JP5780777B2 - Ceramic circuit board and electronic device using the same - Google Patents

Ceramic circuit board and electronic device using the same Download PDF

Info

Publication number
JP5780777B2
JP5780777B2 JP2011038568A JP2011038568A JP5780777B2 JP 5780777 B2 JP5780777 B2 JP 5780777B2 JP 2011038568 A JP2011038568 A JP 2011038568A JP 2011038568 A JP2011038568 A JP 2011038568A JP 5780777 B2 JP5780777 B2 JP 5780777B2
Authority
JP
Japan
Prior art keywords
circuit board
metal
ceramic
ceramic substrate
metal circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011038568A
Other languages
Japanese (ja)
Other versions
JP2011199275A (en
Inventor
定功 吉田
定功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011038568A priority Critical patent/JP5780777B2/en
Publication of JP2011199275A publication Critical patent/JP2011199275A/en
Application granted granted Critical
Publication of JP5780777B2 publication Critical patent/JP5780777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、セラミック基板に金属板からなる回路が形成されたセラミック回路基板およびそれを用いた電子装置に関するものである。   The present invention relates to a ceramic circuit board in which a circuit made of a metal plate is formed on a ceramic substrate, and an electronic device using the same.

近年、IGBT(Insulated Gate Bipolar Transistor)などの半導体素子が搭載され
、大きな電流を流すための、パワーモジュールやスイッチングモジュール等の電子装置に用いられる回路基板として、セラミック基板の両面に銅やアルミニウム等の金属板からなる金属回路板を接合したセラミック回路基板が用いられている。
In recent years, semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) have been mounted, and as circuit boards used in electronic devices such as power modules and switching modules for flowing large currents, copper and aluminum are used on both sides of a ceramic substrate. A ceramic circuit board in which metal circuit boards made of metal plates are joined is used.

このようなセラミック回路基板は、電気自動車の制御装置や熱電変換による発電装置等の用途において需要が高まりつつあり、また、小型化や高密度化が要求されている。セラミック回路基板の回路を高密度化して小型化する方法として、セラミック回路基板の表面だけでなく内部にまで回路導体を形成する方法がある。   Such ceramic circuit boards are in increasing demand for applications such as control devices for electric vehicles and power generation devices using thermoelectric conversion, and miniaturization and high density are required. As a method of reducing the size of the circuit of the ceramic circuit board by increasing the density, there is a method of forming the circuit conductor not only on the surface of the ceramic circuit board but also inside.

その方法の1つとしては、いわゆるセラミック多層配線基板の内部回路導体を絶縁層1層分の厚みの、絶縁層と同時焼成のメタライズで形成して、セラミック多層基板の表面に金属回路板を接合したものがある(例えば、特許文献1を参照。)。   As one of the methods, an internal circuit conductor of a so-called ceramic multilayer wiring board is formed by metallization of a thickness of one insulating layer and co-fired with the insulating layer, and a metal circuit board is bonded to the surface of the ceramic multilayer board. (For example, see Patent Document 1).

また、別の方法として、上側のセラミック基板の下面に接合された上側金属回路板と、下側のセラミック基板の上面に接合され、平面視形状が上側金属回路板に対応する形状の下側金属回路板とを接合材を介して接合することによって、上下に隣接するセラミック基板間に金属回路を形成したことものがある(例えば、特許文献2を参照。)。   As another method, the upper metal circuit board joined to the lower surface of the upper ceramic substrate and the lower metal joined to the upper surface of the lower ceramic substrate and having a shape corresponding to the upper metal circuit board in plan view. There is one in which a metal circuit is formed between upper and lower adjacent ceramic substrates by bonding a circuit board via a bonding material (see, for example, Patent Document 2).

また、さらに別の方法としては、鋳型内に複数のバイアホール用の貫通孔を有するセラミック基板を互いに離間して配置し、この鋳型内に金属溶湯を注湯した後に金属溶湯を冷却して固化させることにより、セラミック基板上およびセラミック基板間に金属板および上下の金属板を接続するバイアホールを形成するものがある(例えば、特許文献3を参照。)。   As another method, ceramic substrates having a plurality of via hole through holes are arranged in the mold so as to be spaced apart from each other, and after pouring the molten metal into the mold, the molten metal is cooled and solidified. In some cases, via holes for connecting the metal plate and the upper and lower metal plates are formed on the ceramic substrate and between the ceramic substrates (see, for example, Patent Document 3).

特開2003−31946号公報Japanese Patent Laid-Open No. 2003-31946 特開2006−319313号公報JP 2006-319313 A 特開2006−66595号公報JP 2006-66595 A

しかしながら、セラミック多層配線基板に絶縁層1層分の厚みの、絶縁層と同時焼成のメタライズで内部回路導体を形成する方法においては、内部回路導体を絶縁層と同時焼成するためには、導電性の良い純銅等の材料を導体層として使用できないため、より小型の配線で大電流を流すことは難しく、また、厚みの厚い内部回路導体がセラミックからなる絶縁層内に充填されていることから、セラミック回路基板に搭載した電子部品の発熱による内部回路導体と絶縁層との間の熱応力によって絶縁層にクラックが入ってしまい、絶縁性が低下しやすいという問題点があった。   However, in the method of forming the internal circuit conductor on the ceramic multilayer wiring board by the metallization of the insulating layer and the simultaneous firing of the insulating layer, in order to fire the internal circuit conductor together with the insulating layer, Since it is not possible to use a material such as pure copper as a conductor layer, it is difficult to flow a large current with a smaller wiring, and since a thick internal circuit conductor is filled in an insulating layer made of ceramic, There has been a problem that the insulating layer is easily cracked by the thermal stress between the internal circuit conductor and the insulating layer due to the heat generated by the electronic component mounted on the ceramic circuit board, and the insulating property tends to be lowered.

また、上側のセラミック基板の下面に接合された上側金属回路板と、下側のセラミック
基板の上面に接合された下側金属回路板とを接合材を介して接合する方法では、内部回路導体は2枚の金属板とその間の接合材からなるので、セラミック回路基板の厚みが厚くなり、小型化には不向きであるという問題点があった。
Further, in the method of joining the upper metal circuit board joined to the lower surface of the upper ceramic substrate and the lower metal circuit board joined to the upper surface of the lower ceramic substrate via a joining material, the internal circuit conductor is Since it consists of two metal plates and a bonding material between them, the thickness of the ceramic circuit board is increased, which is not suitable for miniaturization.

また、内部回路導体を鋳造で形成する方法では、その作製が容易ではなく、またセラミック基板上の金属板はエッチング等によって回路パターン形状に加工することができるが、セラミック基板間に形成される金属板はそのようなパターン加工ができないため、いわゆるベタ導体しか形成することができず、内部回路導体の形状の自由度がなく、高密度化ができないという問題点があった。   In addition, the method of forming the internal circuit conductor by casting is not easy to manufacture, and the metal plate on the ceramic substrate can be processed into a circuit pattern shape by etching or the like, but the metal formed between the ceramic substrates Since the plate cannot perform such pattern processing, only a so-called solid conductor can be formed, the shape of the internal circuit conductor is not flexible, and the density cannot be increased.

本発明は上記問題点に鑑み完成されたものであり、複雑な形状の内部回路導体を金属板で形成しても、大電流を流すことができるとともに、信頼性が高く、小型化や薄型化のできるセラミック回路基板および電子装置を提供することにある。   The present invention has been completed in view of the above problems, and even when the internal circuit conductor having a complicated shape is formed of a metal plate, a large current can flow, and the reliability is high, and the size and thickness are reduced. It is an object of the present invention to provide a ceramic circuit board and an electronic device that can be used.

本発明のセラミック回路基板は、3層以上のセラミック基板が積層されて互いにろう材によって接合されたセラミック多層基板と、該セラミック多層基板の上面および下面にろう材によって接合された表層金属回路板と、内層の前記セラミック基板に形成された内層回路パターン形状の回路貫通孔内に配置された内層金属回路板と、前記回路貫通孔が形成された前記セラミック基板の上下の前記セラミック基板に形成された貫通孔内に配置され、一端が前記内層金属回路板に、他端が他の前記内層金属回路板または前記表層金属回路板にそれぞれろう材によって接合され、前記内層金属回路板と他の前記内層金属回路板または前記表層金属回路板とを接続する金属柱とを備えており、前記内層金属回路板と、該内層金属回路板の上下の前記セラミック基板とが直接接合していないことを特徴とするものである。 The ceramic circuit board of the present invention includes a ceramic multilayer substrate in which three or more ceramic substrates are laminated and bonded to each other by a brazing material, and a surface metal circuit board bonded to the upper and lower surfaces of the ceramic multilayer substrate by a brazing material. An inner layer metal circuit board disposed in a circuit through hole having an inner layer circuit pattern shape formed on the ceramic substrate of the inner layer, and formed on the ceramic substrate above and below the ceramic substrate on which the circuit through hole is formed. It is arranged in the through hole, one end is joined to the inner layer metal circuit board and the other end is joined to the other inner layer metal circuit board or the surface layer metal circuit board by a brazing material, and the inner layer metal circuit board and the other inner layer are joined. and a metal post that connects the metal circuit plate or the surface layer metal circuit board, and wherein the inner metal circuit board, the cell of the upper and lower inner layer metal circuit plate It is characterized in that the electrochromic substrate is not directly bonded.

そして、本発明の電子装置は、上記構成のセラミック回路基板に電子部品が搭載されていることを特徴とするものである。   The electronic device according to the present invention is characterized in that an electronic component is mounted on the ceramic circuit board having the above-described configuration.

本発明のセラミック回路基板によれば、3層以上のセラミック基板が積層されて互いにろう材によって接合されたセラミック多層基板と、セラミック多層基板の上面および下面にろう材によって接合された表層金属回路板と、内層のセラミック基板に形成された内層回路パターン形状の回路貫通孔内に配置された内層金属回路板と、回路貫通孔が形成されたセラミック基板の上下のセラミック基板に形成された貫通孔内に配置され、一端が内層金属回路板に、他端が他の内層金属回路板または表層金属回路板にそれぞれろう材によって接合され、内層金属回路板と他の内層金属回路板または表層金属回路板とを接続する金属柱とを備えることから、内層金属回路板も表層金属回路板と同様に金属板からなるので大電流を流すことができ、内層金属回路板は回路貫通孔内に配置されて充填されないので、内層金属回路板とセラミック基板との熱膨張係数が異なっていても、回路貫通孔の内壁面にセラミック基板が破損するような熱応力が加わらないようにすることができ、内層金属回路板は1枚の金属板からなり、予め内層回路パターン形状に加工した金属板で形成されるので、大電流を流せる複雑な回路パターン形状の内部回路導体とすることができ、信頼性が高く、小型化や薄型化のできるセラミック回路基板となる。   According to the ceramic circuit board of the present invention, a ceramic multilayer substrate in which three or more layers of ceramic substrates are laminated and bonded to each other by a brazing material, and a surface metal circuit board that is bonded to the upper and lower surfaces of the ceramic multilayer substrate by a brazing material An inner layer metal circuit board disposed in an inner layer circuit pattern-shaped circuit through hole formed in the inner layer ceramic substrate, and a through hole formed in the ceramic substrate above and below the ceramic substrate in which the circuit through hole is formed. One end is joined to the inner layer metal circuit board and the other end is joined to the other inner layer metal circuit board or the surface layer metal circuit board by a brazing material, and the inner layer metal circuit board and the other inner layer metal circuit board or the surface layer metal circuit board are joined. Since the inner metal circuit board is made of a metal plate in the same manner as the surface metal circuit board, a large current can flow through the inner metal layer. Since the circuit board is placed in the circuit through hole and is not filled, even if the thermal expansion coefficients of the inner metal circuit board and the ceramic substrate are different, the thermal stress that damages the ceramic substrate to the inner wall surface of the circuit through hole The inner layer metal circuit board is made of a single metal plate, and is formed from a metal plate that has been processed into the inner layer circuit pattern shape in advance. It can be used as a circuit conductor, and is a highly reliable ceramic circuit board that can be reduced in size and thickness.

本発明の電子装置によれば、上記構成の本発明のセラミック回路基板に電子部品が搭載されていることから、大電流を流すことができ、信頼性が高く、小型で薄型化の電子装置とすることができる。   According to the electronic device of the present invention, since the electronic component is mounted on the ceramic circuit board of the present invention having the above-described configuration, a large current can flow, a highly reliable, small and thin electronic device and can do.

(a)は本発明の電子装置の実施の形態の一例を示す平面図であり、(b)は(a)のA−A線における断面図であり、(c)は(b)のA−A線における断面図である。(A) is a top view which shows an example of embodiment of the electronic device of this invention, (b) is sectional drawing in the AA of (a), (c) is A- of (b). It is sectional drawing in A line. 図1(b)のA部の拡大図である。It is an enlarged view of the A section of FIG.1 (b). 本発明の電子装置の実施の形態の他の例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the other example of embodiment of the electronic device of this invention. 本発明の電子装置の実施の形態のさらに他の例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the further another example of embodiment of the electronic device of this invention. 本発明の電子装置の実施の形態のさらに他の例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the further another example of embodiment of the electronic device of this invention. 本発明の電子装置の実施の形態のさらに他の例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the further another example of embodiment of the electronic device of this invention. 図1(c)に示された構造の他の例を示す断面図である。It is sectional drawing which shows the other example of the structure shown by FIG.1 (c). (a)〜(d)は、それぞれ本発明のセラミック回路基板を製造する工程の一例を示す断面図である。(A)-(d) is sectional drawing which shows an example of the process of manufacturing the ceramic circuit board of this invention, respectively. (a)〜(d)は、それぞれ本発明のセラミック回路基板を製造する工程の一例を示す断面図である。(A)-(d) is sectional drawing which shows an example of the process of manufacturing the ceramic circuit board of this invention, respectively. (a)および(b)は、それぞれ本発明のセラミック回路基板を製造する工程の一例を示す断面図である。(A) And (b) is sectional drawing which shows an example of the process of manufacturing the ceramic circuit board of this invention, respectively. (a)は本発明の電子装置の実施の形態の他の一例を示す上面図であり、(b)は(a)のA−A線における断面図であり、(c)は下面図である。(A) is a top view which shows another example of embodiment of the electronic device of this invention, (b) is sectional drawing in the AA of (a), (c) is a bottom view. .

本発明のセラミック回路基板および電子装置について、添付の図面を参照しつつ詳細に説明する。図1〜図11において、1はセラミック基板、1aはセラミック基板1に形成された回路貫通孔、1bはセラミック基板1に形成された貫通孔、2はろう材、3は表層金属回路板、4は内層金属回路板、5は金属柱、6は電子部品、7はボンディングワイヤ、8は放熱板、9は枠体、9aは絶縁枠体、9bは金属枠体である。   The ceramic circuit board and electronic device of the present invention will be described in detail with reference to the accompanying drawings. 1 to 11, 1 is a ceramic substrate, 1 a is a circuit through hole formed in the ceramic substrate 1, 1 b is a through hole formed in the ceramic substrate 1, 2 is a brazing material, 3 is a surface metal circuit board, 4 Is an inner layer metal circuit board, 5 is a metal column, 6 is an electronic component, 7 is a bonding wire, 8 is a heat sink, 9 is a frame, 9a is an insulating frame, and 9b is a metal frame.

本発明のセラミック回路基板は、図1および図11に示す例のように、3層以上のセラミック基板1が積層されて互いにろう材2によって接合されたセラミック多層基板と、セラミック多層基板の上面および下面にろう材2によって接合された表層金属回路板3と、内層のセラミック基板1に形成された内層回路パターン形状の回路貫通孔1a内に配置された内層金属回路板4と、回路貫通孔1aが形成されたセラミック基板1の上下のセラミック基板1に形成された貫通孔1b内に配置され、一端が内層金属回路板4に、他端が他の内層金属回路板4または表層金属回路板3にそれぞれろう材2によって接合され、内層金属回路板4と他の内層金属回路板4または表層金属回路板3とを接続する金属柱5とを備えるものである。このような構成としたことから、内層金属回路板4も表層金属回路板3と同様に金属板からなるので大電流を流すことができ、内層金属回路板4は回路貫通孔3内に配置されて充填されないので、内層金属回路板4とセラミック基板1との熱膨張係数が異なっていても、回路貫通孔1aの内壁面にセラミック基板1が破損するような熱応力が加わらないようにすることができ、内層金属回路板4は1枚の金属板からなり、予め内層回路パターン形状に加工した金属板で形成されるので、大電流を流せる複雑な回路パターン形状の内部回路導体とすることができ、信頼性が高く、小型化や薄型化のできるセラミック回路基板となる。   As shown in FIGS. 1 and 11, the ceramic circuit board of the present invention includes a ceramic multilayer board in which three or more layers of ceramic boards 1 are laminated and joined to each other by a brazing material 2, an upper surface of the ceramic multilayer board, and A surface layer metal circuit board 3 joined to the lower surface by a brazing material 2, an inner layer metal circuit board 4 disposed in an inner layer circuit pattern-shaped circuit through hole 1a formed in the inner layer ceramic substrate 1, and a circuit through hole 1a Are disposed in through-holes 1b formed in the ceramic substrate 1 above and below the ceramic substrate 1, and one end is the inner metal circuit board 4 and the other is the other inner metal circuit board 4 or the surface metal circuit board 3. And the metal pillar 5 that is joined by the brazing material 2 to connect the inner metal circuit board 4 and the other inner metal circuit board 4 or the surface metal circuit board 3. Since the inner layer metal circuit board 4 is made of a metal plate similarly to the surface layer metal circuit board 3 because of such a configuration, a large current can flow, and the inner layer metal circuit board 4 is disposed in the circuit through hole 3. Therefore, even if the inner layer metal circuit board 4 and the ceramic substrate 1 have different coefficients of thermal expansion, thermal stress that damages the ceramic substrate 1 to the inner wall surface of the circuit through hole 1a should not be applied. The inner-layer metal circuit board 4 is made of a single metal plate, and is formed of a metal plate that has been processed into an inner-layer circuit pattern shape in advance. Therefore, the inner-layer metal circuit board 4 can be an internal circuit conductor having a complicated circuit pattern shape that can flow a large current. Therefore, the ceramic circuit board is highly reliable and can be reduced in size and thickness.

また、内層のセラミック基板1には、表層金属回路板3や内層金属回路板4との熱膨張係数の差による熱応力等の機械的応力が加わらない構造とすることができるので、例えば表層のセラミック基板1に強度に優れた窒化ケイ素基板を用い、内層のセラミック基板1には熱伝導性に優れた窒化アルミニウム基板を用いることができるので、熱放散性とセラミック基板1の機械的強度に依存する温度サイクル信頼性のような異なる特性を両立させたセラミック回路基板とすることができる。   Further, the inner layer ceramic substrate 1 can be structured such that mechanical stress such as thermal stress due to the difference in thermal expansion coefficient from the surface layer metal circuit board 3 or the inner layer metal circuit board 4 is not applied. Since a silicon nitride substrate having excellent strength can be used for the ceramic substrate 1 and an aluminum nitride substrate having excellent thermal conductivity can be used for the inner ceramic substrate 1, it depends on the heat dissipation and the mechanical strength of the ceramic substrate 1. Therefore, it is possible to provide a ceramic circuit board having different characteristics such as temperature cycle reliability.

そして、内層金属回路板4によって回路を引き回すので、表層金属回路板3を小型にすることができ、表層金属回路板3とセラミック基板1との間に発生する熱応力を小さいものとすることができ、表層金属回路板3の接合信頼性が高いものとなる。   Since the circuit is routed by the inner layer metal circuit board 4, the surface layer metal circuit board 3 can be reduced in size, and the thermal stress generated between the surface layer metal circuit board 3 and the ceramic substrate 1 can be reduced. The surface metal circuit board 3 can be bonded with high reliability.

図1に示す例では、セラミック多層基板は3層のセラミック基板1が積層されて互いにろう材2によって接合されて形成されており、セラミック多層基板の上面には内層金属回路板4と接続される6つの表層金属回路板3と、電子部品6を搭載するための1つの表層金属回路板3が接合され、下面には、内層金属回路板4および金属柱5を介して上面の表層金属回路板3にそれぞれ電気的に接続される6つの表層金属回路板3と、電子部品6で発生した熱を外部回路基板や冷却体へ伝導するための放熱板8が接合されている。セラミック多層基板の層数は3層よりも多くてもよく、内層回路導体を1層増やすには、内層金属回路板4が内部に配置される回路貫通孔1aを有するセラミック基板1と金属柱5が内部に配置される貫通孔1bを有するセラミック基板1との2層のセラミック基板1を追加することになる。   In the example shown in FIG. 1, the ceramic multilayer substrate is formed by laminating three layers of ceramic substrates 1 and joining them together with a brazing material 2, and is connected to the inner layer metal circuit board 4 on the upper surface of the ceramic multilayer substrate. Six surface layer metal circuit boards 3 and one surface layer metal circuit board 3 for mounting the electronic component 6 are joined, and the lower surface metal circuit board on the upper surface via the inner layer metal circuit board 4 and the metal pillar 5 on the lower surface. 6 are respectively connected to the surface metal circuit board 3 and the heat radiating plate 8 for conducting heat generated in the electronic component 6 to the external circuit board and the cooling body. The number of layers of the ceramic multilayer substrate may be more than three, and in order to increase the inner layer circuit conductor by one layer, the ceramic substrate 1 and the metal pillar 5 having the circuit through hole 1a in which the inner layer metal circuit board 4 is disposed. Is added to the two-layer ceramic substrate 1 with the ceramic substrate 1 having a through hole 1b disposed therein.

セラミック基板1は絶縁性のセラミック材料からなり、例えば、酸化アルミニウム質セラミックス,ムライト質セラミックス,炭化ケイ素質セラミックス,窒化アルミニウム質セラミックス,窒化ケイ素質セラミックス等のセラミックスからなる。これらの中では熱伝導性(放熱性)の点からは炭化ケイ素質セラミックス,窒化アルミニウム質セラミックス,窒化ケイ素質セラミックスが好ましく、強度の点からは窒化ケイ素質セラミックスや炭化ケイ素質セラミックスが好ましい。また、セラミック基板1が窒化ケイ素質セラミックスのように強度の高いセラミックスであると、より厚みの厚い表層金属回路板3、内層金属回路板4および放熱板8を使用してもセラミック基板1にクラックが入ったりしないので、小型でもより大電流を流すことができるセラミック回路基板となるので好ましい。厚みは、薄い方が熱伝導性の点ではよいが、セラミック回路基板の大きさや用いる材料の熱伝導率や強度に応じて選択すればよく、0.1mm〜1mm程度である。   The ceramic substrate 1 is made of an insulating ceramic material, for example, ceramics such as aluminum oxide ceramics, mullite ceramics, silicon carbide ceramics, aluminum nitride ceramics, and silicon nitride ceramics. Among these, silicon carbide ceramics, aluminum nitride ceramics, and silicon nitride ceramics are preferable from the viewpoint of thermal conductivity (heat dissipation), and silicon nitride ceramics and silicon carbide ceramics are preferable from the viewpoint of strength. Further, if the ceramic substrate 1 is a ceramic having a high strength such as silicon nitride ceramics, the ceramic substrate 1 is cracked even if the thicker surface metal circuit board 3, inner metal circuit board 4 and heat sink 8 are used. Therefore, it is preferable because the ceramic circuit board can flow a larger current even if it is small. The thinner the thickness, the better in terms of thermal conductivity, but the thickness may be selected according to the size of the ceramic circuit board and the thermal conductivity and strength of the material used, and is about 0.1 mm to 1 mm.

セラミック基板1は、例えば窒化ケイ素質セラミックスから成る場合であれば、窒化ケイ素,酸化アルミニウム,酸化マグネシウム,酸化イットリウム等の原料粉末に適当な有機バインダー,可塑剤,溶剤を添加混合して泥漿物に従来周知のドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、次にこのセラミックグリーンシートに適当な打ち抜き加工を施して所定形状となすとともに、必要に応じて複数枚を積層して成形体となし、しかる後、これを窒化雰囲気等の非酸化性雰囲気にて1600〜2000℃の温度で焼成することによって製作される。   If the ceramic substrate 1 is made of, for example, silicon nitride ceramics, an appropriate organic binder, plasticizer, and solvent are added to and mixed with raw material powders such as silicon nitride, aluminum oxide, magnesium oxide, yttrium oxide, etc. to make a slurry. The ceramic green sheet (ceramic green sheet) is formed by adopting the doctor blade method and the calender roll method, which are well known in the past, and then the ceramic green sheet is punched appropriately to obtain a predetermined shape. A plurality of sheets are laminated to form a molded body, and then manufactured by firing at a temperature of 1600 to 2000 ° C. in a non-oxidizing atmosphere such as a nitriding atmosphere.

セラミック基板1の回路貫通孔1aは内層金属回路板4を収容するための貫通孔であり、図1(c)に示す例のように、内層金属回路板4より一回り大きいものである。貫通孔1bは表層金属回路板3と内層金属回路板4または表層金属回路板3とを接続する金属柱5を収容するための貫通孔であり、金属柱5の横断面より一回り大きいものである。具体的には、内層金属回路板4の側面と回路貫通孔1aの内壁面との間の距離、および金属柱5の側面と貫通孔1bの内壁面との間の距離は、それぞれ内層金属回路板4の長さや幅の1%の長さ、および金属柱5の横断面の長さ(金属柱5が円柱の場合であれば直径)の1%程度であれば、比較的熱膨張係数の小さい窒化ケイ素質セラミックス(熱膨張係数:約3×10−6/℃)から成るセラミック基板1と、銅とアルミニウムとで熱膨張係数の大きいアルミニウム(熱膨張係数:約23×10−6/℃)から成る内層金属回路板4および金属柱5を用いた場合であっても、セラミック回路基板に搭載した電子部品の発熱、あるいは大電流による内層金属回路板4自身の発熱に起因して、セラミック基板1と内層金属回路板4および金属柱5との熱膨張差によって回路貫通孔1aおよび貫通孔1bの内面に応力が加わることがない。 The circuit through hole 1a of the ceramic substrate 1 is a through hole for accommodating the inner layer metal circuit board 4, and is one size larger than the inner layer metal circuit board 4 as in the example shown in FIG. The through-hole 1 b is a through-hole for accommodating the metal pillar 5 that connects the surface metal circuit board 3 and the inner metal circuit board 4 or the surface metal circuit board 3, and is slightly larger than the cross section of the metal pillar 5. is there. Specifically, the distance between the side surface of the inner layer metal circuit board 4 and the inner wall surface of the circuit through hole 1a and the distance between the side surface of the metal pillar 5 and the inner wall surface of the through hole 1b are respectively the inner layer metal circuit. If the length of the plate 4 is 1% of the length and width, and the length of the cross section of the metal column 5 (the diameter if the metal column 5 is a cylinder) is about 1%, the coefficient of thermal expansion is relatively high. Ceramic substrate 1 made of small silicon nitride ceramics (thermal expansion coefficient: about 3 × 10 −6 / ° C.) and aluminum having a large thermal expansion coefficient between copper and aluminum (thermal expansion coefficient: about 23 × 10 −6 / ° C.) Even when the inner layer metal circuit board 4 and the metal pillar 5 are used, the ceramic due to the heat generation of the electronic components mounted on the ceramic circuit board or the heat generation of the inner layer metal circuit board 4 itself due to a large current. Between the substrate 1, the inner metal circuit board 4 and the metal pillar 5; No stress may be applied to the inner surface of the circuit through-hole 1a and the through hole 1b by differential expansion.

また、セラミック基板1の厚みは、内層金属回路板4の厚みおよび金属柱5の高さよりも厚いのが好ましい。セラミック基板1の厚みがこれらのいずれの厚みより薄いと、セラミック基板1と内層金属回路板4および金属柱5との熱膨張差によって、金属柱5が表層金属回路板3を貫通孔1b内から押さえる力が作用して、表層金属回路板3とセラミック基板1との接合強度および接続信頼性が低下しやすくなるからである。また、セラミック基板1の厚みが内層金属回路板4の厚み以下であると、セラミック基板1と内層金属回路板4との熱膨張差によって、回路貫通孔1aを有するセラミック基板1の上下に接合されたセラミック基板1を内層金属回路板4が押さえる力が作用して、回路貫通孔1aを有するセラミック基板1とその上下のセラミック基板1との接合強度および接続信頼性が低下しやすくなるからである。   The thickness of the ceramic substrate 1 is preferably thicker than the thickness of the inner metal circuit board 4 and the height of the metal pillars 5. If the thickness of the ceramic substrate 1 is smaller than any of these thicknesses, the metal pillar 5 causes the surface metal circuit board 3 to pass through the through hole 1b due to the difference in thermal expansion between the ceramic substrate 1, the inner metal circuit board 4 and the metal pillar 5. This is because the pressing force acts and the bonding strength and connection reliability between the surface metal circuit board 3 and the ceramic substrate 1 are likely to decrease. Further, when the thickness of the ceramic substrate 1 is equal to or less than the thickness of the inner layer metal circuit board 4, the ceramic substrate 1 and the inner layer metal circuit board 4 are bonded to the upper and lower sides of the ceramic substrate 1 having the circuit through holes 1a due to a difference in thermal expansion between the ceramic substrate 1 and the inner layer metal circuit board 4. This is because the force by which the inner metal circuit board 4 presses the ceramic substrate 1 acts, and the bonding strength and connection reliability between the ceramic substrate 1 having the circuit through hole 1a and the ceramic substrate 1 above and below the ceramic substrate 1 are likely to be lowered. .

回路貫通孔1aおよび貫通孔1bは、上記のセラミック基板1の製造工程において、セラミックグリーンシートに金型加工やレーザー加工によって孔を形成しておくことで形成することができる。あるいは、セラミック基板1を作製した後にレーザー加工やサンドブラスト加工によって形成する。   The circuit through hole 1a and the through hole 1b can be formed by forming holes in the ceramic green sheet by die processing or laser processing in the manufacturing process of the ceramic substrate 1 described above. Alternatively, after the ceramic substrate 1 is manufactured, it is formed by laser processing or sand blast processing.

表層金属回路板3、内層金属回路板4、金属柱5および放熱板8は、銅やアルミニウム等の金属から成り、例えば銅のインゴット(塊)に圧延加工法や打ち抜き加工法等の機械的加工やエッチング等の化学的加工のような従来周知の金属加工法を施すことによって、例えば厚さが0.05〜1mmの平板状で、所定パターンに形成される。このとき、表層金属回路板3および内層金属回路板4は、予め所定パターン形状に形成したものを用いてもよいし、後述するように、セラミック基板1と同程度の大きさおよび形状の金属板をセラミック基板1に接合した後にエッチングで所定パターン形状に加工してもよい。   The surface metal circuit board 3, the inner metal circuit board 4, the metal pillar 5 and the heat sink 8 are made of metal such as copper or aluminum. For example, mechanical processing such as rolling or punching a copper ingot. By applying a conventionally known metal processing method such as chemical processing such as etching or etching, it is formed in a predetermined pattern, for example, in a flat plate shape having a thickness of 0.05 to 1 mm. At this time, as the surface layer metal circuit board 3 and the inner layer metal circuit board 4, those formed in a predetermined pattern shape in advance may be used. As will be described later, a metal plate having the same size and shape as the ceramic substrate 1. After bonding to the ceramic substrate 1, it may be processed into a predetermined pattern shape by etching.

表層金属回路板3、内層金属回路板4、金属柱5および放熱板8が銅から成る場合は、無酸素銅で形成するのが好ましい。無酸素銅で形成すると、表層金属回路板3または内層金属回路板4と金属柱5との接合やセラミック基板1と表層金属回路板3または内層金属回路板4との接合を行なう際に、銅の表面が銅中に存在する酸素により酸化されることなく、ろう材2との濡れ性が良好となるので、接合が強固となる。   When the surface layer metal circuit board 3, the inner layer metal circuit board 4, the metal pillar 5 and the heat sink 8 are made of copper, it is preferably formed of oxygen-free copper. When formed with oxygen-free copper, copper is bonded when the surface layer metal circuit board 3 or the inner layer metal circuit board 4 and the metal pillar 5 are bonded or when the ceramic substrate 1 and the surface layer metal circuit board 3 or the inner layer metal circuit board 4 are bonded. The surface of the metal is not oxidized by oxygen present in the copper, and the wettability with the brazing material 2 is improved, so that the bonding becomes strong.

セラミック基板1同士の接合、セラミック基板1と表層金属回路板3または内層金属回あるいは放熱板8との接合、金属柱5および放熱板8路板4との接合、金属柱5と表層金属回路板3または内層金属回路板4との接合は、ろう材2によって行なわれる。ろう材2は、活性金属を含むものであっても、活性金属を含まない通常のものであっても構わない。ろう材2は、上記のすべての接合に活性金属を含むろう材2を用いてもかまわないが、金属柱5と表層金属回路板3または内層金属回路板4との接合は、活性金属を含まないろう材2を使用すると、ろう材2がセラミック基板1とは接合しないので、流れ出たろう材2が回路貫通孔1aの内面に内層金属回路板4が固着して、熱応力等によって回路貫通孔1aからクラックが発生することがないので好ましい。   Joining between ceramic substrates 1, joining ceramic substrate 1 and surface metal circuit board 3 or inner layer metal circuit or heat sink 8, joining metal pillar 5 and heat sink 8 route board 4, metal pillar 5 and surface metal circuit board 3 or the inner metal circuit board 4 is joined by the brazing material 2. The brazing filler metal 2 may contain an active metal or may be a normal one containing no active metal. The brazing material 2 may use the brazing material 2 containing an active metal for all the above-mentioned joining, but the joining of the metal pillar 5 and the surface metal circuit board 3 or the inner metal circuit board 4 contains an active metal. When the brazing filler metal 2 is used, the brazing filler metal 2 is not bonded to the ceramic substrate 1, so that the brazing filler metal 2 that has flowed out adheres to the inner surface of the circuit through hole 1a, and the inner metal circuit board 4 is fixed to the circuit through hole by thermal stress or the like. It is preferable because no cracks are generated from 1a.

上記各部材をろう材2で接続するには、各部材の接合面の少なくとも一方にスクリーン印刷等でろう材ペーストを例えば30〜50μmの厚さで所定パターンに印刷塗布するとともに、所定の構造となるように挟んで載置した後、金属板に5〜10kPaの荷重をかけながら真空中または水素ガス雰囲気や水素・窒素ガス雰囲気等の非酸化性雰囲気中で780℃〜900℃、10〜120分間加熱し、ろう材ペーストの有機溶剤や溶媒・分散剤を気体に変えて発
散させるとともにろう材2を溶融させることによって行なわれる。
In order to connect each member with the brazing material 2, a brazing material paste is printed and applied in a predetermined pattern with a thickness of, for example, 30 to 50 μm by screen printing or the like on at least one of the joining surfaces of the respective members. After being placed so as to be, 780 ° C. to 900 ° C., 10 to 120 in a vacuum or in a non-oxidizing atmosphere such as a hydrogen gas atmosphere or a hydrogen / nitrogen gas atmosphere while applying a load of 5 to 10 kPa on the metal plate This is performed by heating for a minute, changing the organic solvent or solvent / dispersant of the brazing material paste into a gas to diverge, and melting the brazing material 2.

表層金属回路板3、内層金属回路板4、金属柱5および放熱板8が銅から成る場合は、活性金属を含まない、通常のろう材ペーストは、銀および銅粉末,銀−銅合金粉末,また
はこれらの混合粉末から成る銀ろう材(例えば、銀:72質量%−銅:28質量%)粉末に対して適当なバインダーと有機溶剤・溶媒とを添加混合し、混練することによって製作される。活性金属入りのろう材ペーストは、この通常のろう材ペーストに、チタン,ハフニウム,ジルコニウムまたはその水素化物等の活性金属を銀ろう材に対して2〜5質量%添加混合し、混練することによって製作される。
When the surface layer metal circuit board 3, the inner layer metal circuit board 4, the metal pillar 5 and the heat sink 8 are made of copper, the normal brazing material paste containing no active metal is silver and copper powder, silver-copper alloy powder, Alternatively, it is manufactured by adding and mixing a suitable binder and an organic solvent / solvent to a silver brazing material (for example, silver: 72% by mass-copper: 28% by mass) powder composed of these mixed powders. . The brazing material paste containing the active metal is obtained by adding 2 to 5% by mass of an active metal such as titanium, hafnium, zirconium, or a hydride thereof to the normal brazing material paste, and kneading. Produced.

表層金属回路板3、内層金属回路板4、金属柱5および放熱板8がアルミニウムから成る場合は、銀ろう材に換えてアルミニウムろう材(例えば、アルミニウム:88質量%−シリコン:12質量%)を用いればよい。この場合も同様にしてろう材ペーストおよび活性金属入りろう材ペーストを作製して、同様にして接合すればよい。アルミニウムろう材2を使用した場合には、銅より低温の約600℃で接合することができる。   When the surface layer metal circuit board 3, the inner layer metal circuit board 4, the metal pillar 5 and the heat radiating plate 8 are made of aluminum, an aluminum brazing material (for example, aluminum: 88 mass%-silicon: 12 mass%) is used instead of the silver brazing material. May be used. In this case as well, a brazing material paste and a brazing material paste containing an active metal may be produced in the same manner and joined in the same manner. When the aluminum brazing material 2 is used, bonding can be performed at about 600 ° C., which is lower than copper.

活性金属を含まない、通常のろう材ペーストで表層金属回路板3または内層金属回路板4、あるいは放熱板8をセラミック基板1に接合するには、セラミック基板1上にメタライズ層を形成しておき、メタライズ層と表層金属回路板3または内層金属回路板4、あるいは放熱板8との間にろう材ペーストを配置すればよい。セラミック基板1上のメタライズ層は、セラミック基板1を作製する際に、セラミックグリーンシート上にメタライズペーストを所定パターン形状に印刷塗布しておき、焼成することによって形成しておくか、セラミック基板1を作製した後に、セラミック基板1上にメタライズペーストを所定パターン形状に印刷塗布して焼き付けることによって形成すればよい。メタライズペーストは、タングステン(W),モリブデン(Mo),マンガン(Mn)またはこれらの混合粉末から成る金属粉末と、適当なバインダーと有機溶剤・溶媒とを添加混合し、混練することによって製作される。   In order to join the surface layer metal circuit board 3 or the inner layer metal circuit board 4 or the heat sink 8 to the ceramic substrate 1 with an ordinary brazing material paste containing no active metal, a metallized layer is formed on the ceramic substrate 1. The brazing material paste may be disposed between the metallized layer and the surface metal circuit board 3 or the inner metal circuit board 4 or the heat sink 8. The metallized layer on the ceramic substrate 1 is formed by printing and applying a metallized paste in a predetermined pattern shape on a ceramic green sheet when the ceramic substrate 1 is manufactured, or firing the ceramic substrate 1. After fabrication, the metallized paste may be formed on the ceramic substrate 1 by printing, applying and baking it in a predetermined pattern shape. The metallized paste is manufactured by adding and mixing a metal powder composed of tungsten (W), molybdenum (Mo), manganese (Mn), or a mixed powder thereof, an appropriate binder, an organic solvent / solvent, and kneading. .

また、表層金属回路板3は、セラミック基板1に接合した後に、その表面にニッケルから成る、良導電性で、かつ耐蝕性およびろう材との濡れ性が良好な金属をめっき法により被着させておくと、表層金属回路板3に半導体素子等の電子部品5を半田を介して強固に接着させることができるとともに、表層金属回路板3と外部電気回路との電気的接続を良好なものとすることができる。この場合は、内部に燐を8〜15質量%含有させてニッケル−燐のアモルファス合金としておくと、ニッケルから成るめっき層の表面酸化を良好に防止してろう材との濡れ性等を長く維持することができるので好ましい。ニッケルに対する燐の含有量が8質量%未満となると、あるいは15質量%を超えると、ニッケル−燐のアモルファス合金を形成するのが困難となってめっき層に半田を強固に接着させることが困難となりやすい。このニッケルから成るめっき層は、その厚みが1.5μm未満の場合には、
表層金属回路板3の表面を完全に被覆することができず、表層金属回路板3の酸化腐蝕を有効に防止することができなくなる傾向がある。また、10μmを超えると、特にセラミック基板の厚さが300μm未満の薄いものになった場合には、めっき層の内部に内在する内
在応力が大きくなってセラミック基板に反りや割れ等が発生しやすくなってしまう。また、放熱板8にも同様のニッケル金属層を形成しておくと、外部回路基板や冷却体への接合が良好になるのでよい。
Further, after the surface layer metal circuit board 3 is bonded to the ceramic substrate 1, a metal having good conductivity, corrosion resistance and good wettability with a brazing material is deposited on the surface thereof by a plating method. In this case, the electronic component 5 such as a semiconductor element can be firmly bonded to the surface metal circuit board 3 via solder, and the electrical connection between the surface metal circuit board 3 and the external electric circuit is good. can do. In this case, if an amorphous alloy of nickel-phosphorus is prepared by containing 8 to 15% by mass of phosphorus inside, the surface of the plating layer made of nickel is well prevented and the wettability with the brazing material is maintained for a long time. This is preferable. When the content of phosphorus with respect to nickel is less than 8% by mass or more than 15% by mass, it becomes difficult to form an amorphous alloy of nickel-phosphorus, and it becomes difficult to firmly bond the solder to the plating layer. Cheap. If the thickness of this nickel plating layer is less than 1.5 μm,
There is a tendency that the surface of the surface metal circuit board 3 cannot be completely covered, and the oxidative corrosion of the surface metal circuit board 3 cannot be effectively prevented. If the thickness exceeds 10 μm, especially when the thickness of the ceramic substrate is less than 300 μm, the internal stress inside the plating layer increases and the ceramic substrate is likely to warp or crack. turn into. Further, if a similar nickel metal layer is formed on the heat radiating plate 8, the bonding to the external circuit board or the cooling body is good.

3層のセラミック基板1を用いて表層金属回路板3、内層金属回路板4および放熱板8をあらかじめ所定パターンに形成して接合する場合は、以下のようにすればよい。まず、所定の位置に貫通孔1bを有するセラミック基板1と回路貫通孔1aを有するセラミック基板1を3枚準備する。また、金属板をプレス加工や、エッチング加工等を用い、表層金属回路板3、内層金属回路板4、金属柱5および放熱板8の所定パターン形状に加工する。次にセラミック基板1同士が相対する接合部の少なくとも一方に、接合後にろう材2となる活性金属入りのろう材ペーストを所定形状にスクリーン印刷等で塗布する。金属柱5の上下面には、ろう材2を予め形成しておく。このろう材2は、金属柱5の表裏にスクリーン印刷で同様にろう材ペーストを形成しても良いし、表裏にろう材2をクラッドした所
定の厚みの金属板を金属柱5の寸法に打ち抜くことで形成してもよい。各部材を所定の位置に配置し、位置がずれないように治具等を用いて荷重をかけながら真空中でろう材2が溶融する温度まで昇温し各部材を接合することで、セラミック回路基板となる。
When the surface layer metal circuit board 3, the inner layer metal circuit board 4 and the heat dissipation plate 8 are formed in a predetermined pattern and bonded in advance using the three-layer ceramic substrate 1, the following may be performed. First, three ceramic substrates 1 having a through hole 1b at a predetermined position and three ceramic substrates 1 having a circuit through hole 1a are prepared. Further, the metal plate is processed into a predetermined pattern shape of the surface metal circuit board 3, the inner metal circuit board 4, the metal pillar 5, and the heat radiating plate 8 using press processing, etching processing or the like. Next, a brazing material paste containing an active metal, which becomes the brazing material 2 after joining, is applied to at least one of the joint portions where the ceramic substrates 1 face each other by screen printing or the like. The brazing material 2 is formed in advance on the upper and lower surfaces of the metal pillar 5. In this brazing material 2, a brazing material paste may be similarly formed on the front and back of the metal column 5 by screen printing, or a metal plate having a predetermined thickness with the brazing material 2 clad on the front and back is punched to the dimensions of the metal column 5. You may form by. By placing each member at a predetermined position and applying a load using a jig or the like so that the position does not shift, the temperature is raised to a temperature at which the brazing filler metal 2 melts in a vacuum, and the respective members are joined to each other. It becomes a substrate.

内層金属回路板4と金属柱5とによる内部回路を形成した多層セラミック基板の上面および下面に、セラミック基板1と同程度の大きさおよび形状の金属板をセラミック基板1に接合した後に、金属板をエッチングで表層金属回路板3および放熱板8の所定パターン形状に加工する場合は、例えば以下のようにする。セラミック基板1の上に接合された金属板の表面にエッチングレジストインクをスクリーン印刷法等の技術を採用して所定パターン形状に印刷塗布してレジスト膜を形成した後、例えば金属板が銅板である場合であれば、塩化第2鉄,塩化第2銅溶液等のエッチング液に浸漬したり、エッチング液を吹き付けたりして表層金属回路板3および放熱板8の所定パターン以外の部分を除去し、レジスト膜を除去すればよい。   A metal plate having the same size and shape as the ceramic substrate 1 is joined to the ceramic substrate 1 on the upper and lower surfaces of the multilayer ceramic substrate on which the internal circuit is formed by the inner layer metal circuit plate 4 and the metal pillars 5. Is processed into a predetermined pattern shape of the surface metal circuit board 3 and the heat sink 8 by etching, for example, as follows. An etching resist ink is applied to the surface of the metal plate bonded on the ceramic substrate 1 by using a technique such as a screen printing method to form a resist film by printing and applying to a predetermined pattern shape. For example, the metal plate is a copper plate. If so, remove portions other than the predetermined pattern of the surface metal circuit board 3 and the heat sink 8 by immersing in an etching solution such as ferric chloride, cupric chloride solution or spraying the etching solution, The resist film may be removed.

なお、図5または図6に示されているように、内層金属回路板4が屈曲または湾曲していてもよい。内層金属回路板4とセラミック基板1との熱膨張係数が異なっていても、屈曲または湾曲している内層金属回路板4によって応力を緩和することができるので、セラミック基板1に加わる応力をさらに低減させることができ、より信頼性の高いセラミック回路基板となる。   As shown in FIG. 5 or FIG. 6, the inner metal circuit board 4 may be bent or curved. Even if the inner layer metal circuit board 4 and the ceramic substrate 1 have different thermal expansion coefficients, the stress can be relieved by the bent or curved inner layer metal circuit board 4, so that the stress applied to the ceramic substrate 1 is further reduced. Therefore, a more reliable ceramic circuit board can be obtained.

また、図5に示されているように、回路貫通孔1aが通気孔1cによって外気と繋がっている構造、または、図6に示されているように、通気孔1cに充填材1dが設けられていることによって回路貫通孔1aが外気と遮断されており、回路貫通孔内1aがガスによって充填されている構造であってもよい。充填材1dの材料は、例えばガラスまたは金属ろう材等である。充填材1dにろう材を用いる場合、通気孔1cの内面にメタライズ層が形成されているとよい。回路貫通孔1aが通気孔1cによって外気と繋がっている構造または回路貫通孔1a内が例えば大気圧に近い圧力のガスで充填されている構造であれば回路貫通孔1aにおいて真空放電が発生しないので、仮にろう材中のボイドを減少させ熱伝導率を向上させるために真空中でろう材を接合させたとしても、絶縁耐圧が低下を抑えることができ信頼性の高いセラミック回路基板となる。   Further, as shown in FIG. 5, the circuit through hole 1a is connected to the outside air by the vent hole 1c, or as shown in FIG. 6, the vent hole 1c is provided with a filler 1d. Therefore, the circuit through hole 1a may be blocked from outside air, and the inside of the circuit through hole 1a may be filled with gas. The material of the filler 1d is, for example, glass or a metal brazing material. When a brazing material is used for the filler 1d, a metallized layer is preferably formed on the inner surface of the vent hole 1c. If the circuit through hole 1a is connected to the outside air by the vent hole 1c or the circuit through hole 1a is filled with, for example, a gas having a pressure close to atmospheric pressure, no vacuum discharge occurs in the circuit through hole 1a. Even if the brazing material is bonded in a vacuum in order to reduce the voids in the brazing material and improve the thermal conductivity, the dielectric breakdown voltage can be suppressed from being lowered, resulting in a highly reliable ceramic circuit board.

また、図5または図6に示されているように、ろう材2がセラミック基板1の端部から離れた部分に設けられている構造であってもよい。すなわち、ろう材2が回路貫通孔1aから離れた部分に設けられている構造であってもよい。ろう材2と内層金属回路板4との接触の可能性を低減させることができ、信頼性を向上させることができる。また、ろう材2が貫通孔1bからも離れていることによって、ろう材2と金属柱5との接触の可能性も低減させることができる。   Further, as shown in FIG. 5 or FIG. 6, a structure in which the brazing material 2 is provided in a portion away from the end portion of the ceramic substrate 1 may be employed. That is, a structure in which the brazing material 2 is provided in a portion away from the circuit through hole 1a may be employed. The possibility of contact between the brazing material 2 and the inner metal circuit board 4 can be reduced, and the reliability can be improved. Further, since the brazing material 2 is separated from the through hole 1b, the possibility of contact between the brazing material 2 and the metal pillar 5 can be reduced.

また、図7に示されているように、複数の回路貫通孔1aが繋がっている構造であってもよい。例えば複数の回路貫通孔1aの形状が複雑な場合であっても、複数の回路貫通孔1aに共通の一つの通気孔1cを設けるということも可能となる。   Moreover, as shown in FIG. 7, a structure in which a plurality of circuit through holes 1a are connected may be used. For example, even if the shape of the plurality of circuit through holes 1a is complicated, it is possible to provide one common vent hole 1c for the plurality of circuit through holes 1a.

また、セラミック回路基板が、図1〜図3に示す例のような、内層金属回路板4がセラミック基板1に接合されている場合であれば、図8〜図10に示すような工程で内層金属回路板4もエッチングによって所定パターン形状に加工することができる。まず、図8(a)に示す例のように、貫通孔1bを有する上層用のセラミック基板1の上面および下面に、セラミック基板1と同程度の大きさの、表層金属回路板3となる金属板3’および内層金属回路板4となる金属板4’がそれぞれ接合され、これらが貫通孔1b内の金属柱5で接続されたものを、上記と同様の方法で形成する。次に、図8(b)に示す例のように、金属板3’および金属板4’の表面に、それぞれ表層金属回路板3および内層金属回路板
4の所定パターン形状のレジスト膜10を形成する。次いで、図8(c)および図8(d)に示す例のように、金属板3’、金属板4’のレジスト膜10に覆われていない不要部分をエッチング液によって溶解し、レジスト膜10を剥離することで、セラミック回路基板の上側だけ(上側回路基板)を作製する。次に、図9(a)に示す例のように、所定の回路貫通孔1aを有する中間層用のセラミック基板1と所定の貫通孔1bを有する下層用のセラミック基板1とがろう材2で接合され、下層用のセラミック基板1の下面には、セラミック回路基板の下面の表面金属回路板3および放熱板8となる、セラミック基板1と同程度の大きさの金属板3’が接合され、貫通孔1b内で金属柱5が金属板3’に接合されたものを作製する。次に、図9(b)に示す例のように、金属板3’の表面に、表層金属回路板3および放熱板8の所定パターン形状のレジスト膜10を形成する。次いで、図9(c)および図9(d)に示す例のように、金属板3’のレジスト膜10に覆われていない不要部分をエッチング液によって溶解し、レジスト膜10を剥離することで、セラミック回路基板の下側だけ(下側回路基板)を作製する。このとき、回路貫通孔1aおよび貫通孔1bにエッチング液が入って、金属柱5や金属板3’の貫通孔1b内に露出する部分がエッチングされることがないように、中間層用のセラミック基板1の上面の回路貫通孔1aの開口を治具やフィルム上のレジスト等で塞いでおくとよい。そして、図10(a)に示す例のように、上側回路基板と下側回路基板とを下側回路基板の回路貫通孔1a内に上側回路基板の内層金属回路板4が入るように重ねて、図10(b)に示す例のように、上層用のセラミック基板1と中間層用のセラミック基板1との間、内層金属回路板4と下層用のセラミック基板1および金属柱5との間をろう材2で接合することによって、図1に示す例のような、3層のセラミック基板1が積層された構造の本発明のセラミック回路基板1を作製することができる。この方法では、表層金属回路板3および内層金属回路板4は、共にセラミック基板1に大きさの大きい金属板3’および金属板4’を接合させてからエッチングで所定パターン形状に加工することができるので、金属板3’および金属板4’が取り扱いによって曲がってしまう可能性が減少するために、柔らかい銅板を使用する場合や薄い金属板を用いるときには好ましい。また、1つのセラミック基板1上には1枚の金属板3’または金属板4’を配置すればよいので、接合前のセラミック基板1と金属板3’および金属板4’とを重ねて配置するのが容易であり、位置合わせも容易である。
If the ceramic circuit board is a case where the inner metal circuit board 4 is bonded to the ceramic substrate 1 as in the example shown in FIGS. 1 to 3, the inner layer is formed by the steps shown in FIGS. The metal circuit board 4 can also be processed into a predetermined pattern shape by etching. First, as in the example shown in FIG. 8 (a), the upper surface and the lower surface of the upper ceramic substrate 1 having the through holes 1b are formed on the upper surface and the lower surface of the metal to be the surface metal circuit board 3 having the same size as the ceramic substrate 1. The plate 3 ′ and the metal plate 4 ′ to be the inner metal circuit board 4 are joined to each other, and these are connected by the metal pillar 5 in the through hole 1b by the same method as described above. Next, as in the example shown in FIG. 8B, resist films 10 having a predetermined pattern shape of the surface metal circuit board 3 and the inner metal circuit board 4 are formed on the surfaces of the metal plate 3 ′ and the metal plate 4 ′, respectively. To do. Next, as in the example shown in FIGS. 8C and 8D, unnecessary portions of the metal plate 3 ′ and the metal plate 4 ′ that are not covered with the resist film 10 are dissolved by the etching solution, and the resist film 10 Is peeled to produce only the upper side of the ceramic circuit board (upper circuit board). Next, as in the example shown in FIG. 9A, the intermediate layer ceramic substrate 1 having a predetermined circuit through hole 1a and the lower layer ceramic substrate 1 having a predetermined through hole 1b are brazed. A metal plate 3 ′ having the same size as the ceramic substrate 1, which becomes the surface metal circuit board 3 and the heat sink 8 on the lower surface of the ceramic circuit board, is bonded to the lower surface of the ceramic substrate 1 for the lower layer, In the through hole 1b, a metal column 5 bonded to the metal plate 3 ′ is produced. Next, as in the example shown in FIG. 9B, a resist film 10 having a predetermined pattern shape of the surface metal circuit board 3 and the heat sink 8 is formed on the surface of the metal plate 3 ′. Next, as in the example shown in FIGS. 9C and 9D, unnecessary portions of the metal plate 3 ′ that are not covered with the resist film 10 are dissolved with an etching solution, and the resist film 10 is peeled off. Only the lower side of the ceramic circuit board (lower circuit board) is produced. At this time, the ceramic for the intermediate layer is prevented from entering the circuit through hole 1a and the through hole 1b so that the exposed portions of the metal pillar 5 and the metal plate 3 'are exposed in the through hole 1b. The opening of the circuit through hole 1a on the upper surface of the substrate 1 may be closed with a jig or a resist on a film. Then, as in the example shown in FIG. 10A, the upper circuit board and the lower circuit board are overlapped so that the inner layer metal circuit board 4 of the upper circuit board enters the circuit through hole 1a of the lower circuit board. 10B, between the upper layer ceramic substrate 1 and the intermediate layer ceramic substrate 1, and between the inner layer metal circuit board 4 and the lower layer ceramic substrate 1 and the metal pillar 5. The ceramic circuit board 1 of the present invention having a structure in which three layers of ceramic substrates 1 are laminated as in the example shown in FIG. In this method, both the surface layer metal circuit board 3 and the inner layer metal circuit board 4 can be processed into a predetermined pattern shape by etching after joining the large metal plate 3 ′ and metal plate 4 ′ to the ceramic substrate 1. Since the possibility that the metal plate 3 ′ and the metal plate 4 ′ are bent by handling is reduced, it is preferable when a soft copper plate is used or when a thin metal plate is used. Further, since one metal plate 3 ′ or metal plate 4 ′ may be arranged on one ceramic substrate 1, the ceramic substrate 1 before joining, the metal plate 3 ′, and the metal plate 4 ′ are arranged so as to overlap each other. It is easy to do and alignment is easy.

内層金属回路板4は、図1および図2に示す例、ならびに製造工程を示す図8〜図10の例では、その上面は上層のセラミック基板1に、下面は下層のセラミック基板1にろう材2で接合されているが、図3に示す例のように内層金属回路板4の上下面のうちの片面だけをセラミック基板1に接合してもよいし、図4に示す例のようにセラミック基板1に接合しなくてもよい。   In the example shown in FIGS. 1 and 2 and the example of FIGS. 8 to 10 showing the manufacturing process, the inner layer metal circuit board 4 has a top surface on the upper ceramic substrate 1 and a lower surface on the lower ceramic substrate 1. 2, but only one side of the upper and lower surfaces of the inner metal circuit board 4 may be bonded to the ceramic substrate 1 as in the example shown in FIG. 3, or ceramic as in the example shown in FIG. 4. It is not necessary to join to the substrate 1.

図4に示す例のように、上下のセラミック基板1と内層金属回路板4とが直接接合しない場合は、セラミック基板1と(セラミック基板1に金属柱5および表層金属回路板3を介して接合された)内層金属回路板4との間に発生する熱応力は、セラミック基板1に直接接続されていない内層金属回路板4が変形して緩和されやすくなる。これによって、金属柱5を介して表層金属回路板3に加わる応力も小さいものとなる。また、構造的な理由以外にも、内層金属回路板4が接合時のろう材2からの金属拡散によって硬度が高くなる部分が少ないという理由でも、金属柱5を介して表層金属回路板3に加わる応力が小さくなるので好ましい。   When the upper and lower ceramic substrates 1 and the inner metal circuit board 4 are not directly joined as in the example shown in FIG. 4, the ceramic substrate 1 is joined to the ceramic substrate 1 via the metal pillar 5 and the surface metal circuit board 3. The thermal stress generated between the inner layer metal circuit board 4 and the inner layer metal circuit board 4 is easily relaxed by deformation of the inner layer metal circuit board 4 not directly connected to the ceramic substrate 1. As a result, the stress applied to the surface metal circuit board 3 through the metal pillar 5 is also reduced. In addition to the structural reason, the inner layer metal circuit board 4 is connected to the surface metal circuit board 3 through the metal pillars 5 for the reason that there are few portions where the hardness is increased by metal diffusion from the brazing material 2 at the time of joining. This is preferable because the applied stress is small.

また、内層金属回路板4の上下面のうちの片面だけをセラミック基板1に接合する場合や、内層金属回路板4の上下面ともセラミック基板1に接合する場合であっても、図3および図4に示す例のように、内層金属回路板4の上下面の全面でセラミック基板1に接合しないようにすると、内層金属回路板4が変形しやすく、またろう材2からの金属拡散によって硬度が高くなる部分が少なくなるので、応力をより緩和することができる。   Further, even when only one of the upper and lower surfaces of the inner layer metal circuit board 4 is bonded to the ceramic substrate 1 or when both the upper and lower surfaces of the inner layer metal circuit board 4 are bonded to the ceramic substrate 1, FIG. As in the example shown in FIG. 4, if the upper and lower surfaces of the inner layer metal circuit board 4 are not joined to the ceramic substrate 1, the inner layer metal circuit board 4 is easily deformed, and the hardness is increased by metal diffusion from the brazing material 2. Since the heightened portion is reduced, the stress can be further relaxed.

このように応力を緩和することができると、窒化アルミニウム質セラミックスのように熱伝導率は高いが機械的強度が小さいという材料から成るセラミック基板1を表層のセラミック基板1としても用いることができるようになり、全層窒化アルミニウム質セラミックスで形成することができるので、熱放散性と温度サイクル信頼性の両方の特性を両立させたセラミック回路基板とすることができる。この場合は、特に熱放散性の高いセラミック回路基板とすることができる。   When the stress can be relaxed in this way, the ceramic substrate 1 made of a material having high thermal conductivity but low mechanical strength like the aluminum nitride ceramic can be used as the surface ceramic substrate 1. Thus, since it can be formed of an all-layer aluminum nitride ceramic, a ceramic circuit board having both heat dissipation and temperature cycle reliability can be obtained. In this case, a ceramic circuit board having a particularly high heat dissipation property can be obtained.

本発明の回路基板において、セラミック基板1に加わる熱応力は、表層金属回路板3、内層金属回路板4および放熱板8とセラミック基板1との熱膨張係数の差によって発生するものが主となり、この応力は接合しているこれら金属板の硬さと、回路基板と表層金属回路板3(内層金属回路板4)の接合長さに比例して大きくなる。そのため、上述したように、内層金属回路板4は、図4に示す例のようにセラミック基板1に接合しないのが好ましく、接合する場合であっても、図2および図3に示す例のように、内層金属回路板4の上下面の全面でセラミック基板1に接合しないようにすると、ろう材2の拡散によって内層金属回路板4が硬くなることが抑えられるので好ましい。また、図11に示す例では、セラミック回路基板の下面の中央部に比較的大きい放熱板8が接合されているが、図1に示す例のように、放熱板8のパターンを複数の小さいものにして放熱板8とセラミック基板1との接合長さを短くすることによって熱応力を小さくするのが好ましい。具体的には、セラミック基板1と表層金属回路板3等の金属板との接合長さが10mmを超えないようにするとよい。   In the circuit board of the present invention, the thermal stress applied to the ceramic substrate 1 is mainly generated by the difference in thermal expansion coefficient between the surface layer metal circuit board 3, the inner layer metal circuit board 4, and the heat sink 8 and the ceramic substrate 1, This stress increases in proportion to the hardness of the bonded metal plates and the bonding length between the circuit board and the surface metal circuit board 3 (inner metal circuit board 4). Therefore, as described above, it is preferable that the inner layer metal circuit board 4 is not joined to the ceramic substrate 1 as in the example shown in FIG. 4, and even if it is joined, the example shown in FIG. 2 and FIG. Furthermore, it is preferable that the inner layer metal circuit board 4 is not bonded to the ceramic substrate 1 over the entire upper and lower surfaces of the inner layer metal circuit board 4 because the inner layer metal circuit board 4 is prevented from becoming hard due to diffusion of the brazing material 2. In the example shown in FIG. 11, a relatively large heat sink 8 is joined to the central portion of the lower surface of the ceramic circuit board. However, as in the example shown in FIG. Thus, it is preferable to reduce the thermal stress by shortening the joining length of the heat sink 8 and the ceramic substrate 1. Specifically, the bonding length between the ceramic substrate 1 and the metal plate such as the surface metal circuit board 3 should not exceed 10 mm.

図11に示す例では、最上層のセラミック基板1の上面に電子部品6の搭載部および表層金属回路板3を取り囲むような枠体9を設けている。この例では、枠体9は、セラミック基板1の上に、順に金属枠体9b、絶縁枠体9a、金属枠体9bがろう材2を介して接合されて形成されている。上側の金属枠体9bは、蓋を接合するためのものである。この枠体9の上に金属等からなる蓋をろう接やシーム溶接やYAGレーザー溶接等の溶接によって気密に接合することで、電子部品6を気密封止した電子装置とすることができる。このようにすることによって、電子部品6を気密に封着するとともに、多層セラミック基板の下面の表層金属回路板3を外部端子として外部回路に電気的に接続することができるようになっている。下側の金属枠体9bは、表層金属回路板3と同様の方法で、表層金属回路板3と同時に形成すればよい。下側の金属枠体9bの上には、セラミック基板1と同様のセラミックスから成る絶縁枠体9aとが活性金属で接合され、さらに絶縁枠体9aの上に活性金属で上側の金属枠体9bが接合される。図11に示す例では、このように金属枠体9bと絶縁枠体9aとを積層して接合することによって枠体9を形成することで、セラミック回路基板に搭載される電子部品6より高さの高い枠体9を形成している。枠体9は、図11に示す例に限られるものではなく、例えば、下側の金属枠体9bだけで枠体9を形成して、電子部品6を覆うような箱型の蓋を接合してもよい。   In the example shown in FIG. 11, a frame 9 is provided on the upper surface of the uppermost ceramic substrate 1 so as to surround the mounting portion of the electronic component 6 and the surface metal circuit board 3. In this example, the frame body 9 is formed on a ceramic substrate 1 by sequentially joining a metal frame body 9 b, an insulating frame body 9 a, and a metal frame body 9 b through a brazing material 2. The upper metal frame 9b is for joining the lid. An electronic device in which the electronic component 6 is hermetically sealed can be obtained by airtightly bonding a lid made of metal or the like on the frame body 9 by brazing, seam welding, YAG laser welding or the like. By doing so, the electronic component 6 can be hermetically sealed, and the surface metal circuit board 3 on the lower surface of the multilayer ceramic substrate can be electrically connected to an external circuit as an external terminal. The lower metal frame 9 b may be formed simultaneously with the surface metal circuit board 3 in the same manner as the surface metal circuit board 3. On the lower metal frame 9b, an insulating frame 9a made of the same ceramic as the ceramic substrate 1 is joined with active metal, and the upper metal frame 9b with active metal on the insulating frame 9a. Are joined. In the example shown in FIG. 11, the frame body 9 is formed by laminating and joining the metal frame body 9b and the insulating frame body 9a in this way, so that the height is higher than the electronic component 6 mounted on the ceramic circuit board. A high frame 9 is formed. The frame body 9 is not limited to the example shown in FIG. 11. For example, the frame body 9 is formed only by the lower metal frame body 9 b and a box-shaped lid that covers the electronic component 6 is joined. May be.

上記のような本発明の回路基板に電子部品6を搭載し、電気的に接続することで本発明の電子装置となる。本発明の電子装置によれば、上記各構成の本発明のセラミック回路基板に電子部品6が搭載されていることから、大電流を流すことができ、信頼性が高く、小型で薄型化の電子装置となる。また、特性の異なる第1のセラミック基板および第2のセラミック基板を用いることで、例えば、電子部品から発生した熱を外部に効率良く排出することができるとともに、回路基板の強度を向上させることができるので、熱放散性と温度サイクル信頼性等のような異なる特性を両立させた電子装置とすることができる。   The electronic component 6 is mounted on the circuit board of the present invention as described above and electrically connected to the electronic device of the present invention. According to the electronic device of the present invention, since the electronic component 6 is mounted on the ceramic circuit board of the present invention having the above-described configurations, a large current can flow, and the reliability is high, and the electronic device is small and thin. It becomes a device. Further, by using the first ceramic substrate and the second ceramic substrate having different characteristics, for example, heat generated from the electronic component can be efficiently discharged to the outside, and the strength of the circuit board can be improved. Therefore, an electronic device having both different characteristics such as heat dissipation and temperature cycle reliability can be obtained.

電子部品6としては、トランジスタ,CPU(Central Processing Unit)用のLSI
(Large Scale Integrated circuit),IGBT(Insulated Gate Bipolar Transistor
)やMOS−FET(Metal Oxide Semiconductor - Field Effect Transistor)等の半
導体素子が挙げられる。
Electronic components 6 include transistors, LSIs for CPU (Central Processing Unit)
(Large Scale Integrated circuit), IGBT (Insulated Gate Bipolar Transistor)
) And MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor).

電子部品6は、半田やAu−Si合金等の金属接合材あるいは導電性樹脂で固定されて回路基板に搭載され、ボンディングワイヤ7により電気的に接続される。図1〜図10に示す例では、上から1層目のセラミック基板1の上面に電子部品6を搭載するための表層金属回路板3を形成しているが、セラミック基板1の上面に直接、または第1のセラミック基板1の上面に形成したメタライズ層の上に搭載してもよい。   The electronic component 6 is fixed with a metal bonding material such as solder or Au—Si alloy or a conductive resin, mounted on a circuit board, and electrically connected by a bonding wire 7. In the example shown in FIGS. 1 to 10, the surface layer metal circuit board 3 for mounting the electronic component 6 is formed on the upper surface of the first ceramic substrate 1 from the top, but directly on the upper surface of the ceramic substrate 1. Alternatively, it may be mounted on a metallized layer formed on the upper surface of the first ceramic substrate 1.

1・・・・・セラミック基板
1a・・・・回路貫通孔
1b・・・・貫通孔
2・・・・・ろう材
3・・・・・表層金属回路板
4・・・・・内層金属回路板
5・・・・・金属柱
6・・・・・電子部品
7・・・・・ボンディングワイヤ
8・・・・・放熱板
9・・・・・枠体
9a・・・・絶縁枠体
9b・・・・金属枠体
DESCRIPTION OF SYMBOLS 1 ... Ceramic substrate 1a ... Circuit through hole 1b ... Through hole 2 ... Brazing material 3 ... Surface layer metal circuit board 4 ... Inner layer metal circuit Plate 5 ... Metal pillar 6 ... Electronic component 7 ... Bonding wire 8 ... Heat sink 9 ... Frame body 9a ... Insulation frame body 9b .... Metal frame

Claims (2)

3層以上のセラミック基板が積層されて互いにろう材によって接合されたセラミック多層基板と、該セラミック多層基板の上面および下面にろう材によって接合された表層金属回路板と、内層の前記セラミック基板に形成された内層回路パターン形状の回路貫通孔内に配置された内層金属回路板と、前記回路貫通孔が形成された前記セラミック基板の上下の前記セラミック基板に形成された貫通孔内に配置され、一端が前記内層金属回路板に、他端が他の前記内層金属回路板または前記表層金属回路板にそれぞれろう材によって接合され、前記内層金属回路板と他の前記内層金属回路板または前記表層金属回路板とを接続する金属柱とを備えており、前記内層金属回路板と、該内層金属回路板の上下の前記セラミック基板とが直接接合していないことを特徴とするセラミック回路基板。 A ceramic multilayer substrate in which three or more layers of ceramic substrates are laminated and bonded to each other by a brazing material, a surface metal circuit board bonded to the upper and lower surfaces of the ceramic multilayer substrate by a brazing material, and an inner layer formed on the ceramic substrate The inner layer metal circuit board disposed in the circuit through hole having the inner layer circuit pattern shape and the through hole formed in the ceramic substrate above and below the ceramic substrate in which the circuit through hole is formed, Are joined to the inner layer metal circuit board and the other end is joined to the other inner layer metal circuit board or the surface layer metal circuit board by a brazing material, respectively, and the inner layer metal circuit board and the other inner layer metal circuit board or the surface layer metal circuit. and a metal post that connects the plate, and the inner metal circuit board, and the top and bottom of the ceramic substrate of the inner layer metal circuit plate are directly bonded Ceramic circuit board, characterized in that brewing. 請求項1に記載のセラミック回路基板に電子部品が搭載されていることを特徴とする電子装置。   An electronic device in which an electronic component is mounted on the ceramic circuit board according to claim 1.
JP2011038568A 2010-02-24 2011-02-24 Ceramic circuit board and electronic device using the same Expired - Fee Related JP5780777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038568A JP5780777B2 (en) 2010-02-24 2011-02-24 Ceramic circuit board and electronic device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010038944 2010-02-24
JP2010038944 2010-02-24
JP2011038568A JP5780777B2 (en) 2010-02-24 2011-02-24 Ceramic circuit board and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2011199275A JP2011199275A (en) 2011-10-06
JP5780777B2 true JP5780777B2 (en) 2015-09-16

Family

ID=44877029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038568A Expired - Fee Related JP5780777B2 (en) 2010-02-24 2011-02-24 Ceramic circuit board and electronic device using the same

Country Status (1)

Country Link
JP (1) JP5780777B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014012A1 (en) 2012-07-19 2014-01-23 三菱電機株式会社 Power semiconductor module
JP2015153806A (en) * 2014-02-12 2015-08-24 セイコーエプソン株式会社 Method for manufacturing wiring board, wiring board, electronic device, electronic apparatus, and mobile body
WO2019146699A1 (en) 2018-01-24 2019-08-01 京セラ株式会社 Wiring board, electronic device, and electronic module
CN109511218A (en) * 2018-12-16 2019-03-22 天津荣事顺发电子有限公司 A kind of multilayer ceramic circuit board preparation method
CN115720414B (en) * 2023-01-10 2023-05-05 四川斯艾普电子科技有限公司 Forming method of thick film anti-sparking circuit board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613726A (en) * 1992-06-26 1994-01-21 Toshiba Corp Ceramic circuit substrate
JPH08148841A (en) * 1994-11-16 1996-06-07 Furukawa Electric Co Ltd:The Wiring board
JP2002076214A (en) * 2000-08-28 2002-03-15 Toshiba Corp Insulating substrate, its manufacturing method, and semiconductor device using the same

Also Published As

Publication number Publication date
JP2011199275A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP6018297B2 (en) Composite laminate and electronic device
JP5780777B2 (en) Ceramic circuit board and electronic device using the same
JP4926033B2 (en) Circuit board, package using the same, and electronic device
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JP5902557B2 (en) Multilayer wiring board and electronic device
JP4511376B2 (en) Connection terminal and electronic component storage package and electronic device using the same
JP2012074591A (en) Circuit board and electronic divice
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP3830372B2 (en) Ceramic circuit board
JP5812882B2 (en) Wiring board and electronic device
JP2003133662A (en) Ceramic circuit board
JP3850335B2 (en) Ceramic circuit board
JP2007266224A (en) Power module
JP4637647B2 (en) Electronic component storage package and electronic device
JP3783493B2 (en) Multilayer ceramic substrate and power module substrate using the same
JP5665479B2 (en) Circuit board and electronic device
US20140091444A1 (en) Semiconductor unit and method for manufacturing the same
JP2016046430A (en) Circuit board and electronic device
JP2013012687A (en) Ceramic circuit board and electronic device using the same
JP2013229377A (en) Circuit board and electronic apparatus using the same
US20240145323A1 (en) Electrical module and method of manufacturing an electrical module
JP5777456B2 (en) Ceramic circuit board and electronic device
JP2011151338A (en) Circuit board, and electronic device using the same
JP2011073194A (en) Metal-ceramics joint base and method of manufacturing the same
JP2005101415A (en) Ceramic circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5780777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees