JP5759891B2 - スパッタリング装置および金属化構造体を製造する方法 - Google Patents

スパッタリング装置および金属化構造体を製造する方法 Download PDF

Info

Publication number
JP5759891B2
JP5759891B2 JP2011502488A JP2011502488A JP5759891B2 JP 5759891 B2 JP5759891 B2 JP 5759891B2 JP 2011502488 A JP2011502488 A JP 2011502488A JP 2011502488 A JP2011502488 A JP 2011502488A JP 5759891 B2 JP5759891 B2 JP 5759891B2
Authority
JP
Japan
Prior art keywords
frequency signal
layer
cathode
power
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011502488A
Other languages
English (en)
Japanese (ja)
Other versions
JP2011516728A (ja
JP2011516728A5 (enExample
Inventor
ウェイチャート,ジュ−ゲン
エルガ−ツァリイ,モハメド
バメスバーガー,ステファン
ミンコ−レイ,デニス
Original Assignee
エリコン アドバンスド テクノロジーズ アーゲー
エリコン アドバンスド テクノロジーズ アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エリコン アドバンスド テクノロジーズ アーゲー, エリコン アドバンスド テクノロジーズ アーゲー filed Critical エリコン アドバンスド テクノロジーズ アーゲー
Publication of JP2011516728A publication Critical patent/JP2011516728A/ja
Publication of JP2011516728A5 publication Critical patent/JP2011516728A5/ja
Application granted granted Critical
Publication of JP5759891B2 publication Critical patent/JP5759891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
JP2011502488A 2008-04-03 2009-04-03 スパッタリング装置および金属化構造体を製造する方法 Active JP5759891B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4201508P 2008-04-03 2008-04-03
US61/042,015 2008-04-03
PCT/IB2009/051419 WO2009122378A1 (en) 2008-04-03 2009-04-03 Apparatus for sputtering and a method of fabricating a metallization structure

Publications (3)

Publication Number Publication Date
JP2011516728A JP2011516728A (ja) 2011-05-26
JP2011516728A5 JP2011516728A5 (enExample) 2012-03-08
JP5759891B2 true JP5759891B2 (ja) 2015-08-05

Family

ID=40756963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502488A Active JP5759891B2 (ja) 2008-04-03 2009-04-03 スパッタリング装置および金属化構造体を製造する方法

Country Status (7)

Country Link
US (2) US8691058B2 (enExample)
EP (1) EP2268844B1 (enExample)
JP (1) JP5759891B2 (enExample)
KR (2) KR101959113B1 (enExample)
CN (1) CN101983253B (enExample)
TW (1) TWI398537B (enExample)
WO (1) WO2009122378A1 (enExample)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896773B2 (en) * 2002-11-14 2005-05-24 Zond, Inc. High deposition rate sputtering
US7095179B2 (en) * 2004-02-22 2006-08-22 Zond, Inc. Methods and apparatus for generating strongly-ionized plasmas with ionizational instabilities
WO2006036846A1 (en) * 2004-09-24 2006-04-06 Zond, Inc. Apparatus for generating high-current electrical discharges
US8222139B2 (en) * 2010-03-30 2012-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing (CMP) processing of through-silicon via (TSV) and contact plug simultaneously
CN102453881B (zh) * 2010-10-27 2014-07-16 北京北方微电子基地设备工艺研究中心有限责任公司 物理气相沉积设备及磁控溅射方法
EP2565291A1 (en) * 2011-08-31 2013-03-06 Hauzer Techno Coating BV Vaccum coating apparatus and method for depositing nanocomposite coatings
EP2761050B1 (en) * 2011-09-30 2021-08-25 CemeCon AG Coating of substrates using hipims
JP6093968B2 (ja) * 2012-08-28 2017-03-15 国立研究開発法人産業技術総合研究所 電界放出素子用エミッタの作製方法
WO2015082547A1 (en) * 2013-12-04 2015-06-11 Oerlikon Advanced Technologies Ag Sputtering source arrangement, sputtering system and method of manufacturing metal-coated plate-shaped substrates
JP6082165B2 (ja) * 2014-05-22 2017-02-15 キヤノンアネルバ株式会社 金属膜および金属膜の成膜方法
US9812305B2 (en) * 2015-04-27 2017-11-07 Advanced Energy Industries, Inc. Rate enhanced pulsed DC sputtering system
CN105448818B (zh) * 2015-12-31 2018-10-16 上海集成电路研发中心有限公司 一种应用于半导体铜互连工艺的磁控溅射方法
TWI615494B (zh) * 2016-07-05 2018-02-21 鍍製光學硬膜之封閉式高能磁控濺鍍裝置及其製造方法
US20190088457A1 (en) * 2017-09-19 2019-03-21 Applied Materials, Inc. Sync controller for high impulse magnetron sputtering
US10964590B2 (en) * 2017-11-15 2021-03-30 Taiwan Semiconductor Manufacturing Co., Ltd. Contact metallization process
US10998209B2 (en) 2019-05-31 2021-05-04 Applied Materials, Inc. Substrate processing platforms including multiple processing chambers
FR3097237B1 (fr) * 2019-06-11 2021-05-28 Safran Procédé de revêtement d'un substrat par du nitrure de tantale
US12080571B2 (en) 2020-07-08 2024-09-03 Applied Materials, Inc. Substrate processing module and method of moving a workpiece
US11749542B2 (en) 2020-07-27 2023-09-05 Applied Materials, Inc. Apparatus, system, and method for non-contact temperature monitoring of substrate supports
US11817331B2 (en) 2020-07-27 2023-11-14 Applied Materials, Inc. Substrate holder replacement with protective disk during pasting process
US11600507B2 (en) 2020-09-09 2023-03-07 Applied Materials, Inc. Pedestal assembly for a substrate processing chamber
US11610799B2 (en) 2020-09-18 2023-03-21 Applied Materials, Inc. Electrostatic chuck having a heating and chucking capabilities
US12195314B2 (en) 2021-02-02 2025-01-14 Applied Materials, Inc. Cathode exchange mechanism to improve preventative maintenance time for cluster system
US11674227B2 (en) 2021-02-03 2023-06-13 Applied Materials, Inc. Symmetric pump down mini-volume with laminar flow cavity gas injection for high and low pressure
US12002668B2 (en) 2021-06-25 2024-06-04 Applied Materials, Inc. Thermal management hardware for uniform temperature control for enhanced bake-out for cluster tool
CN120362484B (zh) * 2025-06-25 2025-09-05 西安稀有金属材料研究院有限公司 钽基多层复合粉末及其制备方法、冷喷涂涂层材料

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9704607D0 (sv) * 1997-12-09 1997-12-09 Chemfilt R & D Ab A method and apparatus for magnetically enhanced sputtering
US7253109B2 (en) * 1997-11-26 2007-08-07 Applied Materials, Inc. Method of depositing a tantalum nitride/tantalum diffusion barrier layer system
US6911124B2 (en) * 1998-09-24 2005-06-28 Applied Materials, Inc. Method of depositing a TaN seed layer
EP1019954B1 (en) * 1998-02-04 2013-05-15 Applied Materials, Inc. Method and apparatus for low-temperature annealing of electroplated copper micro-structures in the production of a microelectronic device
US6290825B1 (en) * 1999-02-12 2001-09-18 Applied Materials, Inc. High-density plasma source for ionized metal deposition
US6193855B1 (en) * 1999-10-19 2001-02-27 Applied Materials, Inc. Use of modulated inductive power and bias power to reduce overhang and improve bottom coverage
US6200433B1 (en) * 1999-11-01 2001-03-13 Applied Materials, Inc. IMP technology with heavy gas sputtering
US6350353B2 (en) 1999-11-24 2002-02-26 Applied Materials, Inc. Alternate steps of IMP and sputtering process to improve sidewall coverage
JP2001335919A (ja) * 2000-03-21 2001-12-07 Murata Mfg Co Ltd αタンタル膜の製造方法、αタンタル膜及びそれを用いた素子
US20020142589A1 (en) * 2001-01-31 2002-10-03 Applied Materials, Inc. Method of obtaining low temperature alpha-ta thin films using wafer bias
EP1384257A2 (en) * 2001-05-04 2004-01-28 Tokyo Electron Limited Ionized pvd with sequential deposition and etching
US6709553B2 (en) * 2002-05-09 2004-03-23 Applied Materials, Inc. Multiple-step sputter deposition
JP2004131839A (ja) * 2002-06-17 2004-04-30 Applied Materials Inc パルス化された電力によるスパッタリング堆積
JP4497447B2 (ja) * 2003-03-03 2010-07-07 株式会社アルバック パルス状直流スパッタ成膜方法及び該方法のための成膜装置
US7686926B2 (en) * 2004-05-26 2010-03-30 Applied Materials, Inc. Multi-step process for forming a metal barrier in a sputter reactor
CN1680618A (zh) * 2004-11-30 2005-10-12 大连理工大学 脉冲偏压电弧离子镀钛/氮化钛纳米多层超硬薄膜的方法
US20060172536A1 (en) * 2005-02-03 2006-08-03 Brown Karl M Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece
WO2007032858A1 (en) * 2005-09-13 2007-03-22 Applied Materials, Inc. Large-area magnetron sputtering chamber with individually controlled sputtering zones
JP5238687B2 (ja) * 2006-04-21 2013-07-17 コムコン・アーゲー 被覆物
CN101589450B (zh) * 2006-12-12 2013-08-28 Oc欧瑞康巴尔斯公司 生成靶溅射以在衬底上产生涂层的设备和在其上实施电压脉冲的方法
WO2009053479A2 (en) * 2007-10-26 2009-04-30 Oc Oerlikon Balzers Ag Application of hipims to through silicon via metallization in three-dimensional wafer packaging

Also Published As

Publication number Publication date
EP2268844B1 (en) 2020-11-25
KR20160052806A (ko) 2016-05-12
CN101983253B (zh) 2012-10-24
US9644261B2 (en) 2017-05-09
KR101647515B1 (ko) 2016-08-10
JP2011516728A (ja) 2011-05-26
US20090263966A1 (en) 2009-10-22
KR101959113B1 (ko) 2019-03-15
TW200944606A (en) 2009-11-01
EP2268844A1 (en) 2011-01-05
US20140158530A1 (en) 2014-06-12
US8691058B2 (en) 2014-04-08
CN101983253A (zh) 2011-03-02
TWI398537B (zh) 2013-06-11
WO2009122378A1 (en) 2009-10-08
KR20100135774A (ko) 2010-12-27

Similar Documents

Publication Publication Date Title
JP5759891B2 (ja) スパッタリング装置および金属化構造体を製造する方法
US6238533B1 (en) Integrated PVD system for aluminum hole filling using ionized metal adhesion layer
KR100843514B1 (ko) 구리 스퍼터링용 자기-이온화 플라즈마
JP5521136B2 (ja) 3次元半導体パッケージングにおけるSi貫通ビアのメタライゼーションへのHIPIMSの適用
US7645696B1 (en) Deposition of thin continuous PVD seed layers having improved adhesion to the barrier layer
TWI328258B (en) Aluminum sputtering while biasing wafer
TW201220363A (en) Methods for forming layers on a substrate
JP2011500967A5 (ja) 3次元半導体パッケージングにおけるSi貫通ビアのメタライゼーションへのHIPIMSの適用
JP7640553B2 (ja) 制御された冷却を伴う物理的気相堆積(pvd)によってアルミニウムを堆積させるための方法及び装置
JP2002534807A (ja) フィーチャ表面カバレッジの改善を促進する銅シード層の堆積方法
KR20080074744A (ko) 재스퍼링된 구리 시드층
TW402778B (en) Aluminum hole filling using ionized metal adhesion layer
TWI223873B (en) Nitrogen-containing tantalum films
US6200433B1 (en) IMP technology with heavy gas sputtering
TW201226600A (en) Methods for depositing metal in high aspect ratio features
US8043484B1 (en) Methods and apparatus for resputtering process that improves barrier coverage
KR20040015670A (ko) 탄탈륨 필름 침착방법
TWI435386B (zh) 被膜表面處理方法
KR102893554B1 (ko) 서브트랙티브 금속들 및 서브트랙티브 금속 반도체 구조들
US20060040065A1 (en) Method for the surface activation on the metalization of electronic devices
JP2004131839A (ja) パルス化された電力によるスパッタリング堆積
TWI242814B (en) Method for the surface activation on the metalization of electronic devices
KR20070071109A (ko) 반도체 소자의 연결 콘택 형성 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250