JP5803795B2 - 受信装置、周波数偏差算出方法及びコンピュータプログラム - Google Patents

受信装置、周波数偏差算出方法及びコンピュータプログラム Download PDF

Info

Publication number
JP5803795B2
JP5803795B2 JP2012097180A JP2012097180A JP5803795B2 JP 5803795 B2 JP5803795 B2 JP 5803795B2 JP 2012097180 A JP2012097180 A JP 2012097180A JP 2012097180 A JP2012097180 A JP 2012097180A JP 5803795 B2 JP5803795 B2 JP 5803795B2
Authority
JP
Japan
Prior art keywords
time interval
straight line
phase rotation
unit
frequency deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012097180A
Other languages
English (en)
Other versions
JP2013225777A (ja
Inventor
孝斗 江崎
孝斗 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012097180A priority Critical patent/JP5803795B2/ja
Priority to US13/851,762 priority patent/US8787857B2/en
Publication of JP2013225777A publication Critical patent/JP2013225777A/ja
Application granted granted Critical
Publication of JP5803795B2 publication Critical patent/JP5803795B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers

Description

この発明は、受信装置、周波数偏差算出方法及びコンピュータプログラムに関する。
高速で移動する移動局と基地局との間に遮蔽物がない場合には、電波の伝搬環境がいわゆるライスフェージング環境となる。この場合には、受信信号に対するドップラー効果の影響が周波数偏差となって現れ、通信品質に大きく影響を与えることが知られている(例えば、非特許文献1参照)。受信信号の周波数を推定する方法として、異なる受信タイミングで受信されたリファレンス信号間の相関を算出することにより、受信間隔における位相回転を推定する方法が知られている(例えば、非特許文献2参照)。
また、基地局において、移動局から受信した情報伝送単位に、時間的に離れた複数のリファレンス信号が配置されている場合、複数のリファレンス信号から位相変動を求め、位相変動から周波数偏差を求める方法がある(例えば、特許文献1参照)。また、共通制御チャンネル内に挿入される既知のシンボルと同期コードとの位相偏差及び時間間隔に基づいて周波数偏差を推定する方法がある(例えば、特許文献2参照)。
また、1スロット内に配置される複数のパイロットシンボル間の位相変動成分から第1の位相差を測定し、2スロットのパイロットシンボル群間の位相変動成分から第2の位相差を測定し、第1の位相差及び第2の位相差を用いて周波数偏差を検出する方法がある(例えば、特許文献3参照)。また、複数のチャネルのパイロットシンボルから、受信信号の周波数と自己の動作周波数との差分の推定値をチャネルごとに算出し、その推定値に基づいて動作周波数を制御する方法がある(例えば、特許文献4参照)。
特開2009−65581号公報 特表2007−515109号公報 特開2004−153585号公報 特開2001−86031号公報
3GPP(Third Generation Partnership Project) 寄書, R4−060149, "Discussion on AFC problem under high speed train environment", NTT DoCoMo, USA, February 13−17, 2006 P. Moose, "A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction", IEEE Trans. Commun., vol. 42, no. 10, October. 1991
移動中の移動局は、基地局からドップラー周波数が周波数偏差として加わった下り信号を受信し、その受信信号の搬送波周波数を基準として基地局への上り信号の搬送波周波数を決定する。一方、基地局は、移動中の移動局からドップラー周波数が周波数偏差として加わった上り信号を受信する。そのため、基地局が受信する上り信号には、ドップラー周波数の2倍の周波数偏差が生じることがある。
移動局が高速で移動する場合、ドップラー効果による周波数偏差が大きくなるため、基地局装置は、広い周波数範囲で周波数偏差を推定することになる。従来の周波数偏差を推定する方法では、通常のリファレンス信号に加えて、特別なリファレンス信号が追加される。基地局装置は、通常のリファレンス信号と特別なリファレンス信号とに基づいて広い周波数範囲で周波数偏差を推定する。そのため、計算量が多くなり、スループットが低下するという問題点がある。
スループットの低下を防ぐことができる受信装置、周波数偏差算出方法及びコンピュータプログラムを提供することを目的とする。
受信装置は、記憶部、選択部、取得部及び推定部を備えている。記憶部は、等間隔で平行な複数の直線からなる解空間の直線のそれぞれに対応するパラメータを記憶する。この解空間における複数の直線は、第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において、第1の時間間隔と第2の時間間隔とに基づいて導かれる。第1のリファレンス信号は、第1のチャネルの受信信号に含まれている。第2のリファレンス信号は、第2のチャネルの受信信号に含まれている。選択部は、解空間に対して、第1の位相回転の第1の観測値及び第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択する。取得部は、選択部により選択された直線に対応するパラメータを記憶部から取得する。推定部は、取得部により取得されたパラメータと第1の観測値と第1の時間間隔、または取得部により取得されたパラメータと第2の観測値と第2の時間間隔、とに基づいて受信信号の周波数偏差を推定する。
この受信装置、周波数偏差算出方法及びコンピュータプログラムによれば、周波数偏差を推定する際のスループットの低下を防ぐことができるという効果を奏する。
図1は、実施例1にかかる受信装置における周波数偏差推定機能ブロックの一例を示すブロック図である。 図2は、実施例1におけるθ0とθ1との組み合わせの解空間の一例を示す図である。 図3は、実施例1における直線の番号lとパラメータk0及びk1との対応関係の一例を示す図表である。 図4は、実施例1における直線の選択処理を説明する図である。 図5は、実施例1にかかる周波数偏差算出方法の一例を示すフローチャートである。 図6は、PUSCH及びPUCCHのサブフレームフォーマットを示す模式図である。 図7は、実施例3におけるθPUCCHとθPUSCHとの組み合わせの解空間の一例を示す図である。 図8は、実施例3における直線の番号lとパラメータkPUCCH及びkPUSCHとの対応関係の一例を示す図表である。 図9は、実施例3にかかる受信装置を備えた基地局装置のハードウェア構成の一例を示すブロック図である。 図10は、図9に示すベースバンド受信部のハードウェア構成の一例を示すブロック図である。 図11は、実施例3にかかる受信装置における受信回路の機能的構成の一例を示すブロック図である。 図12は、実施例3にかかる受信装置における偏差推定部の一例を示すブロック図である。 図13は、実施例3にかかる周波数偏差算出方法の一例を示すフローチャートである。 図14は、実施例3におけるθPUCCHとθPUSCHとの組み合わせの解空間の別の例を示す図である。 図15は、実施例3における直線の番号lとパラメータkPUCCH及びkPUSCHとの対応関係の別の例を示す図表である。 図16は、実施例4にかかる周波数偏差算出方法の一例を示すフローチャートである。
以下に添付図面を参照して、この受信装置、周波数偏差算出方法及びコンピュータプログラムの好適な実施の形態を詳細に説明する。以下の各実施例の説明においては、同様の構成要素には同一の符号を付して、重複する説明を省略する。
(実施例1)
図1は、実施例1にかかる受信装置における周波数偏差推定機能ブロックの一例を示すブロック図である。図1に示すように、受信装置1は、周波数偏差推定機能ブロックにおいて、選択部2、取得部3及び推定部4を備えている。また、受信装置1は、記憶部5を備えている。
受信装置1が受信する受信信号は、第1のチャネルの受信信号に第1のリファレンス信号を含み、第2のチャネルの受信信号に第2のリファレンス信号を含む。雑音のない理想的な環境において、第1のリファレンス信号の第1の時間間隔T0における位相回転を第1の位相回転θ0とする。同様に、雑音のない理想的な環境において、第2のリファレンス信号の第2の時間間隔T1における位相回転を第2の位相回転θ1とする。
第1のチャネルの受信信号と第2のチャネルの受信信号とは、受信装置1の通信相手である同一の無線通信装置から送信される信号である。従って、単位時間における第1のリファレンス信号の周波数偏差と第2のリファレンス信号の周波数偏差とは、同じになる。第1のリファレンス信号及び第2のリファレンス信号の単位時間における周波数偏差をΔfとすると、雑音のない理想的な環境における第1の位相回転θ0及び第2の位相回転θ1は、それぞれ次の(1)式及び(2)式で表される。また、(1)式及び(2)式からΔfを除去すると、次の(3)式が導かれる。
Figure 0005803795
Figure 0005803795
Figure 0005803795
上記(3)式において、T0及びT1は、それぞれ第1のリファレンス信号の時間間隔及び第2のリファレンス信号の時間間隔であり、チャネルごとに予め決められている定数である。従って、θ0とθ1とは、一次の関係にある。ここで、θ0及びθ1は位相であるため、任意の整数k0及びk1を用いて、θ0及びθ1は、それぞれ次の(4)式及び(5)式で表される。
Figure 0005803795
Figure 0005803795
上記(3)式に(4)式及び(5)式を代入すると、次の(6)式が得られる。(6)式より明らかなように、θ0を横軸とし、θ1を縦軸とする座標空間の[−π≦θ0,θ1<π]の範囲において、θ0とθ1との関係は、等間隔で平行な複数の直線で表される。座標空間に出現する直線の数及び直線間の間隔は、T0とT1とに基づいて決まる。
Figure 0005803795
つまり、上記(6)式で表される等間隔で平行な複数の直線は、取り得るθ0とθ1との組み合わせを満たす解空間である。この解空間の複数の直線上のどこか一点にθ0とθ1との組み合わせの解が存在する。
図2は、実施例1におけるθ0とθ1との組み合わせの解空間の一例を示す図である。図2に示す例では、解空間の直線の数は、特に限定しないが、例えば11本である。例えば、座標軸の原点でθ0軸と交差する直線の番号lを0番としてもよい。原点よりもπ側でθ0軸と交差する直線の番号lを、原点に近い順に1、2、3、・・・と大きくなるようにしてもよい。原点よりも−π側でθ0軸と交差する直線の番号lを、原点に近い順に−1、−2、−3、・・・と小さくなるようにしてもよい。
図3は、実施例1における直線の番号lとパラメータk0及びk1との対応関係の一例を示す図表である。図3に示すテーブル11において、各lの値に対応するパラメータk0及びk1の値は、例えば受信装置1の設計者により予め設定されている。
図1に示す受信装置1において、記憶部5は、解空間の各直線に対応するパラメータを記憶する。記憶部5は、解空間の各直線に対応するパラメータとして、例えば図3に示すテーブル11を記憶していてもよい。
受信信号が雑音の影響を受ける場合、受信装置1において実際に観測される、第1のリファレンス信号の第1の時間間隔T0における位相回転は、雑音のない理想的な環境における第1の位相回転θ0からずれる。第1のリファレンス信号の第1の時間間隔T0における位相回転の観測値を、第1の観測値φ0とする。第1の観測値φ0の範囲は、[−π≦φ0<π]である。
受信信号が雑音の影響を受ける場合、受信装置1において実際に観測される、第2のリファレンス信号の第2の時間間隔T1における位相回転は、雑音のない理想的な環境における第2の位相回転θ1からずれる。第2のリファレンス信号の第2の時間間隔T1における位相回転の観測値を、第2の観測値φ1とする。第2の観測値φ0の範囲は、[−π≦φ1<π]である。
ここで、[S0:S1=T0:T1]を満たす互いに素となる整数S0及びS1を定義する。S0及びS1の値は、T0及びT1の値に応じて一意に定まる。これ以降、直線に関する説明においては、T0及びT1の代わりにS0及びS1を用いることとする。
0及びS1を用いると、上記(6)式は、次の(7)式で表される。このようにS0及びS1を用いて(6)式を変換しても、T0及びT1を用いた場合と全く同じ直線を表すことができる。ここで、解空間を形成する直線の数N(l)は次の(8)式で表される。
Figure 0005803795
Figure 0005803795
図4は、実施例1における直線の選択処理を説明する図である。図4において、×印は、受信装置1において実際に観測される、第1のリファレンス信号の第1の時間間隔T0における位相回転の第1の観測値φ0及び第2のリファレンス信号の第2の時間間隔T1における位相回転の第2の観測値φ1で示される座標点である。この×印の座標点(φ0,φ1)と解空間において原点を通る直線、すなわち直線番号lが0である直線との距離d(φ0,φ1)は、次の(9)式で表される。
Figure 0005803795
解空間における直線間の間隔Dは、次の(10)式で表される。座標点(φ0,φ1)と直線番号lが0である直線との距離d(φ0,φ1)を直線間の間隔Dで除すことによって、座標点(φ0,φ1)に最も近い直線を一つ選択することができる。従って、座標点(φ0,φ1)に最も近い直線の番号lは、次の(11)式より得られる。
Figure 0005803795
Figure 0005803795
図1に示す受信装置1において、選択部2は、解空間の中で、第1の観測値φ0及び第2の観測値φ1により示される座標点に最も近い直線を選択する。選択部2は、直線を選択する処理として、例えば次の(12)式を計算することによって座標点(φ0,φ1)に最も近い直線の番号lを求めてもよい。そして、選択部2は、選択した直線の情報として、図1に示す受信装置1の取得部3へ例えば直線の番号lを出力してもよい。
Figure 0005803795
図1に示す受信装置1において、取得部3は、選択部2により選択される直線に対応するパラメータを記憶部5から取得する。取得部3は、選択部2から例えば直線の番号lを受け取り、例えば図3に示すテーブル11を参照して、番号lの直線に対応するパラメータk0 (l)及びk1 (l)を取得してもよい。
十分なSNR(Signal to Noise Ratio)が確保されている場合、雑音の影響が小さいと見なしてもよいことがある。そのような場合には、第1の観測値φ0を、雑音の影響を補正しないで用いて、第1のリファレンス信号の第1の時間間隔T0における位相回転、すなわち第1の位相回転θ0を求めてもよい。この場合、θ0は、番号lの直線に対応するパラメータk0 (l)を用いて、次の(13)式で表される。
Figure 0005803795
同様に、第2の観測値φ1を、雑音の影響を補正しないで用いて、第2のリファレンス信号の第2の時間間隔T1における位相回転、すなわち第2の位相回転θ1を求めてもよい。この場合、θ1は、番号lの直線に対応するパラメータk1 (l)を用いて、次の(14)式で表される。
Figure 0005803795
第1のリファレンス信号の周波数偏差Δf0は、次の(15)式で表される。第2のリファレンス信号の周波数偏差Δf1は、次の(16)式で表される。
Figure 0005803795
Figure 0005803795
図1に示す受信装置1において、推定部4は、取得部3により取得されるパラメータk0 (l)と第1の観測値φ0と第1の時間間隔T0とに基づいて、第1のチャネルの受信信号の周波数偏差Δf0を推定する。また、推定部4は、取得部3により取得されるパラメータk1 (l)と第2の観測値φ1と第2の時間間隔T1とに基づいて、第2のチャネルの受信信号の周波数偏差Δf1を推定する。推定部4は、受信信号の周波数偏差を推定する処理として、例えば上記(15)式や(16)式を計算することによって、周波数偏差Δf0やΔf1を推定してもよい。
受信装置1において、選択部2、取得部3及び推定部4は、プロセッサが、後述する周波数偏差算出方法を実現するコンピュータプログラムを実行することにより実現されてもよい。あるいは、選択部2や推定部4は、算術演算を行う演算回路などのハードウェアによって実現されてもよい。
図5は、実施例1にかかる周波数偏差算出方法の一例を示すフローチャートである。図5に示すように、受信装置1において周波数偏差算出処理が開始されると、選択部2は、第1の位相回転θ0の第1の観測値φ0及び第2の位相回転θ1の第2の観測値φ1により示される座標点に最も近い直線を選択する(ステップS1)。次いで、取得部3は、選択部2により選択される直線に対応するパラメータk0 (l)及びk1 (l)を記憶部5から取得する(ステップS2)。
次いで、推定部4は、取得部3により取得されるパラメータk0 (l)と第1の観測値φ0と第1の時間間隔T0とに基づいて、第1のチャネルの受信信号の周波数偏差Δf0を推定する。また、推定部4は、取得部3により取得されるパラメータk1 (l)と第2の観測値φ1と第2の時間間隔T1とに基づいて、第2のチャネルの受信信号の周波数偏差Δf1を推定する(ステップS3)。そして、一連の周波数偏差算出処理が終了する。
実施例1によれば、信号間隔の異なる2つのリファレンス信号の位相回転の観測値φ0及びφ1により示される座標点に最も近い直線が選択され、この直線に対応するパラメータk0 (l)及びk1 (l)が選択される。それによって、−πからπまでの範囲を超える広い範囲で、各リファレンス信号の時間間隔T0及びT1におけるおおよその位相回転θ0及びθ1を求めることができる。そして、各リファレンス信号のおおよその位相回転θ0及びθ1と時間間隔T0及びT1とに基づいて、各リファレンス信号の周波数偏差Δf0及びΔf1を推定することができる。従って、受信信号の周波数偏差を推定する際のスループットの低下を防ぐことができる。
(実施例2)
実施例2は、実施例1において、2つのリファレンス信号の観測値φ0及びφ1により示される座標点から、この座標点に最も近い直線に対して直交射影を行うようにしたものである。実施例1と重複する説明については省略する。
座標点(φ0,φ1)に最も近い直線を一つ選択するまでは、実施例1と同様である。座標点(φ0,φ1)に最も近い直線の番号lは、上記(11)式で表される。番号lの直線は、パラメータk0 (l)及びk1 (l)を用いて、次の(17)式で表される。
Figure 0005803795
上述したように、第1の観測値φ0及び第2の観測値φ1により決まる座標点は、例えば雑音の影響により、それぞれ真の第1の位相回転θ0及び真の第2の位相回転θ1からずれている。真の第1の位相回転θ0及び真の第2の位相回転θ1により決まる点は、座標点(φ0,φ1)に最も近い番号lの直線上にあり、かつ座標点(φ0,φ1)に最も近い点(図4参照、▲点)であると考えられる。
座標点(φ0,φ1)と番号lの直線との距離を最小にする番号lの直線上の点は、座標点(φ0,φ1)から番号lの直線に対して直交射影を行うことにより得られる。直交射影により、真の第1の位相回転θ0は、次の(18)式で表される。また、真の第2の位相回転θ1は、次の(19)式で表される。最終的に、受信信号の周波数偏差Δfは、次の(20)式で表される。
Figure 0005803795
Figure 0005803795
Figure 0005803795
実施例2では、図1に示す受信装置1において、推定部4は、選択部2により選択される直線に対して観測値の座標点(φ0,φ1)から直交射影を行うことにより、真の第1の位相回転θ0または真の第2の位相回転θ1を推定する。そして、取得部3により取得されるパラメータk0 (l)及びk1 (l)と、第1の観測値φ0及び第2の観測値φ1と、S0及びS1と、第1の時間間隔T0または第2の時間間隔T1とに基づいて、受信信号の周波数偏差Δfを推定する。
推定部4は、受信信号の周波数偏差を推定する処理として、例えば上記(18)式または(19)式を計算することによって、真の第1の位相回転θ0または真の第2の位相回転θ1を推定してもよい。そして、推定部4は、推定した真の第1の位相回転θ0または真の第2の位相回転θ1を用いて、例えば上記(20)式の中央の項または最も右側の項を計算することによって、周波数偏差Δfを推定してもよい。
実施例2によれば、信号間隔の異なる2つのリファレンス信号の位相回転の観測値φ0及びφ1により示される座標点に最も近い直線が選択され、この直線に対応するパラメータk0 (l)及びk1 (l)が選択される。座標点(φ0,φ1)から直線への直交射影によって、−πからπまでの範囲を超える広い範囲で、各リファレンス信号の時間間隔T0及びT1における真の第1の位相回転θ0または真の第2の位相回転θ1を推定することができる。そして、いずれか一方のリファレンス信号の真の位相回転の推定値θ0およびθ1と時間間隔T0またはT1とに基づいて、受信信号の周波数偏差Δfを推定することができる。従って、受信信号の周波数偏差を推定する際のスループットの低下を防ぐことができる。
(実施例3)
実施例3は、実施例2にかかる受信装置を例えばLTE(Long Term Evolution)システムにおける基地局装置に適用したものである。一例として、第1のチャネルを上り制御信号であるPUCCH(Physical Uplink Control Channel)とし、第2のチャネルを上りデータ信号であるPUSCH(Physical Uplink Shared Channel)であるとして説明する。実施例1または実施例2と重複する説明については省略する。
PUCCHのリファレンス信号の時間間隔は285.417μsである。そのため、推定可能な周波数偏差の範囲は約±1751Hzとなる。PUSCHのリファレンス信号の時間間隔は500μsである。そのため、推定可能な周波数偏差の範囲は約±1000Hzとなる。
図6は、PUSCH及びPUCCHのサブフレームフォーマットを示す模式図である。図6において、ハッチングを付したパイロットシンボルがリファレンス信号である。LTEでは、各チャネルは1msごとに割り当てられる。この1msの時間単位がサブフレームとなる。各サブフレームは、スロット0及びスロット1の14個のOFDM(Orthogonal Frequency Division Multiplexing)シンボルで構成されている。PUSCHのサブフレーム21において、パイロットシンボルは、3及び10の番号のシンボルに割り当てられる。PUCCHのサブフレーム22において、パイロットシンボルは、1、5、8及び12の番号のシンボルに割り当てられる。
実施例3では、θ0、T0、S0、φ0及びk0を、それぞれθPUCCH、TPUCCH、SPUCCH、φPUCCH及びkPUCCHとする。また、θ1、T1、S1、φ1及びk1を、それぞれθPUSCH、TPUSCH、SPUSCH、φPUSCH及びkPUSCHとする。
PUCCHのリファレンス信号の時間間隔TPUCCHが285.417μsであり、PUSCHのリファレンス信号の時間間隔TPUSCHが500μsである。従って、[SPUCCH:SPUSCH=TPUCCH:TPUSCH]を満たす互いに素となる整数SPUCCH及びSPUSCHは、それぞれ137及び240である。
特に限定しないが、ここでは、例えばSPUCCHを4とし、SPUSCHを7に近似することによって、計算を簡単にすることとする。このような近似を行っても、[137/240=0.5714]であり、[4/7=0.5708]であるというように、SPUCCHとSPUSCHとの比率は、ほとんど変わらない。従って、周波数偏差を求めるにあたって、大きな影響はない。なお、近似を行わなくてもよいのは勿論である。
図7は、実施例3におけるθPUCCHとθPUSCHとの組み合わせの解空間の一例を示す図である。図7に示す例では、上記(8)式から明らかなように、解空間の直線の数は11本となる。
実施例2と同様に直線の番号lを割り振ると、番号0の直線は−1000Hz〜1000Hzの周波数偏差の範囲に対応する。番号1及び−1の直線は、それぞれ3000Hz〜5000Hz及び−5000Hz〜−3000Hzの周波数偏差の範囲に対応する。番号2及び−2の直線は、それぞれ−7000Hz〜−5250Hz及び5250Hz〜7000Hzの周波数偏差の範囲に対応する。番号3及び−3の直線は、それぞれ−3000Hz〜−1750Hz及び1750Hz〜3000Hzの周波数偏差の範囲に対応する。番号4及び−4の直線は、それぞれ1000Hz〜1750Hz及び−1750Hz〜−1000Hzの周波数偏差の範囲に対応する。番号5及び−5の直線は、それぞれ5000Hz〜5250Hz及び−5250Hz〜−5000Hzの周波数偏差の範囲に対応する。
図8は、実施例3における直線の番号lとパラメータkPUCCH及びkPUSCHとの対応関係の一例を示す図表である。図8に示すテーブル26において、各lの値に対応するパラメータkPUCCH及びkPUSCHの値は、例えば受信装置の設計者により予め設定されている。
図9は、実施例3にかかる受信装置を備えた基地局装置のハードウェア構成の一例を示すブロック図である。図9に示すように、基地局装置31は、例えばデュプレクサ32、RF(Radio Frequency)送信部33、ベースバンド送信部34、上位回線終端部35、RF受信部36及びベースバンド受信部37を備えていてもよい。
デュプレクサ32は、アンテナ38に接続されている。デュプレクサ32は、基地局装置31における送信信号の伝達経路と受信信号の伝達経路とを電気的に分離する。RF受信部36は、デュプレクサ32に接続されている。RF受信部36は、デュプレクサ32を介してアンテナ38から受け取った上り受信信号から搬送波を除去し、アナログ‐デジタル変換処理を実施して、搬送波が除去された受信信号を生成する。
ベースバンド受信部37は、RF受信部36に接続されている。ベースバンド受信部37は、RF受信部36から出力される上りベースバンド信号に対して復調処理及び復号処理を行って受信信号を復元する。ベースバンド受信部37は、受信信号を復元する際に、後述する周波数偏差を算出する処理を実行する。上位回線終端部35は、ベースバンド受信部37に接続されている。上位回線終端部35は、ベースバンド受信部37の出力信号を、図示省略する上位ネットワークへ送信する。
上位回線終端部35は、図示省略する上位ネットワークから信号を受信する。ベースバンド送信部34は、上位回線終端部35に接続されている。ベースバンド送信部34は、上位回線終端部35の出力信号に対して符号化処理及びベースバンド変調処理を行い、下りベースバンド信号を生成する。
RF送信部33は、ベースバンド送信部34及びデュプレクサ32に接続されている。RF送信部33は、ベースバンド送信部34の出力信号に対してデジタル‐アナログ変換処理及び搬送波変調処理を実施して、下り変調信号を生成する。下り変調信号は、RF送信部33から出力され、デュプレクサ32を介してアンテナ38から放射される。なお、送信側と受信側で個別にアンテナを有していてもよい。その場合には、デュプレクサ32はなくてもよい。
図10は、図9に示すベースバンド受信部のハードウェア構成の一例を示すブロック図である。図10に示すように、ベースバンド受信部37は、例えばプロセッサ41、メモリ42及びインタフェース43を備えていてもよい。プロセッサ41、メモリ42及びインタフェース43は、例えばバス44に接続されていてもよい。
プロセッサ41は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)であってもよい。また、プロセッサ41は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などであってもよい。メモリ42は、後述する周波数偏差算出方法を実現するコンピュータプログラムを格納していてもよい。また、メモリ42は、図1に示す受信装置1の記憶部として、図8に示すテーブル26を格納していてもよい。プロセッサ41は、メモリ42からコンピュータプログラムを読み出して実行することによって、後述する周波数偏差算出方法を実現してもよい。インタフェース43は、上位回線終端部35やRF受信部36に接続される。
図11は、実施例3にかかる受信装置における受信回路の機能的構成の一例を示すブロック図である。なお、図11は、以下の説明に関係する機能を中心として示している。受信回路50は、図示の構成要素以外の他の構成要素を含んでいてよい。受信回路50による信号処理は、ベースバンド受信部37のプロセッサ41がメモリ42に格納されるコンピュータプログラムを実行することにより行われてもよい。
受信回路50は、FFT(Fast Fourier Transform、高速フーリエ変換)部51、信号分離部52,54、PUCCH受信部53、PUSCH受信部55及び広範囲偏差推定部56を備えている。FFT部51は、高速フーリエ変換によってRF受信部36から受信した上りベースバンド信号を周波数領域信号に変換する。FFT部51は、周波数領域信号をチャネルごとに分離し、PUCCHの信号を信号分離部52へ入力し、PUSCHの信号を信号分離部54へ入力する。
信号分離部52は、PUCCHの信号をユーザごとに分離し、各ユーザの信号をさらにデータとリファレンス信号に分離する。信号分離部52は、分離された信号をPUCCH受信部53へ出力する。同様に、信号分離部54は、PUSCHの信号をユーザごとに分離し、各ユーザの信号をデータとリファレンス信号に分離する。信号分離部54は、分離された信号をPUSCH受信部55へ出力する。なお、信号分離部52及び信号分離部54の信号処理は、時分割処理によって同一回路で行ってもよい。PUCCH受信部53及びPUSCH受信部55の信号処理も、時分割処理によって同一回路で行ってもよい。
PUCCH受信部53は、偏差推定部60、補償部61、チャネル推定部62、検波部63及び復号部64を備えている。偏差推定部60は、時間間隔TPUCCHで受信したPUCCHのリファレンス信号の時間相関値を基に、時間間隔TPUCCHにおけるPUCCHのリファレンス信号の位相偏差を推定する。偏差推定部60は、推定した位相差を、PUCCHのリファレンス信号の時間間隔TPUCCHにおける位相差の観測値φPUCCHとして広範囲偏差推定部56に出力する。
補償部61は、後述する周波数偏差算出方法により広範囲偏差推定部56が推定した受信信号の周波数偏差推定結果に従って、PUCCHのデータの周波数偏差を補償する。チャネル推定部62は、PUCCHのリファレンス信号に基づいてチャネル推定を行う。検波部63は、チャネル推定部62により推定されたチャネル推定結果に従ってPUCCHのデータのチャネル等化を行い、データの復調処理を行う。復号部64は、復調されたデータを復号してPUCCHの受信結果を出力する。
PUSCH受信部55は、偏差推定部65、補償部66、チャネル推定部67、検波部68及び復号部69を備えている。偏差推定部65は、時間間隔TPUSCHで受信したPUSCHのリファレンス信号の時間相関値を基に、時間間隔TPUSCHにおけるPUSCHのリファレンス信号の位相偏差を推定する。偏差推定部65は、推定した位相差を、PUSCHのリファレンス信号の時間間隔TPUSCHにおける位相差の観測値φPUSCHとして広範囲偏差推定部56に出力する。
補償部66は、後述する周波数偏差算出方法により広範囲偏差推定部56が推定した受信信号の周波数偏差推定結果に従って、PUSCHのデータの周波数偏差を補償する。チャネル推定部67は、PUSCHのリファレンス信号に基づいてチャネル推定を行う。検波部68は、チャネル推定部67により推定されたチャネル推定結果に従ってPUSCHのデータのチャネル等化を行い、データの復調処理を行う。復号部69は、復調されたデータを復号してPUSCHの受信結果を出力する。
広範囲偏差推定部56は、偏差推定部60及び偏差推定部65がそれぞれ推定したPUCCH及びPUSCHの各リファレンス信号の受信間隔TPUCCH及びTPUSCHにおける位相差の観測値φPUCCH及びφPUSCHに基づいて、後述する周波数偏差算出方法により周波数偏差の算出処理を行う。広範囲偏差推定部56は、例えば図1に示す周波数偏差推定機能ブロックの選択部2、取得部3及び推定部4を備えていてもよい。
図12は、実施例3にかかる受信装置における偏差推定部の一例を示すブロック図である。図12に示すように、偏差推定部60は、乗算器71、時間平均部72及び角度変換部73を備えている。乗算器71は、時間間隔TPUCCHで受信したPUCCHの2つのリファレンス信号(リファレンス信号前半とリファレンス信号後半)を複素乗算することにより、各リファレンス信号の時間相関値を求める。
時間平均部72は、乗算器71によって得られる時間相関値を所定時間にわたって平均化することにより、時間相関平均値を求める。角度変換部73は、時間平均部72によって平均化される時間相関値を位相偏差の平均値に変換する。このようにして得られたPUCCHのリファレンス信号の受信間隔TPUCCHにおける位相差の推定値(観測値φPUCCH)は、広範囲偏差推定部56に与えられる。
偏差推定部65は、図12に示す偏差推定部60と同様の構成を有する。偏差推定部65については、上述した偏差推定部60の説明において「PUCCH」、「TPUCCH」及び「φPUCCH」を、それぞれ「PUSCH」、「TPUSCH」及び「φPUSCH」と読み替えればよい。
図13は、実施例3にかかる周波数偏差算出方法の一例を示すフローチャートである。図13に示すように、受信回路50において周波数偏差算出処理が開始されると、偏差推定部60は、PUCCHのリファレンス信号の受信間隔TPUCCHにおける位相差の推定値(観測値φPUCCH)を求める。また、偏差推定部65は、PUSCHのリファレンス信号の受信間隔TPUSCHにおける位相差の推定値(観測値φPUSCH)を求める。
広範囲偏差推定部56は、次の(21)式を計算する(ステップS11)。それによって、PUCCH及びPUSCHの各リファレンス信号の位相差の観測値φPUCCH及びφPUSCHにより示される座標点に最も近い直線の番号lが求められる。(21)式は、上記(11)式にS0として4を代入し、S1として7を代入したものである。
Figure 0005803795
次いで、広範囲偏差推定部56は、ステップS11により得られる番号lの直線に対応するパラメータkPUCCH及びkPUSCHを、例えば図8に示すテーブル26から取得する(ステップS12)。次いで、広範囲偏差推定部56は、次の(22)式を計算する(ステップS13)。それによって、PUCCHのリファレンス信号の受信間隔TPUCCHにおける真の位相回転θPUCCHが求められる。(22)式は、上記(18)式にS0として4を代入し、S1として7を代入したものである。
Figure 0005803795
なお、上記(19)式にS0及びS1としてそれぞれ4及び7を代入した式を計算することによって、PUSCHのリファレンス信号の受信間隔TPUSCHにおける真の位相回転θPUSCHを求めてもよい。また、次の(23)式を計算することにより。θPUSCHを求めてもよい。
Figure 0005803795
次いで、広範囲偏差推定部56は、次の(24)式を計算する(ステップS14)。それによって、受信信号の周波数偏差Δfが求められる。(24)式は、上記(20)式にT0として285.417×10-6を代入したものである。なお、上記(20)式にT1として500×10-6を代入した式を計算することによって、周波数偏差Δfを求めてもよい。以上のようにしてΔfを求め、一連の処理を終了する。
Figure 0005803795
実施例3において、ここまでの説明では一例として周波数偏差Δfを推定可能な周波数範囲は±7000Hzである。それに対して、周波数偏差Δfを推定可能な周波数範囲を制限してもよい。例えば、周波数偏差Δfを推定可能な周波数範囲を±3000Hzに制限する場合を例にして説明する。
図14は、実施例3におけるθPUCCHとθPUSCHとの組み合わせの解空間の別の例を示す図である。図14に示す例では、座標点(φPUCCH,φPUSCH)に最も近い直線を選択する際に、破線で示す番号1または−1、番号2または−2、及び番号5または−5の各直線は選択の対象外となる。すなわち、実線で示す番号0、番号3または−3、及び番号4または−4の5本の直線の中から、座標点(φPUCCH,φPUSCH)に最も近い直線が選択される。
また、通常、周波数偏差が大きいユーザの割合は、周波数偏差が小さいユーザの割合よりも少ない。そこで、図14に示す解空間を一点鎖線で区切るようにA、B、C、D及びEの各領域に分け、座標点(φPUCCH,φPUSCH)が存在する領域によって直線を選択するようにしてもよい。
例えば領域Aは、番号lが−4である直線と番号lが−3である直線との中間から、番号lが−5である直線側の領域としてもよい。座標点(φPUCCH,φPUSCH)が領域Aに存在する場合、広範囲偏差推定部56は、座標点(φPUCCH,φPUSCH)に最も近い直線として番号lが−4である直線を選択してもよい。
また、例えば領域Bは、番号lが−4である直線と番号lが−3である直線との中間から、番号lが−3である直線と番号lが−2である直線との中間までの領域としてもよい。座標点(φPUCCH,φPUSCH)が領域Bに存在する場合、広範囲偏差推定部56は、座標点(φPUCCH,φPUSCH)に最も近い直線として番号lが−3である直線を選択してもよい。
また、例えば領域Cは、番号lが−3である直線と番号lが−2である直線との中間から、番号lが2である直線と番号lが3である直線との中間までの領域としてもよい。座標点(φPUCCH,φPUSCH)が領域Cに存在する場合、広範囲偏差推定部56は、座標点(φPUCCH,φPUSCH)に最も近い直線として番号lが0である直線を選択してもよい。
また、例えば領域Dは、番号lが2である直線と番号lが3である直線との中間から、番号lが3である直線と番号lが4である直線との中間までの領域としてもよい。座標点(φPUCCH,φPUSCH)が領域Dに存在する場合、広範囲偏差推定部56は、座標点(φPUCCH,φPUSCH)に最も近い直線として番号lが3である直線を選択してもよい。
また、例えば領域Eは、番号lが3である直線と番号lが4である直線との中間から、番号lが5である直線側の領域としてもよい。座標点(φPUCCH,φPUSCH)が領域Eに存在する場合、広範囲偏差推定部56は、座標点(φPUCCH,φPUSCH)に最も近い直線として番号lが4である直線を選択してもよい。
図15は、実施例3における直線の番号lとパラメータkPUCCH及びkPUSCHとの対応関係の別の例を示す図表である。図15に示すテーブル27は、図14に示す解空間を実現するパラメータkPUCCH及びkPUSCHの組み合わせを表している。
図15に示すように、例えば番号lが−5である場合のパラメータkPUCCH及びkPUSCHは、それぞれ0及び−1であり、番号lが−4である場合のパラメータkPUCCH及びkPUSCHと同じである。従って、番号lが−5である直線が座標点(φPUCCH,φPUSCH)に最も近い場合でも、番号lが−4である直線が選択されることになる。
また、番号lが−2、−1、1及び2である場合のパラメータkPUCCH及びkPUSCHは0であり、番号lが0である場合のパラメータkPUCCH及びkPUSCHと同じである。従って、番号lが−2、−1、1または2である直線が座標点(φPUCCH,φPUSCH)に最も近い場合でも、番号lが0である直線が選択されることになる。番号lが5である場合についても同様である。
図14に示す解空間の例のように、周波数偏差の推定範囲を狭めることによって、雑音に強い推定を実現することが可能となる。
(実施例4)
実施例4は、実施例1にかかる受信装置を例えばLTEシステムにおける基地局装置に適用したものである。一例として、第1のチャネルを上り制御信号であるPUCCHとし、第2のチャネルを上りデータ信号であるPUSCHであるとして説明する。この場合、つまり、実施例4は、実施例3において、座標点(φ0,φ1)から、この座標点(φ0,φ1)に最も近い直線への直交射影を行わないようにしたものである。実施例1または実施例3と重複する説明については省略する。
図16は、実施例4にかかる周波数偏差算出方法の一例を示すフローチャートである。図16に示すように、上記(21)式の計算(ステップS21)、並びにパラメータkPUCCH及びkPUSCHの取得(ステップS22)までは、図13に示すフローチャートのステップS11及びステップS12と同様である。
次いで、広範囲偏差推定部56は、次の(25)式及び(26)式を計算する(ステップS23)。それによって、PUCCHのリファレンス信号の受信間隔TPUCCHにおける位相回転θPUCCH、及びPUSCHのリファレンス信号の受信間隔TPUSCHにおける位相回転θPUSCHが求められる。
Figure 0005803795
Figure 0005803795
次いで、広範囲偏差推定部56は、次の(27)式及び(28)式を計算する(ステップS24)。それによって、PUCCHの受信信号の周波数偏差ΔfPUCCH及びPUSCHの受信信号の周波数偏差ΔfPUSCHが求められる。(27)式は、上記(15)式にT0として285.417×10-6を代入したものである。(28)式は、上記(16)式にT1として500×10-6を代入したもものである。以上のようにしてΔfPUCCH及びΔfPUSCHを求め、一連の処理を終了する。
Figure 0005803795
Figure 0005803795
実施例3では、座標点(φ0,φ1)から、この座標点(φ0,φ1)に最も近い直線への直交射影を行うことによって、同一の位相回転速度からθPUCCH及びθPUSCHが導かれている。それによって、ΔfPUCCHとΔfPUSCHとが一致する。それに対して、実施例4では、直交射影を行っていないため、雑音の影響などによって、同一の位相回転速度からθPUCCH及びθPUSCHが導かれていない場合がある。そのため、ΔfPUCCHとΔfPUSCHとが一致しないことがある。
実施例4によれば、直交射影を行わない分、少ない計算量で周波数偏差を求めることができる。従って、受信信号の周波数偏差を推定する際のスループットの低下を防ぐことができる。
なお、本発明は、LTEシステムの受信装置に限らず、1ユーザに対してリファレンス信号の時間間隔が異なる複数のチャネルを受信する受信装置に適用することができる。また、偏差推定部60,65において、リファレンス信号の代わりに、例えばOFDMまたはOFDMA(Orthogonal Frequency Division Multiple Access)方式で用いられるサイクリックプレフィクス(ガードインターバルとも呼ばれる)や、その他の既知信号を用いて、各チャネルの受信信号の位相回転を推定してもよい。
上述した実施例1〜4に関し、さらに以下の付記を開示する。
(付記1)第1のチャネルの受信信号に含まれる第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のチャネルの受信信号に含まれる第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において前記第1の時間間隔と前記第2の時間間隔とに基づいて導かれる、等間隔で平行な複数の直線からなる解空間の前記直線のそれぞれに対応するパラメータを記憶する記憶部と、前記解空間に対して、前記第1の位相回転の第1の観測値及び前記第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択する選択部と、前記選択部により選択された前記直線に対応する前記パラメータを前記記憶部から取得する取得部と、前記取得部により取得された前記パラメータと前記第1の観測値と前記第1の時間間隔、または前記取得部により取得された前記パラメータと前記第2の観測値と前記第2の時間間隔、とに基づいて前記受信信号の周波数偏差を推定する推定部と、を備えることを特徴とする受信装置。
(付記2)前記推定部は、選択した前記直線に対して前記座標点から直交射影を行うことにより、前記座標点に対応する、選択した前記直線上の点を特定し、特定した前記点の座標を前記第1の位相回転及び前記第2の位相回転として前記受信信号の周波数偏差を推定することを特徴とする付記1に記載の受信装置。
(付記3)前記推定部は、前記解空間に含まれる複数の前記直線のうち、しきい値よりも小さい周波数偏差に対応する直線を選択の対象とし、前記しきい値よりも大きい周波数偏差に対応する直線を選択の対象外とすることを特徴とする付記1または2に記載の受信装置。
(付記4)付記1〜3のいずれか一つに記載の受信装置を備える基地局装置であることを特徴とする受信装置。
(付記5)前記第1のチャネルの受信信号は、前記基地局装置が受信する上り制御信号であり、前記第2のチャネルの受信信号は、前記基地局装置が受信する上りデータ信号であることを特徴とする付記4に記載の受信装置。
(付記6)第1のチャネルの受信信号に含まれる第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のチャネルの受信信号に含まれる第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において前記第1の時間間隔と前記第2の時間間隔とに基づいて導かれる、等間隔で平行な複数の直線からなる解空間に対して、前記第1の位相回転の第1の観測値及び前記第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択し、前記解空間の前記直線のそれぞれに対応するパラメータの中から、選択した前記直線に対応するパラメータを取得し、取得した前記パラメータと前記第1の観測値と前記第1の時間間隔、または取得した前記パラメータと前記第2の観測値と前記第2の時間間隔、とに基づいて前記受信信号の周波数偏差を推定することを特徴とする周波数偏差算出方法。
(付記7)選択した前記直線に対して前記座標点から直交射影を行うことにより、前記座標点に対応する、選択した前記直線上の点を特定し、特定した前記点の座標を前記第1の位相回転及び前記第2の位相回転として前記受信信号の周波数偏差を推定することを特徴とする付記6に記載の周波数偏差算出方法。
(付記8)受信装置のプロセッサを、第1のチャネルの受信信号に含まれる第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のチャネルの受信信号に含まれる第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において前記第1の時間間隔と前記第2の時間間隔とに基づいて導かれる、等間隔で平行な複数の直線からなる解空間に対して、前記第1の位相回転の第1の観測値及び前記第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択する選択部、前記解空間の前記直線のそれぞれに対応するパラメータを記憶するメモリから、前記選択部により選択された前記直線に対応するパラメータを取得する取得部、前記取得部により取得された前記パラメータと前記第1の観測値と前記第1の時間間隔、または前記取得部により取得された前記パラメータと前記第2の観測値と前記第2の時間間隔、とに基づいて前記受信信号の周波数偏差を推定する推定部、として動作させることを特徴とするコンピュータプログラム。
(付記9)前記推定部を、選択した前記直線に対して前記座標点から直交射影を行うことにより、前記座標点に対応する、選択した前記直線上の点を特定し、特定した前記点の座標を前記第1の位相回転及び前記第2の位相回転として前記受信信号の周波数偏差を推定する、ように動作させることを特徴とする付記8に記載のコンピュータプログラム。
1 受信装置
2 選択部
3 取得部
4 推定部
5 記憶部
41 プロセッサ
42 メモリ

Claims (5)

  1. 第1のチャネルの受信信号に含まれる第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のチャネルの受信信号に含まれる第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において前記第1の時間間隔と前記第2の時間間隔とに基づいて導かれる、等間隔で平行な複数の直線からなる解空間の前記直線のそれぞれに対応するパラメータを記憶する記憶部と、
    前記解空間に対して、前記第1の位相回転の第1の観測値及び前記第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択する選択部と、
    前記選択部により選択された前記直線に対応する前記パラメータを前記記憶部から取得する取得部と、
    前記取得部により取得された前記パラメータと前記第1の観測値と前記第1の時間間隔、または前記取得部により取得された前記パラメータと前記第2の観測値と前記第2の時間間隔、とに基づいて前記受信信号の周波数偏差を推定する推定部と、
    を備えることを特徴とする受信装置。
  2. 前記推定部は、選択した前記直線に対して前記座標点から直交射影を行うことにより、前記座標点に対応する、選択した前記直線上の点を特定し、特定した前記点の座標を前記第1の位相回転及び前記第2の位相回転として前記受信信号の周波数偏差を推定することを特徴とする請求項1に記載の受信装置。
  3. 前記推定部は、前記解空間に含まれる複数の前記直線のうち、しきい値よりも小さい周波数偏差に対応する直線を選択の対象とし、前記しきい値よりも大きい周波数偏差に対応する直線を選択の対象外とすることを特徴とする請求項1または2に記載の受信装置。
  4. 第1のチャネルの受信信号に含まれる第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のチャネルの受信信号に含まれる第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において前記第1の時間間隔と前記第2の時間間隔とに基づいて導かれる、等間隔で平行な複数の直線からなる解空間に対して、前記第1の位相回転の第1の観測値及び前記第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択し、
    前記解空間の前記直線のそれぞれに対応するパラメータの中から、選択した前記直線に対応するパラメータを取得し、
    取得した前記パラメータと前記第1の観測値と前記第1の時間間隔、または取得した前記パラメータと前記第2の観測値と前記第2の時間間隔、とに基づいて前記受信信号の周波数偏差を推定することを特徴とする周波数偏差算出方法。
  5. 受信装置のプロセッサを、
    第1のチャネルの受信信号に含まれる第1のリファレンス信号の第1の時間間隔における第1の位相回転を横軸とし、第2のチャネルの受信信号に含まれる第2のリファレンス信号の第2の時間間隔における第2の位相回転を縦軸とする座標空間において前記第1の時間間隔と前記第2の時間間隔とに基づいて導かれる、等間隔で平行な複数の直線からなる解空間に対して、前記第1の位相回転の第1の観測値及び前記第2の位相回転の第2の観測値により示される座標点に最も近い直線を選択する選択部、
    前記解空間の前記直線のそれぞれに対応するパラメータを記憶するメモリから、前記選択部により選択された前記直線に対応するパラメータを取得する取得部、
    前記取得部により取得された前記パラメータと前記第1の観測値と前記第1の時間間隔、または前記取得部により取得された前記パラメータと前記第2の観測値と前記第2の時間間隔、とに基づいて前記受信信号の周波数偏差を推定する推定部、
    として動作させることを特徴とするコンピュータプログラム。
JP2012097180A 2012-04-20 2012-04-20 受信装置、周波数偏差算出方法及びコンピュータプログラム Expired - Fee Related JP5803795B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012097180A JP5803795B2 (ja) 2012-04-20 2012-04-20 受信装置、周波数偏差算出方法及びコンピュータプログラム
US13/851,762 US8787857B2 (en) 2012-04-20 2013-03-27 Receiving apparatus, frequency deviation calculating method, and medium storing computer program therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012097180A JP5803795B2 (ja) 2012-04-20 2012-04-20 受信装置、周波数偏差算出方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2013225777A JP2013225777A (ja) 2013-10-31
JP5803795B2 true JP5803795B2 (ja) 2015-11-04

Family

ID=49380544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012097180A Expired - Fee Related JP5803795B2 (ja) 2012-04-20 2012-04-20 受信装置、周波数偏差算出方法及びコンピュータプログラム

Country Status (2)

Country Link
US (1) US8787857B2 (ja)
JP (1) JP5803795B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2303026B1 (en) 2008-06-17 2020-09-09 Brigham Young University Cationic steroid antimicrobial diagnostic, detection, screening and imaging methods
JP6272224B2 (ja) 2011-07-20 2018-01-31 ブリガム・ヤング・ユニバーシティBrigham Young University 疎水性セラゲニン化合物、及びそれを組み込む装置
US9179328B2 (en) * 2011-12-06 2015-11-03 Telefonaktiebolaget L M Ericsson (Publ) Doppler shift compensation apparatus and method
US9533063B1 (en) 2012-03-01 2017-01-03 Brigham Young University Aerosols incorporating ceragenin compounds and methods of use thereof
EP2846634A2 (en) 2012-05-02 2015-03-18 Brigham Young University Ceragenin particulate materials and methods for making same
KR102203375B1 (ko) 2013-01-07 2021-01-15 브라이엄 영 유니버시티 세포 증식을 감소시키는 방법 및 소정의 질환을 치료하는 방법
AU2014234992B2 (en) 2013-03-15 2018-01-18 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
US11524015B2 (en) 2013-03-15 2022-12-13 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
US11690855B2 (en) 2013-10-17 2023-07-04 Brigham Young University Methods for treating lung infections and inflammation
US20150203527A1 (en) 2014-01-23 2015-07-23 Brigham Young University Cationic steroidal antimicrobials
US10379212B2 (en) 2014-03-06 2019-08-13 Weibel Scientific A/S Multi frequency range estimation
WO2015131907A1 (en) 2014-03-06 2015-09-11 Weibel Scientific A/S Frequency set quality measure
JP6323119B2 (ja) * 2014-03-28 2018-05-16 富士通株式会社 基地局装置、無線通信システム、無線通信端末装置及び無線通信システムの制御方法
CN106664178B (zh) 2014-06-27 2020-06-02 泰科弗勒克斯公司 带宽信令
CN106664277B (zh) 2014-06-27 2021-09-07 泰科弗勒克斯公司 用于发送数据单元的方法和装置
US10244426B2 (en) * 2014-08-19 2019-03-26 Qualcomm Incorporated Frequency error detection with PBCH frequency hypothesis
US10226550B2 (en) 2016-03-11 2019-03-12 Brigham Young University Cationic steroidal antimicrobial compositions for the treatment of dermal tissue
US10959433B2 (en) 2017-03-21 2021-03-30 Brigham Young University Use of cationic steroidal antimicrobials for sporicidal activity
EP3396916B1 (en) 2017-04-24 2020-04-01 Nokia Technologies Oy Apparatus and method for reducing effects of phase noise

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001724A (en) * 1989-01-13 1991-03-19 Hewlett-Packard Company Method and apparatus for measuring phase accuracy and amplitude profile of a continuous-phase-modulated signal
JPH09307526A (ja) * 1996-05-17 1997-11-28 Mitsubishi Electric Corp デジタル放送受信機
JP3859903B2 (ja) * 1999-06-10 2006-12-20 三菱電機株式会社 周波数誤差推定装置およびその方法
JP3329379B2 (ja) 1999-09-09 2002-09-30 日本電気株式会社 周波数制御方法および受信機
JP3877158B2 (ja) 2002-10-31 2007-02-07 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 周波数偏移検出回路及び周波数偏移検出方法、携帯通信端末
CN1622653A (zh) 2003-11-28 2005-06-01 皇家飞利浦电子股份有限公司 一种用于对td-scdma系统下行链路进行频率估测的装置和方法
US7558576B2 (en) * 2005-03-29 2009-07-07 Qualcomm Incorporated Employing frequency offset to compensate for Doppler shift
JP2009065581A (ja) 2007-09-10 2009-03-26 Nec Corp 無線通信システム及び方法
JP5067485B2 (ja) 2008-08-21 2012-11-07 富士通株式会社 受信機および受信方法
JP5747777B2 (ja) * 2011-10-17 2015-07-15 富士通株式会社 受信装置、周波数偏差算出方法及びコンピュータプログラム

Also Published As

Publication number Publication date
JP2013225777A (ja) 2013-10-31
US8787857B2 (en) 2014-07-22
US20130281038A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5803795B2 (ja) 受信装置、周波数偏差算出方法及びコンピュータプログラム
JP5438123B2 (ja) 周波数オフセットの推定
AU2017219686B2 (en) NB-loT receiver operating at minimum sampling rate
US10454741B2 (en) High-precision blind carrier synchronization methods for LTE SC-FDMA uplink
US8045538B2 (en) Wireless communication method, receiving method, and wireless communication device
US9014314B2 (en) Estimation of frequency offset between a base station and mobile terminal
US8873609B2 (en) Communication apparatus and communication method
JP2023535372A (ja) マルチキャリア位相ベース定位のためのシステムおよび方法
JP2008211760A (ja) 変調方式推定装置
US8520777B2 (en) Operation of user equipment when control and data information are supplied by different radio units
JP5055239B2 (ja) Ofdm復調装置
JP5234318B2 (ja) 自動周波数制御方法および装置
WO2012042490A2 (en) Method and device for cancelling doppler shift induced inter carrier interference in an ofdm communication system by using signal pre-distortion
JP2004007439A (ja) 無線伝送装置
JP6324260B2 (ja) 受信装置
JP2011250346A (ja) ドップラ周波数補正装置および方法
US9154358B2 (en) Wireless communication device and method of determining reference signal
JP2011101167A (ja) 無線通信装置
JP2011171930A (ja) 受信装置、受信装置の同期方法、受信装置の同期プログラム、受信装置の同期回路
WO2011026524A1 (en) Frequency or timing offset estimation in a multicarrier receiver
JP2014039088A (ja) 無線通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees