上記構成の流体動圧軸受装置において、所期の軸受性能(回転支持能力)を安定的に発揮させ、かつそれを維持可能とするには、少なくともラジアル軸受隙間を潤沢な潤滑油で満たす必要がある。これを実現するためには、例えば、特許文献1の図2に記載された構成(具体的には、回転部材を、軸部材を内周に挿入した円筒状のスリーブ部と、ディスク搭載面を有し、スリーブ部を内周に固定したハブ部とを備えるもの)において、スリーブ部を焼結金属等の多孔質体で形成することが考えられる。すなわち、このような構成によれば、スリーブ部の内部気孔で保持された潤滑油が内周面の表面開孔を通じてラジアル軸受隙間に次々と滲み出すため、ラジアル軸受隙間を潤沢な潤滑油で満たすことができるものと期待される。
しかしながら、特許文献1に記載された流体動圧軸受装置では、スリーブ部が回転部材に設けられる関係上、回転部材が回転するのに伴って、スリーブ部の内部気孔に保持された潤滑油に遠心力が作用する。そのため、スリーブ部の内周面で形成されるラジアル軸受隙間に潤滑油が円滑に滲み出し難く、ラジアル軸受隙間を必要十分量の潤滑油で満たすことが難しい。
このような実情に鑑み、本発明の目的は、いわゆる軸固定型の流体動圧軸受装置において、ラジアル軸受隙間を潤沢な潤滑油で満たし、ラジアル軸受部の軸受性能を長期間に亘って安定的に発揮可能とすることにある。
上記目的を達成するために創案された本発明に係る流体動圧軸受装置は、静止部材に固定される軸部材と、軸部材の外周に配置された回転部材と、軸部材の外周面と回転部材の内周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用で回転部材をラジアル方向に非接触支持するラジアル軸受部とを備え、軸部材が少なくともその一端に、軸受外部に突設されて外表面が大気に接する軸方向に幅を持った突出部を有し、この突出部に静止部材が固定されるものにおいて、軸部材を多孔質体で形成すると共に、回転部材を非多孔質体で形成し、軸部材のうち、少なくとも突出部の内部気孔を、該内部気孔に含浸させた封孔材を硬化させることにより封止したことを特徴とする。
このように、静止側とされる軸部材を多孔質体で形成したことにより、回転部材の回転中は、ラジアル軸受隙間に生じる潤滑油の動圧作用により、ラジアル軸受隙間に満たされた潤滑油がラジアル軸受隙間の一部領域に集められて正圧を生じ、この正圧部分で潤滑油が多孔質の軸部材内に還流する。これと並行して軸部材の外周面からラジアル軸受隙間に次々と潤滑油が滲み出すが、この滲み出しは、軸部材が流体動圧軸受装置の静止側を構成する関係上、従来のように遠心力の影響を受けることなくスムーズに行われる。一方、回転部材を非多孔質体(例えば、中実の金属材料や樹脂材料)で形成したことにより、回転部材内部への潤滑油の浸入は効果的に防止される。従って、ラジアル軸受隙間を潤沢な潤滑油で満たし、ラジアル軸受部の軸受性能を長期間に亘って安定的に発揮することが可能となる。
本発明では、少なくとも一端が大気に接する軸部材を多孔質体で形成した関係上、潤滑油が軸部材の突出部の表面開孔を介して軸受外部に漏れ出すおそれがある。このような潤滑油漏れが生じると、ラジアル軸受隙間を含めた軸受装置の内部空間に介在させるべき潤滑油量が減少して、軸受性能に悪影響が及ぶ。また、当該流体動圧軸受装置をスピンドルモータ(HDD)に組み込んだ場合に潤滑油漏れが生じると、HDDが使用不能になるなどの致命的な不具合を招来する可能性がある。そこで、軸部材のうち、少なくとも突出部の内部気孔を、この内部気孔に含浸させた封孔材を硬化させることにより封止した。これにより、突出部の表面開孔を介しての潤滑油漏れを可及的に防止することが可能となり、上記した各種の問題発生を回避することができる。なお、表面開孔を介しての潤滑油漏れを防止するための手段として、バレル処理や回転サイジング等の目潰し処理を選択することも考えられるが、これらの処理を実行するには大掛かりな設備や金型が必要でコスト増を招来する。これに対して、封孔材を含浸・硬化させることによって内部気孔を封止するようにすれば、大掛かりな設備等を必要とすることなく封孔処理を簡便に実行することができる。
また、軸部材の突出部の内部気孔を封孔材で封止したことにより、突出部は中実材に近似した形態となるので、その強度(剛性)が高められる。これにより、軸部材の取り扱い性(ハンドリング性)が向上する他、軸部材に静止部材を固定する際に、軸部材の一部が欠損等する可能性が効果的に減じられる。また、静止部材の被固定部となる突出部からの潤滑油の滲み出しが可及的に防止される分、軸部材に対する静止部材の固定力が向上する。
多孔質体からなる軸部材には、高密度部と、高密度部よりも低密度に形成された低密度部とを軸方向に隣接して設け、高密度部に突出部を設けることができる。このような構成によれば、軸部材に含浸させた封孔材を毛細管力によって高密度部の側に引き込むことができるので、軸部材のうち、封孔処理を施すべき突出部に対し、封孔処理を適切にかつ簡便に実行することができる。
この場合、低密度部の外表面(外周面)に、回転部材の内周面との間にラジアル軸受隙間を形成するラジアル軸受面を設けることができる。このようにすれば、軸部材の内部気孔に保持された潤滑油を、ラジアル軸受隙間に対して円滑に滲み出させることができる。また、低密度部は、高密度部に比べて軟質で加工性に優れるので、低密度部の外周面に設けたラジアル軸受面には、動圧溝等の動圧発生部を容易にかつ精度良く形成することができる。
多孔質体からなる軸部材は、例えば焼結金属で形成することができる。焼結金属(金属焼結体)は、金属粉の圧粉体を焼結することで得ることができるから、高精度の軸部材を低コストに量産することができる。また、軸部材を焼結金属で形成すれば、例えば、金属粉末を軸方向に圧縮して圧粉体を成形することにより、またこれに加えあるいはこれに替えて、粒径の異なる金属粉末を用いることにより、軸部材に、高密度部と低密度部とを容易に設けることができる。もちろん、軸部材に必要とされる機械的強度等を確保することができるのであれば、焼結金属以外のその他の多孔質体、例えば多孔質セラミックスで軸部材を形成することもできる。
以上の構成において、封孔材としては、封孔処理の過程で軸部材(母材)を溶融等させることなく、かつ流体動圧軸受装置の使用温度範囲内で再溶融しないものであれば、特段の限定なく任意のものを使用することができる。例えば、溶融樹脂、溶融金属、溶融ガラス等を使用することができるが、コスト面や取り扱い性等を考慮すると溶融樹脂が望ましい。さらに溶融樹脂の中でも硬化速度が速く、硬化させる際に大掛かりな装置等を必要としない嫌気性硬化樹脂が特に望ましい。
以上に示した本発明の構成は、例えば、回転部材が、軸方向の両端を開口させた円筒状を呈し、回転部材の一端側および他端側にそれぞれ配置され、軸部材の外周面に固定された第1および第2フランジ部をさらに備え、第1および第2フランジ部の外周面で、潤滑油の油面を保持して回転部材の一端および他端開口をシールするシール隙間をそれぞれ形成した流体動圧軸受装置に好ましく適用することができる。この場合、第1フランジ部の一端面とこれに対向する回転部材の一端面との間のスラスト軸受隙間に生じる潤滑油の動圧作用で回転部材をスラスト一方向に非接触支持し、第2フランジ部の一端面とこれに対向する回転部材の他端面との間のスラスト軸受隙間に生じる潤滑油の動圧作用で回転部材をスラスト他方向に非接触支持することができる。
また、以上に示した本発明の構成は、軸部材の一端および他端に突出部が設けられ、両突出部に静止部材がそれぞれ固定される流体動圧軸受装置、換言すると軸部材が両持ち支持される流体動圧軸受装置に好ましく適用することができる。具体例として、軸部材2の一端にモータベース6aが固定され、軸部材の他端にモータカバー6bが固定される構成を挙げることができる(図1参照)。このようにすれば、軸部材の姿勢が安定するので、流体動圧軸受装置の軸受性能向上を図る上で有利となる。
以上の構成において、回転部材は、ディスク搭載面を有するディスクハブとすることができる。言い換えると、本発明は、高い回転精度を長期間に亘って安定的に発揮可能であることが望まれる電気機器用モータ、例えばHDD等のディスク駆動装置用スピンドルモータに組み込まれる流体動圧軸受装置に好ましく適用することができる。
以上より、本発明によれば、ラジアル軸受隙間を潤沢な潤滑油で満たし、ラジアル軸受部の軸受性能を長期間に亘って安定的に発揮することができる軸固定型の流体動圧軸受装置を提供することができる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る軸固定型の流体動圧軸受装置1を備えたスピンドルモータの一構成例を概念的に示すものである。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、流体動圧軸受装置1と、モータの静止側を構成するモータベース6a及びモータカバー6bと、モータベース6aの外周面に取り付けられたステータコイル4と、回転部材3の内周面に取り付けられ、ステータコイル4と半径方向のギャップを介して対向するロータマグネット5とを備える。流体動圧軸受装置1の軸部材2の一端はモータベース6aに固定され、軸部材2の他端はモータカバー6bに固定されている。回転部材3には、磁気ディスク等のディスクDが複数枚(図示例は3枚)載置・保持されている。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、回転部材3およびこれに保持されたディスクDが一体に回転する。
図2に、本発明の第1実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、図1に示す流体動圧軸受装置1を拡大して示すもので、静止側の軸部材2と、軸部材2の外径側に配置され、ディスクハブとして機能する略円筒状の回転部材3と、回転部材3の一端および他端内周にそれぞれ配置され、軸部材2の外周面2aに固定された第1および第2フランジ部9,10とを主要な構成部材として備え、内部空間には潤滑流体としての潤滑油(散点ハッチングで示す)が充填されている。なお、以下では、便宜上、第1フランジ部9が配置された側を上側、その軸方向反対側(第2フランジ部10が配置された側)を下側として説明を進めるが、流体動圧軸受装置1の使用態様を限定するものではない。
回転部材3は、軸方向の両端が開口し、小径内周面8aおよび大径内周面8b,8bを有する段付円筒状に形成されたスリーブ部8と、ディスクD(図1参照)が搭載されるディスク搭載面を有し、内周にスリーブ部8を保持した略円筒状のハブ部7とで構成される。これらハブ部7及びスリーブ部8は、非多孔質の金属材料(溶製材)あるいは樹脂材料で形成される。ハブ部7とスリーブ部8とは相互に異なる材料で形成する(例えば、一方を金属材料で形成し、他方を樹脂材料で形成する)ことも可能であるが、軸受運転時における両者の熱膨張量に差が生じると両者の固定精度、ひいては軸受性能に悪影響が及び易くなることから、線膨張係数が近似する材料で形成するのが望ましい。
スリーブ部8の小径内周面8aは、動圧発生部等が形成されていない平滑な円筒面に形成され、その軸方向略中間部には、軸部材2の外周面2aとの間に、ラジアル軸受部R1,R2のラジアル軸受隙間よりも隙間幅が大きい半径方向隙間を形成する円筒面状の中逃げ部11が設けられている。このような中逃げ部11を設けておくことにより、モーメント剛性(モーメント荷重に対する負荷能力)を高めつつ、回転トルクの上昇を抑制することができる。また、スリーブ部8の周方向一又は複数箇所には、スリーブ部8の上側端面(上側の大径内周面8bと小径内周面8aを繋ぐ段差面)8cと下側端面(下側の大径内周面8bと小径内周面8aを繋ぐ段差面)8dとに開口し、第1スラスト軸受部T1のスラスト軸受隙間の外径側領域と第2スラスト軸受部T2のスラスト軸受隙間の外径側領域とを連通させる軸方向の連通孔12が設けられている。
軸部材2は、多孔質体、ここでは、例えば銅、鉄、あるいは銅及び鉄の金属粉を主成分とする焼結金属の多孔質体で径一定のストレート軸に形成される。軸部材2の下端部および上端部は、その外表面が大気に接触するように軸受外部に突設されている。すなわち、本実施形態では、軸部材2がその下端および上端に本発明でいう突出部E1,E2をそれぞれ有しており、下側の突出部E1には静止部材としてのモータベース6aが、また上側の突出部E2には静止部材としてのモータカバー6b(図1参照)がそれぞれ固定される。なお、モータベース6aは、圧入、接着、圧入接着(圧入と接着の併用)等の適宜の手段で軸部材2の下側突出部E1に固定される。一方、モータカバー6bは、軸部材2の上端面に開口した孔部2bに対し、モータカバー6bの貫通孔を介して締結部材6cを締結することにより、軸部材2の上側突出部E2に固定される(図1参照)。
軸部材2の外周面2aの軸方向に離間した二箇所には、対向する回転部材3の内周面(スリーブ部8の小径内周面8a)との間にラジアル軸受部R1,R2のラジアル軸受隙間を形成する円筒状のラジアル軸受面A1,A2が設けられている。二つのラジアル軸受面A1,A2には、ラジアル動圧発生部が夫々形成されている。上側のラジアル軸受面A1のラジアル動圧発生部は、互いに反対方向に傾斜した複数の動圧溝Aa1,Ab1をヘリングボーン形状に配列して構成され、下側のラジアル軸受面A2のラジアル動圧発生部は、互いに反対方向に傾斜した複数の動圧溝Aa2,Ab2をヘリングボーン形状に配列して構成される。本実施形態において、上側のラジアル動圧発生部のうち、上側の動圧溝Aa1の軸方向寸法は、下側の動圧溝Ab1の軸方向寸法よりも大きくなっている。一方、下側のラジアル動圧発生部を構成する動圧溝Aa2、Ab2の軸方向寸法は相互に等しく、かつ上側のラジアル動圧発生部を構成する動圧溝Ab1と等しい。
焼結金属の多孔質体からなる軸部材2は、軸方向の各部で密度が異なる。詳しくは、軸部材2のうち、モータベース6aおよびモータカバー6bがそれぞれ固定される下側の突出部E1および上側の突出部E2は相対的に高密度に形成され、両突出部E1,E2間に介在して大気に露出しない部位は相対的に低密度に形成されている。すなわち、図3(b)に示すように、下側の高密度部D1および上側の高密度部D1に突出部E1,E2がそれぞれ設けられ、低密度部D2の外表面(外周面)に、ラジアル動圧発生部を有するラジアル軸受面A1,A2が設けられる。なお、図3(b)からも明らかなように、本実施形態では、軸部材2のうち、突出部E1,E2よりも軸受内部側に至るようにして(フランジ部9,10の固定領域に至るようにして)、高密度部D1,D1が設けられている。そして、軸部材2両端の高密度部D1,D1(突出部E1,E2)の内部気孔は、この内部気孔に含浸させた封孔材21を硬化させることにより封止されている(以上、図3(b)を参照)。
第1フランジ部9および第2フランジ部10は、金属材料又は樹脂材料でリング状に形成され、軸部材2の外周面2aの軸方向所定部位に接着、圧入、圧入接着等の適宜の手段で固定されている。詳述すると、第1フランジ部9は、スリーブ部8の上端開口部に配置され、互いに対向する第1フランジ部9の外周面9bとスリーブ部8の上側の大径内周面8bとの間に所定容積のシール隙間Sを形成する。また、第2フランジ部10はスリーブ部8の下端開口部に配置され、互いに対向する第2フランジ部10の外周面10bとスリーブ部8の下側の大径内周面8bとの間に所定容積のシール隙間Sを形成する。両シール隙間S,Sは、内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内において、潤滑油の油面はシール隙間S,Sの軸方向範囲内に保持される。
第1フランジ部9の外周面9bおよび第2フランジ部10の外周面10bは、軸受外部側に向かって徐々に縮径したテーパ面に形成される一方、スリーブ部8の両大径内周面8b,8bは径一定の円筒面に形成される。かかる構成から、両シール隙間S,Sは、軸受内部側に向けて隙間幅を漸次縮小させた楔形状を呈する。シール隙間S,Sが楔形状を呈することで、シール隙間S,S内に保持された潤滑油は毛細管力による引き込み作用によって軸受内部側に引き込まれる。そのため、シール隙間S,Sからの潤滑油漏れが効果的に防止される。
図4(a)に示すように、第1フランジ部9の下側端面9aには、対向するスリーブ部8の上側端面8cとの間に第1スラスト軸受部T1のスラスト軸受隙間を形成する環状のスラスト軸受面Bが設けられる。このスラスト軸受面Bにはスラスト動圧発生部が形成されており、スラスト動圧発生部は、複数の動圧溝Baをスパイラル形状に配列して構成される。また、図4(b)に示すように、第2フランジ部10の上側端面10aには、対向するスリーブ部8の下側端面8dとの間に第2スラスト軸受部T2のスラスト軸受隙間を形成する環状のスラスト軸受面Cが設けられる。このスラスト軸受面Cにはスラスト動圧発生部が形成されており、スラスト動圧発生部は、複数の動圧溝Caをスパイラル形状に配列して構成される。
本実施形態において、2つのスラスト動圧発生部は、何れも、回転部材3の回転時にスラスト軸受隙間の潤滑油を内径側に押し込むポンプイン機能を奏するように動圧溝Ba,Caを配列したものであるが、2つのスラスト動圧発生部の何れか一方又は双方は、潤滑油を外径側に押し込むポンプアウト機能を奏するように動圧溝を配列したものとしても良い。また、2つのスラスト動圧発生部の何れか一方又は双方は、動圧溝Ba,Caをヘリングボーン形状等、公知のその他の形状に配列したものとしても良い。
以上の構成を有する流体動圧軸受装置1は、例えば以下のようにして製造することができる。なお、以下では、軸部材2の製造工程を中心に説明する。
(A)軸素材製作工程
この工程では、金属粉末を主成分とし、これにバインダーや各種充填材を適量配合した原料粉を図示しない円筒状のダイおよび一対の上下パンチで画成される所定形状のキャビティに充填し、充填した原料粉を軸方向両側から上下パンチで圧縮することにより、軸部材2に近似した形状の圧粉体を成形(ここでは、軸部材2の上端面に開口した孔部2bも同時成形している)した後、この圧粉体を焼結することにより焼結体からなる軸素材2’を得る[以上、図3(a)を参照]。ここで、軸素材2’は軸方向寸法が比較的長寸であることから、原料粉を上下パンチで軸方向両側から圧縮して圧粉体を成形すると、圧粉体のうち、上下パンチに近接した部位である上端部および下端部は相対的に高密度に形成される一方、上下パンチから軸方向に離間した軸方向中間部は相対的に低密度に形成される。従って、この圧粉体を焼結して得られる軸素材2’は、上端部および下端部に高密度部D1をそれぞれ有し、軸方向中間部に低密度部D2を有する。
なお、上記のような手法で軸素材2’を形成した際に、軸素材2’の軸方向で十分な密度差を設けることができない場合(高密度部D1と低密度部D2との間に十分な密度差を設けることができない場合)には、例えば、使用する金属粉末の粒径(平均粒径)を軸方向で異ならせることにより、軸素材2’の軸方向で十分な密度差を設けることができる。具体的には、軸素材2’のうち相対的に高密度に形成すべき上端部および下端部は、相対的に粒径の小さい金属粉末を使用して成形し、軸素材2’のうち相対的に低密度に形成すべき軸方向中間部は、相対的に粒径の大きい金属粉末を使用して成形する。
(B)封孔処理工程
この工程では、焼結金属製の軸素材2’(軸部材2)の所定部位に封孔処理を施す。ここでは、軸素材2’の両端部に設けられた高密度部D1,D1の内部気孔に封孔材21を含浸させた後、これを硬化させることにより、軸素材2’の高密度部D1の内部気孔を封止する[図3(b)を参照]。具体的には、例えば軸素材2’のうち、少なくとも上端部および下端部(高密度部D1)を封孔材21が満たされた封孔材浴中に浸漬させ、軸素材2’の高密度部D1の内部気孔を封孔材21で満たした後、これを硬化させる。軸素材2’は、高密度部D1と軸方向に隣接して低密度部D2を有する(低密度部D2の軸方向両側に高密度部D1,D1が設けられる)ことから、低密度部D2の内部気孔に浸入した封孔材21は毛細管力によって高密度部D1の側に引き込まれる。従って、軸素材2’の両端部(高密度部D1)の内部気孔を適切に封止することができる。なお、封孔材21としては、封孔処理の過程で軸素材2’の母材を溶融等させることなく、かつ流体動圧軸受装置1の使用温度範囲内で再溶融しないものであれば、特段の限定なく任意のものを使用することができる。例えば、溶融樹脂、溶融金属、溶融ガラス等を封孔材21として使用することができるが、コスト面や取り扱い性等を考慮すると溶融樹脂が望ましく、その中でも硬化速度が速く、硬化させる際に大掛かりな装置等を必要としない嫌気性硬化樹脂を封孔材21として用いるのが特に望ましい。
そして、本実施形態では、高密度部D1の内部気孔が封孔材21によって封止された軸素材2’(軸部材2)のうち、低密度部D2の外周面2aのラジアル軸受面A1,A2となる円筒状領域に転造等の塑性加工を施すことにより、ラジアル動圧発生部(動圧溝Aa1、Ab1、Aa2、Ab2)を形成する。低密度部D2は高密度部D1に比べて軟質で加工性に優れることから、ラジアル動圧発生部を容易にかつ高精度に形成することができる。なお、ラジアル動圧発生部(動圧溝Aa1、Ab1、Aa2、Ab2)は、切削等の機械加工で形成しても良い。また、ラジアル動圧発生部は、軸素材2’に封孔処理を施すのに先立って形成しても良い。この場合には、圧粉体を圧縮成形するのと同時にラジアル動圧発生部を型成形することもできる。
以上の工程を経て、上端部(突出部E2)および下端部(突出部E1)が高密度に形成されると共に、これら突出部E1,E2がそれぞれ設けられた高密度部D1,D1の内部気孔が封孔材21によって封止され、かつ、両高密度部D1,D1間の低密度部D2の外周面にラジアル動圧発生部が形成された焼結金属製の軸部材2が得られる。このようにして得られた軸部材2を別途製作した回転部材3の内周に挿入し、軸部材2の外周面2aの軸方向所定部位に第1および第2フランジ部9,10をそれぞれ固定することにより(第1フランジ部9と第2フランジ部10の何れか一方は、軸部材2を回転部材3の内周に挿入する前に固定しておいても良い)、流体動圧軸受装置1の各構成部材の組付けが完了する。そして、軸部材2に対する両フランジ部9,10の固定が完了した後、流体動圧軸受装置1の内部空間に、軸部材2の内部気孔も含めて潤滑油を充填することにより、図2に示す流体動圧軸受装置1が完成する。
なお、本実施形態においては、図3(b)中に破線で示すように、第1フランジ部9の内周面の上側領域と、上側の高密度部D1(内部気孔が封孔材21で封止された部位)の下側領域とがオーバーラップするようにして第1フランジ部9が軸部材2の外周面2aに固定され、また第2フランジ部10の内周面の下側領域と、下側の高密度部D1(内部気孔が封孔材21で封止された部位)の上側領域とがオーバーラップするようにして第2フランジ部10が軸部材2の外周面2aに固定される。
封孔材21による軸部材2(軸素材2’)の高密度部D1の内部気孔の封止と、軸部材2に対する両フランジ部9,10の接着固定とは同時に行うこともできる。具体的には、封孔処理が施されていない軸部材2の外周面2aの軸方向所定部位に両フランジ部9,10を嵌合した後、軸部材2の高密度部D1の内部気孔に封孔材21(例えば、嫌気性硬化樹脂)を含浸させるのと同時に、軸部材2と両フランジ部9,10との間に接着剤(封孔材21)を充填し、これらを硬化させる。このようにすれば、上記構成の軸部材2の製作、および軸部材2に対する両フランジ部9,10の組付けを簡略化することができるので、流体動圧軸受装置1の製造コストの低廉化を図ることができる。
以上の構成からなる流体動圧軸受装置1において、回転部材3が回転すると、軸部材2の外周面2aの上下2箇所に離間して設けられたラジアル軸受面A1,A2と、これに対向する回転部材3の内周面(スリーブ部8の小径内周面8a)との間にラジアル軸受隙間がそれぞれ形成される。そして回転部材3の回転に伴い、両ラジアル軸受隙間の油膜圧力がラジアル動圧発生部の動圧作用によって高められ、回転部材3をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向に離間した二箇所に形成される。
これと同時に、第1フランジ部9の下側端面9aに設けられたスラスト軸受面Bとこれに対向するスリーブ部8の上側端面8cとの間、および、第2フランジ部10の上側端面10aに設けられたスラスト軸受面Cとこれに対向するスリーブ部8の下側端面8dとの間にスラスト軸受隙間が夫々形成される。そして、回転部材3の回転に伴い、両スラスト軸受隙間の油膜圧力がスラスト動圧発生部の動圧作用によってそれぞれ高められ、回転部材3をスラスト一方向に非接触支持する第1スラスト軸受部T1と、回転部材3をスラスト他方向に非接触支持する第2スラスト軸受部T2とが形成される。
スリーブ部8には、上記したように、両スラスト軸受部T1,T2のスラスト軸受隙間の外径端部(両シール隙間S,S)を連通させるための連通孔12が設けられている。これにより、流体動圧軸受装置1の内部空間には、ラジアル軸受部R1,R2のラジアル軸受隙間、第2スラスト軸受部T2のスラスト軸受隙間、連通孔12、および第1スラスト軸受部T1のスラスト軸受隙間からなる一連の循環経路が構築される。このような循環経路が流体動圧軸受装置1の内部空間に設けられていることにより、流体動圧軸受装置1の運転中には、内部空間に満たされた潤滑油が上記の循環経路を順次流動循環する。これにより、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油漏れや振動の発生等の問題を解消することができる。上記の循環経路には大気に開放されたシール隙間S,Sがつながっているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡は、潤滑油と共に流動循環する際にシール隙間S,S内の気液界面(油面)から外部に排出される。従って、気泡による悪影響はより一層効果的に防止される。
以上で示したように、本発明に係る流体動圧軸受装置1では、静止側とされる軸部材2を多孔質体で形成したことにより、回転部材3の回転中は、ラジアル軸受隙間に生じる潤滑油の動圧作用により、ラジアル軸受隙間に満たされた潤滑油がラジアル軸受隙間の一部領域に集められて正圧を生じ、この正圧部分で潤滑油が多孔質の軸部材2内に還流する。これと並行して軸部材2の外周面2aからラジアル軸受隙間に次々と潤滑油が滲み出すが、この滲み出しは、軸部材2が流体動圧軸受装置1の静止側を構成する関係上、従来のように遠心力の影響を受けることなくスムーズに行われる。一方、回転部材3(スリーブ部8およびハブ部7)を非多孔質体で形成したことにより、回転部材3内部への潤滑油の浸入は効果的に防止される。従って、ラジアル軸受隙間を潤沢な潤滑油で満たし、ラジアル軸受部R1,R2の軸受性能を長期間に亘って安定的に発揮することが可能となる。
また、本発明では、少なくとも突出部E1,E2の内部気孔に含浸させた封孔材21を硬化させることにより、突出E1,E2の内部気孔を封止しているから、突出部E1,E2の表面開口を介しての潤滑油漏れを可及的に防止することができる。そのため、ラジアル軸受隙間やスラスト軸受隙間に介在させるべき潤滑油量が減少することに起因した軸受性能の低下、さらには外部漏洩した潤滑油によりスピンドルモータ(HDD)の構成部材が汚染され、その結果HDDが使用不能になるなどの致命的な不具合発生を回避することができる。なお、突出部E1,E2からの潤滑油漏れを防止するための手段としては、バレル処理や回転サイジング等の目潰し処理を選択することも考えられるが、これらの処理を実行するには大掛かりな設備や金型が必要でコスト増を招来する。これに対して、封孔材21を含浸・硬化させることによって突出部E1,E2の内部気孔を封止するようにすれば、大掛かりな設備を必要とすることなく、封孔処理を簡便に実行することができる。
特に、軸部材2(軸素材2’)に、高密度部D1と、高密度部D1よりも低密度に形成された低密度部D2とを軸方向に隣接して設け(低密度部D2の軸方向両側に高密度部D1,D1を設け)、高密度部D1に突出部E1,E2を設けたことから、軸部材2に浸入させた封孔材21を毛細管力によって突出部E1,E2に引き込むことができる。そのため、多孔質体からなる軸部材2のうち、封孔処理を施すべき部位に対し、封孔処理を適切にかつ簡便に実行することができる。
また、突出部E1,E2(高密度部D1,D1)の内部気孔を封孔材21で封止したことにより、少なくとも突出部E1,E2は中実材に近似した形態となるので、その強度(剛性)が高められる。これにより、軸部材2の取り扱い性が向上する他、軸部材2の突出部E1,E2に静止部材としてのモータベース6aおよびモータカバー6bをそれぞれ固定する際に、軸部材2の一部が欠損等する可能性が効果的に減じられる。
以上、本発明の一実施形態に係る流体動圧軸受装置1について説明を行ったが、流体動圧軸受装置1の各部には、本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。以下、本発明の他の実施形態に係る流体動圧軸受装置1を図面に基づいて説明するが、以下に示す実施形態では、以上で説明したものと異なる部分についてのみ詳細に説明を行い、以上で説明したものに準じる構成には共通の参照番号を付して重複説明を省略する。
図5は、本発明の第2実施形態に係る流体動圧軸受装置1の要部を拡大して示す断面図である。この実施形態の流体動圧軸受装置1が以上で説明したものと異なる主な点は、断面L字状のカバー材14をスリーブ部8の上端外周角部8eに固定し、このカバー材14で第1フランジ部9(上側のシール隙間S)の軸方向外側を覆った点にある。なお、図示は省略しているが、断面L字状のカバー材14をスリーブ部8の下端外周角部に固定し、このカバー材14で第2フランジ部10(下側のシール隙間S)の軸方向外側も同様に覆う。このようにすれば、潤滑油の外部漏洩を一層効果的に防止することができるという利点がある。
図6は、本発明の第3実施形態に係る流体動圧軸受装置1の断面図である。この実施形態の流体動圧軸受装置1が図2に示すものと異なる主な点は、回転部材3を非多孔質の樹脂材料又は金属材料で形成した単一部材で構成した点にある。すなわち、軸部材2の外周面2a(ラジアル軸受面A1,A2)とこれに対向する回転部材3の小径内周面3aとの間にラジアル軸受部R1,R2のラジアル軸受隙間が形成され、第1フランジ部9の下側端面9a(スラスト軸受面B)とこれに対向する回転部材3の上側端面(段差面)3cとの間、および第2フランジ部10の上側端面10a(スラスト軸受面C)とこれに対向する回転部材3の下側端面(段差面)3dとの間に第1および第2スラスト軸受部T1,T2のスラスト軸受隙間がそれぞれ形成される。また、第1フランジ部9の外周面9bとこれに対向する回転部材3の大径内周面3bとの間、および第2フランジ部10の外周面10bとこれに対向する回転部材3の大径内周面3bとの間に、潤滑油の油面を保持したシール隙間S,Sがそれぞれ形成される。このような構成によれば、図2に示すものと比べて部品点数が減じられる分、流体動圧軸受装置1の低コスト化を図ることができる。
以上で説明した実施形態では、焼結金属製の軸部材2を用いたが、必要とされる機械的強度等を満足し得るその他の多孔質体、例えば多孔質セラミックスで形成した軸部材2を用いることもできる。
また、以上で説明した実施形態では、流体動圧軸受装置1の静止側である軸部材2の外周面2aにラジアル動圧発生部を形成したが、ラジアル動圧発生部を回転部材3の内周面に形成しても良い。同様に、静止側である両フランジ部9,10にスラスト動圧発生部を形成したが、スラスト動圧発生部を回転側に形成しても良い。また、動圧軸受からなるラジアル軸受部R1,R2は、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受で構成することもできる。また、動圧軸受からなるスラスト軸受部T1,T2の何れか一方又は双方は、いわゆるステップ軸受や波型軸受等、公知のその他の動圧軸受で構成することもできる。
また、以上では、軸方向の両端が開口した回転部材3を用いる流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、軸方向の一端のみが開口した回転部材3、すなわち有底筒状(コップ状)の回転部材3を用いる流体動圧軸受装置1にも本発明は好ましく適用することができる(図示省略)。この場合には、軸部材2の下端部のみが軸受外部に突出し、この突出部にモータベース6aが固定されることとなるので、下側の突出部の内部気孔に封孔材21を含浸させ、これを硬化させれば、多孔質体からなる軸部材2の表面開孔を介しての潤滑油漏れを防止することができる。
また、以上では、回転部材3を、ディスクDを保持する(ディスク搭載面を有する)ディスクハブで構成した流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、本発明は、回転部材3として、ファンを有するロータ、あるいはポリゴンミラーが用いられる流体動圧軸受装置1にも好ましく適用することができる。すなわち、本発明は、ディスク装置用のスピンドルモータのみならず、PC用のファンモータや、レーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器に組み込まれる軸固定型の流体動圧軸受装置1にも好ましく適用することができる。