JP5728964B2 - 光半導体装置及びその製造方法 - Google Patents

光半導体装置及びその製造方法 Download PDF

Info

Publication number
JP5728964B2
JP5728964B2 JP2011009566A JP2011009566A JP5728964B2 JP 5728964 B2 JP5728964 B2 JP 5728964B2 JP 2011009566 A JP2011009566 A JP 2011009566A JP 2011009566 A JP2011009566 A JP 2011009566A JP 5728964 B2 JP5728964 B2 JP 5728964B2
Authority
JP
Japan
Prior art keywords
layer
optical
semiconductor element
optical semiconductor
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011009566A
Other languages
English (en)
Other versions
JP2012151327A (ja
Inventor
田中 信介
信介 田中
関口 茂昭
茂昭 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011009566A priority Critical patent/JP5728964B2/ja
Publication of JP2012151327A publication Critical patent/JP2012151327A/ja
Application granted granted Critical
Publication of JP5728964B2 publication Critical patent/JP5728964B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光半導体素子を含む光半導体装置、及びその製造方法に関する。
シリコン(Si)基板上に光回路を形成する技術が知られている。例えば、SOI(Silicon on Insulator)基板上にサブμmからμmスケールの微細光導波路(Si細線導波路)を形成し、その強い光閉じ込めと低い光吸収を利用して、小型且つ低損失な光回路を実現する。
Si細線導波路を形成した素子(光半導体素子)では、Si基板上での発光或いは光増幅機能の実現が課題となり得る。Siは、間接遷移型半導体であり、半導体レーザの基板材料に用いられるGaAs(ガリウムヒ素)やInP(インジウムリン)等の直接遷移型の化合物半導体と異なり、バンド間遷移を利用した電流注入による強い発光が得られない。そのため、Si基板上に光回路を形成した光半導体素子に、化合物半導体基板上に形成した、発光或いは光増幅機能を有する素子(化合物半導体素子(光半導体素子))を、ハイブリッド集積する技術が提案されている。ハイブリッド集積の方式として、近年、主に次のような2つの方式が提案されている。
まず第1の方式は、Si基板上に形成したSi細線導波路の端面に、化合物半導体基板上に形成した化合物半導体素子の光導波路を、光の伝播方向に縦列接続する方式である。この方式では、Si細線導波路を形成したSOI基板に、下部のSi基板を露出させたテラスを形成し、そのテラス底面に半田バンプを形成して、そこに化合物半導体素子をフリップチップ実装する。この際、Si細線導波路と化合物半導体素子内の光導波路の水平方向の位置は、両素子に設けたアライメントマーカを用いて調整される。垂直方向の位置関係は、両素子の構造と半田バンプの設計によって調整される。
ハイブリッド集積の第2の方式は、貼り合わせ接合を用いた方式である。この方式では、Si細線導波路の直上に、化合物半導体素子の光活性層を配置させ、Si細線導波路内を伝播する光導波モード分布の一部を、化合物半導体素子の光活性層に染み出させ、発光或いは光増幅機能を実現している。Si細線導波路と光活性層は、近接して配置され、より多くの光導波モードが光活性層に染み出すように構成される。そのため、光活性層の上下に配置されるクラッド層のうち、光活性層とSi細線導波路の間に配置されるクラッド層は薄く形成される。光活性層への電流注入は、所定位置に設けた電極から、上下のクラッド層を介して行われる。
特開2008−198957号公報 特表2009−542033号公報
オプティクス・エクスプレス(OPTICS EXPRESS),2009年8月,Vol.17,No.16,pp.14063−14068 アイ・イー・イー・イー・フォトニクス・テクノロジー・レターズ(IEEE PHOTONICS TECHNOLOGY LETTERS),2007年2月,Vol.19,No.4,pp.230−232
これまでのハイブリッド集積方式では、次のような問題点があった。
まず上記の第1の方式では、Si細線導波路と化合物半導体素子内の光導波路間での光モード形状差が大きいために、両光導波路間で良好な光結合効率が得られない場合がある。更に、実装時の位置調整のトレランスが狭いにも関わらず、高さ方向の位置調整に困難が伴う場合がある。具体的には、Si細線導波路がサブμmサイズの光導波モードサイズであるのに対し、化合物半導体発光素子の光導波モードサイズは、例えば2μm以上と大きい。そのため、これらを光の伝播方向に直接結合した際には、3dB以上の結合損失が生じる場合があり、更に、最適な結合効率が得られる位置トレランスは±1μm以下と極めて小さい。第1の方式でのハイブリッド集積では、両素子の光導波路間における高い光結合効率とその充分な再現性に課題を有していた。
また、上記の第2の方式の場合、化合物半導体素子で大きな発光或いは光増幅効果を得るために、光活性層に数十〜百mA程度の電流が注入されるが、この電流が、薄くて高抵抗のクラッド層を通過する際に、熱を発生する。しかし、光活性層の上下方向が電極と熱抵抗の高いSOI基板のBOX層によって熱的に遮蔽されていると、クラッド層で発生した熱が効率的に外部に放熱されず、光活性層付近の温度が局所的に上昇し易い。第2の方式でのハイブリッド集積では、高温、大電流での動作が困難であるという課題を有していた。
本発明の一観点によれば、第1光半導体素子と第2光半導体素子を備える光半導体装置が提供される。ここで、前記第1光半導体素子は、半導体基板と、前記半導体基板上に絶縁層を介して設けられた第1光導波路層と、前記半導体基板の前記絶縁層及び前記第1光導波路層の側にあって、前記半導体基板が露出する凹部とを含む。前記第2光半導体素子は、第1クラッド層と、前記第1クラッド層上に設けられた光活性層と、前記第1クラッド層上に設けられ、前記光活性層と光学的に接続された第2光導波路層と、前記光活性層上に設けられた第2クラッド層と、前記第2光導波路層上に設けられ、前記第2クラッド層より薄い第3クラッド層とを含む。前記光半導体装置において、前記第2光半導体素子は、前記第2クラッド層が前記凹部に配置されて、前記半導体基板と熱的に接続され、且つ、前記第3クラッド層が前記第1光導波路層上に配置されて、前記第2光導波路層が前記第1光導波路層と光学的に接続される。前記第3クラッド層は、前記第1光導波路層と前記第2光導波路層との間隔が伝播光の波長以下となる厚みを有する。
開示の光半導体装置によれば、光半導体素子間の良好な光結合効率の実現が可能になる。また、光半導体素子で生じた熱を効率的に放熱することが可能になる。
光半導体装置の構成例を示す図である。 第1の実施の形態に係る光半導体装置の一例を示す図である。 第1の実施の形態に係る光半導体装置の第1形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第2形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第3形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第4形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第5形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第6形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第7形成工程の説明図である。 第1の実施の形態に係る光半導体装置の第8形成工程の説明図である。 第1の実施の形態に係る光半導体装置の別例を示す図である。 第2の実施の形態に係る光半導体装置の一例を示す図である。 第2の実施の形態に係る光半導体装置の第1形成工程の説明図である。 第2の実施の形態に係る光半導体装置の第2形成工程の説明図である。 第2の実施の形態に係る光半導体装置の第3形成工程の説明図である。 第2の実施の形態に係る光半導体装置の第4形成工程の説明図である。 第2の実施の形態に係る光半導体装置の第5形成工程の説明図である。 第2の実施の形態に係る光半導体装置の第6形成工程の説明図である。 第2の実施の形態に係る光半導体装置の第7形成工程の説明図である。 第3の実施の形態に係る光半導体装置の一例を示す図である。 導波モードの解析結果の一例を示す図である。
図1は光半導体装置の構成例を示す図である。尚、図1には、光半導体装置の一例の、光の伝播方向に沿った要部断面を、模式的に図示している。
図1に示す光半導体装置1は、第1光半導体素子10及び第2光半導体素子20を有している。
第1光半導体素子10は、半導体基板11上に絶縁層12及び半導体層13が設けられた基板14を用いて形成されている。この基板14の、半導体層13の部分は、光導波路層15として形成されている。基板14には、絶縁層12及び光導波路層15が設けられている側に、半導体基板11が底面に露出する凹部16が設けられている。
第2光半導体素子20は、光活性層21が含まれる第1領域(光活性領域)AR1、及び光活性層21に光学的に接続された光導波路層22が含まれる第2領域(光パッシブ領域)AR2を有している。光導波路層22は、光活性層21を伝播する光の伝播方向に、光活性層21と光学的に接続されるように、設けられている。
光活性領域AR1には、光活性層21を挟んで上下に設けられたp型の第1クラッド層23及びn型の第2クラッド層24が設けられている。第1クラッド層23の表面及び第2クラッド層24の表面には、それぞれp側の第1電極25及びn側の第2電極26が設けられている。光活性層21には、これら第1電極25及び第2電極26から、第1クラッド層23及び第2クラッド層24を介して、電流(電子、ホール)が注入されるようになっている。
光パッシブ領域AR2の光導波路層22は、光活性領域AR1から延びる第1クラッド層23と、光パッシブ領域AR2に設けられている第3クラッド層27に挟まれて設けられている。第3クラッド層27は、光活性領域AR1の第2クラッド層24よりも薄くなるように設けられている。
第2光半導体素子20は、その第2クラッド層24が、第1光半導体素子10の凹部16に配置され、第2クラッド層24よりも薄い第3クラッド層27が、第1光半導体素子10の光導波路層15上に配置されるように、第1光半導体素子10に集積される。
第1光半導体素子10の凹部16に配置された、第2光半導体素子20の第2クラッド層24は、凹部16の底面に露出する半導体基板11と熱的に接続される。ここでは一例として、第2クラッド層24の表面に設けられた第2電極26が、凹部16の底面に設けられたバンプ17(バンプ17に接続される配線は図示を省略)に接続されている。これにより、第2光半導体素子20は、バンプ17によって第1光半導体素子10と電気的に接続されると共に、バンプ17を介して第1光半導体素子10の半導体基板11と熱的に接続される。
尚、第2クラッド層24と半導体基板11との熱的な接続は、上記のようなバンプ17を用いた接続に限定されない。例えば、第2クラッド層24と半導体基板11の間に、必要に応じて凹部16側に設ける配線の位置や第2電極26の位置を変更して、導電材料や熱伝導性材料の層を設け、両者を熱的に接続するようにしてもよい。
第1光半導体素子10の光導波路層15上に配置される、第2光半導体素子20の第3クラッド層27は、例えば、光導波路層15に直接貼り合わせ接合される。第3クラッド層27は、光導波路層22が光導波路層15と光学的に接続されるような厚さとされる。より具体的には、第3クラッド層27は、光導波路層22と光導波路層15の間で光導波モードの遷移が起こるような厚さとされる。例えば、第3クラッド層27は、光導波路層22と光導波路層15が、光活性層21から光導波路層22へと伝播する光の波長以下の間隔となるような厚さとされる。
尚、第3クラッド層27は、光導波路層15に直接接合するほか、酸化物や有機物等の接合層を介して、光導波路層15に間接に接合するようにしてもよい。このような場合にも、第3クラッド層27は、接合層の厚さを考慮して、光導波路層22と光導波路層15が光学的に接続されるような厚さとされる。
上記のような構成を有する光半導体装置1において、光活性領域AR1及び光パッシブ領域AR2は、それらの間で充分に導波モードが整合するように設計される。それにより、光活性領域AR1及び光パッシブ領域AR2の接続部分での光損失を抑制することが可能になる。
第2光半導体素子20は、光活性領域AR1の第2クラッド層24が、第1光半導体素子10の凹部16に配置され、その凹部16の底面の半導体基板11と熱的に接続される。それにより、第2光半導体素子20で発生した熱を、熱伝導性の良い半導体基板11に効率的に伝熱し、光半導体装置1の外部へと放熱することが可能になる。
第2光半導体素子20は、光パッシブ領域AR2の薄い第3クラッド層27が、第1光半導体素子10の光導波路層15に貼り合わせ接合されて、第1光半導体素子10に集積される。第2光半導体素子20は、その光導波路層22と、第1光半導体素子10の光導波路層15とが所定距離で対向配置される。これにより、光導波路層22及び光導波路層15を含む方向性結合器が形成される。
光導波路層22及び光導波路層15が対向配置されている部分の長さは、対象とする信号光に対して方向性結合器の結合長となるように設定される。例えば、光活性層21及び光導波路層22を伝播する信号光が、光導波路層22と光導波路層15の間の光結合効果を受けて徐々に光導波路層15に遷移し、光導波路層22の終端部で光導波路層15に多くの光パワーが移行するような長さに設定される。
このような光遷移領域は、積層方向については、半導体層の高精度の成膜や加工による層厚制御によって、また、水平方向については、高精度な位置決めを行う貼り合わせやその後の加工によって、高い構造制御性と再現性を実現することが可能である。そのため、光半導体装置1では、第1光半導体素子10と第2光半導体素子20の間の高効率な光結合を、高い再現性をもって実現することが可能になる。
また、第2光半導体素子20の光活性領域AR1では、充分な厚さを持つ第1クラッド層23及び第2クラッド層24から光活性層21への電流注入が行われ、発光や信号光強度の増幅効果が得られる。そのため、第1クラッド層23及び第2クラッド層24の電気抵抗を小さくでき、発熱を抑制することが可能になる。更に、上記のように、第2光半導体素子20側で発生した熱は、第1光半導体素子10の半導体基板11へと効率的に放熱することが可能である。
以下、光半導体装置について、より詳細に説明する。
まず、第1の実施の形態について説明する。
図2は第1の実施の形態に係る光半導体装置の一例を示す図である。尚、図2には、第1の実施の形態に係る光半導体装置の一例の、光の伝播方向に沿った要部断面を、模式的に図示している。
図2に示す光半導体装置1aは、集積された第1光半導体素子10a及び第2光半導体素子20aを有している。
第1光半導体素子10aは、シリコン(Si)基板11a上に酸化シリコン(SiO2)等のBOX層12aとSi層13aを含むSOI基板14aを用いて形成され、Si層13aの部分に、Si細線導波路層15a(リブ光導波路層若しくはチャネル光導波路層)が形成されている。Si細線導波路層15aは、例えば、光の伝播方向に等幅で延在するような平面形状で形成される。SOI基板14aには、Si細線導波路層15aを分断するように、凹部16aが形成されている。凹部16aの底面には、Si基板11aが露出する。
ここで、BOX層12aは、例えば、厚さ2μmとすることができ、Si層13aは、例えば、厚さ700nmとすることができる。Si細線導波路層15aは、例えば、高さ600nm、幅600nmのリブ光導波路層とすることができる。凹部16aは、例えば、光伝播方向の長さを700μm、深さを7μmとすることができる。
第2光半導体素子20aは、光活性層21aを含む光活性領域AR1aの両側に、光導波路層22aを含む光パッシブ領域AR2aが設けられた構造を有している。光活性層21a及び光導波路層22aは、p型InPクラッド層23aの表面に設けられている。
光活性層21aは、例えば、厚さ150nm、組成波長1.55μmのガリウムインジウムヒ素リン(GaInAsP)光活性層とされ、光導波路層22aは、例えば、厚さ200nm、組成波長1.33μmのGaInAsP光導波路層とされる。光活性層21a及び光導波路層22aは、例えば、光の伝播方向に等幅で延在するような平面形状で形成される。光活性層21aを含む光活性領域AR1aは、例えば、その長さが680μmとなるように形成され、光導波路層22aを含む光パッシブ領域AR2aは、例えば、Si細線導波路層15aと対向する部分の長さが15μmとなるように形成される。
光活性層21aと光導波路層22aとは、例えば、バットジョイント接合される。光活性層21aのp型InPクラッド層23a側と反対の表面には、n型InPクラッド層24aが形成されている。光導波路層22aのp型InPクラッド層23a側と反対の表面には、n型InPクラッド層24aよりも薄く、n型InPクラッド層27aが形成されている。n型InPクラッド層27aは、伝播光の波長以下、例えば、厚さ100nmとされ、光活性層21aと光導波路層22aとのバットジョイント接合部から約2μm離れた領域から外側に形成される。
光活性領域AR1aのp型InPクラッド層23aの表面には、p型ガリウムインジウムヒ素(GaInAs)コンタクト層28aを介して、p側電極25aが形成される。光活性領域AR1aのn型InPクラッド層24aの表面には、n型InPコンタクト層29aを介して、n側電極26aが形成されている。
第2光半導体素子20aは、光活性領域AR2aのn型InPクラッド層24a及びn側電極26aが、第1光半導体素子10aの凹部16aに配置されるように、第1光半導体素子10aに集積される。且つ、第2光半導体素子20aは、光パッシブ領域AR2aの薄いn型InPクラッド層27aが、第1光半導体素子10aのSi細線導波路層15a上に配置されるように、集積される。
凹部16aに配置されるn側電極26aは、その凹部16aの底面に設けられたバンプ17aに電気的に接続されている。これにより、第2光半導体素子20aは、第1光半導体素子10aに、電気的及び熱的に接続されている。Si細線導波路層15a上に配置されるn型InPクラッド層27aは、Si細線導波路層15aに直接貼り合わせ接合されている。
第1光半導体素子10aは、光回路素子であり、第2光半導体素子20aは、化合物半導体素子であって、これらが集積された光半導体装置1aは、半導体光増幅器として機能する。光半導体装置1aでは、例えば、図2に示すように、まず凹部16aを挟んだ一方側(図2の左側)のSi細線導波路層15aを伝播する光が、その上にある一方側(図2の左側)の光導波路層22aに徐々に遷移していく。これにより、Si細線導波路層15a(図2の左側)を伝播する光の多くが、光導波路層22a(図2の左側)に遷移する。このようにして光導波路層22a(図2の左側)に遷移した光は、光活性層21aで増幅され、もう一方側(図2の右側)の光導波路層22aへと伝播され、その下にあるもう一方(図2の右側)のSi細線導波路層15aに徐々に遷移していく。これにより、光活性層21aで増幅され、光導波路層22a(図2の右側)を伝播する光の多くが、Si細線導波路層15a(図2の右側)に遷移する。
光半導体装置1aによれば、第1光半導体素子10aと第2光半導体素子20aの間の良好な光結合効率の実現が可能になる。また、第2光半導体素子20aで生じた熱を効率的に放熱することができ、充分な増幅効果を発現させることが可能になる。
続いて、第1の実施の形態に係る光半導体装置1aの形成方法を、図3〜図10を参照して説明する。
まず、第2光半導体素子20a(化合物半導体素子)の形成方法の一例について説明する。
図3は第1の実施の形態に係る光半導体装置の第1形成工程の説明図である。尚、図3(A),(B),(C)には、第1形成工程の要部断面の一例を模式的に図示している。
第2光半導体素子20aが含む半導体層は、MOVPE(Metal Organic Vapor Phase Epitaxy)法を用いた結晶成長により、形成することができる。
図3(A)に示すように、p型InP基板31a上に、p型GaInAsコンタクト層28aを、例えば厚さ200nmで形成し、その上に、p型InPクラッド層23aを、例えば厚さ1.5μmで形成する。このp型InPクラッド層23a上に、GaInAsPの光活性層21aを、例えば、組成波長1.55μm、伸張歪量−0.3%、厚さ150nmで形成する。更に、光活性層21aの上に、n型InPクラッド層の一部となるn型InP層32aを、例えば厚さ200nmで形成する。
次いで、図3(B)に示すように、第2光半導体素子20aの上記光活性領域AR1aとなる部分に、SiO2等のマスク1000をフォトリソグラフィで形成する。そして、マスク1000で被覆されていない、上記光パッシブ領域AR2aとなる部分のn型InP層32a及び光活性層21aを、ウェットエッチングにより除去する。尚、このウェットエッチングの際には、必要に応じ、更に光活性層21a下のp型InPクラッド層23aの一部を除去するようにしてもよい。
次いで、図3(C)に示すように、マスク1000を残したまま、バットジョイント成長法により、GaInAsPの光導波路層22aを、例えば、組成波長1.3μm、厚さ200nmで形成する。更に、バットジョイント成長法により、光導波路層22a上に、n型InPクラッド層の一部となるn型InP層33aを、例えば厚さ200nmで形成する。
尚、光導波路層22aは、ここでは光活性層21aに比べて屈折率が低くなるように形成される。このように屈折率差のある光活性層21aと光導波路層22aを同じ層厚で形成すると、光活性層21aと光導波路層22aの間を光が伝播する際、その屈折率差に起因した損失が発生し得る。光導波路層22aを光活性層21aよりも厚く形成しておくと、そのような屈折率差に起因した損失を抑えることが可能になる。
図4は第1の実施の形態に係る光半導体装置の第2形成工程の説明図である。尚、図4(A)には、第2形成工程の要部断面の一例を模式的に図示し、図4(B)には、図4(A)のX1−X1位置の断面の一例を模式的に図示し、図4(C)には、図4(A)のX2−X2位置の断面の一例を模式的に図示している。
図3に示したようにバットジョイント成長を行った後は、マスク1000を除去し、n型InP層32a,33aの上に更に、n型InP層を、例えば厚さ2.0μmで形成する。これにより、図4(A)に示すように、光活性層21a及び光導波路層22aを覆い、n型InPクラッド層となるn型InP層34a(上記のn型InP層32a,33aを含む)を形成する。そして、このようなn型InP層34aの上に、n型InPコンタクト層29aを、例えば、厚さ200nmで形成する。
その後、図4(A),(B),(C)に示すように、n型InPコンタクト層29aの表面に、SiO2等のマスク1010を用いて導波路形状をパターニングし、これをマスクとしたドライエッチングによってメサ構造を形成する。メサ構造は、光活性領域AR1aとなる部分、及び光パッシブ領域AR2aとなる部分の双方に跨って、例えば、高さ3.0μm、幅1.5μmで形成する。光活性領域AR1aとなる部分には、図4(B)に示すような、光活性層21aを含むメサ構造が形成され、光パッシブ領域AR2aとなる部分には、図4(C)に示すような、光導波路層22aを含むメサ構造が形成される。
図5は第1の実施の形態に係る光半導体装置の第3形成工程の説明図である。尚、図5(A)には、第3形成工程の要部平面の一例を模式的に図示し、図5(B)には、図5(A)のX3−X3位置の断面の一例を模式的に図示し、図5(C)には、図5(A)のX4−X4位置の断面の一例を模式的に図示している。また、便宜上、図5(A)では、一部要素の平面レイアウトをずらして図示している。
図4に示したようにメサ構造の形成を行った後は、マスク1010を残しまたまま、そのメサ構造の両脇に半絶縁性InP埋め込み層30aを形成して、埋め込みヘテロ構造による電流狭窄構造を形成する。その後、マスク1010を除去し、光活性層21aが含まれる領域のn型InPコンタクト層29a上に、例えば、金(Au)/ゲルマニウム(Ge)/Auの積層構造を有する、n側電極26aを形成する。これにより、図5(A),(B),(C)に示したような構造を得る。
図6は第1の実施の形態に係る光半導体装置の第4形成工程の説明図である。尚、図6(A)には、第4形成工程の要部平面の一例を模式的に図示し、図6(B)には、図6(A)のX5−X5位置の断面の一例を模式的に図示し、図6(C)には、図6(A)のX6−X6位置の断面の一例を模式的に図示している。また、便宜上、図6(A)では、一部要素の平面レイアウトをずらして図示している。
n側電極26aの形成まで行った後は、図5(A)に鎖線Y1で囲った領域にSiO2等のマスクを形成し、その周りのn型InPコンタクト層29a、半絶縁性InP埋め込み層30a、n型InP層34aの一部を、ドライエッチングにより除去する。このドライエッチングは、例えば、光導波路層22aの上面から100nmのn型InP層34aが残る深さまで、行う。
尚、n型InP層34aのうち、光活性層21a上の部分が、上記図2に示したn型InPクラッド層24aに相当し、上記ドライエッチング後に残る光導波路層22a上の部分が、上記図2に示したn型InPクラッド層27aに相当する。
また、図6(A)に示したように、素子上面の適当な箇所には、第1光半導体素子10aへの実装時に用いる、アライメントマーカ41を形成する。尚、アライメントマーカ41は、上記図5の工程において形成してもよい。
最後に完成した半導体素子20aのウエハを劈開によりチップ化して完成となる。ここで光半導体素子20aの両端面には、素子端面で生じる反射による悪影響を抑制するために、反射防止膜を形成してもよい。具体的には、両側の光パッシブ領域AR2aの端面それぞれに誘電体多層膜からなる反射防止膜を蒸着する。
以上、図3〜図6に示したような工程により、化合物半導体素子である第2光半導体素子20aの基本構造が形成される。
続いて、光回路素子である第1光半導体素子10aの形成方法について説明する。
図7は第1の実施の形態に係る光半導体装置の第5形成工程の説明図である。尚、図7(A)には、第5形成工程の要部断面の一例を模式的に図示し、図7(B)には、図7(A)のX7−X7位置の断面の一例を模式的に図示している。
まず、SOI基板14a上に、フォトリソグラフィ又はEB(電子ビーム)露光技術を利用して、SiO2等のマスク1030を用いたSi細線導波路パターンを形成する。これをマスクとして、ドライエッチングで周囲のSi層13aを除去し、例えば、高さ600nm、幅600nmのSi細線導波路層15aを形成する。
尚、Si細線導波路層15aの側面から約2μm以上離れ、光導波モードが染み出さない領域には、図7(A)のように、Si層13aを残し、後の貼り合わせ工程で強度を確保するためのトレンチ構造13a1を形成してもよい。
図8は第1の実施の形態に係る光半導体装置の第6形成工程の説明図である。尚、図8(A)には、第6形成工程の要部平面の一例を模式的に図示し、図8(B)には、図8(A)のX8−X8位置の断面の一例を模式的に図示している。
Si細線導波路層15aの形成後は、それを分断するように凹部16aを形成する。その際は、まず、SiO2等のマスク1040で、凹部16aの形成領域以外の領域を保護する。その後、六フッ化硫黄(SF6)及び四フッ化炭素(CF4)等の反応性ガスを用いたドライエッチングにより、Si層13a及びBOX層12aを貫通し、Si基板11aに達する、例えば、長さ700μm、深さ7μmの凹部16aを形成する。
凹部16aの形成後は、その底面に、図示しない配線(電極ライン)、及び配線上に設けるバンプ17aを形成する。配線は、例えば、チタンニッケル金(TiNiAu)を用いて形成し、バンプ17aとしては、例えば、金スズ(AuSn)半田バンプを形成する。配線及びバンプ17aの厚さは、例えば、3μmとする。
また、図8(A)に示したように、素子上面の適当な箇所には、第2光半導体素子20aの実装時に用いる、アライメントマーカ42を形成する。
以上、図7及び図8に示したような工程により、光回路素子である第1光半導体素子10aが形成される。
続いて、上記のようにして形成される各光半導体素子の集積(実装)方法について説明する。
図9は第1の実施の形態に係る光半導体装置の第7形成工程の説明図である。尚、図9(A)には、第7形成工程の要部平面の一例を模式的に図示し、図9(B)には、図9(A)のX9−X9位置の断面の一例を模式的に図示している。
ここでは、第2光半導体素子20aのn型InPクラッド層27aを、第1光半導体素子10aのSi細線導波路層15aに直接貼り合わせて接合する場合を例にする。
この場合、まず、第1光半導体素子10a及び第2光半導体素子20aの貼り合わせ面を充分に洗浄した後、酸素プラズマ等で表面を活性化させる。そして、第2光半導体素子20aのn型InPクラッド層24a及びn側電極26aを、第1光半導体素子10aの凹部16aに配置し、n型InPクラッド層27aを、Si細線導波路層15a上に配置する。n型InPクラッド層27aとSi細線導波路層15aを貼り合わせ、その状態を、数時間、高温高圧下で保持することで、充分な貼り合わせ強度と隙間のない貼り合わせ界面を得ることができる。また、n側電極26aは、凹部16aの底面のバンプ17aに接続される。
第1光半導体素子10aのSi細線導波路層15aと、第2光半導体素子20aの光導波路層22aの位置は、予め形成しておいたアライメントマーカ41,42の合わせ込みによって、サブμmオーダの精度をもって位置決めすることができる。尚、アライメントマーカ41,42の合わせ込みは、例えば、第1光半導体素子10及び第2光半導体素子20aを透過する赤外線を用いたカメラでアライメントマーカ41,42を観察して行う方法や、貼り合わせ面をカメラで直接観察して行う方法等がある。
尚、ここでは、n型InPクラッド層27aとSi細線導波路層15aを直接貼り合わせて接合する場合を例示した。このほか、Si細線導波路層15aの表面に、熱酸化等で表面酸化膜を形成したり、有機物層を形成したりして、それらを介して、n型InPクラッド層27aを貼り合わせるようにしてもよい。
図10は第1の実施の形態に係る光半導体装置の第8形成工程の説明図である。尚、図10には、上記図9(B)に続く第8形成工程の要部断面の一例を模式的に図示している。
上記のようにして第1光半導体素子10aに第2光半導体素子20aを集積した後は、第2光半導体素子20aの形状の調整、p側電極25aの形成等を行う。
まず、第2光半導体素子20a以外の領域をレジスト等で保護した後、ウェットエッチングにより、図9に示した、p型GaInAsコンタクト層28aより上のp型InP基板31aを除去する。次いで、光パッシブ領域AR2aとなる部分の先端部について、p型GaInAsコンタクト層28aから光導波路層22aを、ウェットエッチングとドライエッチングを併用して除去する。この除去により、光導波路層22aがSi細線導波路層15aと近接して方向性結合器が形成される領域の長さが、所望の値、例えば15μmになるように、調整する。その後、光活性層21aが設けられている領域のp型GaInAsコンタクト層28a上に、例えば、チタン白金金(TiPtAu)のp側電極25aを形成する。これにより、図10に示したような構造の光半導体装置1aが得られる。光半導体装置1aでは、p側電極25aと、凹部16aの底面においてn側電極26aと接続されたバンプ17aから延びる配線(図示せず)を介して、光活性層21aへの電流注入が行われる。
以上述べたような工程により、第1の実施の形態に係る光半導体装置1aが形成される。
尚、以上の説明では、第2光半導体素子20aの光導波路層22a、及び第1光半導体素子10aのSi細線導波路層15aを、いずれも、光の伝播方向に等幅で延在する平面形状とする場合を例示した。このほか、光導波路層22a及びSi細線導波路層15aは、テーパ状の平面形状となるように形成することも可能である。
図11は第1の実施の形態に係る光半導体装置の別例を示す図である。尚、図11には、光半導体装置に含まれる光導波路の平面レイアウトを模式的に図示している。
図11に示すように、光導波路層22a(実線で図示)については、光活性層21aから離れる方向に徐々に幅が狭くなるようなテーパ形状とすることができる。また、図11に示すように、Si細線導波路15a(実線及び点線で図示)については、凹部16aに近付く方向に徐々に幅が狭くなるようなテーパ形状とすることができる。光導波路層22a及びSi細線導波路層15aの両方を、この図11に示したようなテーパ形状とすることができるほか、いずれか一方にのみ、この図11に示したようなテーパ形状を適用することもできる。
このようなテーパ形状は、光導波路層22aの場合には、上記図4で述べたようなメサ構造の形成時に、マスク1010の平面形状をテーパ形状に変更することで、形成することが可能である。また、Si細線導波路層15aの場合には、上記図7で述べたようなSi細線導波路パターンの形成時に、マスク1030の平面形状をテーパ形状に変更することで、形成することが可能である。
光導波路層22aとSi細線導波路層15aの両方、或いはいずれか一方に、このようなテーパ形状を適用することにより、光導波路層22aとSi細線導波路層15aの間での光の結合効率を高めることが可能になる。
次に、第2の実施の形態について説明する。
図12は第2の実施の形態に係る光半導体装置の一例を示す図である。尚、図12には、第2の実施の形態に係る光半導体装置の一例の、光の伝播方向に沿った要部断面を、模式的に図示している。
図12に示す光半導体装置1bは、光回路素子である第1光半導体素子10bに、レーザ発振する化合物半導体素子である第2光半導体素子20bが集積された構造を有している。
第1光半導体素子10bは、Si基板11b上にBOX層12bとSi層13bを含むSOI基板14bを用いて形成され、Si層13bの部分に、Si細線導波路層15bが形成されている。SOI基板14bには、BOX層12b及びSi細線導波路層15bが設けられている側に、Si基板11bが底面に露出する凹部16b(テラス)が形成されている。
第2光半導体素子20bは、レーザ共振器となる光活性領域AR1bと、その片側に設けられた光パッシブ領域AR2bを含む。光活性領域AR1bは、p型InPクラッド層23b、光導波路層22b、光活性層21b、及びn型InPクラッド層24bの積層構造を有している。n型InPクラッド層24b内には、光活性層21bと並設されるように、回折格子層30bが設けられている。光パッシブ領域AR2bは、p型InPクラッド層23b、光導波路層22b、及びn型InPクラッド層27bの積層構造を有している。光パッシブ領域AR2bのn型InPクラッド層27bは、光活性領域AR1bのn型InPクラッド層24bよりも薄くなるように設けられている。
光活性領域AR1bのp型InPクラッド層23bの表面には、p型GaInAsコンタクト層28bを介して、p側電極25bが形成されている。光活性領域AR1bのn型InPクラッド層24bの表面には、n型InPコンタクト層29bを介して、n側電極26bが形成されている。
第2光半導体素子20bは、光活性領域AR1bのn型InPクラッド層24b等が凹部16bに配置され、光パッシブ領域AR2bの薄いn型InPクラッド層27bがSi細線導波路層15b上に配置されるように、集積される。凹部16bに配置されるn側電極26bは、その凹部16bの底面に形成されたバンプ17bを介して第1光半導体素子10bに電気的及び熱的に接続されている。Si細線導波路層15b上に配置されるn型InPクラッド層27bは、Si細線導波路層15bの表面酸化膜15b1に貼り合わせ接合されている。
第2光半導体素子20bでは、光活性領域AR1bの回折格子層30bで生じる光共振効果により、レーザ発振が生じる。即ち、第2光半導体素子20bは、その内部に、光活性層21bの光利得を用いてレーザ発振を行う光共振器構造を備えている。発振したレーザ光は、主に光パッシブ領域AR2bに出力される。光パッシブ領域AR2bでは、光導波路層22bとSi細線導波路層15bで方向性結合器が形成されているため、効率的にレーザ光がSi細線導波路層15bに遷移して取り出される。
続いて、第2の実施の形態に係る光半導体装置1bの形成方法を、図13〜図19を参照して説明する。
まず、第2光半導体素子20b(化合物半導体素子)の基本構造の形成方法について説明する。
図13は第2の実施の形態に係る光半導体装置の第1形成工程の説明図である。尚、図13(A),(B),(C)には、第1形成工程の要部断面の一例を模式的に図示している。
第2光半導体素子20bが含む半導体層は、MOVPE法を用いた結晶成長により、形成することができる。
図13(A)に示すように、p型InP基板31b上に、p型GaInAsコンタクト層28bを、例えば厚さ200nmで形成し、その上に、p型InPクラッド層23bを、例えば厚さ1.5μmで形成する。このp型InPクラッド層23b上に、GaInAsPの光導波路層22bを、例えば、組成波長1.3μm、厚さ200nmで形成し、その上に、GaInAsPの光活性層21bを、例えば、組成波長1.55μm、厚さ100nmで形成する。更に、光活性層21bの上に、n型InPクラッド層の一部となるn型InP層32bを、例えば厚さ50nmで形成し、その上に、i型GaInAsPの回折格子層30bを、例えば、組成波長1.1μm、厚さ60nmで形成する。ここで、回折格子層30bの形成には、EB露光による回折格子パターンの形成と、ドライエッチングによる回折格子の形成、更にn型InP層による回折格子の埋め込み工程が含まれる。回折格子層30bの上には、n型InPクラッド層の一部となるn型InP層33bを、例えば厚さ200nmで形成する。
次いで、図13(B)に示すように、光活性領域AR1bとなる部分にSiO2等のマスク2000を形成し、光パッシブ領域AR2bとなる部分の光導波路層22bより上の層を、ドライエッチングとウェットエッチングの併用により除去する。
次いで、図13(C)に示すように、マスク2000を残したまま、バットジョイント成長法により、n型InP層34b、GaInAsPエッチストップ層35b、n型InP層36bを順に形成する。ここで、n型InP層34bは、例えば、厚さ100nmで形成し、GaInAsPエッチストップ層35bは、例えば、組成波長1.1μm、厚さ20nmで形成し、n型InP層36bは、例えば、厚さ290nmで形成する。
図14は第2の実施の形態に係る光半導体装置の第2形成工程の説明図である。尚、図14(A)には、第2形成工程の要部断面の一例を模式的に図示し、図14(B)には、図14(A)のX11−X11位置の断面の一例を模式的に図示し、図14(C)には、図14(A)のX12−X12位置の断面の一例を模式的に図示している。
図13に示したようにバットジョイント成長を行った後は、マスク2000を除去し、n型InP層33b,36bの上に更に、n型InP層を、例えば厚さ2.0μmで形成する。これにより、図14(A)に示すように、光活性層21b及び光導波路層22bの上側に、n型InPクラッド層となるn型InP層37b(上記のn型InP層32b〜34b,36bを含む)を形成する。そして、このようなn型InP層37bの上に、n型InPコンタクト層29bを、例えば、厚さ200nmで形成する。
図15は第2の実施の形態に係る光半導体装置の第3形成工程の説明図である。尚、図15(A)には、第3形成工程の要部平面の一例を模式的に図示し、図15(B)には、図15(A)のX13−X13位置の断面の一例を模式的に図示し、図15(C)には、図15(A)のX14−X14位置の断面の一例を模式的に図示している。また、便宜上、図15(A)では、一部要素の平面レイアウトをずらして図示している。
図14に示したようにn型InP層37b及びn型InPコンタクト層29bの形成を行った後は、光活性領域AR1bとなる部分のn型InPコンタクト層29b上に、例えば、Au/Ge/Auの積層構造を有する、n側電極26bを形成する。
図16は第2の実施の形態に係る光半導体装置の第4形成工程の説明図である。尚、図16(A)には、第4形成工程の要部平面の一例を模式的に図示し、図16(B)には、図16(A)のX15−X15位置の断面の一例を模式的に図示し、図16(C)には、図16(A)のX16−X16位置の断面の一例を模式的に図示している。また、便宜上、図16(A)では、一部要素の平面レイアウトをずらして図示している。
図15に示したようにn側電極26bの形成を行った後は、図15(A)に鎖線Y2で囲った領域にSiO2等のマスクを形成する。そして、そのマスクで覆われていない部分のn型InPコンタクト層29b及びn型InP層37bを選択的ウェットエッチングで除去し、更に、GaInAsPエッチストップ層35bも別種のエッチャントによる選択的ウェットエッチングで除去する。これにより、図16(A),(C)に示すように、光導波路層22b直上のn型InP層37bを露出させる。
尚、n型InP層37bのうち、光活性層21b上の部分が、上記図12に示したn型InPクラッド層24bに相当し、上記ウェットエッチング後に残る光導波路層22b上の部分が、上記図12に示したn型InPクラッド層27bに相当する。
また、図16(A)に示したように、素子上面の適当な箇所に、第1光半導体素子10bへの実装時に用いる、アライメントマーカ41を形成する。尚、アライメントマーカ41は、上記図15の工程において形成してもよい。
最後に完成した半導体素子20bのウエハを劈開によりチップ化して完成となる。ここで光半導体素子20bの両端面には、レーザ発振特性を向上させるために、反射防止膜を形成してもよい。具体的には、光活性領域AR1b側の端面と、光パッシブ領域AR2b側の端面それぞれに誘電体多層膜からなる反射防止膜を蒸着する。
以上、図13〜図16に示したような工程により、化合物半導体素子である第2光半導体素子20bの基本構造が形成される。
続いて、光回路素子である第1光半導体素子10bの形成方法について説明する。
図17は第2の実施の形態に係る光半導体装置の第5形成工程の説明図である。尚、図17(A)には、第5形成工程の要部平面の一例を模式的に図示し、図17(B)には、図17(A)のX17−X17位置の断面の一例を模式的に図示している。また、便宜上、図17(A)では、一部要素の平面レイアウトをずらして図示している。
第1光半導体素子10bは、上記図7及び図8に示したのと同様にして形成することができる。
即ち、SOI基板14bのSi層13bに、Si細線導波路層15b及びトレンチ構造13b1を形成した後、Si基板11bに達する、例えば、深さ7μmのテラス状の凹部16bを形成する。第2の実施の形態に係る光半導体装置1bでは、第2光半導体素子20bで発生したレーザ光が片側端面からSi細線導波路層15bに取り出される。そのため、第1光半導体素子10bでは、このようにSi細線導波路層15bが形成される部分から一方側に張り出すようにテラス状の凹部16bが設けられる。
凹部16bの形成後は、Si細線導波路層15bを露出させた状態で、熱酸化を行い、Si細線導波路層15bの表面に、10nm程度の表面酸化膜15b1を形成する。
また、凹部16bの形成後には、その底面に、TiNiAu等を用いた配線(図示せず)、及び、配線上に設ける、AuSn等の半田を用いたバンプ17bを形成する。配線及びバンプ17bの厚さは、例えば、3μmとする。
また、図17(A)に示したように、素子上面の適当な箇所には、第2光半導体素子20bの実装時に用いる、アライメントマーカ42を形成する。
このようにして、図17に示すような第1光半導体素子10bが得られる。
続いて、上記のようにして形成される各光半導体素子の集積(実装)方法について説明する。
図18は第2の実施の形態に係る光半導体装置の第6形成工程の説明図である。尚、図18(A)には、第6形成工程の要部平面の一例を模式的に図示し、図18(B)には、図18(A)のX18−X18位置の断面の一例を模式的に図示している。また、便宜上、図18(A)では、一部要素の平面レイアウトをずらして図示している。
まず、第2光半導体素子20bのn型InPクラッド層24bが含まれる部分を、第1光半導体素子10bの凹部16bに配置し、n型InPクラッド層27bを、Si細線導波路層15b上に配置する。そして、所定時間、所定温度で圧着し、n型InPクラッド層27bを、表面酸化膜15b1を介して、Si細線導波路層15bと接合する。また、n側電極26bは、凹部16bの底面のバンプ17bに接続される。
図19は第2の実施の形態に係る光半導体装置の第7形成工程の説明図である。尚、図19(A)には、上記図18(B)に続く第8形成工程の要部断面の一例を模式的に図示し、図19(B)には、図19(A)のX19−X19位置の断面の一例を模式的に図示し、図19(C)には、図19(A)のX20−X20位置の断面の一例を模式的に図示している。
上記のようにして第1光半導体素子10bに第2光半導体素子20bを集積した後は、第2光半導体素子20bの形状の調整、p側電極25bの形成等を行う。
まず、図18に示した、p型GaInAsコンタクト層28bより上のp型InP基板31bをウェットエッチングで除去する。次いで、図19(A)に示すような、光パッシブ領域AR2bとなる部分の先端部について、p型GaInAsコンタクト層28bから光導波路層22bを、フォトリソグラフィとエッチングを利用して除去する。この除去により、光導波路層22bがSi細線導波路層15bと近接して方向性結合器が形成される領域の長さが、所望の値、例えば15μmになるように、調整する。
更に、図19(B),(C)に示すように、光導波路層22bより上のp型InPクラッド層23b及びp型GaInAsコンタクト層28bを、フォトリソグラフィとエッチングを利用して除去する。これにより、光活性領域AR1bとなる部分に、例えば、幅1.5μmのリッジ導波路構造を形成し、光パッシブ領域AR2bとなる部分に、例えば、幅2.0μmのリッジ導波路構造を形成する。
このリッジ導波路構造の形成時には、第2光半導体素子20bに、アライメントマーカ41,42を利用して、第1光半導体素子10bのSi細線導波路層15bの水平方向位置及び角度に整合するように、リッジ導波路構造を形成することができる。そのため、リッジ導波路構造とSi細線導波路層15bの間の高い位置精度を確保することができる。
最後に、光活性層21bが設けられている領域のp型GaInAsコンタクト層28b上に、例えば、TiPtAuのp側電極25bを形成する。
以上のべたような工程により、第2の実施の形態に係る光半導体装置1bが形成される。
次に、第3の実施の形態について説明する。
図20は第3の実施の形態に係る光半導体装置の一例を示す図である。尚、図20には、第3の実施の形態に係る光半導体装置の一例の、光の伝播方向に沿った要部断面を、模式的に図示している。
図20に示す光半導体装置1cは、光回路素子である第1光半導体素子10cが、Si細線導波路層15cに、伝播光の反射機構18cを備えている点で、上記第1の実施の形態に係る光半導体装置1aと相違する。反射機構18cは、例えば、Si細線導波路層15cに回折格子を形成することで実現することができる。光半導体装置1cは、このような第1光半導体素子10cに、化合物半導体素子である、例えば上記第2光半導体素子20aが集積され、外部共振器型半導体レーザとして機能する。
第1光半導体素子10cは、反射機構18cを設ける点を除いて、上記第1の実施の形態で述べたような方法で形成することができる。第1光半導体素子10cの場合には、SOI基板14aのSi層13aに、反射機構18cを設けたSi細線導波路層15cを形成すればよい。例えば、Si細線導波路層15cの形成工程において、当該導波路層内に、例えば、EB描画によるパターニングとドライエッチングにより、反射機構18cとして回折格子パターンを形成する。
光半導体装置1cは、その内部に、光活性層21bの光利得を用いてレーザ発振を行う光共振器構造を備えている。即ち、光半導体装置1cによれば、凹部16aの両側のSi細線導波路層15cに設けた反射機構18cにより、レーザ共振器が形成され、それらの間に配置された第2光半導体素子20aの光増幅領域で生じる光利得を用いてレーザ発振を実現し得る。レーザの出力光は、両側のSi細線導波路層15cに沿って取り出される。
尚、光半導体装置1cは、外部共振器型半導体レーザの一例であり、レーザ共振器内に、リング共振器、マッハツェンダ干渉器、アレイ導波路回折格子等を挿入して発振波長を制御するといった高性能化も可能である。
以上の実施の形態で述べたような光半導体装置によれば、効率的な放熱に基づく大電流、高出力動作時の良好な発光、光増幅特性と、ハイブリッド集積における素子間の再現性の良い高い光結合効率の両立を可能にする。
一例として図21に、第1の実施の形態に係る光半導体装置1aについて、ビーム伝播法を用いて解析した第1,第2光半導体素子10a,20a間の信号光遷移の様子(導波モードプロファイル)を示す。図21は、第1光半導体素子10aのSi細線導波路層15a側から入力してきた波長1.55μmの信号光が、遷移領域で第2光半導体素子20aの光導波路層22aに遷移する様子を解析した結果である。
図21(A)のZ1に示す遷移領域の開始点付近では、図21(A),(B)に示すように、光電界の大部分がSi細線導波路層15a内にあり、Si細線導波路層15a内に大部分の光パワーが分布している。そして、図21(A)に示すように、信号光が遷移領域を伝播するに従い、光導波モード間の結合効果によって徐々に上部の光導波路層22a側に光電界が移っていく。その結果、図21(A)のZ2に示す遷移領域の終端付近では、図21(C)に示すように、光電界の中心が貼り合わせ界面Sから光導波路層22aの領域にあり、大部分の光パワーが第2光半導体素子20a内に遷移する。
以上の解析結果から、光回路素子のSi細線導波路層と化合物半導体素子の光導波路層の間で、効率的な光パワーの受け渡しが可能であることがわかる。また、発光、光増幅を行う化合物半導体素子の光活性領域では、充分な厚さと幅のクラッド層を設けることにより、従来の単体半導体レーザ素子と同等の低い電気抵抗とし、発熱を抑制することができる。そのうえ、上記の光半導体装置では、AuSnバンプ等を介したSi基板への放熱パスが確保されているため、大電流、高出力動作時にも効率的な放熱が可能で、光活性層の温度上昇による発光、光増幅特性の劣化を極めて小さく抑えることができる。
以上、光半導体装置について説明したが、その構成は、上記の例に限定されるものではない。
例えば、化合物半導体素子については、InPのほか、GaAs等の別の化合物半導体基板を用いても実現可能である。
化合物半導体素子の光活性層には、量子ドット活性層や量子井戸活性層をはじめとする各種構造が適用可能である。光活性層に光吸収層や位相変調層等を組み合わせ、更に高度な機能を追加することも可能である。
化合物半導体素子の電流狭窄構造や導波路構造については、半導体レーザ分野で用いられている他の構造を適用することも可能である。
化合物半導体素子の電極構造についても、上記の例には限定されない。例えば、SOI基板に設ける貼り合わせる側の電極は、上記のようなAuSnバンプのほか、他の導電材料を用いることも可能である。また、化合物半導体素子は、光回路素子の凹部(テラス)においてはその底面との熱接触のみを実現し、化合物半導体素子の電極、光回路素子の配線(電極ライン)は凹部底面以外の箇所に形成することも可能である。
また、光回路素子のSi細線導波路層は、上記のようなリブ導波路構造のほか、チャネル導波路構造等の導波路構造を用いることも可能である。
光回路素子の光導波路層の材料としては、Siのほか、シリコンゲルマニウム(SiGe)を一部又は全部に用いることもできる。この場合、SiGeをSOI基板上にエピタキシャル成長したうえで導波路を形成することで、SiGeを含む光導波路を形成することが可能である。
光回路素子の凹部形成によって生じる光導波路層の端面には、当該端面に誘電体多層膜を形成することで、光反射の減少や制御を行うことも可能である。
光回路素子の光導波路層には、リング共振器、回折格子、電流注入若しくは電圧印加による屈折率変化機構、ヒータによる屈折率変化機構等を設け、より高機能な光回路を形成することも可能である。
光回路素子の凹部の形状、化合物半導体素子を貼り合わせる領域の配置等も、上記の例に限定されず、様々な構成を適用することが可能である。
また、光回路素子と化合物半導体素子との集積については、上記のような双方の半導体層同士を直接貼り合わせて接合する方法、酸化物層を形成しその層を介して接合する方法のほか、表面に有機物層等を設けその層を介して接合する方法を用いることもできる。
以上述べたような光半導体装置は、高性能サーバやルータ装置内に搭載される光インターコネクト、光通信システム用伝送装置に利用する光回路等に適用可能である。装置内、装置間のデータ通信量の増大に伴って、より大容量で、小型で安価な光送受信装置の需要が高まっている。電子集積回路で培われたシリコン基板上のプロセス技術を利用したシリコン基板上の大規模光回路は、大容量なデータ通信を、より安価且つ小型に実現することが可能である。光回路素子と化合物半導体素子を組み合わせた上記のような光半導体装置によれば、小型で安価な光送受信器を実現することが可能になる。
以上説明した実施の形態に関し、更に以下の付記を開示する。
(付記1) 半導体基板と、
前記半導体基板上に絶縁層を介して設けられた第1光導波路層と、
前記半導体基板の前記絶縁層及び前記第1光導波路層の側にあって、前記半導体基板が露出する凹部と、
を含む第1光半導体素子と、
第1クラッド層と、
前記第1クラッド層上に設けられた光活性層と、
前記第1クラッド層上に設けられ、前記光活性層と光学的に接続された第2光導波路層と、
前記光活性層上に設けられた第2クラッド層と、
前記第2光導波路層上に設けられ、前記第2クラッド層より薄い第3クラッド層と、
を含む第2光半導体素子と、
を備え、
前記第2光半導体素子は、前記第2クラッド層が前記凹部に配置されて、前記半導体基板と熱的に接続され、且つ、前記第3クラッド層が前記第1光導波路層上に配置されて、前記第2光導波路層が前記第1光導波路層と光学的に接続されていることを特徴とする光半導体装置。
(付記2) 前記第3クラッド層は、前記第1光導波路層と前記第2光導波路層との間隔が伝播光の波長以下となる厚みを有していることを特徴とする付記1に記載の光半導体装置。
(付記3) 前記第2光半導体素子は、前記第1クラッド層及び前記第2クラッド層の表面にそれぞれ設けられた第1電極及び第2電極を更に含むことを特徴とする付記1又は2に記載の光半導体装置。
(付記4) 前記第1光半導体素子は、前記凹部に設けられた第3電極を更に含み、前記第3電極が前記第2電極と電気的に接続されていることを特徴とする付記3に記載の光半導体装置。
(付記5) 前記光活性層と前記第2光導波路層とは、バットジョイント接合されていることを特徴とする付記1乃至4のいずれかに記載の光半導体装置。
(付記6) 前記光活性層は、前記第2光導波路層の一部と積層されていることを特徴とする付記1乃至4のいずれかに記載の光半導体装置。
(付記7) 前記第3クラッド層は、前記第1光導波路層と直接接合されていることを特徴とする付記1乃至6のいずれかに記載の光半導体装置。
(付記8) 前記第3クラッド層は、前記第1光導波路層の表面に設けられた接合層を介して、前記第1光導波路層と接合されていることを特徴とする付記1乃至6のいずれかに記載の光半導体装置。
(付記9) 前記凹部の両側に、一対の前記第1光導波路層が設けられ、前記光活性層の両側に、一対の前記第2光導波路層が設けられていることを特徴とする付記1乃至8のいずれかに記載の光半導体装置。
(付記10) 前記光活性層で生じる光利得を用いてレーザ発振を行う光共振器構造が設けられていることを特徴とする付記1乃至9のいずれかに記載の光半導体装置。
(付記11) 前記光共振器構造は、前記第2光半導体素子に設けられていることを特徴とする付記10に記載の光半導体装置。
(付記12) 前記光共振器構造は、前記第2光半導体素子と第1半導体素子に跨って設けられていることを特徴とする付記10又は11に記載の光半導体装置。
(付記13) 第1光半導体素子を形成する工程と、
第2光半導体素子を形成する工程と、
前記第2光半導体素子を前記第1光半導体素子に接続する工程と、
を含み、
前記第1光半導体素子を形成する工程は、
半導体基板上に絶縁層を介して第1光導波路層を形成する工程と、
前記半導体基板の前記絶縁層及び前記第1光導波路層の側に、前記半導体基板が露出する凹部を形成する工程と、
を含み、
前記第2光半導体素子を形成する工程は、
第1クラッド層上に、光活性層、及び前記光活性層と光学的に接続された第2光導波路層を形成する工程と、
前記光活性層上に第2クラッド層を形成する工程と、
前記第2光導波路層上に、前記第2クラッド層より薄い第3クラッド層を形成する工程と、
を含み、
前記第2光半導体素子を前記第1光半導体素子に接続する工程は、
前記第2クラッド層を前記凹部に配置して、前記半導体基板と熱的に接続する工程と、
前記第3クラッド層を前記第1光導波路層上に配置して、前記第2光導波路層を前記第1光導波路層と光学的に接続する工程と、
を含むことを特徴とする光半導体装置の製造方法。
1,1a,1b,1c 光半導体装置
10,10a,10b,10c 第1光半導体素子
11 半導体基板
11a,11b Si基板
12 絶縁層
12a,12b BOX層
13 半導体層
13a,13b Si層
13a1,13b1 トレンチ構造
14 基板
14a,14b SOI基板
15 光導波路層
15a,15b,15c Si細線導波路層
15b1 表面酸化膜
16,16a,16b 凹部
17,17a,17b バンプ
18c 反射機構
20,20a,20b 第2光半導体素子
21,21a,21b 光活性層
22,22a,22b 光導波路層
23 第1クラッド層
23a,23b p型InPクラッド層
24 第2クラッド層
24a,24b n型InPクラッド層
25 第1電極
25a,25b p側電極
26 第2電極
26a,26b n側電極
27 第3クラッド層
27a,27b n型InPクラッド層
28a,28b p型GaInAsコンタクト層
29a,29b n型InPコンタクト層
30a 半絶縁性InP埋め込み層
30b 回折格子層
31a,31b p型InP基板
32a,32b,33a,33b,34a,34b,36b,37b n型InP層
35b GaInAsPエッチストップ層
41,42 アライメントマーカ
1000,1010,1030,1040,2000 マスク
AR1,AR1a,AR1b 光活性領域
AR2,AR2a,AR2b 光パッシブ領域

Claims (6)

  1. 半導体基板と、
    前記半導体基板上に絶縁層を介して設けられた第1光導波路層と、
    前記半導体基板の前記絶縁層及び前記第1光導波路層の側にあって、前記半導体基板が露出する凹部と、
    を含む第1光半導体素子と、
    第1クラッド層と、
    前記第1クラッド層上に設けられた光活性層と、
    前記第1クラッド層上に設けられ、前記光活性層と光学的に接続された第2光導波路層と、
    前記光活性層上に設けられた第2クラッド層と、
    前記第2光導波路層上に設けられ、前記第2クラッド層より薄い第3クラッド層と、
    を含む第2光半導体素子と、
    を備え、
    前記第2光半導体素子は、前記第2クラッド層が前記凹部に配置されて、前記半導体基板と熱的に接続され、且つ、前記第3クラッド層が前記第1光導波路層上に配置されて、前記第2光導波路層が前記第1光導波路層と光学的に接続され
    前記第3クラッド層は、前記第1光導波路層と前記第2光導波路層との間隔が伝播光の波長以下となる厚みを有していることを特徴とする光半導体装置。
  2. 前記第2光半導体素子は、前記第1クラッド層及び前記第2クラッド層の表面にそれぞれ設けられた第1電極及び第2電極を更に含むことを特徴とする請求項1に記載の光半導体装置。
  3. 前記凹部の両側に、一対の前記第1光導波路層が設けられ、前記光活性層の両側に、一対の前記第2光導波路層が設けられていることを特徴とする請求項1又は2に記載の光半導体装置。
  4. 前記光活性層で生じる光利得を用いてレーザ発振を行う光共振器構造が設けられていることを特徴とする請求項1乃至のいずれかに記載の光半導体装置。
  5. 第1光半導体素子を形成する工程と、
    第2光半導体素子を形成する工程と、
    前記第2光半導体素子を前記第1光半導体素子に接続する工程と、
    を含み、
    前記第1光半導体素子を形成する工程は、
    半導体基板上に絶縁層を介して第1光導波路層を形成する工程と、
    前記半導体基板の前記絶縁層及び前記第1光導波路層の側に、前記半導体基板が露出する凹部を形成する工程と、
    を含み、
    前記第2光半導体素子を形成する工程は、
    第1クラッド層上に、光活性層、及び前記光活性層と光学的に接続された第2光導波路層を形成する工程と、
    前記光活性層上に第2クラッド層を形成する工程と、
    前記第2光導波路層上に、前記第2クラッド層より薄い第3クラッド層を形成する工程と、
    を含み、
    前記第2光半導体素子を前記第1光半導体素子に接続する工程は、
    前記第2クラッド層を前記凹部に配置して、前記半導体基板と熱的に接続する工程と、
    前記第3クラッド層を前記第1光導波路層上に配置して、前記第2光導波路層を前記第1光導波路層と光学的に接続する工程と、
    を含み、
    前記第3クラッド層は、前記第1光導波路層と前記第2光導波路層との間隔が伝播光の波長以下となる厚みを有することを特徴とする光半導体装置の製造方法。
  6. 半導体基板と、
    前記半導体基板上に絶縁層を介して設けられた第1光導波路層と、
    前記半導体基板の前記絶縁層及び前記第1光導波路層の側にあって、前記半導体基板が露出する凹部と、
    を含む第1光半導体素子に、
    第1クラッド層と、
    前記第1クラッド層上に設けられた光活性層と、
    前記第1クラッド層上に設けられ、前記光活性層と光学的に接続された第2光導波路層と、
    前記光活性層上に設けられた第2クラッド層と、
    前記第2光導波路層上に設けられ、前記第2クラッド層より薄い第3クラッド層と、
    を含む第2光半導体素子を接続する工程を有し、
    前記第1光半導体素子に前記第2光半導体素子を接続する工程は、
    前記第2クラッド層を前記凹部に配置して、前記半導体基板と熱的に接続する工程と、
    前記第3クラッド層を前記第1光導波路層上に配置して、前記第2光導波路層を前記第1光導波路層と光学的に接続する工程と、
    を含み、
    前記第3クラッド層は、前記第1光導波路層と前記第2光導波路層との間隔が伝播光の波長以下となる厚みを有することを特徴とする光半導体装置の製造方法。
JP2011009566A 2011-01-20 2011-01-20 光半導体装置及びその製造方法 Expired - Fee Related JP5728964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009566A JP5728964B2 (ja) 2011-01-20 2011-01-20 光半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009566A JP5728964B2 (ja) 2011-01-20 2011-01-20 光半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2012151327A JP2012151327A (ja) 2012-08-09
JP5728964B2 true JP5728964B2 (ja) 2015-06-03

Family

ID=46793301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009566A Expired - Fee Related JP5728964B2 (ja) 2011-01-20 2011-01-20 光半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP5728964B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496431B2 (en) * 2013-10-09 2016-11-15 Skorpios Technologies, Inc. Coplanar integration of a direct-bandgap chip into a silicon photonic device
US11181688B2 (en) 2009-10-13 2021-11-23 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device
GB201319207D0 (en) * 2013-10-31 2013-12-18 Ibm Photonic circuit device with on-chip optical gain measurement structures
JP6330486B2 (ja) * 2014-05-29 2018-05-30 富士通株式会社 半導体ナノワイヤ光装置及びその製造方法
FR3046705B1 (fr) * 2016-01-08 2018-02-16 Commissariat Energie Atomique Source laser a semi-conducteur
CN110741517B (zh) * 2017-06-23 2021-03-09 三菱电机株式会社 波长可变激光装置以及波长可变激光装置的制造方法
JP2019012202A (ja) * 2017-06-30 2019-01-24 富士通株式会社 光接続モジュール及びその製造方法、光送受信器
WO2019220207A1 (en) * 2018-05-16 2019-11-21 Rockley Photonics Limited lll-V/SI HYBRID OPTOELECTRONIC DEVICE AND METHOD OF MANUFACTURE
US20240055829A1 (en) * 2021-01-18 2024-02-15 Nippon Telegraph And Telephone Corporation Semiconductor Laser and Design Method Therefor
WO2024116322A1 (ja) * 2022-11-30 2024-06-06 日本電信電話株式会社 半導体装置および接続構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199886A (ja) * 1989-01-30 1990-08-08 Nippon Telegr & Teleph Corp <Ntt> 光混成集積回路
JPH06102426A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd フレキシブル光導波路回路
JPH07270732A (ja) * 1994-03-30 1995-10-20 Sony Corp 光導波路型波長選択装置
JPH07318765A (ja) * 1994-05-26 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> 光導波路と半導体受光素子の接続構造
JP3595817B2 (ja) * 1999-09-20 2004-12-02 株式会社トッパンNecサーキットソリューションズ 光モジュールの実装方法及び実装構造
JP5082414B2 (ja) * 2006-12-06 2012-11-28 株式会社日立製作所 光半導体装置および光導波路装置
JP2009277833A (ja) * 2008-05-14 2009-11-26 Sony Corp 半導体レーザ発光装置および電子機器

Also Published As

Publication number Publication date
JP2012151327A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5728964B2 (ja) 光半導体装置及びその製造方法
US8472494B2 (en) Semiconductor laser silicon waveguide substrate, and integrated device
JP5897414B2 (ja) 光デバイスの製造方法
EP2544319B1 (en) Laser source for photonic integrated devices
US7653106B2 (en) Semiconductor laser apparatus and optical amplifier apparatus
JP6723451B2 (ja) 波長可変レーザ装置および波長可変レーザ装置の製造方法
US9780530B2 (en) Semiconductor integrated optical device, manufacturing method thereof and optical module
US20110243494A1 (en) Semiconductor optical amplifier module
JP2010263153A (ja) 半導体集積光デバイス及びその作製方法
JP6820671B2 (ja) 光回路デバイスとこれを用いた光トランシーバ
JP6247944B2 (ja) 水平共振器面出射型レーザ素子
JP6247960B2 (ja) 集積型半導体光素子、及び集積型半導体光素子の製造方法
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
US20080199128A1 (en) Semiconductor integrated optical element
JP6839035B2 (ja) 半導体装置の製造方法
JP2000208862A (ja) 半導体光集積素子及びその製造方法
US11934007B2 (en) Assembly of an active semiconductor component and of a silicon-based passive optical component
US20230009186A1 (en) Optical Device
JP2014082411A (ja) 半導体光集積素子及びその製造方法
US20170194766A1 (en) Optical device and optical module
JP2016164945A (ja) 集積型半導体光素子
JP2011258785A (ja) 光導波路およびそれを用いた光半導体装置
JP2011077329A (ja) 半導体光集積素子、及びその製造方法
JP5109931B2 (ja) 半導体光集積素子および半導体光集積素子の製造方法
JP2014135351A (ja) 半導体光素子、集積型半導体光素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5728964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees