JP5755136B2 - 高濃度モノクローナル抗体溶液中のウイルス除去方法 - Google Patents

高濃度モノクローナル抗体溶液中のウイルス除去方法 Download PDF

Info

Publication number
JP5755136B2
JP5755136B2 JP2011505900A JP2011505900A JP5755136B2 JP 5755136 B2 JP5755136 B2 JP 5755136B2 JP 2011505900 A JP2011505900 A JP 2011505900A JP 2011505900 A JP2011505900 A JP 2011505900A JP 5755136 B2 JP5755136 B2 JP 5755136B2
Authority
JP
Japan
Prior art keywords
monoclonal antibody
solution
virus removal
membrane
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011505900A
Other languages
English (en)
Other versions
JPWO2010109920A1 (ja
Inventor
智子 本郷
智子 本郷
雅廉 小室
雅廉 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42780617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5755136(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2011505900A priority Critical patent/JP5755136B2/ja
Publication of JPWO2010109920A1 publication Critical patent/JPWO2010109920A1/ja
Application granted granted Critical
Publication of JP5755136B2 publication Critical patent/JP5755136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、高濃度モノクローナル抗体溶液中に存在するウイルスを除去する方法、及び高濃度モノクローナル抗体溶液の製造方法に関する。
細胞培養により製造されたモノクローナル抗体を含む抗体医薬には原料由来または工程由来のウイルスの混入が懸念されるため、抗体医薬を製造する過程でウイルスを不活化、あるいは除去する必要がある。抗体医薬に混入するおそれのあるウイルスの不活化方法としては、加熱処理や化学薬品による処理などが行なわれているが、それら単独の処理だけではウイルスの不活化は充分でなく、またこれらの方法では抗体医薬中の抗体そのものも変性するおそれがある。このような背景から、化学的な変性を伴わない物理的なウイルス除去手段として、濾過膜によるウイルスの分離除去が実施されている。
ウイルス除去用の濾過膜としては、セルロースのような天然素材よりなる膜、あるいはポリフッ化ビニリデン(PVDF)、ポリエーテルスルホン(PES)のような合成高分子素材よりなるウイルス除去膜が知られている(非特許文献1〜4)。
これらのウイルス除去膜を装填したウイルス除去装置による抗体医薬の濾過は、短時間で、より多くの量の抗体を濾過でき、かつ充分に高いウイルス除去性能をもってウイルスを除去できることが理想である。しかし実際には、例えばセルロース膜では20mg/ml以上の抗体濃度でも膜の目詰まりを起こし難く、濾過できるが、耐圧性が低く、実使用圧力を100kPa程度までしか上げられない。あるいは合成高分子膜では、耐圧性は高く、実使用圧力を300kPa程度まで上げても問題ないが、抗体濃度を20mg/ml程度に上げると膜が目詰まりを起こし、濾過できなくなってしまうというような問題があった。そのため、10mg/ml以下の低濃度での濾過が行なわれるのが一般的であった。
しかしながら近年では抗体医薬の製剤濃度が高くなる傾向にあり、それに伴いウイルスを除去するための濾過工程に於いても抗体濃度を高くしたいという要求が高まりつつある。 モノクローナル抗体溶液中の抗体濃度を高くするとモノクローナル抗体同士が会合して凝集体を形成し易くなる傾向があり、ウイルス除去膜のように小さな孔径を持つ膜で濾過される場合には、濾過による物理的なストレスによりモノクローナル抗体同士の会合が更に顕著となり、上記したようにウイルス除去膜が目詰まりしてしまう。
特にモノクローナル抗体溶液からパルボウイルスのような直径18−24nm程度の小ウイルスを高い除去率で除去するためには、パルボウイルス除去を対象とした孔径の小さいウイルス除去膜が必要となるが、このような膜で高濃度のモノクローナル抗体溶液を濾過するとすぐに目詰まりしてしまい、抗体の回収率が著しく低くなったり、濾過に要する時間が非常に長くなったりしてしまうという問題があった。
モノクローナル抗体に関する先行技術ではないが、フィブリノーゲンに着目して、アルギニン、グアニジン、シトルリン、尿素及びその誘導体及び塩から選択されるカオトロピック物質、及びポリエトキシソルビタンエステル及びその誘導体から選択される化合物から選択される少なくとも一つの成分を蛋白溶液に加え、次に15nm以上35nm未満の孔径を持つウイルス除去膜で蛋白溶液を濾過する、ナノ濾過により蛋白溶液からウイルスを除去する方法を開示する先行技術がある(特許文献1)。
特許文献1には、前記成分が蛋白分子の会合、あるいは分子周辺の水和層形成を抑制ないしは阻止するという推定が記載されているが、意図している蛋白質はフィブリノーゲン、第VIII因子等の血液凝固因子である。また実施例はフィブリノーゲン溶液の膜透過性をアルギニンの存在/非存在下で比較しているだけである。更にフィブリノーゲン濃度も5mg/ml未満であり、低濃度の溶液を対象としている。フィブリノーゲンは、出血時にポリマー化して止血に役立つ蛋白質であるが、長さが60nm近くある紐状の細長いタンパク質である。これに対してモノクローナル抗体は、直径15nm程度の球状の蛋白質であり、等電点や親水性等の物理化学的な性質もフィブリノーゲンとは大きく異なる蛋白質である。 特許文献1はフィブリノーゲンに関する発明であって、モノクローナル抗体に関する技術ではなく、蛋白質として全く異なる性質に関する技術であるので、モノクローナル抗体を精製する上で参考になる技術ではない。
特許文献2には、ウイルス混在のおそれのあるフィブリノーゲンを含有する溶液からウイルス除去膜を用いてウイルスを除去する方法において、フィブリノーゲンを含有する溶液に塩基性アミノ酸またはその塩類及び塩化ナトリウムを含有させることを特徴とするウイルス除去法が記載されている。特許文献2もフィブリノーゲン溶液を対象とした膜によるウイルス除去であり、またタンパク濃度も5〜16.5mg/mlと低く本願の目的とする高濃度モノクローナル抗体溶液とは大きく異なる。またウイルス除去膜もパルボウイルスのような小ウイルスの除去性能が低い膜すなわち小さなウイルスは通過可能な膜を用いており、除去対象とするウイルスも本願の対象に比べて大きいものであるため、モノクローナル抗体の凝集体が膜との関係で濾過時に問題となることもない技術である。
モノクローナル抗体の精製プロセスにおいて、ウイルス除去膜を用いる際の液の条件(pH,イオン強度 等)は多岐にわたり、そのため、抗体と膜の表面の物理化学的特性は液条件により異なる。実際、液条件によっては、抗体濾過の際にFluxが非常に低いケースがあった。この原因として、抗体表面と膜表面との間の相互作用が関係しており、中でも両者の間に働く静電的相互作用が影響している。抗体と膜の表面の電荷の性質は、表面電位(ゼータ電位)として表され、溶液のpHと等電点(pI)との関係性で、プラスまたは、マイナスの電位状態に変化している。モノクローナル抗体のpIは6〜10に範囲であることが知られており、pH<pIの条件では、モノクローナル抗体は高いプラス電位を持ち、膜濾過においては、不利に作用する。そのため、抗体の表面電位を緩和し、膜との静電的相互作用を抑制すれば、濾過のFlux向上につながると考えられるが、一方、このような液条件下では、高濃度のモノクローナル抗体溶液においては、抗体自身の電荷に起因した分散安定性が悪くなることで、凝集体を作りやすくなり、膜濾過において、経時的なFlux低下を引き起こすという問題があった。
すなわち、膜と抗体の表面電位を制御し、かつ高濃度の抗体自体の会合を抑制することで、膜による濾過性を向上させ、高濃度のモノクローナル抗体溶液から、短時間かつ高い収率で、小ウイルスまで膜によって除去する方法に関する先行技術は存在しなかった。
米国特開2003/0232969号公報 特開2001−335509号公報
Manabe.S、Removal of virus through novel membrane filtration method.、Dev. Biol. Stand.、(1996)88: 81-90. Brandwein Hら、Membrane filtration for virus removal.、Dev Biol (Basel).、(2000)102: 157-63. Aranha-Creadoら、Clearance of murine leukaemia virus from monoclonal antibody solution by a hydrophilic PVDF microporous membrane filter.、Biologicals. (1998) Jun;26(2):167-72. L. Moce-Llivinaら、Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions、Journal of Virological Methods 、(2003) April、 Vol.109, Issue 1,Pages 99-101.
上記問題点に鑑み、本発明の課題は、高い濃度のモノクローナル抗体溶液から、小ウイルスまで膜によって除去し、抗体を短時間かつ高い収率で濾液として回収する方法を提供することにある。
本発明者らは、上記問題点を解決するために鋭意検討を行なった結果、塩基性アミノ酸を添加したモノクローナル抗体溶液を用いてウイルス除去膜で濾過することによって、高濃度モノクローナル抗体溶液中に存在するウイルスを高い除去率で除去できることを見出し、本発明を完成するに至った。すなわち、本発明によれば以下の発明が提供される。
[1] モノクローナル抗体溶液中のウイルスをウイルス除去膜で濾過することで除去するウイルス除去工程を含む、モノクローナル抗体を含む製剤の製造方法であって、
(1)モノクローナル抗体におけるモノマー含有率が90%以上であり、
(2)モノクローナル抗体溶液におけるモノクローナル抗体濃度が20mg/ml〜100mg/mlであり、
(3)モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含み、かつ
(4)ウイルス除去膜のパルボウイルスの除去率が、LRV(Log Reduction Value:対数減少値)≧4である、
ことを特徴とする、上記の方法。
[2] モノクローナル抗体溶液中のウイルスをウイルス除去膜で濾過することで除去するウイルス除去工程を含む、モノクローナル抗体溶液のウイルス除去方法であって、
(1)モノクローナル抗体におけるモノマー含有率が90%以上であり、
(2)モノクローナル抗体溶液におけるモノクローナル抗体濃度が20mg/ml〜100mg/mlであり、
(3)モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含み、かつ
(4)ウイルス除去膜のパルボウイルスの除去率が、LRV(Log Reduction Value:対数減少値)≧4である、
ことを特徴とする、上記の方法。
[3] モノクローナル抗体溶液中のウイルスをウイルス除去膜で濾過することで除去するウイルス除去工程を含む、モノクローナル抗体を含む製剤の製造方法において、
(1)モノクローナル抗体におけるモノマー含有率が90%以上であり、
(2)モノクローナル抗体溶液におけるモノクローナル抗体濃度が20mg/ml〜100mg/mlであり、
(3)モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含み、かつ
(4)前記溶液中のモノクローナル抗体のゼータ電位Ei1(mV)が、
a)前記ウイルス除去膜のゼータ電位Em(mV)に対し、
0mV ≦ Ei1− Em ≦ 20mV
b)前記モノクローナル抗体を含む
pH=4、イオン強度0.1mMの溶液中のモノクローナル抗体のゼータ電位Ei0(mV)に対し、
10mV ≦ Ei0 − Ei1 ≦ 40mV
の範囲である、上記方法。
[4] モノクローナル抗体を含むモノクローナル抗体溶液を、ウイルス除去膜でろ過するウイルス除去方法において、
(1)モノクローナル抗体におけるモノマー含有率が90%以上であり、
(2)モノクローナル抗体溶液におけるモノクローナル抗体濃度が20mg/ml〜100mg/mlであり、
(3)モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含み、かつ
(4)前記溶液中のモノクローナル抗体のゼータ電位Ei1(mV)が、
a)前記ウイルス除去膜のゼータ電位Em(mV)に対し、
0mV ≦ Ei1− Em≦ 20mV
b)前記モノクローナル抗体を含む
pH=4、イオン強度 0.1mMの溶液中のモノクローナル抗体のゼータ電位Ei0(mV)に対し、
10mV ≦ Ei0 − Ei1 ≦ 40mV
の範囲である上記方法。
[5] モノクローナル抗体溶液中のモノクローナル抗体のゼータ電位Ei1(mV)が、ウイルス除去膜のゼータ電位Em(mV)に対し、
−4% x Em ≦ Ei1 ≦ −550% x Em
である、[3]又は[4]に記載の方法。
[6] モノクローナル抗体を含むpH=4、イオン強度0.1mMの溶液中のモノクローナル抗体のゼータ電位Ei0(mV)が、+25mV以上である、[3]から[5]の何れか1項に記載の方法。
[7] モノクローナル抗体溶液が、細胞培養で作られるモノクローナル抗体溶液である、[1]から[6]の何れか1項に記載の方法。
[8] モノクローナル抗体溶液のpHが4〜7の範囲である[1]から[7]の何れか1項に記載の方法。
[9] ウイルス除去膜の材質が、セルロースである、[1]から[8]の何れか1項に記載の方法。
[10] ウイルス除去膜の材質が、親水化された合成高分子である、[1]から[9]の何れか1項に記載の方法。
[11] 合成高分子が、ポリフッ化ビニリデン、ポリエーテルスルホン、ポリスルホン、又はポリエチレンである、[10]に記載の方法。
[12] 塩基性アミノ酸が、アルギニン、ヒスチジン、リジンまたはそれらの誘導体、あるいはそれらの塩である、[1]から[11]の何れか1項に記載の方法。
[13] モノクローナル抗体溶液における抗体に対する塩基性アミノ酸の含有量が0.1〜20mmol/gである、[1]から[12]の何れかに記載の方法。
[14] 抗体の処理量が2kg/m2/3時間/bar(圧力換算) 以上である、[1]から[13]の何れか1項に記載の方法。
[15] モノクローナル抗体溶液が、無機塩、緩衝液成分、界面活性剤、又は糖類から選ばれる一種以上を含む、[1]から[14]の何れか1項に記載の方法。
[16] ウイルス除去膜による濾過がデットエンドフィルトレーションである、[1]から[15]の何れか1項に記載の方法。
[17] モノクローナル抗体溶液をウイルス除去膜で濾過することによってウイルスを除去する工程を、クロマトグラフィー後、濃縮後、又はバッファー交換後のいずれかに行う、[1]から[16]の何れか1項に記載の方法。
[18] モノクローナル抗体溶液をウイルス除去膜で濾過することによってウイルスを除去する工程を、濃縮後、又はバッファー交換後のいずれかに行う、[1]から[17]の何れか1項に記載の方法。
本発明によれば、抗体の凝集体形成を抑制すると共に、抗体と膜との間の電位の関係を制御可能となり、高濃度のモノクローナル抗体溶液を、短時間かつ高い収率で処理でき、かつ小ウイルスまで高い除去率で除去することができる。本発明によれば、抗体医薬の製造工程の簡略化、コンパンクト化、低コスト化などの副次効果を期待できる。
以下、本発明について更に詳細に説明する。
本発明で使用する抗体はモノクローナル抗体である。また、モノクローナル抗体はいかなる方法で製造及び精製されたものでよい。CHOなどの動物細胞培養で作られたモノクローナル抗体であることが好ましい。モノクローナル抗体の製造は基本的には公知の技術を利用することができる。抗原を通常の免疫方法に従って動物に免疫し、公知のスクリーニング法により、モノクローナルな抗体を産生する細胞をスクリーニングし、この細胞と腫瘍細胞とのハイブリドーマを作成してこれを大量培養することによって作成できる。
さらに、モノクローナル抗体は、ハイブリドーマが産生する(マウス)モノクローナル抗体に限られるものではなく、ヒトに対する異種抗体抗原性を低下させること等を目的として人為的に改変されたキメラ抗体を含む。あるいは再構成したヒト型化抗体を本発明に用いることもできる。これはヒト以外の哺乳動物、たとえばマウス抗体の相補性決定領域によりヒト抗体の相補性決定領域を置換したものであり、その一般的な遺伝子組換手法も知られている。その既知方法を用いて、再構成ヒト型化抗体を得ることができる。
モノクローナル抗体溶液中の抗体の濃度は、20mg/ml〜100mg/mlである。好ましくは20mg/ml〜80mg/ml、より好ましくは20mg/ml〜70mg/ml,さらに好ましくは20mg/ml〜50mg/mlである。抗体の濃度が高くなるとウイルス除去膜による濾過速度が低下する傾向にある。
モノクローナル抗体溶液中の抗体の純度はモノマーが90%以上、より好ましくは、95%以上である。抗体溶液中に含まれるモノマー以外の不純物としては会合体・凝集体があり、これらは抗体の2量体、3量体、4量体またはそれ以上である。会合体・凝集体の量が多いと、ウイルス除去膜で濾過する際に、目詰まりを起こし、高い処理量が得られない。
モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含む。塩基性アミノ酸は、アルギニン、ヒスチジン、グアニジン、リジンまたはそれらの誘導体、あるいはそれらの塩を用いることができる。好ましくは、アルギニン、ヒスチジン、リジンまたはそれらの誘導体、あるいはそれらの塩である。より好ましくはアルギニンまたはその誘導体、あるいはそれらの塩である。
モノクローナル抗体溶液中の塩基性アミノ酸の濃度は、濾過性の向上効果より、10mM〜300mMの範囲が好ましい。また、モノクローナル抗体溶液における抗体に対する塩基性アミノ酸の含有量は、濾過性の向上効果より0.1〜20mmol/gであることが好ましい。より好ましくは、0.3〜10mmol/g、さらに好ましくは0.6〜7mmol/gの範囲である。
(塩基性アミノ酸の作用原理)
塩基性アミノ酸をモノクローナル抗体溶液中に添加することにより濾過性が改善される理由は明らかではないが、本発明者らは、以下のように考えている。抗体は通常等電点以下では、(+)にチャージしていることが知られている。本発明における塩基性アミノ酸は、抗体表面の電位を緩和し、ウイルス除去膜の(−)チャージとの静電的相互作用(静電引力)を抑制する効果があると考えられる。また、一般的に抗体の等電点に近いpH域においては、抗体同士の静電反発力が減少することにより、抗体自体は疎水性相互作用のため、会合しやすくなったり、抗体と膜との疎水性相互作用のため、濾過性が低下したりする傾向にあるが、塩基性アミノ酸は、さらには抗体同士および抗体-膜との疎水性相互作用抑制にも効果があると考えられる。
抗体や膜の表面の電位はゼータ電位として表される。抗体や膜の表面のゼータ電位の測定方法は、例えば、Zeta potential analyzer ELS−Z (大塚電子株式会社製)を用いて電気泳動光散乱法により測定することができるが、測定方法はこれに限定されるものではない。所定の溶液条件下でのモノクローナル抗体のゼータ電位をEil(mV)、所定の溶液条件下でのウイルス除去膜のゼータ電位をEm(mV)とすると、以下の関係にあることが望ましい。ここで、「所定の溶液条件下でのウイルス除去膜のゼータ電位」とは、「モノクローナル抗体溶液と同じ組成の溶液であって、モノクローナル抗体を含まない溶液でウイルス除去膜を満たした条件下における当該ウイルス除去膜のゼータ電位」を意味する。
抗体のゼータ電位Eilと膜のゼータ電位Emとの間にある関係は、
0mV≦Eil−Em≦20mV
であることが望ましい。この範囲にEil−Emがあると、抗体と膜の間に働く相互作用が小さくなり、より膜のろ過速度向上につながる効果があると考えられる。Eil−Emが20mVを超えると、抗体と膜の間に働く静電的相互作用が大きくなり、濾過に不利に作用する。
また、本発明のウイルス除去膜の電位は、本出願のpH範囲内では、マイナスに荷電しており、さらに、抗体はプラスに荷電している。別の表し方で示すと、抗体のゼータ電位Eilと膜のゼータ電位Emの間にある関係は、
−4% x Em ≦ Ei1 ≦ −550% x Em
であることが望ましい。
本発明のモノクローナル抗体において、抗体の等電点以下のpHすなわち、pH=4でかつ、イオン強度0.1mMでの抗体のゼータ電位(基本電位)をEi0(mV)は、+25mV以上であることが望ましい。好ましくは、+27mV以上、より好ましくは、+29mV以上である。
塩基性アミノ酸の添加により、抗体と膜との静電的相互作用を抑制し、高い濾過性(Flux)を発現するためには、抗体の表面電位(ゼータ電位)Ei1は+20mV以下に緩和されることが望ましい。
さらに、抗体のゼータ電位Ei0とEilとの間の関係は
10mV ≦ Ei0 − Ei1 ≦ 40mV
であることが望ましい。Ei0 − Ei1 が10mVより小さいと、抗体の基本電位に対する緩和作用が弱く、期待される濾過速度向上効果が得られない。
モノクローナル抗体溶液のpHは4.0〜7.0の範囲であることが好ましい。pH4.0未満およびpH7.0を超えると、抗体自体の変性や分解が起こることがある。pH4.0〜7.0の範囲では、抗体自体は安定化しており、表面が+荷電しているため凝集体形成が抑制される。また、塩基性アミノ酸は、pH4.0〜7.0の範囲で高濃度抗体のウイルス除去膜濾過における濾過性を向上させる作用を発揮する。
モノクローナル抗体溶液は更に、無機塩、緩衝液成分、界面活性剤、又は糖類から選ばれる一種以上を含むことができる。
無機塩としては、NaCl、緩衝塩を含むことができる。緩衝液としては、酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液、Tris−HCl緩衝液等を用いることができる。無機塩、緩衝液成分の濃度としては、イオン強度として、10〜500mMの範囲であることが好ましい。ここで、イオン強度は、以下の式より計算できる。
イオン強度=1/2×Σ(Ci×Zi2
Ci; モル濃度 、Zi; イオン価数
界面活性剤は、非イオン性界面活性剤であるTween20、Tween80等を用いることができ、濃度は0.01〜0.05w%含むことができる。
糖類(単糖、二糖、三糖、オリゴ糖、糖アルコールなどがある)の添加剤としてグルコース、マンノース、ガラクトース、フルクトース、ソルボース、マルトース スクロース(ショ糖)、ソルビトール、マンニトール、デキストラン等を1〜10w%含むことができ、好ましくは1〜5wt%含むことができる。
ウイルス除去膜の材質は、セルロースまたは親水化された合成高分子を用いることができる。セルロースは再生セルロース、天然セルロース、酢酸セルロース等を用いることができる。親水化された合成高分子は、親水化ポリフッ化ビニリデン(PVDF)、親水化ポリエーテルスルホン(PES)、親水化ポリエチレン(PE),親水化ポリスルホン(PS)等を用いることができる。親水化方法としては、コーティング、グラフト反応、架橋反応等の方法により、膜表面に親水性の官能基を導入したり、親水性ポリマーを固定したりする方法があげられる。
膜の形状は平膜および中空糸膜いずれでもよいが、膜面積が大きくても、膜を容器に装填して作成したフィルターを小型にできるため、好ましくは中空糸膜である。被濾過液入り口側の一次側空間と濾過液出側の2次側空間が膜によって仕切られたフィルターを作成することが出来る。ウイルス除去膜を濾過に用いる際には、フィルターの形態として使用することができる。
ウイルス除去膜はパルボウイルスの除去性能がLRV4以上であることが必要である。より望ましくはLRV5以上である。パルボウイルス除去を対象とした市販のウイルス除去フィルターとして、ウイルス除去膜がセルロースからなるPlanovaTM15N(旭化成メディカル(Asahi Kasei Medical)社製),PlanovaTM20N(旭化成メディカル(Asahi Kasei Medical)社製)、親水化PESからなるVirosart CPV (Sartorius社製)、Viresolve Pro (Millipore社製)等が挙げられる。
パルボウイルスは、マウスパルボウイルスのCHO細胞(マウス由来)への混入により製造プロセスにおけるモノクローナル抗体への汚染の実例があり、動物細胞を用いて作られたバイオ医薬品のウイルス安全性評価に関するガイドライン(ICH Q5A)がFDAから出されている。
パルボウイルスは、エンベロープを持たないことから、物理化学的に安定で、生物学的製剤の製造プロセス中の不活化工程で一般的に行なわれる加熱、低pH、化学薬品処理に対して耐性があり、不活化法とは異なる作用機序のウイルス除去方法としてウイルス除去膜によるパルボウイルス除去のニーズが高まってきた。
パルボウイルスはパルボウイルス科に属し、現在公知の最小ウイルス(直径18〜24nm)である。マウスパルボウイルス(MVM),ブタパルボウイルス(PPV)、犬パルボウイルス(CPV)等があげられる。本出願のウイルス除去膜評価には、モデルウイルスとしてPPVを用いている。
ウイルス除去膜のウイルスの除去性能はLRV(Log Reduction Value)で表される。
LRVはウイルス除去膜の濾過前後での抗体溶液中のウイルス濃度変化を下記式から計算する。
LRV=log10(CO/CF
ここで、Co=ウイルス除去膜で濾過する前の抗体溶液中のウイルス濃度
F=ウイルス除去膜で濾過した後の抗体溶液中のウイルス濃度
ウイルス濃度は感染価、ウイルス核酸のコピー数等で表現できる。感染価の測定法としてTCID50法、プラーク法などが挙げられる。ウイルスの核酸のコピー数はPCR法等で測定できる。
ウイルス除去膜で濾過する前に、モノクローナル抗体濃度20〜100mg/mlの範囲であり、塩基性アミノ酸を少なくとも含む抗体溶液組成に調整する必要がある。上述したように、モノクローナル抗体溶液のpHは4〜7の範囲であることが好ましい。塩基性アミノ酸濃度は、抗体あたり0.1〜20mmol/gの範囲であることが好ましい。
クロマトグラフィー処理後の抗体溶出液に塩基性アミノ酸を所定濃度添加し、所定pHになるように調整することもできるし、公知の方法にて、溶出液のバッファー液組成から、所定の塩基性アミノ酸、pHに調整された液とバッファー交換することもできる。また、抗体濃縮とバッファー交換を同時に行い、所望の液組成に調整することもできる。pH調整はNaOH,HCl,無機酸、有機酸、緩衝液で行なうことができる。緩衝液としては、酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液等を用いることができる。
ウイルス除去膜による抗体溶液の濾過方法はデットエンドフィルトレーションであることが好ましい。濾過圧力を一定にする定圧濾過、濾過速度を一定にする定速濾過いずれでもよい。濾過圧力はウイルス除去膜の材質によるが、膜の耐圧力以下の範囲で行なう。例えば、セルロースからなるウイルス除去膜の場合は、49kPa(0.5bar)〜98kPa(1bar)の範囲が最適である。親水化PVDF,親水化PES,親水化PSの場合は、98kPa(1bar)〜490kPa(5bar)の範囲が最適である。
ウイルス除去膜で濾過する温度は、抗体溶液の状態に影響しない(変性させない)温度範囲であればよいが、4℃〜40℃の範囲が好ましい。より好ましくは、4℃〜35℃の範囲である。温度は抗体溶液の粘度に影響し、ウイルス除去膜濾過の際のFluxに影響するので、抗体自体の温度に対する安定性にもよるが、さらに好ましくは20℃〜35℃の範囲である。
所定組成に液を調整後、ウイルス除去膜で濾過前に、ウイルス除去膜の孔径サイズよりも大きい孔径の膜からなるフィルターで予備濾過をすることもできる。ここで大きい孔径のフィルターとは、PlanovaTM35N,PlanovaTM75N(以上旭化成メディカル社製)、0.1μmフィルター、0.2μmフィルター等を用いることができる。予備濾過なしに、直接ウイルス除去膜で濾過することもできる。
抗体の処理量(Throughput)は、以上の抗体濃度、濾過圧力、温度の範囲内で、ウイルス除去膜の膜面積、時間、濾過圧力あたりの処理量として、通常2kg/m2/3時間/bar(または98kPa)が得られる。抗体の処理量(Throughput)は、上記単位あたりの濾過液量(V)と濾液中に回収された抗体の濃度(C)から算出(抗体の処理量=V×C)され、Throughputで濾過性と収率の両方が評価できる。
(Downstream中でのウイルス濾過のポジション)
ウイルス除去膜で濾過する工程は、クロマトグラフィー後、濃縮後、濃縮/バッファー交換後のいずれかである。クロマトグラフィーとしては、イオン交換樹脂、ゲル濾過樹脂をカラムに詰めたカラムクロマトグラフィー、多孔膜の表面にイオン交換基を付与したメンブレンクロマトグラフィーが例示できる。クロマトグラフィーの分離モードとしては、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー(陽イオン交換;CEX、陰イオン交換;AEX)、疎水クロマトグラフィー(HIC)、アフィニティクロマトグラフィー、金属キレートアフィニティクロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー等がある。クロマトグラフィーのリガンドとしてイオン交換と疎水相互作用を複合させたクロマトグラフィーもある。
濃縮工程は、公知の方法に従って、限外濾過(UF)膜を用いた方法で行なうことができる。遠心濃縮で行なうことができる。
バッファー交換工程は、公知の方法に従って、限外濾過膜を用いて濃縮と同時に行なうこともできる。ゲル濾過法により行なうこともできる。透析膜を用いた透析法によっても行なうことができる。
ウイルス除去膜による濾過に引き続き、クロマトグラフィー処理による精製処理をすることができる。また、UF処理によりさらに高濃度化することもできる。ウイルス除去膜濾過の際のそのままの液組成で、最終製剤化することもできる。また、ウイルス除去膜濾過後に糖類や界面活性剤等を添加し、最終製剤化することもできる。他の組成の溶媒と、バッファー交換することもできる。また、さらに凍結乾燥処理することもできる。
以下に示す実施例では、ウイルス除去膜がセルロース中空糸膜からなるPlanovaTM20N(旭化成メディカル株式会社製)(以降、フィルターAと表記する)及び親水化ポリフッ化ビニリデン中空糸膜からなるフィルター(以降、フィルターBと表記する)を用いた。
また、モノクローナル抗体製剤中間製品のモデルとして、国際公開第04/087761号パンフレットに記載の方法に従い、モノクローナル抗体溶液を下記[モノクローナル抗体の調製]の通り調製し使用した。
(フィルターBの作成)
メルトフローインデックス(MFI)が2.5(g/10ml)のポリフッ化ビニリデン樹脂(呉羽化学(株)製、T#1300)、49wt%、フタル酸ジシクロヘキシル(大阪有機化学工業(株)製 工業品)51wt%からなる組成物を、ヘンシェルミキサー(三井鉱山(株)製、形式20B)を用いて70℃で攪拌混合した後、冷却して粉体状としたものをホッパーより二軸同方向スクリュー式押出機(テクノベル(株)製 KZW25TW−50MG−NH(−600))に投入し、210℃溶融混合し均一溶解した。続いて、中空内部に温度が130℃のフタル酸ジブチル(大八化学工業(株)製 工業品)を流しつつ、内直径0.8mm、外直径1.05mmの環状オリフィスからなる紡口より、それぞれ均一溶解物を中空糸状に押し出し、10、20、30、40℃に温調された冷却水浴中で冷却固化させて、50m/分の速度で金属枠に巻き取った。その後、58wt%イソプロピルアルコール水溶液(大八化学工業(株)製 工業品)でフタル酸ジシクロヘキシル及びフタル酸ジブチルを抽出除去し、付着した58wt%イソプロピルアルコール水溶液を水で置換した後、水中に浸漬した状態で高圧蒸気滅菌装置(平山製作所(株)製 HV−85)を用いて125℃で熱処理を4時間施した。その後、付着した水をイソプロピルアルコール(大八化学工業(株)製 工業品)で置換した後、真空乾燥機(エステック(株)製)で60℃の温度で乾燥することにより中空糸状の微多孔膜を得た。なお巻き取りから乾燥に至る全ての工程では、中空糸は定長状態で固定して処理を行った。
続いて、上記の微多孔膜に対し、グラフト法による親水化処理を行った。反応液は、ヒドロキシプロピルアクリレート(大阪有機化学(株)製 工業品)を8体積%となるように、3−ブタノール(純正化学(株)製 工業品)の25体積%水溶液に溶解させ、45℃に保持した状態で、窒素バブリングを30分間行ったものを用いた。まず、窒素雰囲気下において、該微多孔膜をドライアイスで−60℃に冷却しながら、Co60を線源としてγ線を25kGy照射した。照射後の微多孔膜は、13.4Pa以下の減圧下に15分間静置した後、上記反応液と該微多孔膜を60℃で接触させ、1時間静置した。その後、該微多孔膜を58wt%イソプロピルアルコール水溶液で洗浄し、60℃で真空乾燥を4時間行い、親水性を有する微多孔膜を得た。該微多孔膜は水に接触させた時に自発的に細孔内に水が浸透することを確認した。該微多孔膜12本の束の両端をポリウレタンで目止めし、ポリスチレン製の中空糸膜が入口側空間と出口側空間に仕切られているカートリッジに接合して、フィルター(有効膜面積0.001m2)を作成した。上記方法で得られた親水化PVDF中空糸膜からなるフィルターを以降フィルターBと表記する。
(モノクローナル抗体の調製)
デプスフィルター、および0.2(μm)メンブランフィルターで清澄化したヒトモノクローナル抗体(ヒトIgG1)を含むCHO細胞無血清培養上清(発現量:700mg/L)1500(ml)を10( mmol / l )リン酸ナトリウム緩衝液(pH6.0)で平衡化したProtein Aカラム(GE Healthcare Bioscience社製 Mabselect 20mm ID × 20cm)に添加した(線速度500cm/h)。次いで、5カラム容量の20(mmol/ l )クエン酸ナトリウム緩衝液(pH3.4)により、ヒトモノクローナル抗体を溶出した(線速度500cm/h)。この溶出液を10(mmol/ l )リン酸ナトリウム緩衝液(pH8.2)で中和し、さらに1.5(mmol/ l )Tris−HClでpH8.0に調整後、10(mmol/ l ) Tris−HClで平衡化した陰イオン交換カラム(GE Healthcare Bioscience社製 Q Sepharose XL 10mm ID × 15cm)に添加した(線速度300cm/h)。添加終了後、3カラム容量の平衡化緩衝液をカラムに通液し(線速度300cm/h)、カラム非吸着分を1.0(mol / l )酢酸でpH5.0に調製後、20(mmol/ l ) 酢酸ナトリウム緩衝液(pH5.0)で平衡化した陽イオン交換カラム(GE Healthcare Bioscience社製、 SP Sepharose FF 26mm ID × 15cm)に添加した(線速度300cm/h)。添加終了後、5カラム容量の平衡化緩衝液で洗浄し(線速度300cm/h)、さらに5カラム容量の20(mmol/ l )酢酸ナトリウム/0.30(mol/ l )塩化ナトリウム緩衝液(pH5.0)を通液し、ヒトモノクローナル抗体溶液として溶出した(線速度300cm/h)。この溶出液を限外濾過膜(Millipore社製 Biomax 30 50cm2)で以下の表1及び表2にあげた液条件になるように濃縮およびバッファー組成に交換した。
(ウイルス除去性能の測定)
培養したPK-13細胞(ATCCより入手、ATCC No.CRL−6489)を、牛血清(Upstate社製、56℃の水浴で30分間加熱し、非働化させた後に使用)3体積%、およびペニシリン/ストレプトマイシン(+10000 Units/ml Penicillin,+10000μg/ml Streptomycin、インビトロジェン製)1体積%入りD−MEM(インビトロジェン製、high−glucose)(この混合液は以後3%FBS/D−MEMと記載)で希釈し、細胞濃度2.0×105(cells/ml)の希釈懸濁液を調製した。この細胞懸濁液を、96well丸底細胞培養プレート(Falcon社製)を10枚準備し、全てのwellに100(μl)ずつ分注した。
次いで、下記3時間濾過を行った濾液の全量混合液について、それらの3%FBS/D−MEMによる10倍、102倍、103倍、104倍、105倍希釈液を調製した。さらに、濾過直前に採取した各元液について、それらの3%FBS/D−MEMによる102倍、103倍、104倍、105倍、106倍、107倍希釈液を調製した。上記細胞懸濁液を分注した96穴細胞培養プレートに、各濾液および濾液の10倍、102倍、103倍、104倍、105倍希釈液と、元液の102倍、103倍、104倍、105倍、106倍、107倍希釈液を、8wellに100(μl)ずつ分注し、37℃、5%二酸化炭素雰囲気下、インキュベーター中で、10日間培養した。
次いで、10日間培養した上記の細胞培養プレートに対し、赤血球吸着法(ウイルス実験学 総論 国立予防衛生研究所学友会編、p.173)によるTCID50(50%感染価)の測定を行った。ニワトリ保存血(日本バイオテスト製)をPBS(−)(日水製薬株式会社製、商品に添付の方法で調製)で5倍に希釈後、2500( rpm ) 、4℃で5分間遠心分離し赤血球を沈殿させた後、上清を吸引除去して、得られた赤血球を含む沈殿物を再度PBS(−)で200倍に希釈した。
次いで、調製した赤血球沈殿物のPBS(−)希釈液を、上記細胞培養プレートの全wellに100(μl)ずつ分注し、2時間静置した後、培養した細胞組織の表面に対する赤血球の吸着の有無を目視で確認し、吸着が確認されたものをウイルス感染が起きたwell、吸着が確認されなかったものを感染なしのwellとして数えた。得られた培養液ごとのウイルス感染の有無について、濾液ないしその希釈液、又は元液の希釈液ごとに割合を確認し、Reed−Muench法(ウイルス実験学 総論 国立予防衛生研究所学友会編、p.479−480)により、感染価としてlog(TCID50/ml)を算出し、ウイルス除去率LRVを求めたところ、LRV4以上となった。
(モノクローナル抗体純度の測定)
HPLC(島津製作所製 Prominence、カラム:東ソーGPC用カラム TSK gel G3000SWXL、移動相:リン酸緩衝液(pH6.9)/0.3( mol / l )塩化ナトリウム水溶液)により、以下の実施例、比較例の液条件になるように調整したモノクロナール抗体溶液純度を、ピーク面積比より測定したところ、以下の表3のようになった。
(抗体および膜のゼータ電位(表面電位)測定)
Zeta potential analyzer ELS−Z(大塚電子株式会社製)を用いて製造業者の指示書に従って電気泳動光散乱法により測定した(引用文献:Otsuka Densi Web information,www/photal co.jp.)。移動度より所定液条件での抗体のゼータ電位(Ei1)を算出した。pH=4,イオン強度 0.1mM NaCl溶液中での抗体のゼータ電位(Ei0)は、+37mVであった。膜のゼータ電位(Em)は、上記と同様にZeta potential analyzer ELS−Z(大塚電子株式会社製)を用いて製造業者の指示書に従って測定した。具体的には、膜のゼータ電位(Em)は、平板試料用セルユニット(大塚電子株式会社製)を使い、これに膜を設置し、抗体溶液と同じ組成の溶液であって抗体を含まない溶液で膜を満たし、その条件下において、ヒドロキシプロピルセルロースでコーティングした、ほぼ電位ゼロのポリスチレンラテックスからなるモニター粒子(大塚電子株式会社製)を用いて測定した(引用文献 Otsuka Densi Web information,www/photal co.jp.)。セルロースからなる膜の場合は、中空糸膜の代わりに、平膜を作成し(引用文献 特開昭59−45333号公報)、表面のゼータ電位を測定した。抗体および膜のゼータ電位は、以下の表4に示す。
実施例1〜7及び比較例1〜5
上記で示したように、モノクローナル抗体溶液を、表1の条件になるように濃縮およびバッファー組成に交換した後、この段階でのモノクローナル抗体純度の測定を上記の方法で行なった。その後、PPVを0.5vol%添加して、よく攪拌した後、実施例1〜7、比較例1〜5の溶液を膜面積0.001m2のフィルターAを用いて98kPa(1bar)の圧力でDead−end式濾過を3時間実施した。濾過できるモノクローナル抗体量(kg/m2/3hr/bar)を算出し、結果を表1に示した。PPVの除去性能の評価は上記の方法で行なった。さらに、抗体純度の結果を表3に示した。
Figure 0005755136
実施例8〜14及び比較例6〜9
上記で示したように、モノクローナル抗体溶液を、表2の条件になるように濃縮およびバッファー組成に交換した後、この段階でのモノクローナル抗体純度の測定を上記の方法で行なった。その後、PPVを0.5vol%添加して、よく攪拌した後、実施例8〜14、比較例6〜9の溶液を膜面積0.001m2のフィルターBを用いて294kPa(3bar)の圧力でDead−end式濾過を3時間実施した。濾過できるモノクローナル抗体量(kg/m2/3時間/bar)を算出し、結果を表2に示した。PPVの除去性能の評価は上記の方法で行なった。さらに、抗体純度の結果を表3に示した。
Figure 0005755136
Figure 0005755136
Figure 0005755136
以上の結果、実施例1〜14について、モノクローナル抗体処理量2kg/m/3hr/bar以上および、ウイルス除去性(PPV LRV 4以上)を満たすことができた。
本発明は、抗体医薬の製造過程に於けるウイルス除去方法として有用に用いることができる。

Claims (15)

  1. モノクローナル抗体溶液中のウイルスをウイルス除去膜で濾過することで除去するウイルス除去工程を含む、モノクローナル抗体を含む製剤の製造方法において、
    (1)モノクローナル抗体におけるモノマー含有率が90%以上であり、
    (2)モノクローナル抗体溶液におけるモノクローナル抗体濃度が20mg/ml〜100mg/mlであり、
    (3)モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含み、かつ
    (4)前記溶液中のモノクローナル抗体のゼータ電位Ei1(mV)が、
    a)前記ウイルス除去膜のゼータ電位Em(mV)に対し、
    0mV ≦ Ei1− Em ≦ 20mV
    b)前記モノクローナル抗体を含むpH=4、イオン強度 0.1mMの溶液中のモノクローナル抗体のゼータ電位Ei0(mV)に対し、
    10mV ≦ Ei0 − Ei1 ≦ 40mV
    の範囲であって、
    前記ウイルス除去膜の材質が、セルロース又は親水化された合成高分子である、
    上記方法。
  2. モノクローナル抗体を含むモノクローナル抗体溶液を、ウイルス除去膜でろ過するウイルス除去方法において、
    (1)モノクローナル抗体におけるモノマー含有率が90%以上であり、
    (2)モノクローナル抗体溶液におけるモノクローナル抗体濃度が20mg/ml〜100mg/mlであり、
    (3)モノクローナル抗体溶液は、塩基性アミノ酸を少なくとも含み、かつ
    (4)前記溶液中のモノクローナル抗体のゼータ電位Ei1(mV)が、
    a)前記ウイルス除去膜のゼータ電位Em(mV)に対し、
    0mV ≦ Ei1− Em ≦ 20mV
    b)前記モノクローナル抗体を含むpH=4、イオン強度 0.1mMの溶液中のモノクローナル抗体のゼータ電位Ei0(mV)に対し、
    10mV ≦ Ei0 − Ei1 ≦ 40mV
    の範囲であって、
    前記ウイルス除去膜の材質が、セルロース又は親水化された合成高分子である、
    上記方法。
  3. モノクローナル抗体溶液中のモノクローナル抗体のゼータ電位Ei1(mV)が、ウイルス除去膜のゼータ電位Em(mV)に対し、
    −4% x Em ≦ Ei1 ≦ −550% x Em
    である、請求項1又は2に記載の方法。
  4. モノクローナル抗体を含むpH=4、イオン強度0.1mMの溶液中のモノクローナル抗体のゼータ電位Ei0(mV)が、+25mV以上である、請求項1から3の何れか1項に記載の方法。
  5. モノクローナル抗体溶液が、細胞培養で作られるモノクローナル抗体溶液である、請求項1から4の何れか1項に記載の方法。
  6. モノクローナル抗体溶液のpHが4〜7の範囲である請求項1から5の何れか1項に記載の方法。
  7. 前記ウイルス除去膜の材質が、親水化ポリフッ化ビニリデン(PVDF)、親水化ポリエーテルスルホン(PES)、親水化ポリエチレン(PE)又は親水化ポリスルホン(PS)から選択される親水化された合成高分子である、請求項1から6の何れか1項に記載の方法。
  8. 塩基性アミノ酸が、アルギニン、ヒスチジン、リジンあるいはそれらの塩である、請求項1からの何れか1項に記載の方法。
  9. モノクローナル抗体溶液における抗体に対する塩基性アミノ酸の含有量が0.1〜20mmol/gである、請求項1からの何れか1項に記載の方法。
  10. 抗体の処理量が2kg/m2/3時間/bar(圧力換算) 以上である、請求項1からの何れか1項に記載の方法。
  11. モノクローナル抗体溶液が、無機塩、緩衝液成分、界面活性剤、又は糖類から選ばれる一種以上を含む、請求項1から10の何れか1項に記載の方法。
  12. ウイルス除去膜による濾過がデットエンドフィルトレーションである、請求項1から11の何れか1項に記載の方法。
  13. モノクローナル抗体溶液をウイルス除去膜で濾過することによってウイルスを除去する工程を、クロマトグラフィー後、濃縮後、又はバッファー交換後のいずれかに行う、請求項1から12の何れか1項に記載の方法。
  14. モノクローナル抗体溶液をウイルス除去膜で濾過することによってウイルスを除去する工程を、濃縮後、又はバッファー交換後のいずれかに行う、請求項1から13の何れか1項に記載の方法。
  15. ウイルス除去膜のパルボウイルスの除去率が、LRV(Log Reduction Value:対数減少値)≧4である、請求項1から14の何れか1項に記載の方法。
JP2011505900A 2009-03-27 2010-03-26 高濃度モノクローナル抗体溶液中のウイルス除去方法 Active JP5755136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505900A JP5755136B2 (ja) 2009-03-27 2010-03-26 高濃度モノクローナル抗体溶液中のウイルス除去方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009078171 2009-03-27
JP2009078171 2009-03-27
JP2011505900A JP5755136B2 (ja) 2009-03-27 2010-03-26 高濃度モノクローナル抗体溶液中のウイルス除去方法
PCT/JP2010/002219 WO2010109920A1 (ja) 2009-03-27 2010-03-26 高濃度モノクローナル抗体溶液中のウイルス除去方法

Publications (2)

Publication Number Publication Date
JPWO2010109920A1 JPWO2010109920A1 (ja) 2012-09-27
JP5755136B2 true JP5755136B2 (ja) 2015-07-29

Family

ID=42780617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505900A Active JP5755136B2 (ja) 2009-03-27 2010-03-26 高濃度モノクローナル抗体溶液中のウイルス除去方法

Country Status (6)

Country Link
US (1) US9056896B2 (ja)
EP (1) EP2412817B2 (ja)
JP (1) JP5755136B2 (ja)
CN (1) CN102365368B (ja)
ES (1) ES2573663T5 (ja)
WO (1) WO2010109920A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911964B2 (en) 2006-09-13 2014-12-16 Abbvie Inc. Fed-batch method of making human anti-TNF-alpha antibody
BRPI0716762A2 (pt) 2006-09-13 2013-09-24 Abbott Lab melhorias da cultura celular
EP2921501A1 (en) 2008-10-20 2015-09-23 Abbvie Inc. Isolation and purification of antibodies using Protein A affinity chromatography
CA2738499A1 (en) 2008-10-20 2010-04-29 Abbott Laboratories Viral inactivation during purification of antibodies
NZ597809A (en) 2009-08-06 2014-05-30 Genentech Inc Method to improve virus removal in protein purification
PL2697369T3 (pl) * 2011-03-25 2018-12-31 F.Hoffmann-La Roche Ag Nowe sposoby oczyszczania białek
DE102011105525B4 (de) * 2011-06-24 2015-03-26 Sartorius Stedim Biotech Gmbh Verfahren zur Abtrennung von Biopolymer-Aggregaten und Viren aus einem Fluid
JP5711369B2 (ja) * 2011-06-24 2015-04-30 旭化成メディカル株式会社 蛋白製剤の製造方法
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
EP2889623B1 (en) * 2012-08-24 2017-10-04 The University of Tokyo Exosome analysis method, exosome analysis apparatus, and use of exosome electrophoresis chip
JP2016533172A (ja) 2013-10-03 2016-10-27 タケダ ワクチン,インコーポレイテッド 細胞株からラブドウイルスを検出および除去する方法
CN105939767B (zh) 2014-01-08 2018-04-06 弗洛设计声能学公司 具有双声电泳腔的声电泳装置
US10550148B2 (en) 2014-06-16 2020-02-04 Emd Millipore Corporation Methods for increasing the capacity of flow-through processes
US10207225B2 (en) 2014-06-16 2019-02-19 Emd Millipore Corporation Single-pass filtration systems and processes
KR101938948B1 (ko) 2014-06-25 2019-01-15 이엠디 밀리포어 코포레이션 밀집한 나권형 필터 엘리먼트, 모듈 및 시스템
SG11201508665QA (en) 2014-08-29 2016-03-30 Emd Millipore Corp Processes For Filtering Liquids Using Single Pass Tangential Flow Filtration Systems AndTangential Flow Filtration Systems With Recirculation of Retentate
KR102079585B1 (ko) 2014-08-29 2020-02-21 이엠디 밀리포어 코포레이션 잔류물의 재순환을 이용한 싱글 패스 접선 유동 여과 시스템 및 접선 유동 여과 시스템
EP3274359B1 (en) * 2015-03-23 2022-11-02 Alexion Pharmaceuticals, Inc. Virus filtration
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
WO2017076553A1 (en) * 2015-11-05 2017-05-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method for the separation of virus compositions including depletion and purification thereof
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
WO2018230397A1 (ja) 2017-06-12 2018-12-20 旭化成メディカル株式会社 タンパク質含有液のろ過方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945333A (ja) 1982-09-08 1984-03-14 Asahi Chem Ind Co Ltd 再生セルロ−ス多孔膜の製造方法
WO1998030230A1 (fr) 1997-01-09 1998-07-16 Yoshitomi Pharmaceutical Industries, Ltd. Compositions proteinees et procede de production
JP2001335509A (ja) 2000-05-31 2001-12-04 Nihon Pharmaceutical Co Ltd フィブリノーゲンを含有する溶液のウイルス除去法
ES2477996T3 (es) 2000-08-11 2014-07-18 Chugai Seiyaku Kabushiki Kaisha Preparaciones estabilizadas que contienen un anticuerpo
DE10211632A1 (de) 2002-03-15 2003-10-09 Aventis Behring Gmbh Verfahren zur Abtrennung von Viren aus einer Proteinlösung durch Nanofiltration
WO2004001007A2 (en) * 2002-06-21 2003-12-31 Idec Pharmaceuticals Corporation Buffered formulations for concentrating antibodies and methods of use thereof
ES2626268T3 (es) * 2002-09-11 2017-07-24 Chugai Seiyaku Kabushiki Kaisha Método de purificación de proteínas
ES2214967B1 (es) * 2003-03-06 2005-06-16 Probitas Pharma, S.A Procedimiento para la eliminacion de virus en soluciones de fibrinogeno y fibrinogeno obtenido por dicho procedimiento.
EP1614693A4 (en) 2003-03-31 2006-07-19 Kirin Brewery PURIFICATION OF A HUMAN MONOCLONAL ANTIBODY AND A HUMAN POLYCLONAL ANTIBODY
EP1610820B2 (en) 2003-04-04 2013-08-21 Genentech, Inc. High concentration antibody and protein formulations
US20050158303A1 (en) 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
CN101489655A (zh) 2006-07-14 2009-07-22 威斯康星旧生研究基金会 捕获病毒用吸附膜
US8741600B2 (en) 2007-06-19 2014-06-03 Asahi Kasei Kabushiki Kaisha Method for separation of immunoglobulin monomers
JP5099930B2 (ja) * 2007-06-19 2012-12-19 旭化成株式会社 免疫グロブリン1量体の分離方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014006452; Hongo-Hirasaki,T.,et al.: '"Removal of small viruses (parvovirus) from IgG solution by virus removal filter PlanovaR 20N"' J. Membrane Sci. Vol.278,No.1-2, 20060705, P.3-9 *
JPN7014000535; 日本組織培養学会編集: '付4 培地の組成' 組織培養の技術 第5刷, 19830820, P.187-188, 株式会社 朝倉書店 *

Also Published As

Publication number Publication date
EP2412817B1 (en) 2016-05-04
CN102365368A (zh) 2012-02-29
JPWO2010109920A1 (ja) 2012-09-27
CN102365368B (zh) 2014-07-30
WO2010109920A1 (ja) 2010-09-30
ES2573663T5 (es) 2019-12-12
US20120077963A1 (en) 2012-03-29
EP2412817A1 (en) 2012-02-01
ES2573663T3 (es) 2016-06-09
EP2412817B2 (en) 2019-06-05
US9056896B2 (en) 2015-06-16
EP2412817A4 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5755136B2 (ja) 高濃度モノクローナル抗体溶液中のウイルス除去方法
JP5711369B2 (ja) 蛋白製剤の製造方法
CN109069592B (zh) 纯化胶原7的方法
JP2008500959A (ja) ウイルスについて安全な免疫グロブリンの製造方法
KR20140022845A (ko) 신규 단백질 정제 방법
SK287633B6 (sk) Spôsob výroby humánneho gamaglobulínu G a humánny gamaglobulín G s inaktivovanými vírusmi
TW202043253A (zh) 藉由將藥物物質和藥物產品過程整體化的生物製劑製造之連續製造過程
Hoffmann et al. Purification of new biologicals using membrane-based processes
JP6883102B2 (ja) タンパク質含有液のろ過方法
WO2022044727A1 (ja) 有用物質の精製方法
AU2014326706A1 (en) Method for the clarification of high density crude cell culture harvest
EP3498828B1 (en) Method for treating solution contaminated with porcine circoviruses
JP2011184299A (ja) モノクローナル抗体を含む製剤の製造方法
US20220177518A1 (en) Method for purifying protein
Namila The effects of solution condition on virus filtration performance
JP2021011446A (ja) タンパク質含有溶液のろ過方法
CN114555622A (zh) 蛋白质的纯化和病毒灭活
NZ615579B2 (en) Novel protein purification methods

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5755136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350