走行させるための油圧ポンプ(走行用油圧ポンプ)である。油圧ポンプ240は、エンジンに接続される。油圧モータ241は、走行装置20を走行させるための油圧モータ(走行用油圧モータ)である。油圧モータ241は、スプロケット95に接続される。トランスミッションは、エンジンに接続される油圧ポンプ240と、スプロケット95に接続される油圧モータ241と、を有するHST(Hydraulic Static Transmission)を含む。油圧ポンプ240から油圧モータ241に作動油が供給される。これにより、油圧モータ241が作動し、スプロケット95が駆動する。油圧ポンプ240の駆動により作動油が油圧モータ241に供給される。油圧モータ241は供給された作動油により動力を発生する。油圧モータ241が発生した動力は、油圧モータ241に接続されたスプロケット95に伝達される。これにより、走行装置20が走行する。
油圧ポンプ245は、ブレード40を動かすための油圧ポンプ(作業機用油圧ポンプ)である。比例制御弁230は、リフトシリンダ50と油圧ポンプ245との間に配置される。油圧ポンプ245は、比例制御弁230を介して、リフトシリンダ50に作動油を供給する。リフトシリンダ50は、比例制御弁230により制御された作動油に基づいて駆動する。インプット装置260は、オペレータによって操作される操作レバー及びデセレーションペダルを含む。
ブレードコントローラ210は、CPUのようなプロセッサを有するコンピュータシステムを含む。目標高さ生成装置220は、CPUのようなプロセッサを有するコンピュータシステムを含む。
ブレードコントローラ210は、ブレード40を上下方向に移動可能なリフトシリンダ50を駆動する駆動指令を出力する。ブレードコントローラ210は、リフトシリンダ50に供給される作動油を制御する比例制御弁230に、駆動指令に基づく制御信号を出力する。
ブレードコントローラ210は、インプット装置260の操作レバーの操作に応じて、ブレード駆動指令、左右の走行装置20をそれぞれ操作し旋回を行う。また、ブレードコントローラ210は、インプット装置260のデセレーションペダルの操作に応じて、トランスミッションの出力を調整し、車速を変化させる。
目標高さ生成装置220は、刃先40Pの目標位置を示す目標高さデータを算出する。
油圧センサ250は、圧力データ(ブレード負荷データ)をブレードコントローラ210に送信する。
リフトシリンダセンサ50Sは、リフトシリンダ50のリフトシリンダ長Lを示すリフトシリンダ長データをブレードコントローラ210に送信する。
GPSレシーバ80は、GPSデータを目標高さ生成装置220に送信する。目標高さ生成装置220は、GPSデータをブレードコントローラ210に送信する。なお、GPSレシーバ80が、GPSデータをブレードコントローラ210に送信してもよい。
IMU90は、ブルドーザ100の絶対座標系におけるピッチ及びロール等の傾斜角を示す車体傾斜角データを目標高さ生成装置220に送信する。目標高さ生成装置220は、車体傾斜角データをブレードコントローラ210に送信する。なお、IMU90が、車体傾斜角データをブレードコントローラ210に送信してもよい。
ブレードコントローラ210は、油圧センサ250からブレード負荷データ(圧力データ)を取得する。ブレードコントローラ210は、リフトシリンダセンサ50Sからリフトシリンダ長データを取得する。ブレードコントローラ210は、GPSレシーバ80からGPSデータを取得する。ブレードコントローラ210は、IMU90から車体傾斜角データを取得する。
ブレードコントローラ210は、GPSデータ(絶対位置データ)に基づいて、グローバル座標系におけるGPSレシーバ80のGPS位置(絶対位置)を算出する。なお、グローバル座標系は、地球に固定された原点(絶対基準位置)を基準とした座標系である。
ブレードコントローラ210は、リフトシリンダ長データに基づいて、ブレード40のリフト角θ(図2参照)を算出する。ブレードコントローラ210は、リフト角θと車体寸法データとに基づいて、グローバル座標系からローカル座標系へ座標系の変換を行った後、ローカル座標系におけるGPSレシーバ80に対するブレード40の刃先40Pの位置(相対位置)を算出する。なお、ローカル座標系は、ブルドーザ100の車体10に固定された原点(車体基準位置)を基準とした座標系である。ローカル座標系を、車両本体座標系、と称してもよい。
車体寸法データは、既知データであり、ブレードコントローラ210に予め記憶されている。ブレードコントローラ210は、グローバル座標系におけるGPSレシーバ80の絶対位置を示すGPSデータと、ローカル座標系におけるGPSレシーバ80に対する刃先40Pの相対位置を示すローカル位置データと、車体10の傾斜角を示す車体傾斜角データとに基づいて、グローバル座標系における刃先40Pの位置(実高さ)を算出する。すなわち、ブレードコントローラ210は、車体10のGPS位置(絶対位置)を示すGPSデータ(絶対位置データ)と、車体10の傾斜角を示す車体傾斜角データと、リフトシリンダ50のストローク長さを示すリフトシリンダ長データとに基づいて、刃先40Pの実際の位置(実高さ)を算出する。
目標高さ生成装置220は、GPSレシーバ80からGPSデータを取得する。目標高さ生成装置220は、IMU90から車体傾斜角データを取得する。
目標高さ生成装置220は、作業エリア内における掘削対象の目標形状を示す3次元の設計地形である設計面を示す設計面データを予め記憶する。目標高さ生成装置220は、車体寸法データと、シリンダ長データから求めたリフト角θと、GPSデータと、車体傾斜角データと、設計面データとに基づいて、グローバル座標系からローカル座標系へ変換を行い、ローカル座標系における刃先40Pの目標位置(目標高さ)を算出する。
目標高さ生成装置220は、算出した目標高さを示す目標高さデータをブレードコントローラ210に送信する。ブレードコントローラ210は、目標高さデータを取得する。ブレードコントローラ210は、実高さと目標高さとの偏差が小さくなるように、駆動指令に基づく制御信号を比例制御弁230に出力する。制御信号は、電流を含む。ブレードコントローラ210は、実高さと目標高さとに基づいて得られる電流値に対応した電流を制御信号として比例制御弁230に出力する。
後述するように、ブレードコントローラ210は、未来の刃先40Pの高さ(予測高さ)を推定する。ブレードコントローラ210は、予測高さと目標高さとの偏差が小さくなるように、駆動指令に基づく制御信号を比例制御弁230に出力する。制御信号は、電流を含む。ブレードコントローラ210は、予測高さと目標高さとに基づいて得られる電流値に対応した電流を制御信号として比例制御弁230に出力する。
比例制御弁230の開口度は、ブレードコントローラ210から制御信号として出力される電流によって制御される。なお、ブレードコントローラ210から制御信号として出力される電流は、インプット装置260により調整可能である。
次に、本実施形態に係るブレードコントローラ210及び目標高さ生成装置220の機能について説明する。図4は、本実施形態に係るブレードコントローラ210及び目標高さ生成装置220の一例を示す機能ブロック図である。
(ブレードコントローラ210の機能)
図4に示すように、ブレードコントローラ210は、車両データ取得部211と、実高さ演算部212と、判定部213と、推定部214と、フィルタ部215と、目標高さデータ取得部216と、目標高さ補正部217と、ブレード負荷データ取得部218と、ブレード制御部219と、記憶部300と、を含む。
目標高さ生成装置220は、設計面データ格納部221と、データ取得部222と、目標高さ演算部223と、を含む。
車両データ取得部211は、GPSレシーバ80からGPSデータを取得する。車両データ取得部211は、IMU90から車体傾斜角データを取得する。車両データ取得部211は、リフトシリンダセンサ50Sからリフトシリンダ長データを取得する。
実高さ演算部212は、車体寸法データと、GPSデータと、車体傾斜角データと、リフトシリンダ長データとに基づいて、刃先40Pの実高さ(実際の高さ)を算出する。
判定部213は、刃先40Pの目標高さと実高さとの偏差に基づいて、所定の判定を実施する。
推定部214は、過去に出力された駆動指令と、現在の刃先40Pの実高さとに基づいて、未来の刃先40Pの予測高さを推定する。
フィルタ部215は、目標高さ生成装置220から送信された目標高さを示す目標高さデータをフィルタ処理する。本実施形態において、フィルタ部215は、カルマンフィルタを含む。
目標高さデータ取得部216は、目標高さ生成装置220で算出された目標高さを示す目標高さデータを取得する。本実施形態において、目標高さデータ取得部216は、フィルタ部215でフィルタ処理された目標高さデータを取得する。
目標高さ補正部217は、過去の目標高さと現在の目標高さとに基づいて、未来の目標高さを推定する。
判定部213は、目標高さ補正部217で推定された未来の刃先40Pの目標高さと、実高さ演算部212で算出された現在の刃先40Pの実高さとに基づいて、後述する所定の判定を実施する。
ブレード負荷データ取得部218は、油圧センサ250からブレード40の負荷を示すブレード負荷データを取得する。
ブレード制御部219は、推定部214で推定された未来の刃先40Pの予測高さと、現在の刃先40Pの目標高さとに基づいて、予測高さと目標高さとの偏差が小さくなるように、比例制御弁230に駆動指令に基づく制御信号を出力する。
記憶部300は、ブレードコントローラ210の制御に用いられる各種マップを記憶する。本実施形態において、記憶部300は、比例制御弁230に出力される制御信号としての電流と、その電流が比例制御弁230に供給されたときのリフトシリンダ50のシリンダ速度との関係を示すマップを記憶する。
(目標高さ装置220の機能)
設計面データ格納部221は、掘削対象の目標形状の3次元の設計地形である設計面を示す設計面データを予め保持する。
データ取得部222は、GPSレシーバ80からGPSデータを取得する。データ取得部222は、IMU90から車体傾斜角データを取得する。データ取得部222は、設計面データ格納部221から設計面データを取得する。
目標高さ演算部223は、車体10の絶対位置を示すGPSデータと、車体10の傾斜角を示す車体傾斜角データと、掘削対象の目標形状の3次元の設計地形である設計面を示す設計面データとに基づいて、刃先40Pの目標高さを算出する。目標高さ演算部223は、算出した目標高さを示す目標高さデータをフィルタ部215に送信する。
本実施形態においては、目標高さ生成装置220の目標高さ演算部223で算出された第1時点(現時点)の目標高さを示す目標高さデータが目標高さデータ取得部216に取得された場合、推定部214は、第1時点よりも前の第2時点(過去の時点)でブレード制御部210から出力された駆動指令と、第1時点の刃先40Pの実高さを示す実高さデータとに基づいて、第1時点よりも後の第3時点(未来の時点)の刃先40Pの予測高さを推定する。
ブレード制御部219は、第3時点の予測高さと、第1時点の目標高さとに基づいて、第1時点において、予測高さと目標高さとの偏差が小さくなるように、駆動指令を出力する。
本実施形態において、目標高さ演算部223は、所定の周期(例えば10ミリ秒毎)に、目標高さを算出する。実高さ演算部212は、所定の周期(例えば10ミリ秒毎)に、実高さを算出する。第2時点(過去の時点)は、例えば、第1時点(現時点)よりも1周期前の時点(10ミリ秒前の時点)である。第3時点(未来の時点)は、例えば、第1時点(現時点)よりも1周期後の時点(10ミリ秒後の時点)である。
ブレード制御部219は、実高さと目標高さとの差が所定の関係のときに、予測高さと目標高さとに基づいて、駆動指令を出力する。ブレード制御部219は、実高さと目標高さとの差が所定の関係でないときに、実高さと目標高さとに基づいて、駆動指令を出力する。
実高さと目標高さとの差が所定の関係であるか否かは、判定部213によって判定される。本実施形態において、判定部213は、第1時点の目標高さと第1時点の実高さとの第1偏差が、第2時点の目標高さと第2時点の実高さとの第2偏差よりも大きいか否かを判定する。
ブレード制御部219は、第1偏差が第2偏差よりも小さいと判定されたとき、第3時点の予測高さと、第1時点の目標高さとに基づいて、第1時点において、予測高さと目標高さとの偏差が小さくなるように、駆動指令を出力する。
ブレード制御部219は、第1偏差が第2偏差よりも大きいと判定されたとき、第1時点の実高さと、第1時点の目標高さとに基づいて、第1時点において、実高さと目標高さとの偏差が小さくなるように、駆動指令を出力する。
目標高さ補正部217は、第1時点で目標高さデータ取得部216が目標高さ生成装置220から取得した目標高さと、第2時点で目標高さデータ取得部216が目標高さ生成装置220から取得した目標高さとに基づいて、第3時点の目標高さ(補正目標高さ)を推定する。
本実施形態においては、推定された目標高さ(補正目標高さ)が、第1時点の目標高さとして使用される。
判定部213は、第1時点の目標高さ(補正目標高さ)と第1時点の実高さとの第1偏差が、第2時点の目標高さと第2時点の実高さとの第2偏差よりも大きいか否かを判定する。
判定部213において、第1偏差が第2偏差よりも小さいと判定された場合、ブレード制御部219は、予測高さと、目標高さ補正部217で推定された目標高さとに基づいて、第1時点において、予測高さと目標高さとの偏差が小さくなるように、駆動指令を出力する。
判定部213において、第1偏差が第2偏差よりも大きいと判定された場合、ブレード制御部219は、実高さと、目標高さ補正部217で推定された目標高さとに基づいて、第1時点において、実高さと目標高さとの偏差が小さくなるように、駆動指令を出力する。
(ブレード制御方法)
次に、本実施形態に係るブレード制御方法について説明する。図5は、本実施形態に係るブレード制御方法の一例を示すフローチャートである。
車両データ取得部211は、GPSデータ、車体傾斜角データ、及びリフトシリンダ長データを取得する。実高さ演算部212は、第1時点のGPSデータと、第1時点の車体傾斜角データと、第1時点のシリンダ長データとに基づいて、第1時点の刃先40Pの実高さを算出する(ステップSP1)。上述のように、本実施形態において、実高さ演算部212は、所定の周期(10ミリ秒毎)に、刃先40Pの実高さを算出する。
また、データ取得部222は、GPSデータ、車体傾斜角データ、及び設計面データを取得する。目標高さ演算部223は、GPSデータと、車体傾斜角データと、シリンダ長データとに基づいて、刃先40Pの目標高さを算出する。上述のように、本実施形態において、目標高さ演算部223は、所定の周期(10ミリ秒毎)に、刃先40Pの目標高さを算出する。目標高さ演算部223で算出された目標高さを示す目標高さデータは、所定の周期(10ミリ秒毎)で、ブレードコントローラ210に送信される。
目標高さデータ取得部216は、フィルタ部215を介して、目標高さ生成装置220で算出された第1時点の目標高さを示す目標高さデータを取得する(ステップSP2)。
これにより、ブレードコントローラ210は、第1時点の実高さデータと、第1時点の目標高さデータとを取得したことになる。
上述のように、本実施形態においては、フィルタ部215でフィルタ処理された目標高さデータが目標高さデータ取得部216に取得される。フィルタ部215は、時間遅れの少ないフィルタが選定されることが望ましく例えばカルマンフィルタを含む。
作業エリアにおいて、ブルドーザ100が走行する地面に凹凸がある場合、車体10の傾斜角は刻々と変化する。車体10の傾斜角の変化に伴って、目標高さ演算部223によって算出される目標高さデータも、刻々と変化する。刻々と変化する目標高さデータに基づいて、リフトシリンダ50及び比例制御弁230を含む油圧システムを使ってブレード40を制御しようとしても、制御が追い付かず、ハンチングのような制御不良が発生する可能性がある。そこで、本実施形態においては、目標高さデータをフィルタ処理し、そのフィルタ処理された目標高さデータを使って、ブレード40を制御する。これにより、制御不良の発生が抑制される。
図6は、フィルタ部215の効果を説明するための図である。図6において、ラインLOは、目標高さ演算部223から出力される目標高さデータを示す。ラインLOに示すように、車体10の傾斜角の変化に伴って、目標高さ演算部223から出力される目標高さデータも、刻々と変化する。
図6において、ラインLCは、カルマンフィルタを含むフィルタ部215によってフィルタ処理された後の目標高さデータを示す。すなわち、ラインLCは、フィルタ部215から目標高さデータ取得部216に出力される目標高さデータを示す。ラインLCで示すように、カルマンフィルタを含むフィルタ部215によって、目標高さデータは、大きな遅れを生じることなく、滑らかなデータに変換される。フィルタ処理された目標高さデータを使ってブレード40を制御することにより、制御不良の発生が抑制される。
図5に戻って、目標高さデータ取得部216が取得した目標高さデータは、目標高さ補正部217に送信される。目標高さ補正部217は、目標高さデータ取得部216から供給された目標高さデータを補正する(ステップSP3)。
例えば、目標高さ生成装置220による目標高さの算出のための演算の遅れ、又は目標高さ生成装置220からブレードコントローラ210に対する目標高さデータの送信の遅れが発生する可能性がある。上述のように、目標高さデータは、GPSデータ及び車体傾斜角データ等に基づいて算出される。目標高さ生成装置220からブレードコントローラ210への送信の遅れが発生すると、ブレードコントローラ210は、例えば1周期前の過去(10ミリ秒前)の車体傾斜角データに基づく目標高さデータとの偏差が小さくなるようにブレード40を制御してしまうこととなる。車体10の傾斜角は刻々と変化する。そのため、過去の車体傾斜角データに基づく目標高さデータに基づいてブレード40を制御しようとすると、ブレード40は、設計面に十分に追従できなくなる可能性がある。例えば、特定の車速においてオペレータの意図しないブレードの上下動(うねり)が発生してしまう可能性がある。
本実施形態においては、目標高さ生成装置220の遅れに起因する制御不良を抑制するために、ブレードコントローラ210は、目標高さ生成装置220から供給された目標高さデータを補正して、目標高さデータ(補正目標高さデータ)を生成する。
図7は、補正目標高さの一例を説明するための図である。図7に示すように、第1時点(現時点)t1において、目標高さデータ取得部216が目標高さ生成装置220から目標高さデータTm1を取得し、第1時点t1よりも前の第2時点(過去の時点)t2において、目標高さデータ取得部216が目標高さ生成装置220から目標高さデータTm2を取得したとする。目標高さ補正部217は、第1時点t1よりも後の第3時点(未来の時点)t3の目標高さデータTm3を推定する。
本実施形態において、目標高さ補正部217は、(1)式の演算を実施する。
Tm3=Tm1+(Tm1−Tm2)×G …(1)
(1)式において、Gはゲインである。本実施形態において、ブレードコントローラ210は、目標高さデータ(補正目標高さデータ)Tm3を使って、第1時点t1において、ブレード40を制御するための駆動指令に基づく制御信号を出力する。すなわち、ブレードコントローラ210は、第1時点t1における目標高さを目標高さデータTm3に設定して、制御を行う。
なお、ここでは、現時点(第1時点)の目標高さデータと過去の時点(第2時点)の目標高さデータとにより、未来の時点(第3時点)の目標高さを設定している。ある過去の時点(例えば第2時点)の目標高さデータとその過去の時点よりも前の時点の目標高さデータとにより、未来の時点の目標高さを設定してもよい。
実高さ演算部212で算出された第1時点t1の実高さデータTr1、及び目標高さ補正部217で補正された第1時点t1の目標高さデータTm3が、判定部213に送信される。判定部213は、第1時点t1の目標高さデータTm3と第1時点t1の実高さデータTr1との第1偏差Δ1と、第2時点t2の目標高さデータTm2と第2時点t2の実高さデータTr2との第2偏差Δ2とを比較する(ステップSP4)。
判定部213は、第1時点t1の目標高さデータTm3と第1時点t1の実高さデータTr1との第1偏差Δ1が、第2時点t2の目標高さデータTm2と第2時点t2の実高さデータTr2との第2偏差Δ2よりも大きいか否かを判定する(ステップSP5)。
第1偏差Δ1が第2偏差Δ2よりも小さいと判定された場合(ステップSP5:No)、推定部214による予測高さの推定が実施される(ステップSP6)。
第1偏差Δ1が第2偏差Δ2よりも大きいと判定された場合、又は、第1偏差Δ1と第2偏差Δ2とが等しいと判定された場合、又は、第1偏差Δ1が予め定められている閾値以上であると判定された場合(ステップSP5:Yes)、推定部214による予測高さの推定が実施されず、ブレード制御部219は、第1時点t1の実高さデータTr1と、第1時点t1の目標高さデータTm1とに基づいて、第1時点t1において、実高さデータTr1と目標高さデータTm1との偏差が小さくなるように、駆動指令を出力する(ステップSP8)。
推定部214による刃先4Pの予測高さの推定について、図8を参照しながら説明する。
一般に、リフトシリンダ50のような油圧機器においては、油圧システムに起因するむだ時間が発生する。制御信号に対する油圧システムのむだ時間が存在すると、ブレード40の刃先40Pを設計面に追従させることが困難となる可能性がある。応答性を良くするためにゲインを大きくすると、むだ時間があるためオーバーシュートが発生し、ブレード40の刃先40Pを設計面に追従させることが困難となる可能性がある。
そこで、本実施形態においては、第1時点t1の刃先4Pの実高さデータTr1を使わずに、第1時点t1よりも後の第3時点t3の刃先4Pの予測高さデータTr3を推定し、その推定された予測高さデータTr3を使って、ブレード40を制御するための駆動指令が出力される。
予測高さデータTr3を推定し、その推定された予測高さデータTr3を使って、第1時点t1における制御が行われることにより、油圧システムに起因するむだ時間が発生する状況でも、刃先40Pを目標高さに近付けることができる。
図8に示すように、第1時点t1の刃先40Pの実高さデータTr1が算出される。第1時点t1よりも前の第2時点t2の刃先40Pの実高さデータTr2が算出される。第2時点t2において、ブレード制御部219から駆動指令が出力される。
推定部214は、第2時点t2でブレード制御部219から出力された駆動指令と、第1時点t1の刃先40Pの実高さを示す実高さデータTr1とに基づいて、第1時点t1よりも後の第3時点t3の刃先40Pの予測高さを示す予測高さデータTr3を推定する。
本実施形態において、駆動指令は、リフトシリンダ50の目標シリンダ速度指令を含む。記憶部300には、比例制御弁230に出力される制御信号としての電流と、その電流が比例制御弁230に供給されたときのリフトシリンダ50のシリンダ速度との関係を示すマップが記憶されている。ブレード制御部219は、記憶部300のマップに基づいて、リフトシリンダ50が目標値どおりのシリンダ速度で作動するように、比例制御弁230に制御信号(電流)を出力する。
本実施形態において、第2時点t2の駆動指令は、第2時点t2のリフトシリンダ50の目標シリンダ速度指令を含む。推定部214は、第1時点t1の実高さデータTr1と、第2時点t2の目標シリンダ速度(指令速度)Vr2と、周期ts(本例では10ミリ秒)とに基づいて、予測高さデータTr3を推定する。
本実施形態において、推定部214は、(2)式の演算を実施する。
Tr3=Tr1+Vr2×ts×G …(2)
(2)式において、Vr2は、第2時点t2における目標シリンダ速度(指令速度)である。tsは、周期である。Gはゲインである。本実施形態において、ブレードコントローラ210は、予測高さデータTr3を使って、第1時点t1において、ブレード40を制御するための駆動指令に基づく制御信号を出力する。
なお、(2)式は、第1時点t1の1周期前(1×10ミリ秒前)の第2時点t2の指令速度Vr2を使っている。第1時点t1の1周期前の第2時点t2の指令速度Vr2のみならず、2周期前(2×10ミリ秒前)の時点t22の指令速度Vr22、3周期前(3×10ミリ秒前)の時点t23の指令速度Vr23、…、n周期前(n×10ミリ秒前)の時点t2nの指令速度Vr2nを使用してもよい。すなわち、推定部214は、(3)式の演算を実施してもよい。
Tr3=Tr1+(Vr2+Vr22+…+Vr2n)×ts×G …(3)
このように、予測高さデータTr3が推定され、その予測高さデータTr3に基づいて、第1時点t1において駆動指令が出力されることによって、応答性を高くするためにゲインGが高くても、オーバーシュートの発生が抑制される。
(2)式及び(3)式において、ゲインGは、任意に定めることができる。本実施形態において、ゲインGは、ブレード負荷データに基づいて調整される。ブレードコントローラ210は、ブレード40にかかる負荷を示すブレード負荷データを取得するブレード負荷データ取得部218を備えている。推定部214は、ブレード負荷データに基づいて、予測高さデータTr3を算出するためのゲインGを調整してもよい。例えば、ブレード負荷データが大きい場合、推定部214は、ゲインGを小さくする。ブレード負荷が高い場合、予測高さデータTr3が真の値(第1時点t1における真の刃先40Pの高さ)から大きくずれてしまう可能性がある。ブレード負荷が大きいとき、ゲインGを小さくすることによって、予測高さデータTr3が真の値から大きくずれることが抑制される。
予測高さデータTr3が推定された後、ブレード制御部219は、予測高さデータTr3と、目標高さデータTm3とに基づいて、第1時点t1において、予測高さデータTm3と目標高さデータTr3との偏差が小さくなるように、駆動指令を出力する(ステップSP7)。これにより、設計面に対するブレード40の追従性の低下が抑制される。
本実施形態において、ブレード制御部219は、スライディングモード制御により、予測高さデータTm3と目標高さデータTr3との偏差が小さくなるように、駆動指令を出力する。これにより、ブレード40の高い応答性が実現される。なお、ブレード制御部219は、PID制御により、予測高さデータTm3と目標高さデータTr3との偏差が小さくなるように、駆動指令を出力してもよい。
なお、ここでは、現時点(第1時点)の実高さデータと過去の時点(第2時点)の駆動指令とにより、未来の時点(第3時点)の予測高さを推定している。ある過去の時点(例えば第2時点)の実高さデータとその過去の時点よりも前の時点の駆動指令とにより、未来の時点の予測高さを推定してもよい。すなわち、第1時点t1よりも前の第2時点t2でブレード制御部219から出力された駆動指令と、第1時点t1又は第1時点t1よりも前の時点(例えば時点t2、時点t22、…、時点t2n)の刃先40Pの実高さを示す実高さデータとに基づいて、第1時点t1よりも後の第3時点t3の刃先40Pの予測高さが推定されてもよい。
本実施形態においては、ステップSP5において、第1偏差Δ1が第2偏差Δ2よりも大きいと判定された場合、又は、第1偏差Δ1と第2偏差Δ2とが等しいと判定された場合、又は、第1偏差Δ1が予め定められている閾値以上であると判定された場合(ステップSP5:Yes)、推定部214による予測高さの推定が実施されず、ブレード制御部219は、第1時点t1の実高さデータTr1と、第1時点t1の目標高さデータTm1とに基づいて、第1時点t1において、実高さデータTr1と目標高さデータTm1との偏差が小さくなるように、駆動指令を出力する(ステップSP8)。
すなわち、本実施形態においては、刃先4Pの実高さが目標高さから徐々に離れるように動いている場合、又は、実高さと目標高さとが予め定められている閾値よりも大きく離れている場合、予測高さデータTr3を用いずに、第1時点t1の実高さデータTr1を用いて、駆動指令を出力する。
例えば、(2)式及び(3)式において、ゲインGをゼロにする処理を実行することによって、予測高さデータTr3が実高さデータTr1に置き換えられてもよい。
予測高さデータTr3を用いることにより、オーバーシュートの発生が抑制される。一方、予測高さデータTr3を使用する場合、駆動指令の出力が抑制される傾向となる。実高さが目標高さから徐々に離れるように動いている場合、又は、実高さと目標高さの差が予め定められている閾値よりも大きい場合、実高さが目標高さに迅速に近付くことが困難となる可能性がある。
そこで、本実施形態においては、第1偏差Δ1が第2偏差Δ2よりも大きいと判定された場合、又は、第1偏差Δ1と第2偏差Δ2とが等しいと判定された場合、又は、第1偏差Δ1が予め定められている閾値以上であると判定された場合、ブレード制御部219は、第1時点t1の実高さデータTr1と、第1時点t1の目標高さデータTm1とに基づいて、第1時点t1において、実高さデータTr1と目標高さデータTm1との偏差が小さくなるように、駆動指令を出力する。これにより、実高さが目標高さに迅速に近付くことができる。
図9は、目標高さ補正部217により目標高さが補正された場合の効果を示す図である。図9に示すように、補正後の目標高さは、補正前の目標高さに比べて、理想の目標高さに近付くことができる。なお、理想の目標高さとは、車体10の実際の挙動を検出し、その実際の車体10の挙動に応じて導出された目標高さである。目標高さの補正により補正前の目標高さから理想の目標高さに近い挙動を取得することができる。これによりブレード駆動指令から実際にブレードが駆動するまでの遅れ時間が小さくなる。これにより目標高さに対してブレードが上下する(うねる)等の不具合を解消することができる。
図10は、予測高さを使用せずに実高さを使用してブレード40を制御したときの刃先40Pの高さの例、及び予測高さを使用してブレード40を制御したときの刃先40Pの高さの例を示す。図10は、ブレード40を使ってブルドーザ100が整地中、換言すれば、ブレード40に所定の負荷が作用した状態でブルドーザ100の走行装置20が走行中、目標高さがステップ的に変動したときの、実高さを使用してブレード40を制御したときの刃先40Pの高さ、及び予測高さを使用してブレード40を制御したときの刃先40Pの高さを示す。
ブルドーザ100の走行装置20が走行中にブレード40が設計面の段差を跨いだ場合、図10に示すように、目標高さ生成装置220によって算出される目標高さは、ステップ的に変動する。
比較例である実高さを使用したブレード40の制御では、図10に示すように、ブレード40のオーバーシュートが発生する。ブレード40の負荷及び走行装置20の車速の変動が起きやすい整地作業では、オーバーシュートが発生すると、安定したブレード40の制御が実施できなくなる可能性がある。その結果、ブルドーザ100は、所望の形状に整地できない可能性がある。
本実施形態に係る予測高さを使用したブレード40の制御では、図10に示すように、ブレード40のオーバーシュートが抑制される。ブレード40は、オーバーシュートを起こさずに、目標高さに収束することができる。これにより、ブルドーザ100は、所望の形状に整地することができる。
(効果)
以上説明したように、本実施形態によれば、第1時点t1よりも前の第2時点t2でブレード制御部219から出力された駆動指令と、第1時点t1の刃先40Pの実高さを示す実高さデータTr1とに基づいて、第1時点t1よりも後の第3時点t3の刃先40Pの予測高さを示す予測高さデータTr3を推定し、予測高さデータTr3と目標高さデータTm1とに基づいて、駆動指令を出力するようにしたので、油圧システムのむだ時間が存在しても、ゲインを大きくしてブレード40の応答性を向上しつつ、オーバーシュートの発生を抑制することができる。
例えば、制御信号に対する油圧システムのむだ時間が存在する場合、ブレード40の刃先40Pを設計面に追従させることが困難となる可能性がある。応答性をよくするためにゲインを大きくすると、むだ時間があるためオーバーシュートが発生し、ブレードの刃先を設計面に追従させることが困難となる可能性がある。
本実施形態においては、ゲインを大きくしてもオーバーシュートの発生が抑制される。そのため、高い応答性で、ブレード40の刃先を設計面に精度良く追従させることができる。したがって、ブルドーザ100は、所望の形状に整地することができる。
本実施形態において、ブレード制御部219は、現代制御理論であるスライディングモード制御でブレード40を制御する。スライディングモード制御は、PID制御に比べて、高い応答性が得られる可能性が高い。油圧システムのむだ時間に起因して、スライディングモード制御を採用し、応答性を高めた制御系においては、負荷、走行条件によってオーバーシュートが発生する可能性がある。本実施形態によれば、予測高さデータTr3を使ってブレード40を制御することにより、オーバーシュート等を抑制し制御性を向上することができる。
また、本実施形態においては、所定の周期tsで、目標高さ演算部223が目標高さを算出し、実高さ演算部212が実高さを算出する。第1時点t1、第2時点t2、及び第3時点t3は、周期tsに基づいて定められる。これにより、ブレード40を使って所望の形状に整地することができる。
また、本実施形態においては、ブレード負荷データに基づいて、予測高さデータTr3を算出するためのゲインGが調整される。これにより、ブレード負荷の変化に起因する予測高さデータTr3が真の値から大きくずれることが抑制され、予測高さデータTr3の正確性の低下が抑制される。
また、本実施形態によれば、第1偏差Δ1が第2偏差Δ2よりも大きいと判定された場合、又は、第1偏差Δ1と第2偏差Δ2とが等しいと判定された場合、又は、第1偏差Δ1が予め定められている閾値以上であると判定された場合、予測高さデータTr3を用いずに、第1時点t1の実高さデータTr1を用いて、駆動指令が出力される。これにより、実高さが目標高さから離れている場合、実高さを目標高さに迅速に近付くことができる。
また、本実施形態によれば、第1時点t1の目標高さデータTm1と、第2時点t2の目標高さデータTm2とに基づいて、第3時点t3の目標高さデータTm3を推定し、その目標高さデータTm3と予測高さデータTr3とが近付くように、ブレード40が制御される。そのため、目標高さ生成装置220の処理(演算及び出力を含む)が遅れる場合においても、その遅れが相殺されるように、ブレード40が制御される。したがって、実高さ予測に基づくブレード制御を行う様な場合にも適用可能となりブルドーザ100は、所望の形状に整地することができる。
なお、上述の実施形態においては、作業車両100がブルドーザ100である例について説明した。作業車両100は、ブレード機構を有するモータグレーダでもよい。
10 車体
11 運転室
12 エンジン室
20 走行装置
21 クローラ
30 リフトフレーム
31 球関節部
32 ピッチ支持リンク
33 支柱部
40 ブレード
40P 刃先
41 自在継手
42 ピッチング継手
50 リフトシリンダ
50S リフトシリンダセンサ
60 アングルシリンダ
70 チルトシリンダ
80 GPSレシーバ
90 IMU
95 スプロケット
100 ブルドーザ(作業車両)
200 ブレード制御装置
210 ブレードコントローラ
211 車両データ取得部
212 実高さ演算部
213 判定部
214 推定部
215 フィルタ部
216 目標高さデータ取得部
217 目標高さ補正部
218 ブレード負荷データ取得部
219 ブレード制御部
220 目標高さ生成装置
221 設計面データ格納部
222 データ取得部
223 目標高さ演算部
230 比例制御弁
240 油圧ポンプ
241 油圧モータ
245 油圧ポンプ
250 油圧センサ
260 インプット装置
300 記憶部
L リフトシリンダ長(リフトシリンダのストローク長さ)
θ リフト角

Claims (8)

  1. 作業車両の車体に上下方向に移動可能に支持されるブレードの刃先の高さを制御するブレード制御装置であって、
    前記ブレードを上下方向に移動可能な油圧シリンダに供給される作動油を制御する比例制御弁と、
    前記油圧シリンダの目標シリンダ速度指令を含む駆動指令に基づいて、前記比例制御弁に制御信号を出力するブレード制御部と、
    前記車体の絶対位置を示す絶対位置データと、前記車体の傾斜角を示す車体傾斜角データと、掘削対象の目標形状の3次元の設計地形である設計面を示す設計面データとに基づいて、前記刃先の目標高さを算出する目標高さ生成装置と、
    前記目標高さ生成装置で算出された第1時点における前記刃先の目標高さを示す目標高さデータを取得する目標高さデータ取得部と、
    前記第1時点における前記絶対位置データと、前記車体傾斜角データと、前記油圧シリンダのストローク長さを示すシリンダ長データとに基づいて、前記第1時点における前記刃先の実高さを算出する実高さ演算部と、
    前記第1時点よりも前の第2時点で前記ブレード制御部から出力された前記駆動指令と、前記第1時点又は前記第1時点よりも前の時点の前記刃先の実高さを示す実高さデータとに基づいて、前記第1時点よりも後の第3時点の前記刃先の予測高さを推定する推定部と、
    を備え、
    前記推定部で推定された前記第3時点の前記刃先の予測高さが、前記第1時点における前記刃先の実高さに設定され、
    前記ブレード制御部は、前記第3時点の前記刃先の予測高さに設定された前記第1時点の前記刃先の実高さと、前記第3時点の前記刃先の目標高さに設定された前記第1時点における前記刃先の目標高さとの偏差が小さくなるように、前記第1時点において、前記比例制御弁に前記制御信号を出力する、
    ブレード制御装置。
  2. 前記実高さ演算部は、所定の周期で前記実高さを算出し、
    前記第2時点は、前記第1時点よりも1周期前の時点を含み、
    前記第3時点は、前記第1時点よりも1周期後の時点を含む、
    請求項1に記載のブレード制御装置。
  3. 前記推定部は、前記第1時点又は前記第1時点よりも前の時点の実高さと、前記第2時点の駆動指令と、前記周期とに基づいて、前記第3時点の前記刃先の予測高さを推定する、
    請求項2に記載のブレード制御装置。
  4. 前記ブレードにかかる負荷を示すブレード負荷データを取得するブレード負荷データ取得部を備え、
    前記推定部は、前記ブレード負荷データに基づいて、前記第3時点の前記刃先の予測高さを算出するためのゲインを調整する、
    請求項3に記載のブレード制御装置。
  5. 前記第1時点の前記刃先の目標高さと前記第1時点の前記刃先の実高さとの第1偏差が、前記第2時点の前記刃先の目標高さと前記第2時点の前記刃先の実高さとの第2偏差よりも大きいか否かを判定する判定部を備え、
    前記ブレード制御部は、
    前記第1偏差が前記第2偏差よりも小さいと判定されたとき、前記第3時点の前記刃先の予測高さに設定された前記第1時点の前記刃先の実高さと、前記第3時点の前記刃先の目標高さに設定された前記第1時点の前記刃先の目標高さとの偏差が小さくなるように、前記第1時点において、前記比例制御弁に前記制御信号を出力し、
    前記第1偏差が前記第2偏差よりも大きいと判定されたとき、前記推定部による前記予測高さの推定が実施されず、前記実高さ演算部で算出された前記第1時点の前記刃先の実高さと、前記目標高さ生成装置で算出され前記目標高さデータ取得部で取得された前記第1時点の前記刃先の目標高さとの偏差が小さくなるように、前記第1時点において、前記比例制御弁に制御信号を出力する、
    請求項1から請求項4のいずれか一項に記載のブレード制御装置。
  6. 前記目標高さデータ取得部が前記目標高さ生成装置から取得した前記第1時点における前記刃先の目標高さと、前記目標高さデータ取得部が前記目標高さ生成装置から取得した前記第2時点における前記刃先の目標高さとに基づいて、前記第3時点の前記刃先の目標高さを推定する目標高さ補正部を備え、
    前記目標高さ補正部で推定された前記第3時点の前記刃先の目標高さが、前記第1時点の前記刃先の目標高さに設定される、
    請求項1から請求項5のいずれか一項に記載のブレード制御装置。
  7. 車体と、
    前記車体に上下方向に移動可能に支持される刃先を有するブレードと、
    請求項1から請求項6のいずれか一項に記載のブレード制御装置と、
    を備える作業車両。
  8. 作業車両の車体に上下方向に移動可能に支持されるブレードの刃先の高さを制御するブレード制御方法であって、
    前記ブレードを上下方向に移動可能な油圧シリンダに供給される作動油を制御する比例制御弁に、前記油圧シリンダの目標シリンダ速度指令を含む駆動指令に基づいて、制御信号ブレード制御部から出力することと、
    前記車体の絶対位置を示す絶対位置データと、前記車体の傾斜角を示す車体傾斜角データと、掘削対象の目標形状の3次元の設計地形である設計面を示す設計面データとに基づいて、前記刃先の目標高さを目標高さ生成装置で算出することと、
    前記目標高さ生成装置で算出された第1時点及び前記第1時点よりも前の第2時点の前記刃先の目標高さを示す目標高さデータを目標高さデータ取得部で取得することと、
    前記第1時点の前記絶対位置データと、前記車体傾斜角データと、前記油圧シリンダのストローク長さを示すシリンダ長データとに基づいて、前記第1時点の前記刃先の実高さを実高さ演算部で算出することと、
    前記第2時点で出力された前記駆動指令と、前記第1時点又は前記第1時点よりも前の時点の前記刃先の実高さを示す実高さデータとに基づいて、前記第1時点よりも後の第3時点の前記刃先の予測高さを推定部で推定することと、
    を含み、
    前記推定部で推定された前記第3時点の前記刃先の予測高さが、前記第1時点における前記刃先の実高さに設定され、
    前記第3時点の前記刃先の予測高さに設定された前記第1時点の前記刃先の実高さと、前記第3時点の前記刃先の目標高さに設定された前記第1時点における前記刃先の目標高さとの偏差が小さくなるように、前記第1時点において、前記ブレード制御部から前記比例制御弁に前記制御信号が出力される、
    ブレード制御方法。
JP2014554110A 2014-10-30 2014-10-30 ブレード制御装置、作業車両、及びブレード制御方法 Active JP5807128B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078977 WO2015083469A1 (ja) 2014-10-30 2014-10-30 ブレード制御装置、作業車両、及びブレード制御方法

Publications (2)

Publication Number Publication Date
JP5807128B1 true JP5807128B1 (ja) 2015-11-10
JPWO2015083469A1 JPWO2015083469A1 (ja) 2017-03-16

Family

ID=53273242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554110A Active JP5807128B1 (ja) 2014-10-30 2014-10-30 ブレード制御装置、作業車両、及びブレード制御方法

Country Status (4)

Country Link
US (1) US9903096B2 (ja)
JP (1) JP5807128B1 (ja)
CN (1) CN105745379B (ja)
WO (1) WO2015083469A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170096794A1 (en) * 2015-10-02 2017-04-06 Caterpillar Inc. Blade assembly having socket support plate
US10066370B2 (en) * 2015-10-19 2018-09-04 Caterpillar Inc. Sensor fusion for implement position estimation and control
US9598844B1 (en) * 2015-12-22 2017-03-21 Caterpillar Trimble Control Technologies Llc Implement control based on surface-based cost function and noise values
JP6861485B2 (ja) * 2016-07-26 2021-04-21 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
CN107002383B (zh) * 2017-01-13 2022-03-15 株式会社小松制作所 作业机械的控制系统、作业机械及作业机械的控制方法
CN106888588A (zh) * 2017-03-08 2017-06-27 徐州迪惠尔工程机械有限公司 一种高效可调节的平地机
US11268259B2 (en) * 2017-03-30 2022-03-08 Komatsu Ltd. Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
US11578470B2 (en) 2017-03-30 2023-02-14 Komatsu Ltd. Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
CA3063687A1 (en) * 2017-08-29 2019-12-06 Komatsu Ltd. Control system for work vehicle, method, and work vehicle
EP3680399B1 (en) * 2017-09-07 2023-11-15 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Excavator
US10392774B2 (en) * 2017-10-30 2019-08-27 Deere & Company Position control system and method for an implement of a work vehicle
JP6827123B2 (ja) * 2018-03-12 2021-02-10 日立建機株式会社 作業機械
JP7152170B2 (ja) * 2018-03-28 2022-10-12 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両
JP7092557B2 (ja) 2018-05-29 2022-06-28 株式会社小松製作所 ブレード制御装置及びブレード制御方法
JP7175107B2 (ja) * 2018-05-31 2022-11-18 株式会社小松製作所 ブレード制御装置及びブレード制御方法
JP7092560B2 (ja) * 2018-05-31 2022-06-28 株式会社小松製作所 ブレード制御装置及びブレード制御方法
US10533301B1 (en) * 2018-12-20 2020-01-14 David Armas GPS and laser grading control
JP2020033789A (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置
US10883248B2 (en) 2018-10-22 2021-01-05 Deere & Company Road maintenance using stored maintenance passes
JP7025364B2 (ja) * 2019-03-20 2022-02-24 ヤンマーパワーテクノロジー株式会社 作業車両のブレード制御システム
JP7416769B2 (ja) 2019-03-29 2024-01-17 株式会社小松製作所 作業車両、作業車両の制御装置、および作業車両の方向特定方法
US20230063004A1 (en) * 2020-03-09 2023-03-02 Danfoss A/S System and method for control of heavy machinery
CN111576514B (zh) * 2020-05-28 2022-03-15 江苏徐工工程机械研究院有限公司 找平控制方法及系统、控制器、平地机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8145391B2 (en) * 2007-09-12 2012-03-27 Topcon Positioning Systems, Inc. Automatic blade control system with integrated global navigation satellite system and inertial sensors
US8655556B2 (en) 2011-09-30 2014-02-18 Komatsu Ltd. Blade control system and construction machine
JP5442815B2 (ja) * 2012-08-06 2014-03-12 株式会社小松製作所 作業機械及び作業機械のブレードの自動制御方法
JP5285805B1 (ja) * 2012-10-26 2013-09-11 株式会社小松製作所 ブレード制御装置、作業機械及びブレード制御方法
CN103874804B (zh) * 2013-03-08 2015-11-25 株式会社小松制作所 推土机及推土铲控制方法
JP5391345B1 (ja) 2013-03-08 2014-01-15 株式会社小松製作所 ブルドーザ及びブレード制御方法
US8972119B2 (en) * 2013-03-15 2015-03-03 Novatel Inc. System and method for heavy equipment navigation and working edge positioning

Also Published As

Publication number Publication date
US9903096B2 (en) 2018-02-27
CN105745379A (zh) 2016-07-06
WO2015083469A1 (ja) 2015-06-11
CN105745379B (zh) 2018-02-27
JPWO2015083469A1 (ja) 2017-03-16
US20160122969A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
JP5807128B1 (ja) ブレード制御装置、作業車両、及びブレード制御方法
CN109101032B (zh) 用于利用传感器融合来控制机器姿态的系统和方法
CN109115213B (zh) 用于利用传感器融合来确定机器状态的系统和方法
JP5285805B1 (ja) ブレード制御装置、作業機械及びブレード制御方法
US10459462B2 (en) Sensor fusion feedback for controlling fluid pressures in a machine
US11041289B2 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
WO2013051377A1 (ja) ブレード制御システム、建設機械及びブレード制御方法
JP6843039B2 (ja) 作業機械
US10671074B2 (en) Control system for work vehicle, method, and work vehicle
EP4143388A1 (en) Hystat swing motion actuation, monitoring, and control system
US20190085529A1 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
US20190071846A1 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
JP7175107B2 (ja) ブレード制御装置及びブレード制御方法
WO2019230042A1 (ja) ブレード制御装置及びブレード制御方法
US11933018B2 (en) Blade control device and blade control method
WO2023053700A1 (ja) 作業機械を制御するためのシステムおよび方法
US20240044104A1 (en) Work machine and method for controlling work machine
US20230383495A1 (en) System and method for controlling work machine, and work machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5807128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250