JP3783493B2 - Multilayer ceramic substrate and power module substrate using the same - Google Patents

Multilayer ceramic substrate and power module substrate using the same Download PDF

Info

Publication number
JP3783493B2
JP3783493B2 JP31382599A JP31382599A JP3783493B2 JP 3783493 B2 JP3783493 B2 JP 3783493B2 JP 31382599 A JP31382599 A JP 31382599A JP 31382599 A JP31382599 A JP 31382599A JP 3783493 B2 JP3783493 B2 JP 3783493B2
Authority
JP
Japan
Prior art keywords
ceramic substrate
bonded
foil
foils
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31382599A
Other languages
Japanese (ja)
Other versions
JP2001135789A (en
Inventor
敏之 長瀬
義幸 長友
和明 久保
正一 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP31382599A priority Critical patent/JP3783493B2/en
Publication of JP2001135789A publication Critical patent/JP2001135789A/en
Application granted granted Critical
Publication of JP3783493B2 publication Critical patent/JP3783493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

PROBLEM TO BE SOLVED: To improve mounting density of a semiconductor device and effectively conduct heat. SOLUTION: In a stacked ceramic substrate 10, two or more ceramic substrates 11, 12, 13, where an Al foil is adhered to upper and lower surfaces thereof respectively are stacked and Al foils 11b, 12a, 12b, 13a in surface contact part of a ceramic substrate, are brazed to each other. Purity of Al in an Al foil 13b of an uppermost layer and an Al foil 11a of a lowermost layer is 99.900 to 99.999 wt.%, respectively, and thickness thereof is 0.1 to 1.0 mm, respectively, and Al purity of the Al foils 11b, 12a, 12b, 13a adhered to an upper surface and a lower surface of a ceramic substrate excepting an uppermost layer and the lowermost layer is 99.00 to 99.99 wt.%, respectively, and the thickness thereof is 0.1 to 0.7 mm, respectively. The ceramic substrate is constituted of one among AlN, Al2O3 and ASi3N4. The brazed Al foil forms a proscribed circuit pattern.

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体素子が搭載されるセラミック基板に関する。更に詳しくは、2以上のセラミック基板を積重ねて積層した積層セラミック基板及びこの積層セラミック基板をヒートシンクに積層接着したパワーモジュール用基板に関するものである。
【0002】
【従来の技術】
図3に示すように、従来複数の半導体素子3a,3bを搭載するセラミック基板1として、AlNからなるものが知られている。このセラミック基板1の上面及び下面にはCu箔がそれぞれ接着され、半導体素子3a,3bを搭載する上面のCu箔をエッチング加工することによりそのセラミック基板1の上面には複数種類の導体2a,2b,2cからなる所定の回路パターン2が形成される。半導体素子3a,3bの搭載は、この回路パターン2にはんだ付することにより行われ、半導体素子3a,3bの電極部はワイヤ4又は平板によりそれらの回路パターン2に接続される。
【0003】
一方、発熱量が比較的多い半導体素子3a,3bを搭載するパワーモジュール用基板では、このセラミック基板1を図示しないヒートシンクに積層したものが一般的である。ヒートシンクは通常銅により形成され、表面にはニッケルメッキが施される。セラミック基板1のヒートシンクへの積層はセラミック基板下面に接着されたCu箔をヒートシンクにはんだ付けすることにより行われる。このようにヒートシンクにセラミック基板を積層接着したパワーモジュール用基板では、半導体素子が発した熱が回路パターン2、セラミック基板1、Cu箔、はんだ及び図示しないヒートシンクを介して外部に放散されるようになっている。
【0004】
【発明が解決しようとする課題】
しかし、上面に複数の導体2a,2b,2cからなる所定の回路パターン2を形成した上記従来のセラミック基板1では、半導体素子3a,3bの実装密度を向上することに限界がある不具合がある。図3を用いて具体的に説明すると、図3における回路パターン2は第1導体2a、第2導体2b及び第3導体2cからなり、二対の第1半導体素子3a,3aは第1導体2aに接着されその電極部はワイヤ4を介して第2導体2bに接続される。また、二対の第2半導体素子3b,3bは第2導体2bに接着されその電極部はワイヤ4を介して第3導体2cに接続される。このような場合において実装密度を向上させるためにはそれぞれの導体2a,2b,2c自体の幅及びその導体間の間隔を狭める必要があるが、それらを狭めることには導体2a,2b,2cの抵抗を高めるとともに、導体間における絶縁特性を劣化させることにもなり、それらを狭めることには限界があった。
【0005】
また、このようなセラミック基板の下面に接着されたCu箔をヒートシンクにはんだ付けすることにより積層接着した従来のパワーモジュール用基板では、はんだの熱伝導率が比較的低いため、半導体素子3a,3bが発した熱を有効にヒートシンクに伝導して放散できない不具合もある。
本発明の目的は、半導体素子の実装密度を向上し得る積層セラミック基板を提供することにある。
本発明の別の目的は、熱を有効に伝導して放散し得るパワーモジュール用基板を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、上面及び下面にAl箔11a,11b,12a,12b,13a,13bがそれぞれ接着された2以上のセラミック基板11,12,13が積重ねられ、セラミック基板11,12,13の面接触する部分におけるAl箔11b,12a,12b,13aが互いにろう付けされた積層セラミック基板10である。
その特徴ある点は、最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aのAl純度がそれぞれ最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔11b,12a,12b,13aのAl純度より高く、最最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aの厚さを最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔11b,12a,12b,13aの厚さで除した値が0.8以上3以下であるところにある。
この請求項1に係る積層セラミック基板10では、導体として機能するAl箔11b,12b,13bがそれぞれ異なるセラミック基板11,12,13に形成されて交差することが許容される。このため、交差する導体からなる回路パターンの形成を可能にし、その回路パターンの設計の自由度が向上し、半導体素子の実装密度を高めることができる。
【0008】
また、この積層セラミック基板10では、Al箔は高純度であるほど塑性変形しやすいため、最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aのAl純度をそれら以外のAl箔11b,12a,12b,13aのAl純度より高くすることにより、最上層及び最下層のAl箔13b,11aの厚さがそれら以外のAl箔11b,12a,12b,13aの厚さより大きくても、作製された積層セラミック基板10のセラミック基板11,12,13間におけるAl箔の厚さを均一にすることができる。また、最上層及び最下層のAl箔13b,11aの厚さをそれら以外のAl箔11b,12a,12b,13aの厚さで除した値が0.8以上3以下であることにより、接合前のセラミック基板11,12,13の反りを低減し、積層セラミック基板10の反りを有効に防止する。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aのAl純度がそれぞれ99.900〜99.999重量%であってかつ厚さがそれぞれ0.1〜1.0mmであり、最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔11b,12a,12b,13aのAl純度がそれぞれ99.00〜99.99重量%であってかつ厚さがそれぞれ0.1〜0.7mmである積層セラミック基板である。
【0010】
この請求項2に係る積層セラミック基板10では、Al箔11a,11b,12a,12b,13a,13bのAl純度及び厚さを規定することにより、積層セラミック基板10の作成を容易にしかつ作成された積層セラミック基板10の信頼性を向上させる。Al箔11a,11b,12a,12b,13a,13bの厚さが0.1mm未満であると電流による発熱が大きく、数十アンペア以上の電流値が必要なパワーモジュール用基板に使用することができない。最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aの厚さが1.0mmを越え、又は最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔11b,12a,12b,13aの厚さが0.7mmを越えると、温度サイクルによりセラミック基板11,12,13が割れたり、積層セラミック基板10の接合界面に剥離が生じるおそれがある。
【0011】
請求項3に係る発明は、請求項1又は2に係る発明であって、セラミック基板11,12,13がそれぞれAlN、Al23又はSi34のいずれかからなる積層セラミック基板である。
この請求項3に係る積層セラミック基板では、AlN、Al23又はSi34からなるセラミック基板11,12,13を積層することにより、積層セラミック基板10の熱伝導率、耐熱性及び強度等を向上させるとともに、積層セラミック基板10の熱膨張率を半導体素子の熱膨張率に整合させることができる。
請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、ろう付けされたAl箔11b,12a,12b,13aが所定の回路パターンを形成する積層セラミック基板である。
【0012】
この請求項4に係る積層セラミック基板では、ろう付けされたAl箔11b,12a,12b,13aにより形成される回路パターンの自由度が更に向上し、半導体素子の実装密度を更に高めることができる。
請求項5に係る発明は、請求項1ないし4いずれか1項に記載の積層セラミック基板がろう材によりヒートシンクに積層接着されたパワーモジュール用基板である。
ろう材は熱伝導率がはんだに比較して高いため、この請求項5に係るパワーモジュール用基板では、発熱量が比較的多い半導体素子を積層セラミック基板10に搭載しても、その熱は半導体素子の下面から積層セラミック基板10及び図示しないヒートシンクに有効に伝導され、従来に比較して半導体素子が発した熱を外部に有効に放散することができる。
【0013】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて詳しく説明する。
図1及び図2に示すように、本発明の積層セラミック基板10は、第1,第2及び第3セラミック基板11,12,13を積層することにより作られる。セラミック基板11,12,13はそれぞれAlN、Al23又はSi34のいずれかからなり、第1セラミック基板11を最下層とし、第3セラミック基板13を最上層とし、第2セラミック基板12が中間層になるように積層される。最下層の第1セラミック基板11は比較的幅の広い方形の基板であって、中間層である第2セラミック基板12は長さが第1セラミック基板11と同一であって、幅が第1セラミック基板11の幅より小さく形成される。最上層である第3セラミック基板13は長さ及び幅の双方が第2セラミック基板12の長さ及び幅より小さく形成され、この実施の形態では2枚用意される。それぞれのセラミック基板11,12,13の上面及び下面にはAl箔11a,11b,12a,12b,13a,13bがそれぞれ接着される。なお、セラミック基板11,12,13へのAl箔11a,11b,12a,12b,13a,13bの接着は図示しないろう材を介して積層接着される。
【0014】
最上層である第3セラミック基板13の上面に接着されたAl箔13b及び最下層である第1セラミック基板11の下面に接着されたAl箔11aは、そのAl純度がそれぞれ99.900〜99.999重量%であって、厚さはそれぞれ0.1〜1.0mmのものが使用される。このAl純度の特に好ましい値はそれぞれ99.980〜99.998重量%であって、厚さの好ましい値はそれぞれ0.2〜0.5mmである。このため、これらAl箔13b,11aの融点は660℃になる。
一方、第3セラミック基板13の下面に接着されたAl箔13a、第1セラミック基板11の上面に接着されたAl箔11b及び第2セラミック基板12の上下面に接着されたAl箔12a,12bは、そのAl純度がそれぞれ99.00〜99.99重量%であって、厚さがそれぞれ0.1〜0.7mmのものが使用される。そのAl純度の特に好ましい値はそれぞれ99.90〜99.99重量%であって、厚さの好ましい値はそれぞれ0.1〜0.4mmである。このため、これらAl箔13a,11b,12a,12bの融点は660℃になる。
【0015】
最上層である第3セラミック基板13の上面に接着されたAl箔13b及び最下層である第1セラミック基板11の下面に接着されたAl箔11aのAl純度がそれぞれ99.900重量%未満であるか、又は第3セラミック基板13の下面に接着されたAl箔13a、第1セラミック基板11の上面に接着されたAl箔11b及び第2セラミック基板12の上下面に接着されたAl箔12a,12bのAl純度がそれぞれ99.00重量%未満である場合には、それらセラミック基板11,12,13と積層接着されたAl箔11a,11b,12a,12b,13a,13bのそれぞれの接合界面に剥離が生じるおそれがある。
【0016】
また、最上層である第3セラミック基板13の上面に接着されたAl箔13b及び最下層である第1セラミック基板11の下面に接着されたAl箔11aの厚さが0.1mm未満である場合、又は第3セラミック基板13の下面に接着されたAl箔13a、第1セラミック基板11の上面に接着されたAl箔11b及び第2セラミック基板12の上下面に接着されたAl箔12a,12bの厚さが0.1mm未満である場合には、それらのAl箔13a,13b,11a,11b,12a,12bにおける電流による発熱が大きくなり、この積層セラミック基板10を数十アンペア以上の電流値が必要なパワーモジュール用基板に使用することができない不具合がある。
【0017】
一方、最上層のセラミック基板13及び最下層のセラミック基板11に接着されたAl箔13b,11aの厚さが1.0mmを越えるか、又はそれら以外のAl箔13a,11b,12a,12bの厚さが0.7mmを越えると、温度サイクルによりセラミック基板11,12,13が割れたり、積層セラミック基板10の接合界面若しくはセラミック基板11,12,13とそれらに積層接着されたAl箔11a,11b,12a,12b,13a,13bのそれぞれの接合界面に剥離が生じるおそれがある。
【0018】
また、最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aのAl純度は、それぞれ最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔11b,12a,12b,13aのAl純度より高いものが使用され、最上層のセラミック基板13上面に接着されたAl箔13b及び最下層のセラミック基板11下面に接着されたAl箔11aの厚さを最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔11b,12a,12b,13aの厚さで除した値が0.8以上3以下、好ましくは1以上2以下になるように構成される。この値が0.8以上3以下であることにより、接合前のセラミック基板11,12,13の反りを低減することができる。この範囲以外では基板11,12,13の反り量は大きく、積層時に各基板を接合することが困難になる。
【0019】
それぞれのセラミック基板11,12,13の面接触する部分におけるAl箔は互いにろう付けされる。ろう材は第3セラミック基板13の下面に接着されたAl箔13a、第1セラミック基板11の上面に接着されたAl箔11b及び第2セラミック基板の上下面に接着されたAl箔12a,12bより融点が低いAl−Si系の第1ろう材が使用される。即ち、第1ろう材は85〜95重量%のAlと5〜15重量%のSiを含み、この第1ろう材16の溶解温度範囲は577〜620℃である。セラミック基板11,12,13の積層接着は、セラミック基板11,12,13の面接触する部分におけるそれぞれのAl箔13a,11b,12a,12bの間にこの第1ろう材の箔を挟んだ状態でこれらに荷重0.05〜2.00kgf/cm2を加え、真空中で580〜650℃に加熱することにより行われる。
【0020】
この積層セラミック基板10には複数の半導体素子14が搭載される。図2に詳しく示すように、二対の第1半導体素子14a,14aは第2セラミック基板12の上面に接着されたAl箔12bに接着され、その電極部はワイヤ16を介して第3セラミック基板13の上面に接着されたAl箔13bに接続される。また、二対の第2半導体素子14b,14bは第3セラミック基板13の上面に接着されたAl箔13bに接着され、その電極部はワイヤ16を介して第1セラミック基板11の上面に接着されたAl箔11bに接続される。ここで、第1及び第2半導体素子14a,14a,14b,14b及びそれらの電極部は200〜400℃ではんだによりそれぞれのAl箔13b,12b,11bに接着される。
【0021】
このように構成された積層セラミック基板10では、導体として機能するAl箔11b,12b,13bがそれぞれのセラミック基板11,12,13に形成されるため、回路パターンを同一面に形成した図3に示す従来のセラミック基板に比較して半導体素子14a,14bの実装密度を高めることができる。即ち、それぞれのセラミック基板11,12,13の導体として機能するAl箔11b,12b,13bは互いに異なる層に形成されるため、そのAl箔11b,12b,13bは交差する。この点で導体を交差させることができない図3に示す従来のセラミック基板と相違し、本発明の積層セラミック基板10では、そのAl箔11b,12b,13bからなる回路パターンの自由度が向上し、従来より半導体素子14a,14bの実装密度を高めることができる。具体的に図3では、第2半導体素子3b,3bの端子を接続するために必要とされた第3導体における突出部2dが図2における本発明では不要になり、図2における積層セラミック基板10は図3に示すセラミック基板1より小型になる。
【0022】
また、発熱量が比較的多い半導体素子14a,14bを搭載する場合には、この半導体素子14a,14bを搭載する積層セラミック基板10を、熱を放散するための図示しないヒートシンクに予め積層する。この積層セラミック基板10のヒートシンクへの接着は、積層セラミック基板10が第1ろう材により既に積層されている関係上、その第1ろう材より溶融温度範囲が低い組成を有する第2ろう材により行われる。このように、積層セラミック基板10をろう材によりヒートシンクに積層接着したパワーモジュール用基板では、第2ろう材の熱伝導率は、はんだの熱伝導率に比較して高いため、その後に搭載された半導体素子14a,14bが発した熱は、半導体素子13の下面から積層セラミック基板10及び図示しないヒートシンクを介して外部に有効に放散される。
【0023】
なお、上述した実施の形態では第1、第2及び第3セラミック基板11,12,13からなる3層の積層セラミック基板10を説明したが、積層セラミック基板は、2枚のセラミック基板又は4枚のセラミック基板若しくは5枚のセラミック基板を積み重ねて2層又は4層若しくは5層からなるものであっても良い。
また、上述した実施の形態では、特にそれぞれのAl箔11a,11b,12a,12b,13a,13bに回路パターンを形成しなかったが、更に複数種類の半導体素子を搭載させる場合には、ろう付けされたAl箔11b,12a,12b,13aに所定の回路パターンを形成することが好ましい。回路パターンはそれぞれのAl箔をエッチングすることにより作成可能であって、エッチングはAl箔にレジスト膜でマスキングを行い、この状態でセラミック基板をエッチング液に浸漬してマスキングされていない部分におけるAl箔をエッチング除去することにより行われる。その後レジスト膜を除去することによりそのレジスト膜により覆われていた部分が残存して所定の回路パターンが形成される。このようにろう付けされたAl箔11b,12a,12b,13aに所定の回路パターンを形成すれば、回路パターンの自由度が更に向上し、半導体素子の実装密度を更に高めることができる。
【0024】
【発明の効果】
以上述べたように、本発明によれば、上面及び下面にAl箔がそれぞれ接着された2以上のセラミック基板を積重ね、セラミック基板の面接触する部分におけるAl箔を互いにろう付けするので、導体として機能するAl箔をそれぞれ異なるセラミック基板に形成することができ、交差する導体からなる回路パターンの形成を可能にし、その回路パターンの設計の自由度を向上させて半導体素子の実装密度を高めることができる。この場合、所定の要件を満たすAl箔を使用することにより、積層セラミック基板の作成を容易にし、かつ作成された積層セラミック基板のセラミック基板間におけるAl箔の厚さを均一にて積層セラミック基板のそりを有効に防止することができる。
【0025】
また、AlN、Al23又はSi34からなるセラミック基板を積層すれば、積層セラミック基板の熱伝導率、耐熱性及び強度等を向上させるとともに、積層セラミック基板の熱膨張率を半導体素子の熱膨張率に整合させることができ、ろう付けされたAl箔に回路パターンを形成すれば、その回路パターンの自由度は更に向上し、半導体素子の実装密度を更に高めることができる。
更に、積層セラミック基板の最下面にはAl箔が接着されるので、この積層セラミック基板にヒートシンクを接着するには、熱伝導率がはんだに比較して高いろう材により行われる。このため、この積層セラミック基板をヒートシンクに積層したパワーモジュール用基板にあっては、半導体素子が発する熱を従来より外部に有効に放散することができる。
【図面の簡単な説明】
【図1】本発明の積層セラミック基板を示す図2のA−A線断面図。
【図2】半導体素子が搭載された積層セラミック基板の斜視図。
【図3】従来例を示す図2に対応する斜視図。
【符号の説明】
10 積層セラミック基板
11,12,13 セラミック基板
11a,11b,12a,12b,13a,13b Al箔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic substrate on which a plurality of semiconductor elements are mounted. More specifically, the present invention relates to a laminated ceramic substrate in which two or more ceramic substrates are stacked and laminated, and a power module substrate in which the laminated ceramic substrates are laminated and bonded to a heat sink.
[0002]
[Prior art]
As shown in FIG. 3, a conventional ceramic substrate 1 on which a plurality of semiconductor elements 3a and 3b are mounted is made of AlN. Cu foils are bonded to the upper and lower surfaces of the ceramic substrate 1, respectively, and a plurality of types of conductors 2a and 2b are formed on the upper surface of the ceramic substrate 1 by etching the upper Cu foil on which the semiconductor elements 3a and 3b are mounted. , 2c, a predetermined circuit pattern 2 is formed. The semiconductor elements 3a and 3b are mounted by soldering to the circuit pattern 2, and the electrode portions of the semiconductor elements 3a and 3b are connected to the circuit pattern 2 by wires 4 or flat plates.
[0003]
On the other hand, in a power module substrate on which semiconductor elements 3a and 3b that generate a relatively large amount of heat are mounted, this ceramic substrate 1 is generally laminated on a heat sink (not shown). The heat sink is usually made of copper, and the surface is plated with nickel. Lamination of the ceramic substrate 1 to the heat sink is performed by soldering a Cu foil bonded to the lower surface of the ceramic substrate to the heat sink. Thus, in the power module substrate in which the ceramic substrate is laminated and bonded to the heat sink, the heat generated by the semiconductor element is dissipated to the outside through the circuit pattern 2, the ceramic substrate 1, Cu foil, solder, and a heat sink (not shown). It has become.
[0004]
[Problems to be solved by the invention]
However, the above-described conventional ceramic substrate 1 on which the predetermined circuit pattern 2 composed of the plurality of conductors 2a, 2b, 2c is formed on the upper surface has a problem that there is a limit in improving the mounting density of the semiconductor elements 3a, 3b. Specifically, referring to FIG. 3, the circuit pattern 2 in FIG. 3 includes a first conductor 2a, a second conductor 2b, and a third conductor 2c, and the two pairs of first semiconductor elements 3a and 3a are the first conductor 2a. The electrode part is connected to the second conductor 2b through the wire 4. The two pairs of second semiconductor elements 3b and 3b are bonded to the second conductor 2b, and the electrode portions thereof are connected to the third conductor 2c through the wires 4. In such a case, in order to improve the mounting density, it is necessary to reduce the width of each conductor 2a, 2b, 2c itself and the interval between the conductors. To reduce them, the conductors 2a, 2b, 2c In addition to increasing the resistance, it also deteriorates the insulation characteristics between the conductors, and there is a limit to narrowing them.
[0005]
Moreover, in the conventional power module substrate in which the Cu foil bonded to the lower surface of the ceramic substrate is laminated and bonded to the heat sink, the thermal conductivity of the solder is relatively low, so that the semiconductor elements 3a and 3b There is also a problem that the heat generated by can not be effectively transferred to the heat sink and dissipated.
An object of the present invention is to provide a multilayer ceramic substrate capable of improving the mounting density of semiconductor elements.
Another object of the present invention is to provide a power module substrate capable of effectively conducting and dissipating heat.
[0006]
[Means for Solving the Problems]
In the invention according to claim 1, as shown in FIG. 1, two or more ceramic substrates 11, 12, 13 each having Al foils 11a, 11b, 12a, 12b, 13a, 13b bonded to the upper and lower surfaces are stacked. A multilayer ceramic substrate 10 in which Al foils 11b, 12a, 12b, and 13a in the surface contact portions of the ceramic substrates 11, 12, and 13 are brazed to each other.
The characteristic feature is that the Al purity of the Al foil 13b bonded to the upper surface of the uppermost ceramic substrate 13 and the Al foil 11a bonded to the lower surface of the lowermost ceramic substrate 11 are different from those of the ceramic substrates other than the uppermost layer and the lowermost layer. Al foils 11b, 12a, 12b, 13a bonded to the upper and lower surfaces of the Al foil 13b bonded to the uppermost surface of the uppermost ceramic substrate 13 and Al bonded to the lower surface of the lowermost ceramic substrate 11 The value obtained by dividing the thickness of the foil 11a by the thickness of the Al foils 11b, 12a, 12b, 13a bonded to the upper and lower surfaces of the ceramic substrate other than the uppermost layer and the lowermost layer is 0.8 or more and 3 or less. is there.
In the multilayer ceramic substrate 10 according to the first aspect, the Al foils 11b, 12b, and 13b that function as conductors are allowed to be formed on different ceramic substrates 11, 12, and 13, respectively, and intersect. For this reason, it is possible to form a circuit pattern composed of intersecting conductors, improve the degree of freedom in designing the circuit pattern, and increase the mounting density of the semiconductor elements.
[0008]
Further, in this multilayer ceramic substrate 10, the higher the purity of the Al foil, the easier the plastic deformation occurs . Therefore , the Al foil 13 b bonded to the upper surface of the uppermost ceramic substrate 13 and the Al foil bonded to the lower surface of the lowermost ceramic substrate 11. By making the Al purity of the foil 11a higher than the Al purity of the other Al foils 11b, 12a, 12b, and 13a, the thicknesses of the uppermost and lowermost Al foils 13b and 11a become the other Al foils 11b and 12a. , 12b, 13a, the thickness of the Al foil between the ceramic substrates 11, 12, 13 of the produced multilayer ceramic substrate 10 can be made uniform. In addition, the value obtained by dividing the thicknesses of the uppermost and lowermost Al foils 13b and 11a by the thicknesses of the other Al foils 11b, 12a, 12b, and 13a is 0.8 or more and 3 or less. The warpage of the ceramic substrates 11, 12, and 13 is reduced, and the warpage of the multilayer ceramic substrate 10 is effectively prevented.
[0009]
The invention according to claim 2 is the invention according to claim 1 , wherein the Al purity of the Al foil 13b bonded to the upper surface of the uppermost ceramic substrate 13 and the Al foil 11a bonded to the lower surface of the lowermost ceramic substrate 11 is obtained. Each of which is 99.900 to 99.999% by weight and has a thickness of 0.1 to 1.0 mm, and is bonded to the upper and lower surfaces of the ceramic substrate other than the uppermost layer and the lowermost layer, 12a, 12b and 13a are multilayer ceramic substrates each having an Al purity of 99.00 to 99.99% by weight and a thickness of 0.1 to 0.7 mm.
[0010]
In the multilayer ceramic substrate 10 according to the claim 2, Al foil 11a, 11b, 12a, 12b, 13a, by defining Al purity and thickness of 13b, was easily create life-and-death creation of multilayer ceramic substrate 10 The reliability of the multilayer ceramic substrate 10 is improved. If the thickness of the Al foils 11a, 11b, 12a, 12b, 13a, and 13b is less than 0.1 mm, the heat generated by the current is large and cannot be used for a power module substrate that requires a current value of several tens of amperes or more. . The thickness of the Al foil 13b bonded to the upper surface of the uppermost ceramic substrate 13 and the Al foil 11a bonded to the lower surface of the lowermost ceramic substrate 11 exceeds 1.0 mm, or the thickness of the ceramic substrate other than the uppermost layer and the lowermost layer When the thickness of the Al foils 11b, 12a, 12b, and 13a bonded to the upper surface and the lower surface exceeds 0.7 mm, the ceramic substrates 11, 12, and 13 are cracked due to the temperature cycle or peeled off at the bonding interface of the multilayer ceramic substrate 10. May occur.
[0011]
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein the ceramic substrates 11, 12, and 13 are each a multilayer ceramic substrate made of any one of AlN, Al 2 O 3, and Si 3 N 4. .
In the multilayer ceramic substrate according to claim 3 , the thermal conductivity, heat resistance and strength of the multilayer ceramic substrate 10 are obtained by laminating the ceramic substrates 11, 12, and 13 made of AlN, Al 2 O 3 or Si 3 N 4. The thermal expansion coefficient of the multilayer ceramic substrate 10 can be matched with the thermal expansion coefficient of the semiconductor element.
The invention according to claim 4 is the multilayer ceramic substrate according to any one of claims 1 to 3 , wherein the brazed Al foils 11b, 12a, 12b, and 13a form a predetermined circuit pattern. .
[0012]
In the multilayer ceramic substrate according to the fourth aspect , the degree of freedom of the circuit pattern formed by the brazed Al foils 11b, 12a, 12b, and 13a is further improved, and the mounting density of the semiconductor elements can be further increased.
The invention according to claim 5 is a power module substrate in which the multilayer ceramic substrate according to any one of claims 1 to 4 is laminated and bonded to a heat sink by a brazing material.
Since the brazing material has a higher thermal conductivity than that of the solder, even if a semiconductor element having a relatively large calorific value is mounted on the multilayer ceramic substrate 10 in the power module substrate according to claim 5 , the heat is generated by the semiconductor. Effectively conducted from the lower surface of the element to the multilayer ceramic substrate 10 and a heat sink (not shown), heat generated by the semiconductor element can be effectively dissipated to the outside as compared with the conventional case.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 and 2, the multilayer ceramic substrate 10 of the present invention is made by laminating first, second and third ceramic substrates 11, 12 and 13. The ceramic substrates 11, 12, and 13 are each made of any one of AlN, Al 2 O 3 or Si 3 N 4 , the first ceramic substrate 11 is the bottom layer, the third ceramic substrate 13 is the top layer, and the second ceramic substrate. 12 are laminated so as to be an intermediate layer. The lowermost first ceramic substrate 11 is a rectangular substrate having a relatively wide width, and the second ceramic substrate 12 as an intermediate layer has the same length as the first ceramic substrate 11 and the width is the first ceramic substrate. It is formed smaller than the width of the substrate 11. The third ceramic substrate 13 which is the uppermost layer is formed so that both the length and width are smaller than the length and width of the second ceramic substrate 12, and two sheets are prepared in this embodiment. Al foils 11a, 11b, 12a, 12b, 13a, and 13b are bonded to the upper and lower surfaces of the ceramic substrates 11, 12, and 13, respectively. The Al foils 11a, 11b, 12a, 12b, 13a, and 13b are bonded to the ceramic substrates 11, 12, and 13 through a brazing material (not shown).
[0014]
The Al foil 13b bonded to the upper surface of the third ceramic substrate 13 as the uppermost layer and the Al foil 11a bonded to the lower surface of the first ceramic substrate 11 as the lowermost layer have an Al purity of 99.900 to 99.99, respectively. 999% by weight and each having a thickness of 0.1 to 1.0 mm are used. Particularly preferable values of the Al purity are 99.980 to 99.998% by weight, respectively, and preferable values of the thickness are 0.2 to 0.5 mm, respectively. For this reason, melting | fusing point of these Al foils 13b and 11a will be 660 degreeC.
On the other hand, the Al foil 13a bonded to the lower surface of the third ceramic substrate 13, the Al foil 11b bonded to the upper surface of the first ceramic substrate 11, and the Al foils 12a and 12b bonded to the upper and lower surfaces of the second ceramic substrate 12 are The Al purity is 99.00 to 99.99% by weight and the thickness is 0.1 to 0.7 mm. Particularly preferable values of the Al purity are 99.90 to 99.99% by weight, respectively, and preferable values of the thickness are 0.1 to 0.4 mm, respectively. For this reason, melting | fusing point of these Al foil 13a, 11b, 12a, 12b will be 660 degreeC.
[0015]
The Al purity of the Al foil 13b bonded to the upper surface of the third ceramic substrate 13 as the uppermost layer and the Al foil 11a bonded to the lower surface of the first ceramic substrate 11 as the lowermost layer is less than 99.900% by weight, respectively. Or Al foil 13a bonded to the lower surface of the third ceramic substrate 13, Al foil 11b bonded to the upper surface of the first ceramic substrate 11, and Al foils 12a and 12b bonded to the upper and lower surfaces of the second ceramic substrate 12. When the Al purity of each is less than 99.00% by weight, it peels off at the bonding interface of the Al foils 11a, 11b, 12a, 12b, 13a, and 13b laminated and bonded to the ceramic substrates 11, 12, and 13, respectively. May occur.
[0016]
When the thickness of the Al foil 13b bonded to the upper surface of the third ceramic substrate 13 as the uppermost layer and the thickness of the Al foil 11a bonded to the lower surface of the first ceramic substrate 11 as the lowermost layer is less than 0.1 mm Or the Al foil 13a bonded to the lower surface of the third ceramic substrate 13, the Al foil 11b bonded to the upper surface of the first ceramic substrate 11, and the Al foils 12a and 12b bonded to the upper and lower surfaces of the second ceramic substrate 12. When the thickness is less than 0.1 mm, heat generation due to current in the Al foils 13a, 13b, 11a, 11b, 12a, and 12b increases, and the multilayer ceramic substrate 10 has a current value of several tens of amperes or more. There is a problem that it cannot be used for necessary power module substrates.
[0017]
On the other hand, the thickness of the Al foils 13b, 11a bonded to the uppermost ceramic substrate 13 and the lowermost ceramic substrate 11 exceeds 1.0 mm, or the thicknesses of the other Al foils 13a, 11b, 12a, 12b. If the thickness exceeds 0.7 mm, the ceramic substrates 11, 12, and 13 are cracked due to the temperature cycle, or the bonded interface of the laminated ceramic substrate 10 or the Al foils 11 a and 11 b that are laminated and bonded to the ceramic substrates 11, 12, and 13. , 12a, 12b, 13a, and 13b, there is a possibility that peeling occurs at each bonding interface.
[0018]
Further, the Al purity of the Al foil 13b bonded to the upper surface of the uppermost ceramic substrate 13 and the Al foil 11a bonded to the lower surface of the lowermost ceramic substrate 11 is the upper surface and lower surface of the ceramic substrate other than the uppermost layer and the lowermost layer, respectively. Al foils 11b, 12a, 12b, and 13a that are bonded to the upper surface of the ceramic substrate 13 are used. The Al foil 13b that is bonded to the upper surface of the uppermost ceramic substrate 13 and the lower surface of the ceramic substrate 11 that is bonded to the lower surface are used. The value obtained by dividing the thickness of the foil 11a by the thickness of the Al foils 11b, 12a, 12b, and 13a bonded to the upper and lower surfaces of the ceramic substrate other than the uppermost layer and the lowermost layer is 0.8 to 3, preferably 1. It is configured to be 2 or less. When this value is 0.8 or more and 3 or less, warpage of the ceramic substrates 11, 12 and 13 before joining can be reduced. Outside this range, the amount of warpage of the substrates 11, 12, and 13 is large, and it becomes difficult to bond the substrates during lamination.
[0019]
The Al foils in the surface contact portions of the respective ceramic substrates 11, 12, 13 are brazed together. The brazing material is composed of an Al foil 13a bonded to the lower surface of the third ceramic substrate 13, an Al foil 11b bonded to the upper surface of the first ceramic substrate 11, and Al foils 12a and 12b bonded to the upper and lower surfaces of the second ceramic substrate 11. An Al—Si based first brazing material having a low melting point is used. That is, the first brazing material contains 85 to 95 wt% Al and 5 to 15 wt% Si, and the melting temperature range of the first brazing material 16 is 577 to 620 ° C. The laminated adhesion of the ceramic substrates 11, 12, 13 is a state in which the foil of the first brazing material is sandwiched between the respective Al foils 13 a, 11 b, 12 a, 12 b in the surface contact portions of the ceramic substrates 11, 12, 13. And a load of 0.05 to 2.00 kgf / cm 2 is added to these and heated to 580 to 650 ° C. in a vacuum.
[0020]
A plurality of semiconductor elements 14 are mounted on the multilayer ceramic substrate 10. As shown in detail in FIG. 2, the two pairs of first semiconductor elements 14 a and 14 a are bonded to an Al foil 12 b bonded to the upper surface of the second ceramic substrate 12, and the electrode portions thereof are connected to the third ceramic substrate via wires 16. 13 is connected to an Al foil 13b bonded to the upper surface of the A13. The two pairs of second semiconductor elements 14 b and 14 b are bonded to an Al foil 13 b bonded to the upper surface of the third ceramic substrate 13, and their electrode portions are bonded to the upper surface of the first ceramic substrate 11 via wires 16. Connected to the Al foil 11b. Here, the first and second semiconductor elements 14a, 14a, 14b, and 14b and their electrode portions are bonded to the respective Al foils 13b, 12b, and 11b with solder at 200 to 400 ° C.
[0021]
In the multilayer ceramic substrate 10 configured in this way, since the Al foils 11b, 12b, and 13b functioning as conductors are formed on the ceramic substrates 11, 12, and 13, respectively, the circuit pattern is formed on the same surface in FIG. The mounting density of the semiconductor elements 14a and 14b can be increased as compared with the conventional ceramic substrate shown. That is, since the Al foils 11b, 12b, and 13b that function as conductors of the ceramic substrates 11, 12, and 13 are formed in different layers, the Al foils 11b, 12b, and 13b intersect each other. In this respect, unlike the conventional ceramic substrate shown in FIG. 3 where the conductors cannot be crossed, in the multilayer ceramic substrate 10 of the present invention, the degree of freedom of the circuit pattern composed of the Al foils 11b, 12b, 13b is improved. Conventionally, the mounting density of the semiconductor elements 14a and 14b can be increased. Specifically, in FIG. 3, the protruding portion 2d in the third conductor required to connect the terminals of the second semiconductor elements 3b, 3b is not necessary in the present invention in FIG. 2, and the multilayer ceramic substrate 10 in FIG. Is smaller than the ceramic substrate 1 shown in FIG.
[0022]
When semiconductor elements 14a and 14b that generate a relatively large amount of heat are mounted, the multilayer ceramic substrate 10 on which the semiconductor elements 14a and 14b are mounted is previously stacked on a heat sink (not shown) for dissipating heat. The multilayer ceramic substrate 10 is bonded to the heat sink by a second brazing material having a composition whose melting temperature range is lower than that of the first brazing material because the multilayer ceramic substrate 10 is already laminated by the first brazing material. Is called. As described above, in the power module substrate in which the laminated ceramic substrate 10 is laminated and bonded to the heat sink with the brazing material, the thermal conductivity of the second brazing material is higher than the thermal conductivity of the solder. The heat generated by the semiconductor elements 14a and 14b is effectively dissipated from the lower surface of the semiconductor element 13 to the outside through the multilayer ceramic substrate 10 and a heat sink (not shown).
[0023]
In the above-described embodiment, the three-layered multilayer ceramic substrate 10 including the first, second, and third ceramic substrates 11, 12, and 13 has been described. However, the multilayer ceramic substrate may include two ceramic substrates or four ceramic substrates. These ceramic substrates or five ceramic substrates may be stacked to form two layers, four layers, or five layers.
In the above-described embodiment, the circuit pattern is not formed on each of the Al foils 11a, 11b, 12a, 12b, 13a, and 13b. However, when more types of semiconductor elements are mounted, brazing is performed. It is preferable to form a predetermined circuit pattern on the Al foils 11b, 12a, 12b, and 13a. The circuit pattern can be created by etching each Al foil, and the etching is performed by masking the Al foil with a resist film, and in this state, the ceramic substrate is immersed in an etching solution and the Al foil in the unmasked portion. Is removed by etching. Thereafter, by removing the resist film, a portion covered with the resist film remains and a predetermined circuit pattern is formed. If a predetermined circuit pattern is formed on the Al foils 11b, 12a, 12b, and 13a brazed in this way, the degree of freedom of the circuit pattern is further improved, and the mounting density of the semiconductor elements can be further increased.
[0024]
【The invention's effect】
As described above, according to the present invention, two or more ceramic substrates each having an Al foil bonded to the upper surface and the lower surface are stacked, and the Al foils in the surface contact portions of the ceramic substrate are brazed to each other. Functional Al foils can be formed on different ceramic substrates, enabling the formation of circuit patterns consisting of intersecting conductors, improving the design freedom of the circuit patterns and increasing the mounting density of semiconductor elements it can. In this case, the use of Al foil satisfying the predetermined requirements facilitates the production of the multilayer ceramic substrate, and the thickness of the Al foil between the ceramic substrates of the produced multilayer ceramic substrate is uniform. Sled can be effectively prevented.
[0025]
Further, if a ceramic substrate made of AlN, Al 2 O 3 or Si 3 N 4 is laminated, the thermal conductivity, heat resistance, strength, etc. of the laminated ceramic substrate are improved, and the coefficient of thermal expansion of the laminated ceramic substrate is increased to a semiconductor element. If the circuit pattern is formed on the brazed Al foil, the degree of freedom of the circuit pattern can be further improved, and the mounting density of the semiconductor elements can be further increased.
Further, since the Al foil is bonded to the lowermost surface of the multilayer ceramic substrate, the heat sink is bonded to the multilayer ceramic substrate with a brazing material having a higher thermal conductivity than that of the solder. For this reason, in the power module substrate in which the multilayer ceramic substrate is laminated on the heat sink, the heat generated by the semiconductor element can be more effectively dissipated to the outside than in the past.
[Brief description of the drawings]
1 is a cross-sectional view taken along line AA of FIG. 2 showing a multilayer ceramic substrate of the present invention.
FIG. 2 is a perspective view of a multilayer ceramic substrate on which a semiconductor element is mounted.
FIG. 3 is a perspective view corresponding to FIG. 2 showing a conventional example.
[Explanation of symbols]
10 multilayer ceramic substrates 11, 12, 13 ceramic substrates 11a, 11b, 12a, 12b, 13a, 13b Al foil

Claims (5)

上面及び下面にAl箔(11a,11b,12a,12b,13a,13b)がそれぞれ接着された2以上のセラミック基板(11,12,13)が積重ねられ、前記セラミック基板(11,12,13)の面接触する部分における前記Al箔(11b,12a,12b,13a)が互いにろう付けされた積層セラミック基板であって、
最上層のセラミック基板 (13) 上面に接着されたAl箔 (13b) 及び最下層のセラミック基板 (11) 下面に接着されたAl箔 (11a) のAl純度がそれぞれ前記最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔 (11b,12a,12b,13a) のAl純度より高く、
前記最最上層のセラミック基板 (13) 上面に接着されたAl箔 (13b) 及び最下層のセラミック基板 (11) 下面に接着されたAl箔 (11a) の厚さを前記最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔 (11b,12a,12b,13a) の厚さで除した値が0.8以上3以下である
ことを特徴とする積層セラミック基板。
Two or more ceramic substrates (11, 12, 13) each having an Al foil (11a, 11b, 12a, 12b, 13a, 13b) bonded to the upper and lower surfaces are stacked, and the ceramic substrates (11, 12, 13) are stacked. A multilayer ceramic substrate in which the Al foils (11b, 12a, 12b, 13a) in the surface-contacting portion are brazed together ,
The Al purity of the Al foil (13b) bonded to the upper surface of the uppermost ceramic substrate (13) and the Al foil (11a) bonded to the lower surface of the lowermost ceramic substrate (11) are other than the uppermost layer and the lowermost layer, respectively. Higher than the Al purity of the Al foil (11b, 12a, 12b, 13a) bonded to the upper and lower surfaces of the ceramic substrate ,
The thickness of the Al foil (13b) bonded to the upper surface of the uppermost ceramic substrate (13) and the thickness of the Al foil (11a) bonded to the lower surface of the lowermost ceramic substrate (11) is other than the uppermost layer and the lowermost layer. The value divided by the thickness of the Al foil (11b, 12a, 12b, 13a) bonded to the upper and lower surfaces of the ceramic substrate is 0.8 or more and 3 or less
A multilayer ceramic substrate characterized by the above .
最上層のセラミック基板(13)上面に接着されたAl箔(13b)及び最下層のセラミック基板(11)下面に接着されたAl箔(11a)のAl純度がそれぞれ99.900〜99.999重量%であってかつ厚さがそれぞれ0.1〜1.0mmであり、
前記最上層及び最下層以外のセラミック基板の上面及び下面に接着されたAl箔(11b,12a,12b,13a)のAl純度がそれぞれ99.00〜99.99重量%であってかつ厚さがそれぞれ0.1〜0.7mmである請求項1記載の積層セラミック基板。
The Al purity of the Al foil (13b) bonded to the upper surface of the uppermost ceramic substrate (13) and the Al foil (11a) bonded to the lower surface of the lowermost ceramic substrate (11) are 99.900 to 99.999 wt. % And each thickness is 0.1 to 1.0 mm,
The Al foils (11b, 12a, 12b, 13a) bonded to the upper and lower surfaces of the ceramic substrate other than the uppermost layer and the lowermost layer each have an Al purity of 99.00 to 99.99% by weight and a thickness of The multilayer ceramic substrate according to claim 1 , wherein each is 0.1 to 0.7 mm.
セラミック基板(11,12,13)がそれぞれAlN、Al23又はSi34のいずれかからなる請求項1又は2記載の積層セラミック基板。The multilayer ceramic substrate according to claim 1 or 2, wherein the ceramic substrate (11, 12, 13) is made of any one of AlN, Al 2 O 3 and Si 3 N 4 . ろう付けされたAl箔(11b,12a,12b,13a)が所定の回路パターンを形成する請求項1ないし3いずれか1項に記載の積層セラミック基板。The multilayer ceramic substrate according to any one of claims 1 to 3, wherein the brazed Al foil (11b, 12a, 12b, 13a) forms a predetermined circuit pattern. 請求項1ないし4いずれか1項に記載の積層セラミック基板がろう材によりヒートシンクに積層接着されたパワーモジュール用基板。A power module substrate in which the multilayer ceramic substrate according to any one of claims 1 to 4 is laminated and bonded to a heat sink by a brazing material.
JP31382599A 1999-11-04 1999-11-04 Multilayer ceramic substrate and power module substrate using the same Expired - Lifetime JP3783493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31382599A JP3783493B2 (en) 1999-11-04 1999-11-04 Multilayer ceramic substrate and power module substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31382599A JP3783493B2 (en) 1999-11-04 1999-11-04 Multilayer ceramic substrate and power module substrate using the same

Publications (2)

Publication Number Publication Date
JP2001135789A JP2001135789A (en) 2001-05-18
JP3783493B2 true JP3783493B2 (en) 2006-06-07

Family

ID=18045976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31382599A Expired - Lifetime JP3783493B2 (en) 1999-11-04 1999-11-04 Multilayer ceramic substrate and power module substrate using the same

Country Status (1)

Country Link
JP (1) JP3783493B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172789B2 (en) * 2003-11-27 2008-10-29 京セラ株式会社 Wiring board
JP5303936B2 (en) * 2008-01-08 2013-10-02 三菱マテリアル株式会社 Power module substrate, power module, and method of manufacturing power module substrate
JP4730426B2 (en) * 2008-11-19 2011-07-20 ソニー株式会社 Mounting substrate and semiconductor module
JP6507722B2 (en) * 2015-03-05 2019-05-08 三菱マテリアル株式会社 Method of manufacturing power module substrate
KR20200136962A (en) * 2018-03-27 2020-12-08 미쓰비시 마테리알 가부시키가이샤 Insulated circuit board with heat sink attached
CN113745190A (en) * 2021-08-16 2021-12-03 西安中车永电电气有限公司 High-insulation-voltage IGBT module

Also Published As

Publication number Publication date
JP2001135789A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
US4851615A (en) Printed circuit board
JP4407521B2 (en) Insulated heat transfer structure and power module substrate
JP2015002212A (en) Chip resistor and packaging structure for chip resistor
JP3783493B2 (en) Multilayer ceramic substrate and power module substrate using the same
JP5780777B2 (en) Ceramic circuit board and electronic device using the same
JP2010238753A (en) Heat radiating member, and module using the same
JP2003168770A (en) Silicon nitride circuit board
JP2501272B2 (en) Multilayer ceramic circuit board
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JPH0613726A (en) Ceramic circuit substrate
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
US9307646B2 (en) Over-current protection device and protective circuit board containing the same
JP3520540B2 (en) Multilayer board
US20230094926A1 (en) Electronic Module and Method for Producing an Electronic Module
JP2001044317A (en) Substrate for mounting semiconductor element, semiconductor device, and manufacture of them
JP4721929B2 (en) Multilayer circuit board and electronic component module
JP3775152B2 (en) Semiconductor device
JP2703426B2 (en) Circuit board
JP3846586B2 (en) Heat dissipation structure of multilayer ceramic substrate
JPH0518477B2 (en)
JP2000058995A (en) Ceramic circuit board and semiconductor module
JP2005101415A (en) Ceramic circuit board and method for manufacturing the same
JP5865921B2 (en) Circuit board and electronic device using the same
Krum Copper Interconnects for Ceramic Substrates and Packages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Ref document number: 3783493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term