JP5725304B2 - Surface treatment method - Google Patents

Surface treatment method Download PDF

Info

Publication number
JP5725304B2
JP5725304B2 JP2012187000A JP2012187000A JP5725304B2 JP 5725304 B2 JP5725304 B2 JP 5725304B2 JP 2012187000 A JP2012187000 A JP 2012187000A JP 2012187000 A JP2012187000 A JP 2012187000A JP 5725304 B2 JP5725304 B2 JP 5725304B2
Authority
JP
Japan
Prior art keywords
water
plasma
contact
water vapor
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012187000A
Other languages
Japanese (ja)
Other versions
JP2013031842A5 (en
JP2013031842A (en
Inventor
理玄 上西
理玄 上西
信福 野村
信福 野村
洋通 豊田
洋通 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Ehime University NUC
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd, Ehime University NUC filed Critical Mitsubishi Chemical Corp
Priority to JP2012187000A priority Critical patent/JP5725304B2/en
Publication of JP2013031842A publication Critical patent/JP2013031842A/en
Publication of JP2013031842A5 publication Critical patent/JP2013031842A5/ja
Application granted granted Critical
Publication of JP5725304B2 publication Critical patent/JP5725304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02054Cleaning before device manufacture, i.e. Begin-Of-Line process combining dry and wet cleaning steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • B01D2321/2075Ultrasonic treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Materials Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Surface Treatment Of Glass (AREA)
  • Fuel Cell (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

本発明は、親水性表面を有する物品の表面処理方法に関する。 The present invention relates to a surface treatment how articles having a hydrophilic surface.

プラズマを利用して有機物を分解または除去する方法としては、例えば、以下の方法が知られている。   For example, the following methods are known as methods for decomposing or removing organic substances using plasma.

(I)大気圧下で酸素ガスまたはアルゴンガスをプラズマ状態にし、該プラズマをシリコンウエハ、液晶用ガラス基板等の基板の表面に吹き付けて、該基板表面に付着している有機物を除去する方法が知られている(特許文献1、2参照)。また、この方法を実用化した常圧プラズマ表面処理装置がすでに製品化されている。   (I) A method in which oxygen gas or argon gas is changed to a plasma state under atmospheric pressure, and the plasma is sprayed onto the surface of a substrate such as a silicon wafer or a liquid crystal glass substrate to remove organic substances adhering to the substrate surface. Known (see Patent Documents 1 and 2). Also, an atmospheric pressure plasma surface treatment apparatus that has put this method to practical use has already been commercialized.

(II)有機物を含む有機溶剤等の液体に超音波を照射して、液体中に気泡を発生させ、ついで、該気泡に電磁波を照射して気泡中にプラズマを発生させてプラズマ気泡とし、該プラズマ気泡によって、液体中に分散している有機物を分解する方法が提案されている(特許文献3参照)。   (II) irradiating a liquid such as an organic solvent containing an organic substance with ultrasonic waves to generate bubbles in the liquid; then irradiating the bubbles with electromagnetic waves to generate plasma in the bubbles to form plasma bubbles; A method of decomposing organic substances dispersed in a liquid by using plasma bubbles has been proposed (see Patent Document 3).

(III)酸素、空気などの気体を水へ給気することにより水中で気泡を発生させ、この気泡に高電圧パルスを印加して、瞬間的に気泡内部をプラズマ状態とし、水中の有機物をプラズマにより分解する技術が、特許文献4〜9に記載されている。   (III) Bubbles are generated in the water by supplying a gas such as oxygen or air to the water, and a high voltage pulse is applied to the bubbles to instantaneously change the inside of the bubbles to a plasma state. Patent Documents 4 to 9 describe techniques for decomposing by the above.

(IV)高温のプラズマ気泡を液体中で発生させ、プラズマ気泡から発生する化合物を繊維の表面に付着せしめ、該繊維表面に凹凸形状などの表面改質を施す技術、およびその技術から得られる機能化繊維が、特許文献10に記載されている。   (IV) Technology for generating high-temperature plasma bubbles in a liquid, attaching a compound generated from the plasma bubbles to the surface of the fiber, and performing surface modification such as uneven shape on the surface of the fiber, and functions obtained from the technology Patent Document 10 describes a modified fiber.

(I)の方法では、(1)プラズマにより無機材料等の耐熱性物品表面にある有機物を分解または除去できるが、分解物または未反応の有機物が大気中に漂う、(2)高エネルギーのプラズマガスを発生させることができるが、物品の表面温度が非常に高くなるため、有機高分子材料への適用が困難である、という問題がある。   In the method (I), (1) organic substances on the surface of heat-resistant articles such as inorganic materials can be decomposed or removed by plasma, but decomposed substances or unreacted organic substances drift in the atmosphere. (2) high energy plasma Although gas can be generated, there is a problem that application to an organic polymer material is difficult because the surface temperature of the article becomes very high.

(II)の方法では、(1)液体中に分散している有機物を分解できるが、物品の表面に付着した有機物の除去に適用できるかどうかは不明である、(2)仮に、気泡中のプラズマを物品に接触させて有機物を分解しようとしても、(I)の方法と同じく、物品の表面温度が高くなるため、有機高分子材料への適用は困難であると考えられる。   In the method (II), (1) the organic matter dispersed in the liquid can be decomposed, but it is unclear whether it can be applied to the removal of the organic matter adhering to the surface of the article. (2) Even if the organic substance is decomposed by bringing the plasma into contact with the article, the surface temperature of the article becomes high as in the method (I), so that it is considered difficult to apply the organic polymer material.

(III)の方法では、上記(II)と同様に、(1)液体中に分散している有機物を分解できるが、物品の表面に付着した有機物の除去に適用できるかどうかは不明である。また、(2)プラズマ状態は短時間しか継続しないため、プラズマ状態にある気泡(以下、プラズマ気泡と呼ぶ)と分解したい有機物との接触の頻度が低い場合は、有効な分解を起こしにくい。   In the method (III), as in (II) above, (1) the organic matter dispersed in the liquid can be decomposed, but it is unclear whether it can be applied to the removal of the organic matter adhering to the surface of the article. (2) Since the plasma state lasts only for a short time, effective decomposition is unlikely to occur when the frequency of contact between bubbles in the plasma state (hereinafter referred to as plasma bubbles) and the organic substance to be decomposed is low.

(IV)の特許文献10の明細書には、プラズマ気泡を繊維に接触させると繊維の表面改質を行うことが可能と記載されている。繊維の素材は特に限定されていない。しかし、(II)の特許文献3で述べているように、プラズマ気泡の温度が約5000Kと高温であるのに対して、一般に有機高分子材料はそのような高温に耐えうる十分な耐熱性を有さない。また、材料の融点や軟化点がプラズマ気泡の温度よりも低い場合、プラズマ気泡に接触させると材料は溶けて流動する、あるいは、熱分解や破壊にまで至ることが予想され、このような材料を用いた繊維にプラズマ気泡を適用することは困難である。また、このような耐熱性に劣る材料を用いる場合、表面に凹凸機能を付与するよりもむしろ、繊維形態そのものが破壊されてしまうことが予想される。また、炭素繊維を実施例に挙げているが、炭素繊維では、繊維が非常に細い上、繊維表面のしわの形状や、表面のグラファイト構造の程度、耐炎化の程度にもよるが、部分的に高温度のプラズマ気泡に接触した繊維部分が、熱により過度に黒鉛化が進行して、繊維が局所的に脆くなり、繊維全体の機械的特性が低下することが考えられる。また、耐熱性に劣る材料を用いる場合に、表面の形態を変えずに洗浄することができるかについてもなんら記載がない。このように、特許文献10の明細書には、材料の選定に関する記載が全くない。   In the specification of Patent Document 10 of (IV), it is described that the surface modification of the fiber can be performed by bringing the plasma bubbles into contact with the fiber. The material of the fiber is not particularly limited. However, as described in Patent Document 3 of (II), the temperature of plasma bubbles is as high as about 5000 K, whereas organic polymer materials generally have sufficient heat resistance to withstand such high temperatures. I don't have it. Also, if the melting point or softening point of the material is lower than the temperature of the plasma bubble, it is expected that the material will melt and flow when it comes into contact with the plasma bubble, or it will lead to thermal decomposition and destruction. It is difficult to apply plasma bubbles to the fibers used. Moreover, when using such a material inferior in heat resistance, it is expected that the fiber form itself will be destroyed rather than providing the surface with an uneven function. In addition, although carbon fibers are mentioned in the examples, carbon fibers are very thin, and depending on the shape of wrinkles on the fiber surface, the degree of graphite structure on the surface, and the degree of flame resistance, It is conceivable that the fiber portion in contact with the high-temperature plasma bubbles is excessively graphitized by heat, the fiber becomes locally brittle, and the mechanical properties of the entire fiber are lowered. In addition, there is no description as to whether or not cleaning can be performed without changing the surface form when using a material having poor heat resistance. As described above, the specification of Patent Document 10 has no description regarding selection of materials.

特開2002−143795号公報JP 2002-143895 A 特開2004−311838号公報JP 2004-311838 A 特開2004−306029号公報JP 2004-306029 A 特表2005−502456号公報Special table 2005-502456 gazette 特開2005−58887号公報JP 2005-58887 A 特開2005−21869号公報JP 2005-21869 A 特開2005−13858号公報Japanese Patent Laid-Open No. 2005-13858 特開2004−268003号公報JP 2004-268003 A 特開2002−272825号公報JP 2002-272825 A 特開2005−105465号公報JP 2005-105465 A

本発明の目的は、物品に付着しているよごれなどの有機物を大気中に飛散させることなく分解または除去でき、かつ物品の損傷が抑えられる表面処理方法、物品の損傷を抑えながら、物品表面をエッチングする表面処理方法、および表面を高度に洗浄し、損傷がほとんどない物品や表面をエッチングしながら、損傷のない物品を提供することにある。   An object of the present invention is to provide a surface treatment method capable of decomposing or removing organic matter such as dirt adhering to an article without scattering it into the atmosphere and suppressing damage to the article, It is an object of the present invention to provide a surface treatment method for etching and to provide an article that is not damaged while highly cleaning the surface and etching an article or surface that is hardly damaged.

本発明の表面処理方法は、水を含む液体中の水蒸気気泡内に発生した熱プラズマを、該液体中において、水に対する接触角が90度以下である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、高分子電解質膜、ガラス、またはセラミックスであることを特徴とする。
材料の水に対する接触角は、70度〜0度の範囲であることが好ましい。
In the surface treatment method of the present invention, thermal plasma generated in water vapor bubbles in a liquid containing water is brought into contact with an organic substance attached to a material having a contact angle with respect to water of 90 degrees or less in the liquid. A surface treatment method for removing the organic substance from the material , wherein the material is a polymer electrolyte membrane, glass, or ceramics .
The contact angle of the material with water is not preferable in the range of 70 degrees to 0 degrees.

本発明の表面処理方法によれば、物品に付着している有機物等を大気中に飛散させることなく分解または除去でき、かつ物品の損傷を抑えることができる。また、物品の損傷を抑えながら、物品表面をエッチングすることができる。
本発明の表面処理方法により得られる物品は、表面が高度に洗浄またはエッチングされ、かつ損傷がほとんどない。
According to the surface treatment method of the present invention, it is possible to decompose or remove an organic substance or the like adhering to an article without scattering it into the atmosphere, and to suppress damage to the article. In addition, the surface of the article can be etched while suppressing damage to the article.
The article obtained by the surface treatment method of the present invention has a highly cleaned or etched surface and is hardly damaged.

プラズマ発生装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a plasma generator. 物品表面に対する水の接触角を示す図である。It is a figure which shows the contact angle of the water with respect to the article | item surface. プラズマ状態にある水蒸気気泡(以下、水蒸気気泡プラズマと称する)によるエッチング速度の接触角依存性を示すグラフである。It is a graph which shows the contact angle dependence of the etching rate by the water vapor bubble (henceforth water vapor bubble plasma) in a plasma state. 多層配線ダマシンプロセスの模式図である。It is a schematic diagram of a multilayer wiring damascene process. 水蒸気気泡プラズマからの発光スペクトルを示す図である。(実施例1)It is a figure which shows the emission spectrum from water vapor bubble plasma. (Example 1) 目詰まりした中空糸膜サンプル表面の電子顕微鏡写真である。It is an electron micrograph of the surface of a clogged hollow fiber membrane sample. 表面処理後の中空糸膜サンプル表面の電子顕微鏡写真である。It is an electron micrograph of the hollow fiber membrane sample surface after surface treatment.

(表面処理方法)
本発明の表面処理方法は、水を含む液体中の水蒸気気泡内に発生したプラズマを、該液体中において、親水性表面を有する物品に接触させる方法である。 本発明における親水性材料の指標は、水に対する接触角が90度以下である材料である。
(Surface treatment method)
The surface treatment method of the present invention is a method in which plasma generated in water vapor bubbles in a liquid containing water is brought into contact with an article having a hydrophilic surface in the liquid. The index of the hydrophilic material in the present invention is a material having a contact angle with water of 90 degrees or less.

本発明に用いられるプラズマの発生装置としては、特開2003−297598号公報、特開2004−152523号公報に記載のプラズマ発生装置を用いればよい。   As the plasma generator used in the present invention, the plasma generators described in JP-A Nos. 2003-297598 and 2004-152523 may be used.

以下、具体的なプラズマ発生装置を例に挙げ、本発明の表面処理方法を説明する。   Hereinafter, the surface treatment method of the present invention will be described using a specific plasma generator as an example.

図1は、本発明の表面処理方法に用いられるプラズマ発生装置の一例を示す概略構成図である。このプラズマ発生装置10は、液体11を収容する容器12と、該容器12内に配置された、電磁波を放射するための電極13と、該電極13に対向して配置された対向電極14と、電極13と対向電極14との間に物品15を固定する支持具16と、電極13および対向電極14に接続された電磁波電源(例えば、高周波電源)(図示略)と、容器12内の液体11上方の空気相19(気相)の圧力を調整する真空ポンプ(図示略)とを具備して概略構成されるものである。   FIG. 1 is a schematic configuration diagram showing an example of a plasma generator used in the surface treatment method of the present invention. The plasma generator 10 includes a container 12 that contains a liquid 11, an electrode 13 that is disposed in the container 12 for emitting electromagnetic waves, a counter electrode 14 that is disposed to face the electrode 13, A support 16 for fixing the article 15 between the electrode 13 and the counter electrode 14, an electromagnetic wave power source (for example, a high frequency power source) (not shown) connected to the electrode 13 and the counter electrode 14, and the liquid 11 in the container 12 A vacuum pump (not shown) for adjusting the pressure of the upper air phase 19 (gas phase) is provided and is generally configured.

プラズマ発生装置10において、電極13は、高周波・高電圧が供給できる、電磁波電源に接続されている。電極13に、この電源の電磁エネルギーが供給されることにより、電極が加熱され、電極周囲の液体11が気化し、電極周囲に水蒸気を主成分とする水蒸気気泡17が付着する。   In the plasma generating apparatus 10, the electrode 13 is connected to an electromagnetic wave power source that can supply a high frequency and a high voltage. When the electromagnetic energy of this power source is supplied to the electrode 13, the electrode is heated, the liquid 11 around the electrode is vaporized, and the water vapor bubbles 17 containing water vapor as a main component are attached around the electrode.

電極に付着した水蒸気気泡に、高周波・高電圧が印加されると、気泡内部の水分子の分子運動が激しくなるとともに、水分子を構成している原子から電子がたたき出されて、プラス電荷気体と電子が生じる。たたき出された電子が、逐次的に別の水蒸気を攻撃する連鎖反応が起こり、プラス電荷気体と電子がつぎつぎに発生し、水蒸気気泡内部がプラズマ状態となる。   When high frequency and high voltage are applied to the water vapor bubbles attached to the electrode, the molecular motion of water molecules inside the bubbles becomes intense, and electrons are knocked out from the atoms that make up the water molecules. And electrons are generated. A chain reaction in which the knocked-out electrons sequentially attack another water vapor occurs, positively charged gas and electrons are successively generated, and the inside of the water vapor bubbles becomes a plasma state.

プラズマ状態にある水蒸気気泡(以下、水蒸気気泡プラズマと称する) からは、特定の波長域に発光が表れる。この発光スペクトルから、プラズマ気泡内部に発生しているガス種を知ることができる。表1に水蒸気気泡プラズマの発光スペクトルの波長と発光原因であるガスの種類の帰属を記す。   From water vapor bubbles in a plasma state (hereinafter referred to as water vapor bubble plasma), light emission appears in a specific wavelength region. From this emission spectrum, the gas species generated inside the plasma bubbles can be known. Table 1 shows the wavelength of the emission spectrum of water vapor bubble plasma and the attribution of the type of gas that is the cause of light emission.

電極周囲の水蒸気気泡プラズマが、液体11中に浸した物品15表面の有機物からなるよごれに接触すると、(1)水蒸気気泡プラズマの熱による熱分解、(2)水蒸気気泡プラズマ中のOHラジカルによる酸化作用の二つの作用によって、よごれが分解または除去される。   When the water vapor bubble plasma around the electrode comes into contact with dirt made of organic matter on the surface of the article 15 immersed in the liquid 11, (1) thermal decomposition due to heat of the water vapor bubble plasma, and (2) oxidation by OH radicals in the water vapor bubble plasma. Dirt is decomposed or removed by two actions.

詳細は後述するが、本表面処理では、物品が親水性であると、物品周囲にある水が蒸発し、蒸発潜熱のために物品表面が冷却され、(1)の水蒸気気泡プラズマの熱による熱分解が低減される。   Although details will be described later, in this surface treatment, if the article is hydrophilic, the water around the article is evaporated, the article surface is cooled due to latent heat of vaporization, and the heat generated by the heat of the water vapor bubble plasma in (1). Decomposition is reduced.

液体11としては、水を含む液体であればよく、例えば、水、水と混ざり合う有機溶剤を含む水溶液、水に電解質イオンが溶解した水溶液等が挙げられる。   The liquid 11 may be a liquid containing water, and examples thereof include water, an aqueous solution containing an organic solvent mixed with water, and an aqueous solution in which electrolyte ions are dissolved in water.

水と混ざり合う有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール;アセトン等が挙げられる。電解質イオンとしては、Mg2+、Ca2+、Na、Fe2+、Fe3+、Cl、NO3−、NO2−、OH等が挙げられる。 Examples of the organic solvent mixed with water include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol; acetone and the like. Examples of the electrolyte ions include Mg 2+ , Ca 2+ , Na + , Fe 2+ , Fe 3+ , Cl , NO 3− , NO 2− , OH − and the like.

液体11中に電解質イオンが存在することにより、水の電気伝導度が向上し、プラズマ発生の際に、電磁波を放射する電極13から対向電極14へアーク放電電流が流れやすくなる。有機溶剤は、プラズマにより炭化し、その炭化物が物品15に付着するおそれがある。また、液体組成のうち、水の体積分率が下がると、後述するように、水による物品15表面の冷却効果が低下し、物品15表面が損傷しやすくなる。よって、液体11は、有機溶剤をできるだけ含まないことが好ましく、全く含まないことが特に好ましい。より好ましくは、半導体の製造プロセスなどで使用する純水、超純水を使用することが望ましい。   The presence of electrolyte ions in the liquid 11 improves the electrical conductivity of water, and an arc discharge current easily flows from the electrode 13 that emits electromagnetic waves to the counter electrode 14 when plasma is generated. The organic solvent may be carbonized by plasma, and the carbide may adhere to the article 15. Moreover, when the volume fraction of water falls among liquid compositions, the cooling effect of the surface of the article | item 15 by water will fall as mentioned later, and the article | item 15 surface becomes easy to be damaged. Therefore, it is preferable that the liquid 11 does not contain an organic solvent as much as possible, and it is especially preferable that it does not contain at all. More preferably, it is desirable to use pure water or ultrapure water used in a semiconductor manufacturing process or the like.

水蒸気気泡17の発生は、電極13の加熱による方法に限定はされず、別途、超音波発生装置を設け、超音波発生装置からの超音波によって液体11中にキャビテーション気泡を発生させ、該気泡内に周囲の液体11を蒸気として気化させ、水蒸気気泡17を形成する方法であってもよい。   The generation of the water vapor bubbles 17 is not limited to the method by heating the electrode 13, and an ultrasonic generator is provided separately, and cavitation bubbles are generated in the liquid 11 by ultrasonic waves from the ultrasonic generator, Alternatively, the surrounding liquid 11 may be vaporized as a vapor to form the water vapor bubbles 17.

水蒸気気泡17に照射される電磁波の周波数は、1MHz〜100GHzの範囲において用途に応じて選択される。   The frequency of the electromagnetic wave irradiated to the water vapor bubbles 17 is selected according to the application in the range of 1 MHz to 100 GHz.

水蒸気気泡17を発生させる際には、容器12内の空気相19を真空ポンプにより減圧してもよい。容器12内の空気相19を減圧にすると、液体11の沸点が低下し、水蒸気が発生しやすくなり、水蒸気気泡内部の蒸気圧が増加し、プラズマ発生に至る水蒸気分子数が増加するために、プラズマ放電が容易になる。一度、水蒸気気泡内部がプラズマ状態に至ると、その後は、真空ポンプを停止して、空気相19の圧力を大気圧に戻しても、気泡内部のプラズマ発生は継続する。   When the water vapor bubbles 17 are generated, the air phase 19 in the container 12 may be decompressed by a vacuum pump. When the air phase 19 in the container 12 is depressurized, the boiling point of the liquid 11 is lowered, water vapor is easily generated, the vapor pressure inside the water vapor bubbles is increased, and the number of water vapor molecules leading to plasma generation is increased. Plasma discharge becomes easy. Once the inside of the water vapor bubbles reaches a plasma state, plasma generation inside the bubbles continues even after the vacuum pump is stopped and the pressure of the air phase 19 is returned to atmospheric pressure.

物品15としては、親水性表面を有する物品が適し、具体的には、親水性有機高分子材料、ガラス、セラミックス、シリコンウエハ、金属 (例えば、アルミニウム、銅、タングステンなど)、黒鉛、炭素繊維などが挙げられる。   As the article 15, an article having a hydrophilic surface is suitable. Specifically, a hydrophilic organic polymer material, glass, ceramics, silicon wafer, metal (for example, aluminum, copper, tungsten, etc.), graphite, carbon fiber, etc. Is mentioned.

本発明において、「親水性表面」は、図2で定義する接触角θの値を持って定義する。本発明における「親水性表面」は、25℃において、物品15表面に対する水(水滴18)の接触角θが90度以下の表面である。親水性表面に対する水の接触角は、低いほど好ましく、具体的には80度以下がより好ましく、70度〜0度の範囲が、さらに好ましい。   In the present invention, the “hydrophilic surface” is defined with the value of the contact angle θ defined in FIG. The “hydrophilic surface” in the present invention is a surface having a contact angle θ of water (water droplets 18) with respect to the surface of the article 15 at 25 ° C. of 90 degrees or less. The contact angle of water with the hydrophilic surface is preferably as low as possible, specifically 80 degrees or less is more preferable, and the range of 70 degrees to 0 degrees is more preferable.

本発明における接触角θの定義は、一般的な水に対する材料のぬれの指標である、接触角と同一のものである。接触角に関する参考書として村川亨男著、「金属機能表面」、近代編集社発行、1984年、p.133に記載されている事項を引用する。同書によると、平滑な表面にその表面と反応しない液滴を滴下し、液滴が表面とある接触角を保って平衡状態にあるとき、図2で次の式(1)が成立する。   The definition of the contact angle θ in the present invention is the same as the contact angle, which is a general index of material wetting with respect to water. As a reference book on contact angles, Ikuo Murakawa, “Metallic Functional Surface”, published by Modern Editing Co., 1984, p. The matter described in 133 is cited. According to the same document, when a droplet that does not react with the surface is dropped on a smooth surface and the droplet is in an equilibrium state with a certain contact angle with the surface, the following equation (1) is established in FIG.

γSV=γSL+γLVcosθ (1)
γSV 液体と蒸気の吸着平行にある固体の表面張力
γSL 固体と液体の界面張力
γLV 蒸気と平衡状態にある液体の表面張力
γ SV = γ SL + γ LV cos θ (1)
γ- SV Liquid and vapor adsorption surface tension of solid in parallel γ SL solid-liquid interface tension γ LV surface tension of liquid in equilibrium

式(1)を以下の式(2)のように書くと、その左辺は固体表面が液体で濡らされたときの表面エネルギーの減少を示している。   When the equation (1) is written as the following equation (2), the left side shows a decrease in surface energy when the solid surface is wetted with a liquid.

γSV−γSL=γLVcosθ (2) γ SV −γ SL = γ LV cos θ (2)

このエネルギーは、表面自由エネルギーであるから、その減少量γLVcosθが大きいほどぬれやすく、γLVが一定ならば、θが小さいほど濡れ性がよいことになる。濡れ性を定量するのに水滴の接触角θが用いられるのは、式(2)にもとづいている。本発明において液体は、水であり、γLVは20℃において72.8dyn/cm(「理科年表」、丸善株式会社、1993年、p.449)である。 Since this energy is surface free energy, the larger the amount of decrease γ LV cos θ, the easier it is to wet. If γ LV is constant, the smaller θ is, the better the wettability is. The reason why the contact angle θ of the water droplet is used to quantify the wettability is based on the formula (2). In the present invention, the liquid is water, and γ LV is 72.8 dyn / cm (“Science Chronology”, Maruzen Co., Ltd., 1993, p.449) at 20 ° C.

本発明においては、平滑な材料表面を用意し、この表面を水平に保ち、表面に水滴を滴下し、(θ/2)を接触角計にて計測し、図2中の接触角θを求める。材料表面が多孔質であったり、凹凸を有したりする場合は、同一材料で平滑な面を用意し、その平滑面においてθを求める。有機高分子、金属、ガラス、またはセラミックスにおいて、表面が凹凸を有するときは、同一材料を溶融させることにより平滑な面を得ることができる。炭素繊維などの溶融できない材料の場合は、その前駆体素材(たとえば、ポリアクリロニトリルやポリイミド)からなる平滑なシートをあらかじめ作製しておき、これを焼成し、炭素材料からなる平滑な面を有するシートを得る。このシートに水滴を滴下して、接触角を測定する。接触角の測定において使用する水は、超純水、イオン交換水などの清浄な水である。   In the present invention, a smooth material surface is prepared, this surface is kept horizontal, a water droplet is dropped on the surface, (θ / 2) is measured with a contact angle meter, and the contact angle θ in FIG. 2 is obtained. . When the material surface is porous or has irregularities, a smooth surface is prepared using the same material, and θ is obtained on the smooth surface. In an organic polymer, metal, glass, or ceramic, when the surface has irregularities, a smooth surface can be obtained by melting the same material. In the case of a material that cannot be melted, such as carbon fiber, a smooth sheet made of a precursor material (for example, polyacrylonitrile or polyimide) is prepared in advance, and this is fired to have a smooth surface made of a carbon material. Get. A water drop is dropped on this sheet, and the contact angle is measured. The water used in the measurement of the contact angle is clean water such as ultrapure water or ion exchange water.

代表的な有機高分子材料および無機材料に対する水の接触角θ(25℃)を表2および表3に示す(文献a:「化学便覧 改訂4版 基礎編II」、丸善株式会社、1993年、II−83 7.1.3 接触角、文献b:石井淑夫、小石真純、角田光雄編集、「ぬれ技術ハンドブック」、株式会社テクノシステム、2001年、b1:p.418、b2:p.92、b3:p.96、b4:p.102〜103、b5:p.161、b6:p.198)。   Tables 2 and 3 show contact angles θ (25 ° C.) of water with typical organic polymer materials and inorganic materials (Document a: “Chemical Handbook 4th edition, basic edition II”, Maruzen Co., Ltd., 1993, II-83 7.1.3 Contact angle, literature b: Ikuo Ishii, Masumi Koishi, Mitsuo Tsunoda, “Wetting Technology Handbook”, Techno System Co., Ltd., 2001, b1: p.418, b2: p.92, b3: p.96, b4: p.102-103, b5: p.161, b6: p.198).

また、「金属表面便覧」、日刊工業新聞、1988年、p.183には、「清浄な金属の表面は水でぬれていて、接触角はゼロである。よごれがあると、その部分は水のぬれが悪くなる」と記載されている。村川亨男著、「金属機能表面」、近代編集社、1984年、p.134−136によると、γ‐Feの固体表面張力は、高温での溶融状態の測定結果により、1670−2127dyn/cm、銅の固体表面張力は、高温での溶融状態の測定結果により、約1500dyn/cmであり、高分子の表面張力よりもはるかに大きいと記載されている。一方、水の表面張力は、72.8dyn/cmである。すなわち、清浄な金属の表面は、非常に水に対してぬれやすい表面である。高い表面エネルギーを有する、清浄な金属材料も、本発明の表面処理を適用することができる。   In addition, “Metal Surface Handbook”, Nikkan Kogyo Shimbun, 1988, p. 183 states that “the surface of a clean metal is wet with water and the contact angle is zero. If there is dirt, the portion becomes wet with water”. Murakawa Ikuo, “Metallic Functional Surface”, Modern Editor, 1984, p. According to 134-136, the solid surface tension of γ-Fe is 1670-2127 dyn / cm based on the measurement result of the molten state at high temperature, and the solid surface tension of copper is about 1500 dyn based on the measurement result of the molten state at high temperature. / Cm, which is described as being much greater than the surface tension of the polymer. On the other hand, the surface tension of water is 72.8 dyn / cm. That is, the surface of a clean metal is a surface that is very easy to wet with water. A clean metal material having a high surface energy can also apply the surface treatment of the present invention.

本発明においては、θ≦90度を満足する材料であれば、有機高分子材料、ガラス、セラミックス、金属、黒鉛炭素材料、炭素繊維等のいずれの材料でも適用できる。   In the present invention, any material such as an organic polymer material, glass, ceramics, metal, graphitic carbon material, and carbon fiber can be used as long as it satisfies θ ≦ 90 degrees.

水蒸気気泡内のプラズマ中の原子状水素(Hα:656nm)の波長を温度に換算すると、約5000Kという高温になっており、一般的な有機高分子材料からなる物品に上記の高温のプラズマ気体を接触させると瞬時に跡形もなく破壊されてしまう。ここで、本発明者らは、θ≦90度を満足する親水性材料からなる物品を用いると、物品表面をほとんど損傷することなく、物品表面の有機物のみを分解または除去して洗浄することができ、洗浄により清浄となった物品を破壊することなくその表面をエッチングすることができることを見出した。 When the wavelength of atomic hydrogen (H α : 656 nm) in the plasma in the water vapor bubbles is converted into temperature, the temperature is as high as about 5000 K, and the above-described high-temperature plasma gas is applied to an article made of a general organic polymer material. It will be destroyed instantly without a trace. Here, when an article made of a hydrophilic material satisfying θ ≦ 90 degrees is used, the present inventors can clean the organic substance on the article surface by decomposing or removing it with almost no damage to the article surface. It was found that the surface can be etched without destroying an article cleaned by washing.

熱分解を回避する本発明の考え方を図3に模式的に示した。図3に示すように、水中にて、材料を水蒸気気泡に接触させる際、その材料の水に対する接触角θが90度以下であると、熱による熱分解エッチングの寄与が小さくなり、90度を超えると、熱分解エッチングの寄与が大きくなることを見出した。この現象を以下のように理由付けする。   The concept of the present invention for avoiding thermal decomposition is schematically shown in FIG. As shown in FIG. 3, when the material is brought into contact with water vapor bubbles in water, if the contact angle θ of the material with respect to water is 90 degrees or less, the contribution of thermal decomposition etching due to heat is reduced, and 90 degrees When it exceeded, it discovered that the contribution of thermal decomposition etching became large. The reason is given as follows.

θが90度以下の材料は、水を含む液体中にて該表面を水の層が被覆しており、水蒸気気泡プラズマが接近しても、材料表面の水が蒸発気化し、材料周囲から蒸発潜熱を奪い、かつ親水性表面には絶えず、水が供給されるため、永続的な冷却効果が材料表面に働き、物品の温度上昇が抑えられる。その結果、物品の表面温度が材料の耐熱温度を超えず、熱分解によるエッチングの寄与が小さくなり、材料の損傷が抑えられる。この効果は、炭素繊維の表面処理においては、プラズマの熱による、局所的に過度な黒鉛化を防ぐことにも有効である。   For materials whose θ is 90 degrees or less, the surface of the material is covered with a layer of water in a water-containing liquid, and even if water vapor bubble plasma approaches, the water on the surface of the material evaporates and evaporates from the surroundings of the material. Since it takes away latent heat and water is constantly supplied to the hydrophilic surface, a permanent cooling effect acts on the material surface and the temperature rise of the article is suppressed. As a result, the surface temperature of the article does not exceed the heat resistance temperature of the material, the contribution of etching by thermal decomposition is reduced, and damage to the material is suppressed. This effect is also effective in preventing local excessive graphitization due to the heat of plasma in the surface treatment of carbon fiber.

親水性の物品の表面に汚れ等の有機物が付着すると、もともとの親水性表面に比べて疎水性に水濡れ性が変化することが知られている。例えば、石井淑夫、小石真純、角田光雄編、「ぬれ技術ハンドブック」、株式会社テクノシステム、2001年、p.83−84によると、純粋な金属表面は水にぬれやすいが、有機物質が存在する雰囲気中に放置すると、有機物質が徐々に金属表面に付着するために、金属表面の疎水化が時間とともに進行することが記載されている。同様に親水性有機材料およびセラミックの表面も、有機物による汚染によって疎水化が起こる傾向にある。   It is known that when an organic substance such as dirt adheres to the surface of a hydrophilic article, the water wettability changes to be hydrophobic compared to the original hydrophilic surface. For example, Ishii Ikuo, Koishi Masumi, Tsunoda Mitsuo, “Wet Technology Handbook”, Techno System Co., Ltd., 2001, p. According to 83-84, pure metal surfaces are easily wetted by water, but if left in an atmosphere where organic substances are present, the organic substances gradually adhere to the metal surfaces, so that the hydrophobicity of the metal surface proceeds with time. It is described to do. Similarly, hydrophilic organic materials and ceramic surfaces tend to be hydrophobized by contamination with organic matter.

図3に基づくと、材料表面のよごれは、水蒸気気泡プラズマの熱による熱分解とOHラジカルによる酸化分解の作用を受けて分解される。よごれがなくなってくると、より親水性の素材表面が現れてきて、前述の水の冷却効果により、熱分解が抑制され、損傷の低い材料表面が得られる。   According to FIG. 3, the dirt on the surface of the material is decomposed under the action of thermal decomposition by heat of water vapor bubble plasma and oxidative decomposition by OH radicals. When the dirt disappears, a more hydrophilic material surface appears, and the above-described cooling effect of water suppresses thermal decomposition and provides a material surface with low damage.

接触角が90以下である、親水性材料の場合、熱分解によるエッチングを抑えて、OHラジカルによる酸化分解により材料を徐々にエッチングすることができる。このエッチングにより、親水性を示す各種材料をエッチングすることができる。たとえば、親水性高分子材料、金属材料、セラミックス、あるいは、親水性を示すガラス、親水性を示す炭素材料などをエッチングすることができる。   In the case of a hydrophilic material having a contact angle of 90 or less, etching by thermal decomposition can be suppressed, and the material can be gradually etched by oxidative decomposition by OH radicals. By this etching, various materials exhibiting hydrophilicity can be etched. For example, hydrophilic polymer materials, metal materials, ceramics, hydrophilic glass, hydrophilic carbon materials, and the like can be etched.

本発明の表面処理では、物品15を水蒸気気泡プラズマに接触させる時間(以下、接触時間と記す)は、物品15の耐熱温度、気泡プラズマ内部の温度、物品表面に生じる水の冷却効果、及びよごれの程度を考慮して適宜調整すればよい。   In the surface treatment of the present invention, the time for which the article 15 is brought into contact with the water vapor bubble plasma (hereinafter referred to as the contact time) is the heat resistance temperature of the article 15, the temperature inside the bubble plasma, the cooling effect of water generated on the article surface, and dirt. It may be adjusted as appropriate in consideration of the degree of.

接触時間が長すぎると、水蒸気気泡プラズマにより、物品15表面の水が蒸発しすぎて、物品15表面に水が不足し、一時的に材料表面の温度が耐熱温度を超える、あるいは、OHラジカルの酸化作用が強すぎて、物品にダメージを与える。   If the contact time is too long, the water vapor bubble plasma causes the water on the surface of the article 15 to evaporate too much, resulting in insufficient water on the surface of the article 15, the temperature of the material surface temporarily exceeds the heat resistance temperature, or The oxidation action is too strong and damages the article.

接触時間が短すぎると、OHラジカルの酸化作用が弱くなり、物品表面の洗浄やエッチングが不足しやすい。   If the contact time is too short, the oxidizing action of OH radicals becomes weak, and cleaning and etching of the article surface tends to be insufficient.

本発明における「接触時間」は、物品15が静止している場合は、電極13および対向電極14に電圧を印加して水蒸気気泡17内にプラズマを発生させている時間と定義し、物品15が一定方向に移動している場合は、以下のように定義する。
接触時間(s)=プラズマが発生している領域の、物品15の移動方向の長さ(mm)/物品15の移動速度(mm/s)
The “contact time” in the present invention is defined as the time during which plasma is generated in the water vapor bubbles 17 by applying a voltage to the electrode 13 and the counter electrode 14 when the article 15 is stationary. When moving in a certain direction, define as follows.
Contact time (s) = length in the moving direction of the article 15 (mm) / moving speed of the article 15 (mm / s) in the region where the plasma is generated

材料の耐熱温度は、材料の種類によってその指標は異なるが、本発明においては材料の形態を維持できる温度をもって耐熱温度と定義する。   The index of the heat resistant temperature of a material varies depending on the type of material, but in the present invention, the heat resistant temperature is defined as the temperature at which the form of the material can be maintained.

有機高分子材料においては、結晶性を有するものは融点、非晶性のものはガラス転移温度をもって耐熱温度の指標とする。代表的な結晶性有機高分子材料のガラス転移温度(Tg)および融点(Tm)を表4に示す。(Joel R. Fried著、「Polymer Science and Technology」、Prentice Hall、1995年、p.140)   In the organic polymer material, the crystalline material has a melting point, and the amorphous polymer material has a glass transition temperature as a heat resistant temperature index. Table 4 shows the glass transition temperature (Tg) and melting point (Tm) of typical crystalline organic polymer materials. (Joel R. Fried, “Polymer Science and Technology”, Prentice Hall, 1995, p. 140).

セラミックスにおいては、融点をもって耐熱温度の指標とする。代表的なセラミックスの融点(Tm)を表5に示す。(Marcel Mulder著、「Basic Principles of Membrane Technology」、2nd Edition、 Kluwer Academic Publishers、1996年、p.60)   In ceramics, the melting point is used as an index of heat-resistant temperature. Table 5 shows melting points (Tm) of typical ceramics. (Marcel Mulder, “Basic Principles of Membrane Technology”, 2nd Edition, Kluwer Academic Publishers, 1996, p. 60)

光学ガラス材料においては ガラス転移温度をもって耐熱温度の指標とする。代表的な光学ガラス種のガラス転移温度を表6に示す。(光応用技術講習会テキスト、「光学材料 III−9」、社団法人日本オプトメカトロニクス協会、1988年、p.30)   For optical glass materials, the glass transition temperature is used as an index of heat resistance. Table 6 shows the glass transition temperatures of typical optical glass types. (Optical Application Technology Workshop Text, “Optical Materials III-9”, Japan Opto-Mechatronics Association, 1988, p. 30)

光学結晶材料においては 材料の融点をもって耐熱温度の指標とする。代表的な光学結晶材料の融点を表7に示す。(光応用技術講習会テキスト、「光学材料 III−9」、社団法人日本オプトメカトロニクス協会、1988年、p.55)   For optical crystal materials, the melting point of the material is used as an index of heat resistance. Table 7 shows melting points of typical optical crystal materials. (Optical Application Technology Workshop Text, “Optical Materials III-9”, Japan Opto-Mechatronics Association, 1988, p. 55)

金属類、シリコンウエハ(珪素)等においては、融点をもって耐熱温度の指標とする。代表的な金属類の融点を表8に示す。(国立天文台編、「理科年表」、丸善株式会社、1993年、p.469)   For metals, silicon wafers (silicon), etc., the melting point is used as an index of the heat resistant temperature. Table 8 shows melting points of typical metals. (National Astronomical Observatory, “Science Chronology”, Maruzen Co., Ltd., 1993, p.469)

炭素材料においては、すでに温度とともに炭素化‐黒鉛化が進行し、明確な耐熱温度を確定しにくいので、関連する材料の黒鉛単結晶の融点である3550℃を炭素材料の構造相転移の指標とする。炭素繊維の場合は、結晶化度が低く、非晶部と結晶部との明確な区別が難しいことや、明確な結晶の構造相転移点を定めにくい場合が多いので、繊維の形態が維持されている温度までを耐熱温度とする。   In carbon materials, carbonization-graphitization has already progressed with temperature, and it is difficult to determine a clear heat-resistant temperature. Therefore, 3550 ° C., the melting point of the graphite single crystal of the related material, is used as an indicator of the structural phase transition of the carbon material To do. In the case of carbon fibers, the degree of crystallinity is low, and it is difficult to clearly distinguish between amorphous and crystalline parts, and it is often difficult to determine the structural phase transition point of clear crystals. The temperature up to the temperature is the heat resistant temperature.

(応用)
本発明の表面処理方法は、(1)材料表面に汚れ等の有機物が付着(堆積)している物品の洗浄、(2)親水性材料表面をエッチングする加工、および(3)材料表面に凹凸を付与する加工へ応用できる。
(application)
The surface treatment method of the present invention includes (1) cleaning an article in which organic matter such as dirt adheres (deposits) on the material surface, (2) processing for etching the hydrophilic material surface, and (3) irregularities on the material surface. It can be applied to processing that gives

(1)の洗浄について説明する。有機物としては、ウイルス、細菌、酵母、カビ、藻類、原生動物、たんぱく質、血液および血液の成分、動物または植物細胞、髪の毛、生活ごみ、生ごみ、排水等に含まれる有機物、肥料成分等、日常の生活でよく見られる有機物全般が挙げられる。   The cleaning (1) will be described. Organic substances include viruses, bacteria, yeasts, molds, algae, protozoa, proteins, blood and blood components, animal or plant cells, hair, household waste, garbage, wastewater, etc. Organic materials commonly found in daily life are listed.

本発明の表面処理方法に基づく物品の洗浄の例としては、以下の例が挙げられる。洗浄の対象は、以下の例に限定するものではなく、水の接触角θが90度以下である、親水性材料であれば、何でもよく、プラズマ気泡の温度、冷却効果条件に見合ったプロセスを適宜選定すれば、洗浄可能である。   Examples of the cleaning of the article based on the surface treatment method of the present invention include the following examples. The object of cleaning is not limited to the following example, and any hydrophilic material having a water contact angle θ of 90 degrees or less can be used, and a process suitable for the temperature of the plasma bubbles and the cooling effect condition can be used. If it is selected appropriately, it can be washed.

(a)濾過処理に用いた、親水性表面を有する多孔質膜にプラズマを接触させ、膜面に付着した有機物からなる濾過堆積物を熱分解(または炭化)やOHラジカルによる酸化作用により分解除去し、多孔質膜を再生させる。   (A) Plasma is brought into contact with the porous membrane having a hydrophilic surface used for the filtration treatment, and the filtered deposit made of organic matter adhering to the membrane surface is decomposed and removed by thermal decomposition (or carbonization) or oxidation action by OH radicals. Then, the porous membrane is regenerated.

(b)人体に埋め込まれた後、人体から取り出された、親水性表面を有する生体適合性材料にプラズマを接触させ、生体適合性材料表面に付着した有機物を熱分解(または炭化)やOHラジカルによる酸化作用により分解除去し、生体適合性材料を再生させる。生体適合性材料としては,ポリメチルメタクリレート樹脂、ポリ乳酸樹脂、ポリウレタン、ヒドロゲル、セルロース、ポリビニルアルコール、ヒドロキシアパタイト等が挙げられる。   (B) After being embedded in the human body, the plasma is brought into contact with the biocompatible material having a hydrophilic surface, which is taken out of the human body, and the organic matter adhering to the surface of the biocompatible material is thermally decomposed (or carbonized) or OH radicals. The biocompatible material is regenerated by decomposing and removing it by the oxidizing action. Examples of the biocompatible material include polymethyl methacrylate resin, polylactic acid resin, polyurethane, hydrogel, cellulose, polyvinyl alcohol, and hydroxyapatite.

(c)人体から取り出された、親水性表面を有する臓器にプラズマを接触させ、臓器に存在するがん細胞を熱分解(または炭化)やOHラジカルによる酸化作用により分解除去する。   (C) Plasma is brought into contact with an organ having a hydrophilic surface taken out from the human body, and cancer cells existing in the organ are decomposed and removed by thermal decomposition (or carbonization) or oxidation action by OH radicals.

(d)親水性表面を有するコンタクトレンズにプラズマを接触させ、コンタクトレンズに付着したタンパク質等の有機物を熱分解(または炭化)やOHラジカルによる酸化作用により分解除去する。   (D) Plasma is brought into contact with a contact lens having a hydrophilic surface, and organic substances such as proteins adhering to the contact lens are decomposed and removed by thermal decomposition (or carbonization) or oxidation action by OH radicals.

(e)人体に埋め込む前に、親水性表面を有するカテーテルまたは人工血管にプラズマを接触させ、カテーテルまたは人工血管を除菌する、または人体から取り出した、親水性表面を有するカテーテルまたは人工血管にプラズマを接触させ、熱分解(または炭化)やOHラジカルによる酸化作用により分解除去する。分解除去後、カテーテルまたは人工血管を安全に廃棄する。   (E) Plasma is applied to a catheter or an artificial blood vessel having a hydrophilic surface, which is brought into contact with a catheter or an artificial blood vessel having a hydrophilic surface before being embedded in the human body, to sterilize the catheter or the artificial blood vessel, or to be removed from the human body. And are decomposed and removed by thermal decomposition (or carbonization) or oxidation by OH radicals. After disassembly and removal, safely discard the catheter or artificial blood vessel.

(f)使用前または使用後の、親水性表面を有するDNA検体検出デバイスにプラズマを接触させ、該デバイス表面の有機物を熱分解(または炭化)やOHラジカルによる酸化作用により分解除去する。   (F) A plasma is brought into contact with a DNA specimen detection device having a hydrophilic surface before or after use, and organic substances on the surface of the device are decomposed and removed by thermal decomposition (or carbonization) or oxidation action by OH radicals.

(g)親水性表面を有する不織布にプラズマを接触させ、不織布表面に付着した有機物を熱分解(または炭化)やOHラジカルによる酸化作用により分解除去する。   (G) Plasma is brought into contact with a nonwoven fabric having a hydrophilic surface, and organic substances adhering to the nonwoven fabric surface are decomposed and removed by thermal decomposition (or carbonization) or oxidation action by OH radicals.

(h)フォトレジスト薄膜などのリソグラフィ材料が、表面にコーティングされたシリコンウエハ表面に水蒸気気泡プラズマを接触させて、薄膜を除去する。あるいは、表面によごれの付着した、シリコンウエハに水蒸気気泡プラズマを接触させて、シリコンウエハ上のよごれを洗浄する。   (H) A lithographic material, such as a photoresist thin film, contacts the surface of the silicon wafer coated on the surface with water vapor bubble plasma to remove the thin film. Alternatively, the dust on the surface is brought into contact with the water vapor bubble plasma to clean the dirt on the silicon wafer.

(i)ガラス板、特に液晶セルに用いるガラス板や光ディスクのマスタリングプロセスで用いるガラス原盤の表面を洗浄する際には、高い清浄性が求められる。従来は、薬液を用いたRCA洗浄技術を行ってきたが、薬液の排水処理コストが、かかることから、薬液を用いない洗浄が求められている。本技術により、ガラス板を洗浄する場合は、プラズマ気泡から発生するOHラジカルをガラス板に接触させて、接触時間を適宜、設定することにより、ガラス板の表面を傷つけずに、よごれを分解できる。分解物は、炭化物や二酸化炭素、水になり、有害な廃液も発生しない。   (I) When cleaning the surface of a glass plate, particularly a glass plate used in a liquid crystal cell or a glass master used in a mastering process of an optical disk, high cleanliness is required. Conventionally, RCA cleaning technology using a chemical solution has been performed, but since the cost of wastewater treatment of the chemical solution is high, cleaning without using a chemical solution is required. When the glass plate is cleaned by this technology, dirt can be decomposed without damaging the surface of the glass plate by bringing the OH radicals generated from the plasma bubbles into contact with the glass plate and appropriately setting the contact time. . The decomposition products become carbide, carbon dioxide and water, and no harmful waste liquid is generated.

(j)親水性表面を有する、Alセラミックタイルなどセラミックス製品の表面のよごれを本技術により洗浄する。 (J) Cleaning of the surface of ceramic products such as Al 2 O 3 ceramic tiles having a hydrophilic surface by this technique.

(k)親水性表面を有する、酸化チタン粒子を塗布した光触媒タイル製品の表面を本技術により洗浄する。光触媒の表面に紫外線がとどかないほどに汚れが堆積した場合に、洗浄して、光触媒機能を再生できる。   (K) The surface of the photocatalytic tile product coated with titanium oxide particles having a hydrophilic surface is cleaned by this technique. If the surface of the photocatalyst is so stained that ultraviolet rays do not reach it, it can be washed to regenerate the photocatalytic function.

(l)親水性の表面に改質した、炭素電極の表面を本技術により洗浄する。特に、電解質イオンを用いた二次電池の電極においては、場合により、親水性の電極を使用する。充放電の繰り返しにより、電解液中によごれが生じて、電極表面によごれが発生することがある。本発明により、汚れが付着した炭素電極を洗浄することができる。   (L) The surface of the carbon electrode modified to a hydrophilic surface is cleaned by this technique. In particular, in the electrode of the secondary battery using electrolyte ions, a hydrophilic electrode is used in some cases. Due to repeated charging and discharging, dirt may be generated in the electrolyte solution, and dirt may be generated on the electrode surface. According to the present invention, it is possible to clean a carbon electrode to which dirt is attached.

(m)固体電解質膜として用いられている、フッ素系電解質膜(例えば、デュポン社製品ナフィオン膜)は疎水性が強い。この場合、電解質膜を水に浸して、水で膨潤せしめると、膜の含水率が増加するとともに、水に対する接触角が低下してくる。接触角が90度以下の膜表面を、本発明の技術により、洗浄することができる。   (M) A fluorine-based electrolyte membrane (for example, Nafion membrane manufactured by DuPont) used as a solid electrolyte membrane is highly hydrophobic. In this case, when the electrolyte membrane is immersed in water and swollen with water, the moisture content of the membrane increases and the contact angle with water decreases. A membrane surface having a contact angle of 90 degrees or less can be cleaned by the technique of the present invention.

前述の(2)親水性材料表面をエッチングする加工の例としては、以下の例が挙げられる。   Examples of the above-described (2) processing for etching the surface of the hydrophilic material include the following examples.

(n) 半導体の多層配線工程において、絶縁膜23上に溝20を設け、銅、アルミニウム、タングステン、チタンなどの金属膜21を埋め込み、絶縁膜23上の不要な金属膜21を除去するダマシンプロセス(Damascene process)にも利用できる。図4にダマシンプロセスの模式図を示す。図4において、a→b→cとプロセスが進み、cにて配線用金属のパターニングが形成される。 (n) In a semiconductor multi-layer wiring process, a damascene process is provided in which a trench 20 is provided on an insulating film 23 , a metal film 21 such as copper, aluminum, tungsten, or titanium is embedded, and an unnecessary metal film 21 on the insulating film 23 is removed. It can also be used for (Damascene process). FIG. 4 shows a schematic diagram of the damascene process. In FIG. 4, the process proceeds from a.fwdarw.b.fwdarw.c, and patterning of the wiring metal is formed at c.

前述のように清浄な金属膜は、親水性であるので、水蒸気気泡プラズマから発生する、原子状水素、OHラジカルと金属原子との電気化学的な反応により、金属原子を原子レベルで除去しながら、精密に加工することができる。その際には、OHラジカルによるエッチング速度制御を適宜行う必要がある。   Since the clean metal film is hydrophilic as described above, the metal atoms are removed at the atomic level by the electrochemical reaction between atomic hydrogen and OH radicals generated from the water vapor bubble plasma and the metal atoms. Can be processed precisely. In that case, it is necessary to appropriately control the etching rate by OH radicals.

すでに、大阪大学大学院工学研究科 後藤英和, 広瀬喜久治, 稲田敬, 森勇蔵らは、精密工学会誌、VOL.69、No.9、2003年、p.1332−1336において、超純水中の水分子を触媒によりHとOHに解離させ、OHマイナスイオンを形成し、このOHマイナスイオンと被加工物表面原子との化学反応を利用した新しい超精密・超清浄加工法の開発を報告している。陰極にAl(001)を用いた場合、表面反応素過程についての同文献報告では、(1)Al(001)表面原子にOHが結合すると、表面第1層−第2層原子間の結合強度が低下する、(2)H終端化したAl(001)表面にOHとHが作用することにより、Al表面原子間の結合が全て切断され、Al表面原子はAlH(OH)分子として除去加工されることを報告している。この文献では、触媒により、HとOHを生成しており、このOHを利用した電気化学反応を利用しているが、水蒸気気泡プラズマから発生するOHラジカルによる研究成果は、報告していない。一方、本発明者らは、清浄な金属は、水に対して親水性であり、本発明の水蒸気気泡プラズマにより発生するOHラジカルを金属に作用させることにより、上記精密工学会誌の文献と同様に、金属表面の原子の化学結合を切断しながら、金属を材料から除去してゆく精密エッチング工程へも本技術が応用可能であると主張する。 Already, Graduate School of Engineering, Osaka University Hidekazu Goto, Kikuharu Hirose, Takashi Inada, Yuzo Mori et al., Journal of Precision Engineering, VOL. 69, no. 9, 2003, p. In 1332-1336, water molecules in ultrapure water are dissociated into H and OH by a catalyst to form OH negative ions, and a new ultra-precise type using chemical reaction between the OH negative ions and workpiece surface atoms. The development of ultra-clean processing method is reported. When Al (001) is used as the cathode, the report on the surface reaction process shows that (1) When OH is bonded to the Al (001) surface atom, the bond strength between the surface first layer and second layer atoms (2) When OH and H act on the H-terminated Al (001) surface, all bonds between Al surface atoms are broken, and Al surface atoms are removed as AlH 2 (OH) molecules. To be reported. In this document, H and OH are generated by a catalyst, and an electrochemical reaction using this OH is used. However, research results by OH radicals generated from water vapor bubble plasma are not reported. On the other hand, the present inventors have found that clean metals are hydrophilic with respect to water, and by causing OH radicals generated by the water vapor bubble plasma of the present invention to act on the metal, as in the above-mentioned publication of the Japan Society for Precision Engineering. It is claimed that this technique can be applied to a precision etching process in which a metal is removed from a material while breaking chemical bonds of atoms on the metal surface.

(o)服部毅は、「電子材料」、別冊、2005年12月、 p.93‐101において、シリコンウエハの洗浄技術を記している。この文献では、表面をRCA洗浄により洗浄するシリコンウエハのウエット洗浄や、ウエハをスピン回転させながら、酸、アルカリ、希フッ化水素水、オゾン水により洗浄するウエット洗浄を紹介している。一方、本発明の技術を用いると、オゾン水洗浄よりも、強い酸化力を有するOHラジカルにより、ウエハを洗浄することができる。山部長兵衛著、「水中微小気泡内放電による水質環境の改善」、平成12−14年度 科学研究費補助金 基盤研究、(A)(2)研究成果報告書、平成15年3月、によれば、OHラジカルの標準酸化電位は2.84eV、一方、オゾンの標準酸化電位は2.07eVであり、OHラジカルは、オゾンよりも強い酸化能力を有していることがわかる。   (O) Kaoru Hattori, “Electronic Materials”, separate volume, December 2005, p. No. 93-101 describes a silicon wafer cleaning technique. This document introduces wet cleaning of a silicon wafer in which the surface is cleaned by RCA cleaning, and wet cleaning in which the wafer is cleaned with acid, alkali, diluted hydrogen fluoride water, and ozone water while the wafer is rotated. On the other hand, when the technique of the present invention is used, the wafer can be cleaned with OH radicals having a stronger oxidizing power than ozone water cleaning. According to Chobe Yamabe, “Improvement of water quality environment by discharge in submerged microbubbles”, Grants-in-Aid for Scientific Research, 2000-2014, (A) (2) Research report, March 2003 For example, the standard oxidation potential of OH radicals is 2.84 eV, while the standard oxidation potential of ozone is 2.07 eV, indicating that OH radicals have a stronger oxidation ability than ozone.

具体的には、図1に示す反応装置の水中に汚れたシリコンウエハを浸け、このシリコンウエハを水中で回転させながら、水蒸気気泡プラズマにシリコンウエハを接触させることにより、シリコンウエハを洗浄することができる。   Specifically, the silicon wafer can be cleaned by immersing a dirty silicon wafer in the water of the reactor shown in FIG. 1 and bringing the silicon wafer into contact with the water vapor bubble plasma while rotating the silicon wafer in the water. it can.

以下、物品の洗浄の例として、前述の(a)で記した、濾過処理に使用した後に、目詰まりした多孔質膜の洗浄について説明する。多孔質膜としては、親水化処理されたポリエチレン製の中空糸膜、平膜、チューブラ膜等が挙げられる。   Hereinafter, as an example of cleaning an article, cleaning of a porous film clogged after being used for the filtration treatment described in (a) above will be described. Examples of the porous membrane include a hydrophilic hollow fiber membrane made of polyethylene, a flat membrane, and a tubular membrane.

汚れた多孔質膜を水に浸し、電磁波を放射する電極の近傍に固定する。電極から電磁波を放射すると、電極の周囲に水蒸気気泡が発生すると同時に、水蒸気気泡内にプラズマが発生する。多孔質膜の膜面に水蒸気気泡内に発生したプラズマを所定の接触時間で接触させると、膜面に付着している有機物が、プラズマにより熱分解され、吹き飛ばされる。有機物が吹き飛ばされた後に露出する親水性表面は、水に濡れやすいために水の層によって被覆され、プラズマによるダメージを受けにくく、多孔質膜に形成されている細孔構造は、ほぼ維持される。接触時間は1〜5分が好ましい。接触時間が1分未満では、多孔質膜表面に付着した汚れ等の有機物が充分に除去されないおそれがあり、接触時間が5分を超えると、多孔質膜表面の一部が溶融を始める。以上(a)の具体例について述べたが、(a)〜(m)の各事例に対しても、同様によごれを洗浄することができる。また、(n)〜(o)のエッチングにおいても本発明が適用できる。   A dirty porous membrane is immersed in water and fixed in the vicinity of an electrode that emits electromagnetic waves. When electromagnetic waves are radiated from the electrodes, water vapor bubbles are generated around the electrodes, and at the same time, plasma is generated in the water vapor bubbles. When the plasma generated in the water vapor bubbles is brought into contact with the membrane surface of the porous membrane for a predetermined contact time, the organic matter adhering to the membrane surface is thermally decomposed by the plasma and blown off. The hydrophilic surface that is exposed after the organic matter is blown away is covered with a water layer because it is easily wetted with water, and is not easily damaged by plasma, and the pore structure formed in the porous film is almost maintained. . The contact time is preferably 1 to 5 minutes. If the contact time is less than 1 minute, organic substances such as dirt attached to the porous membrane surface may not be sufficiently removed. If the contact time exceeds 5 minutes, a part of the porous membrane surface starts to melt. Although the specific example of (a) has been described above, the dirt can be similarly cleaned for each of the cases (a) to (m). The present invention can also be applied to the etchings (n) to (o).

さらに、本発明の表面処理方法は、物品の部分的なエッチングにも応用できる。すなわち、水中にて疎水性表面(θ>90度)と親水性表面(θ≦90度)の両方を有する物品にプラズマを接触させると、疎水性表面のエッチング速度が大きくなり、物品表面に凹凸が形成される。   Furthermore, the surface treatment method of the present invention can also be applied to partial etching of articles. That is, when plasma is brought into contact with an article having both a hydrophobic surface (θ> 90 degrees) and a hydrophilic surface (θ ≦ 90 degrees) in water, the etching rate of the hydrophobic surface increases and the article surface is uneven. Is formed.

凹凸表面を形成するには、材料と水蒸気気泡プラズマとの接触時間を適切に選定することが必要である。   In order to form an uneven surface, it is necessary to appropriately select the contact time between the material and the water vapor bubble plasma.

この凹凸形成技術は、半導体リソグラフィ工程における材料のエッチング、プラスチック材料の微細な凹凸加工(例えば、透明樹脂板の表面に像の写り込みを防止するノングレア機能を付与するための加工)に有用である。   This concavo-convex formation technique is useful for etching a material in a semiconductor lithography process and fine concavo-convex processing of a plastic material (for example, processing for imparting a non-glare function for preventing image reflection on the surface of a transparent resin plate). .

以上説明した本発明の表面処理方法によれば、液体中において、物品表面を水蒸気気泡プラズマに接触させているので、物品からの汚れ分解物が、大気中に飛散することはない。特に、ウイルス、有害有機物等を大気中に飛散させることなく、水中にて安全に分解除去が可能である。水中に移行した分解物は、吸着フィルター等で回収することにより、安全に水中から取り出すことができる。特に、病院等の医療現場、食品製造現場で取り扱う物品(例えば、カテーテル、人工血管、DNA検体検出デバイス、ウイルス捕獲の機能を持つ不織布、透析用濾過膜、精密濾過膜,ガス分離膜等)を廃棄する際には、物品表面に付着している雑菌、ウイルス等の有機物を安全に無害化する必要があり、この目的には本発明が有効である。   According to the surface treatment method of the present invention described above, since the article surface is brought into contact with the water vapor bubble plasma in the liquid, the soil decomposition product from the article is not scattered in the atmosphere. In particular, it can be safely decomposed and removed in water without scattering viruses, harmful organic substances, etc. in the atmosphere. The decomposition product that has migrated into water can be safely removed from the water by collecting it with an adsorption filter or the like. In particular, articles handled at medical sites such as hospitals and food manufacturing sites (for example, catheters, artificial blood vessels, DNA specimen detection devices, nonwoven fabrics with a virus-capturing function, dialysis filtration membranes, microfiltration membranes, gas separation membranes, etc.) When discarding, it is necessary to safely detoxify organic substances such as germs and viruses adhering to the surface of the article, and the present invention is effective for this purpose.

また、本発明の表面処理による材料のエッチングでは、電解液や硫酸、塩酸、フッ化水素水などの薬品を使用せず、水から発生するOHラジカルを分解に利用しているので、反応後、薬品の廃液が発生しない。また、金属のエッチングの場合は、金属水酸化物が沈殿するが、水に不溶なため、固液分離することができ、環境に対して有害な廃液が発生しない。   In the etching of the material by the surface treatment of the present invention, chemicals such as electrolyte, sulfuric acid, hydrochloric acid, and hydrogen fluoride water are not used, and OH radicals generated from water are utilized for decomposition. There is no chemical waste. In the case of metal etching, metal hydroxide precipitates, but since it is insoluble in water, it can be separated into solid and liquid, and no waste liquid harmful to the environment is generated.

本発明に適する炭素繊維を用いて、表面処理を行うと、水蒸気気泡プラズマの高温による過度な黒鉛化が抑制され、安定した炭素化が維持された繊維でありながら、OHラジカルによるエッチングや洗浄などの表面処理が繊維全体にわたって、均等に行える点で、工業的に付加価値の高い連続的な炭素繊維の製造ができる。   When surface treatment is performed using carbon fibers suitable for the present invention, excessive graphitization due to high temperature of water vapor bubble plasma is suppressed, and stable carbonization is maintained, while etching and cleaning with OH radicals, etc. Therefore, it is possible to produce a continuous carbon fiber with high industrial value.

実施例1
三菱レイヨン(株)製、家庭用浄水器(商品名:クリンスイ02)を用意した。該浄水器の濾過カートリッジには、親水化処理されたポリエチレン製の中空糸膜(親水化された素材の水の接触角(25℃)=55度)が使用されている。該中空糸膜は、三菱レイヨン(株)製の内径270μm、膜厚55μmの中空糸膜であり、ポリエチレンからなるフィブリルが中空糸膜の繊維方向に配向し、このフィブリルが膜の厚み方向に多数積み重なっている、スリット形態の細孔構造を有する。
Example 1
A household water purifier (trade name: Clean Sui 02) manufactured by Mitsubishi Rayon Co., Ltd. was prepared. The filtration cartridge of the water purifier uses a hydrophilic hollow fiber membrane made of polyethylene (contact angle of water (25 ° C.) = 55 ° of the hydrophilic material). The hollow fiber membrane is a hollow fiber membrane having an inner diameter of 270 μm and a film thickness of 55 μm manufactured by Mitsubishi Rayon Co., Ltd. The fibrils made of polyethylene are oriented in the fiber direction of the hollow fiber membrane, and many fibrils are arranged in the thickness direction of the membrane. It has a stacked pore-shaped pore structure.

この浄水器を家庭の水道水蛇口に取り付け、濾過カートリッジに水道水(岩国市三笠町)を断続的に1年間通水したところ、濾過カートリッジは目詰まりを起こし、濾過カートリッジ内の中空糸膜表面は、薄く灰色に変化した。目詰まりを起こした濾過カートリッジを浄水器本体から取り外し、さらに濾過カートリッジから活性炭を取り除き、目詰まりした中空糸膜サンプルを得た。この目詰まりした中空糸膜表面を電子顕微鏡で観察した。電子顕微鏡写真を図6に示す。目詰まりした中空糸膜は、膜表面のスリット形態細孔が有機物によって閉塞していた。   When this water purifier is attached to a tap water tap at home and tap water (Mikasacho, Iwakuni) is passed through the filter cartridge for 1 year, the filter cartridge becomes clogged and the surface of the hollow fiber membrane in the filter cartridge Turned light gray. The clogged filtration cartridge was removed from the water purifier body, and the activated carbon was removed from the filtration cartridge to obtain a clogged hollow fiber membrane sample. The clogged hollow fiber membrane surface was observed with an electron microscope. An electron micrograph is shown in FIG. In the clogged hollow fiber membrane, the slit-shaped pores on the membrane surface were clogged with organic substances.

目詰まりした中空糸膜の洗浄を以下のようにして行った。
目詰まりした中空糸膜サンプルの長さが50mm程度と短かったため、長さ150mmの親水化処理された中空糸膜(三菱レイヨン製、EX−540Vポリエチレン中空繊維膜)に、目詰まりした中空糸膜をサンプルくくりつけて実験用試料を準備した。
The clogged hollow fiber membrane was washed as follows.
Since the clogged hollow fiber membrane sample was as short as about 50 mm, the hollow fiber membrane clogged into the 150 mm long hydrophilized hollow fiber membrane (manufactured by Mitsubishi Rayon, EX-540V polyethylene hollow fiber membrane). A sample for experiment was prepared by attaching samples.

プラズマ発生装置としては、図1に示す装置を用いた。RF電源としては、THAMWAY社製、型式T161−5766LQを用い、Matching Boxとしては、THAMWAY社製、型式T0202−5766LQを用いた。   As the plasma generator, the apparatus shown in FIG. 1 was used. A model T161-5766LQ manufactured by THAMWAY was used as the RF power source, and a model T0202-5766LQ manufactured by THAMWAY was used as the Matching Box.

まず、水を充填した容器内に実験用試料を浸し、電極の近傍に支持具で固定した。電極の発熱を利用して水を加熱し、この熱により水中に水蒸気気泡を発生させた。図1において、気相圧力が30hPaである、減圧環境で、水蒸気気泡に電磁波(27.1MHz)を300Wの出力で照射し、気泡内の水蒸気をプラズマ化させ、ついで、圧力を大気圧にし、水蒸気気泡プラズマを発生継続させた。 気相側が大気圧のときの水蒸気気泡プラズマからの発光スペクトルを図5に示す。この分光スペクトルは、図1の反応装置において、発光している気泡からの光を浜松フォトニクス製PMA−11 C−7473−36型ツェルニターナ型小型ポリクロメータと裏面照射型CCDリニアイメージセンサを使用して、波長ごとのスペクトル強度を計測して求めた。光検出素子数は1024、波長域は、200〜950nm、露光時間は、19msであった。波長感度ムラ補正と波長軸較正済みである、ポリクロメータとリニアイメージセンサを使用して計測を行った。   First, an experimental sample was immersed in a container filled with water and fixed with a support near the electrode. Water was heated using the heat generated by the electrodes, and this heat generated water vapor bubbles in the water. In FIG. 1, in a reduced pressure environment where the gas phase pressure is 30 hPa, the water vapor bubbles are irradiated with electromagnetic waves (27.1 MHz) with an output of 300 W, the water vapor in the bubbles is turned into plasma, and then the pressure is changed to atmospheric pressure. Generation of water vapor bubble plasma was continued. FIG. 5 shows an emission spectrum from water vapor bubble plasma when the gas phase side is atmospheric pressure. This spectroscopic spectrum is obtained by using a PMA-11 C-7473-36 type Zellnitana type small polychromator and a back-illuminated CCD linear image sensor made by Hamamatsu Photonics in the reactor shown in FIG. The spectral intensity for each wavelength was measured and determined. The number of photodetecting elements was 1024, the wavelength range was 200 to 950 nm, and the exposure time was 19 ms. Measurement was performed using a polychromator and linear image sensor, which had been corrected for wavelength sensitivity unevenness and wavelength axis calibration.

気相側が大気圧の状況にて、実験用試料に、水蒸気気泡プラズマを3分間接触させた。表面処理後の中空糸膜サンプル表面を電子顕微鏡で観察した。電子顕微鏡写真を図7に示す。目詰まりしていた有機物が、ほぼ完全に取り除かれていた。また、中空糸膜サンプル表面に損傷はほとんど認められず、細孔構造は元の形状を維持していた。   In a state where the gas phase side is atmospheric pressure, the water vapor bubble plasma was brought into contact with the experimental sample for 3 minutes. The surface of the hollow fiber membrane sample after the surface treatment was observed with an electron microscope. An electron micrograph is shown in FIG. The organic matter that was clogged was almost completely removed. Moreover, almost no damage was observed on the surface of the hollow fiber membrane sample, and the pore structure maintained the original shape.

実施例2
実施例1と同一のプラズマ発生装置を用い、水を充填した容器内に実験用試料を浸し、電極の近傍に支持具で固定した。試料として表9に示す、エチレン・ビニルアルコール共重合体フィルム(以下、EVALフィルムと称すこともある)を用いた以外は、実施例1と同一の条件で、水蒸気気泡プラズマを発生させ、そのプラズマを試料に3分間接触させた。いずれのフィルムも、プラズマ接触前の水に対する接触角は、64〜71度の範囲内であり、親水性を示した。これらのフィルムはいずれも水蒸気気泡プラズマの熱に耐え、形態を維持した。
Example 2
Using the same plasma generator as in Example 1, an experimental sample was immersed in a container filled with water, and fixed with a support near the electrode. Water vapor bubble plasma was generated under the same conditions as in Example 1 except that an ethylene / vinyl alcohol copolymer film (hereinafter also referred to as EVAL film) shown in Table 9 was used as a sample. Was in contact with the sample for 3 minutes. All films had a contact angle with water before plasma contact within a range of 64 to 71 degrees, and exhibited hydrophilicity. All of these films withstood the heat of water vapor bubble plasma and maintained their form.

1)エチレン:エチレン含有率
2)θ/2:接触角計での読み取り数値。
接触角計には、協和界面科学製CA−DTを使用。
純水の液滴体積は1μLであった。
3)θ:接触角
4)T:測定室の温度
5)RH:測定室の湿度
6)「プラズマ耐久性」とは、水中での水蒸気気泡プラズマに対する耐久性を意味する。
7)「気相は大気圧」とは、図1において、水面より上方の気相が大気圧の空気であり、この状態で水蒸気気泡プラズマを発生させたことを意味する。
8)「耐久性あり」とは、破断せずに、もとの形態を維持したことを意味する。
9)「耐久性なし」とは、プラズマの熱により、破断の後に熱分解したことを意味する。
以下に示す表10及び表11において、1)〜9)と同一の記号または用語については同一の意味を持つものとする。
1) Ethylene: ethylene content 2) θ / 2: Reading value with a contact angle meter.
CA-DT made by Kyowa Interface Science is used for the contact angle meter.
The pure water droplet volume was 1 μL.
3) θ: contact angle 4) T: temperature of the measurement chamber 5) RH: humidity of the measurement chamber 6) “Plasma durability” means durability against water vapor bubble plasma in water.
7) “The gas phase is atmospheric pressure” in FIG. 1 means that the gas phase above the water surface is air at atmospheric pressure, and water vapor bubble plasma is generated in this state.
8) “Durable” means that the original form was maintained without breaking.
9) “No durability” means that the sample was thermally decomposed after being broken by the heat of the plasma.
In Table 10 and Table 11 below, the same symbols or terms as 1) to 9) have the same meaning.

また、試料DC3203Fのフィルムの表面に、油性インキでマーキングを行った。マーキングした部分をプラズマにあてたところ、油性インキはプラズマにより分解されて、フィルム上に残っていなかった。洗浄後のフィルム面は、目視観察では、平滑であった。   In addition, the surface of the film of sample DC3203F was marked with oil-based ink. When the marked part was applied to the plasma, the oil-based ink was decomposed by the plasma and did not remain on the film. The film surface after washing was smooth by visual observation.

実施例3
デュポン社製Nafion112およびNafion1035フィルムを25℃イオン交換水に5分間浸け、膜を水で膨潤させた後に取り出し、接触角を測定したところ、表10に示す接触角であった。表10に示す、Nafion112およびNafion1035をプラズマ処理の試料として使用した。
実施例1と同一のプラズマ発生装置を用い、水を充填した容器内に試料を浸し、電極の近傍に支持具で試料を固定した。次いで、実施例1と同一の条件で、水蒸気気泡プラズマを発生させ、そのプラズマを試料に3分間接触させた。表10に示すように、水で膨潤したNafion112およびNafion1035ともに水蒸気気泡プラズマの熱に耐え、形態を維持した。
Example 3
When the Nafion 112 and Nafion 1035 films made by DuPont were immersed in 25 ° C. ion exchange water for 5 minutes and the membrane was swollen with water, the contact angle was measured. The contact angles shown in Table 10 were obtained. Nafion 112 and Nafion 1035 shown in Table 10 were used as samples for plasma treatment.
Using the same plasma generator as in Example 1, the sample was immersed in a container filled with water, and the sample was fixed with a support near the electrode. Next, water vapor bubble plasma was generated under the same conditions as in Example 1, and the plasma was brought into contact with the sample for 3 minutes. As shown in Table 10, both Nafion 112 and Nafion 1035 swollen with water withstood the heat of water vapor bubble plasma and maintained their form.

また、Nafion112フィルムの表面に、油性インキでマーキングを行った。マーキングは、フィルムにしっかりと固着していた。マーキングした部分を水中で水蒸気気泡プラズマに3分間接触した後に、目視観察したところ、油性インキは、プラズマにより分解されて試料上に残っていなかった。洗浄後のフィルム面は、目視観察では平滑であった。   Further, the surface of the Nafion 112 film was marked with oil-based ink. The marking was firmly attached to the film. When the marked portion was contacted with water vapor bubble plasma in water for 3 minutes and then visually observed, the oil-based ink was decomposed by the plasma and did not remain on the sample. The film surface after washing was smooth by visual observation.

実施例4
実施例1と同一のプラズマ発生装置を用い、水を充填した容器内に試料を浸し、電極の近傍に支持具で固定した。試料として、光学研磨されたガラス板(厚み5mm、100mm×100mm)を用いた以外は、実施例1と同一の条件で、水蒸気気泡プラズマを発生させ、そのプラズマをガラス板に3分間接触させた。ガラス板は、水蒸気気泡プラズマの熱に耐え、形態を維持した。プラズマに接触させる前のガラス板の水に対する接触角は、約35度であった。
また、ガラス板の表面に、油性インキでマーキングを行い、マーキングした部分を水中で水蒸気気泡プラズマに3分間接触した後に、目視観察した。油性インキは、プラズマにより分解されてガラス板上に残っていなかった。洗浄後のガラス板は、目視観察では、平滑であった。
Example 4
Using the same plasma generator as in Example 1, the sample was immersed in a container filled with water, and fixed in the vicinity of the electrode with a support. Water vapor bubble plasma was generated under the same conditions as in Example 1 except that an optically polished glass plate (thickness 5 mm, 100 mm × 100 mm) was used as a sample, and the plasma was brought into contact with the glass plate for 3 minutes. . The glass plate withstood the heat of water vapor bubble plasma and maintained its form. The contact angle of the glass plate before water contact with water was about 35 degrees.
In addition, the surface of the glass plate was marked with oil-based ink, and the marked portion was visually observed after being contacted with water vapor bubble plasma in water for 3 minutes. The oil-based ink was decomposed by the plasma and did not remain on the glass plate. The glass plate after washing was smooth by visual observation.

実施例5
実施例1と同一のプラズマ発生装置を用い、水を充填した容器内に実験用試料を浸し、電極の近傍に支持具で固定した。試料として、アルミナセラミックシート(γ‐Alシート 厚み3mm、100mm×100mm)を用いた以外は、実施例1と同一の条件で、水蒸気気泡プラズマを発生させ、そのプラズマをアルミナセラミックシートに3分間接触させた。接触後のアルミナセラミックシートは、水蒸気気泡プラズマの熱に耐え、元の形態を維持した。プラズマに接触させる前のアルミナセラミックシートの水に対する接触角は、約55度であった。
また、アルミナセラミックシートの表面に、油性インキでマーキングを行い、マーキングした部分を水中で水蒸気気泡プラズマに3分間接触した後に、目視観察した。油性インキは、プラズマにより分解されてアルミナセラミックシート上に残っていなかった。洗浄後のアルミナセラミックシート面は、目視観察では、平滑であった。
Example 5
Using the same plasma generator as in Example 1, an experimental sample was immersed in a container filled with water, and fixed with a support near the electrode. A vapor bubble plasma was generated under the same conditions as in Example 1 except that an alumina ceramic sheet (γ-Al 2 O 3 sheet thickness 3 mm, 100 mm × 100 mm) was used as a sample, and the plasma was applied to the alumina ceramic sheet. Touch for 3 minutes. The contacted alumina ceramic sheet withstood the heat of the water vapor bubble plasma and maintained its original form. The contact angle with respect to the water of the alumina ceramic sheet before contacting with plasma was about 55 degrees.
Further, the surface of the alumina ceramic sheet was marked with oil-based ink, and the marked portion was contacted with water vapor bubble plasma in water for 3 minutes and then visually observed. The oil-based ink was decomposed by the plasma and did not remain on the alumina ceramic sheet. The alumina ceramic sheet surface after washing was smooth by visual observation.

実施例6
実施例1と同一のプラズマ発生装置を用い、水を充填した容器内に実験用試料を浸し、電極の近傍に支持具で固定した。
エチレン‐ビニルアルコール共重合フィルム(エチレン含有率32mol%)を基材(厚み3mm、100mm×100mm)として、この基材に幅5mmのポリエチレンフィルム(厚み0.5mm、100mm×100mm)を間隔5mm離して、熱融着にて貼り付け、親水性部分5mm幅、疎水性部分5mm幅の親水表面/疎水表面からなる試料を用意した。エチレン‐ビニルアルコール共重合フィルム(エチレン含有率32mol%)の水に対する接触角は、67度、ポリエチレンフィルムの水に対する接触角は、95度であった。
用意した試料を用いた以外は、実施例1と同一の方法で、水蒸気気泡プラズマを発生させ、そのプラズマを試料全体に3分間接触させた。接触後、試料を反応容器から取り出すと、疎水部分であるポリエチレンフィルムは、プラズマによりエッチングを受けて、平均的な厚みが0.1mmとなっていたが、エチレン‐ビニルアルコール共重合フィルム基材は、平滑な当初の表面を維持していた。疎水部分のみが、プラズマによりエッチングされた結果であった。
Example 6
Using the same plasma generator as in Example 1, an experimental sample was immersed in a container filled with water, and fixed with a support near the electrode.
An ethylene-vinyl alcohol copolymer film (ethylene content 32 mol%) is used as a base material (thickness 3 mm, 100 mm × 100 mm), and a 5 mm wide polyethylene film (thickness 0.5 mm, 100 mm × 100 mm) is separated by 5 mm from this base material. Then, a sample made of a hydrophilic surface / hydrophobic surface having a hydrophilic part width of 5 mm and a hydrophobic part width of 5 mm was prepared. The contact angle with water of the ethylene-vinyl alcohol copolymer film (ethylene content 32 mol%) was 67 degrees, and the contact angle with water of the polyethylene film was 95 degrees.
A vapor bubble plasma was generated in the same manner as in Example 1 except that the prepared sample was used, and the plasma was brought into contact with the entire sample for 3 minutes. After contact, when the sample was taken out from the reaction vessel, the polyethylene film, which is a hydrophobic part, was etched by plasma, and the average thickness was 0.1 mm, but the ethylene-vinyl alcohol copolymer film substrate was The initial surface was smooth and maintained. Only the hydrophobic part was the result of being etched by the plasma.

比較例1
物品として、親水化処理されていない、厚さ100μmのポリ四フッ化エチレンフィルム(水に対する接触角(25℃)=110度)、ポリエチレンフィルム(水に対する接触角(25℃)=95度)、ポリプロピレンフィルム(水に対する接触角(25℃)=96度)を用意した。これらフィルムの表面には、汚れ等の有機物は付着していなかった。これらフィルムについて、実施例1と同様な方法で表面処理を行った。いずれのフィルムも、プラズマが接触した瞬間にプラズマの高温により熱分解し、破断した。
Comparative Example 1
As an article, a 100 μm thick polytetrafluoroethylene film (contact angle with water (25 ° C.) = 110 degrees), polyethylene film (contact angle with water (25 ° C.) = 95 degrees), which has not been hydrophilized, A polypropylene film (contact angle with water (25 ° C.) = 96 degrees) was prepared. No organic matter such as dirt adhered to the surface of these films. These films were subjected to surface treatment in the same manner as in Example 1. All the films were thermally decomposed by the high temperature of the plasma at the moment when the plasma contacted and broke.

比較例2
物品として、親水化処理されていない、厚さ50μmの有機高分子多孔質平膜(ミリポア社製、疎水性ポリ四フッ化エチレンメンブラン、水に対する接触角(25℃)=110度、平均細孔径1μm)、厚さ100μmの有機高分子多孔質平膜(ミリポア社製、疎水性ポリエチレンメンブラン、水に対する接触角(25℃)=94度、平均細孔径1μm)を用意した。これら高分子多孔質平膜の表面には、汚れ等の有機物は付着していなかった。これら高分子多孔質平膜について、実施例1と同様な方法で表面処理を行った。いずれの平膜も、プラズマが接触した瞬間にプラズマの高温により熱分解し、破断した。
Comparative Example 2
As an article, a 50 μm-thick organic polymer porous flat membrane (made by Millipore, hydrophobic polytetrafluoroethylene membrane, water contact angle (25 ° C.) = 110 degrees, average pore diameter, not hydrophilized 1 μm), 100 μm thick organic polymer porous flat membrane (manufactured by Millipore, hydrophobic polyethylene membrane, water contact angle (25 ° C.) = 94 degrees, average pore diameter 1 μm). No organic matter such as dirt adhered to the surface of these high-molecular porous flat membranes. These polymer porous flat membranes were subjected to surface treatment in the same manner as in Example 1. All the flat films were thermally decomposed by the high temperature of the plasma at the moment when the plasma contacted, and were broken.

比較例3
試料として、25℃、55%RHの雰囲気に1週間放置した、デュポン社製の二種類のNafionメンブラン(Nafion112、Nafion1035)を試料として用いた以外は、実施例3と同一の条件にて、該試料に水蒸気気泡プラズマを接触させた。
プラズマ接触前のNafion112、Nafion1035の水に対する接触角は、表11に示す値であった。プラズマに接触した瞬間に、二種類のNafionメンブランともにプラズマの高温により熱分解し、破断した。
Comparative Example 3
As a sample, the same conditions as in Example 3 were used except that two types of Nafion membranes (Nafion 112, Nafion 1035) manufactured by DuPont, which were left in an atmosphere of 25 ° C. and 55% RH for one week, were used as samples. The sample was brought into contact with water vapor bubble plasma.
The contact angles of Nafion 112 and Nafion 1035 with respect to water before the plasma contact were the values shown in Table 11. At the moment of contact with the plasma, both types of Nafion membranes were thermally decomposed by the high temperature of the plasma and broke.

比較例4
300mL容量のビーカーに純水を200mL用意し、実施例1にて用いた、目詰まりした中空糸膜を25℃の純水に浸し、出力100W、20KHzの超音波洗浄器にて、中空糸膜を1時間洗浄した。洗浄後の膜を電子顕微鏡で観察したところ、膜面に目詰まりしていた有機物は、取り除かれていなかった。
Comparative Example 4
Prepare 200 mL of pure water in a 300 mL capacity beaker, immerse the clogged hollow fiber membrane used in Example 1 in 25 ° C. pure water, and use an ultrasonic cleaner with an output of 100 W and 20 KHz to output the hollow fiber membrane. Was washed for 1 hour. When the washed film was observed with an electron microscope, organic substances clogged on the film surface were not removed.

比較例5
実施例1において、反応装置の電極を過熱し、プラズマ状態でない水蒸気気泡を発生させて、この水蒸気気泡を目詰まりした中空糸膜試料に3分間接触させたところ、膜面に目詰まりしていた有機物は、取り除かれていなかった。
Comparative Example 5
In Example 1, the electrode of the reactor was heated to generate water vapor bubbles that were not in a plasma state, and when the water vapor bubbles were clogged for 3 minutes, the membrane surface was clogged. Organic matter was not removed.

本発明は、水蒸気気泡内に発生したプラズマと、親水性表面を有する物品とを水中で接触させることにより、物品には損傷を与えずに、物品に付着している有機物を分解または除去する表面処理技術である。この表面処理技術は、例えば、家庭用浄水器、産業排水用濾過、空気濾過に用いた有機高分子多孔質膜、セラミック多孔質膜の再生、多孔質膜の安全な廃棄に有用である。特に、病院の手洗い水の濾過膜、病院の院内感染予防用空気濾過膜、バイオハザード室用の空気濾過膜等、細菌類を含む物質で膜が汚染または目詰まりした膜を、安全に再生または廃棄する方法として有効である。   The present invention provides a surface that decomposes or removes organic substances adhering to an article without damaging the article by bringing the plasma generated in water vapor bubbles into contact with the article having a hydrophilic surface in water. Processing technology. This surface treatment technique is useful, for example, for household water purifiers, industrial wastewater filtration, organic polymer porous membranes used for air filtration, ceramic porous membrane regeneration, and safe disposal of porous membranes. In particular, membranes that are contaminated or clogged with substances containing bacteria, such as filtration membranes for hospital hand-washing water, air filtration membranes for hospital infection prevention in hospitals, and air filtration membranes for biohazard rooms, can be safely regenerated or It is an effective method for disposal.

また、本発明の表面処理方法は、生体適合性材料を体内に埋め込んで使用し,その使用後に材料表面の菌等の有機物を熱分解または炭化させて、材料を安全に廃棄するための処理;臓器と共存するがん細胞を熱分解または炭化させて生命の安全に役立てるための処理;使用済みコンタクトレンズに付着した細菌、血液、たんぱく質等の有機物を熱分解または炭化させて安全に廃棄するための処理等に適用できる。さらに、本発明の表面処理方法は、カテーテル、人工血管等を体内に埋設する前の除菌、生体から取り出した後に付着している菌類等の滅菌;DNA検体検出デバイスから検査対象外の菌を除去する処理;使用済みのDNA検体検出デバイスを安全に廃棄するための処理;空気フィルター、マスク等に用いられている不織布に付着した菌類等を熱分解あまたは炭化させて安全に廃棄するための処理等にも適用できる。   Moreover, the surface treatment method of the present invention uses a biocompatible material embedded in the body, and after the use, organic matter such as bacteria on the surface of the material is thermally decomposed or carbonized to safely dispose of the material; Treatment for cancer cells that coexist with organs to be thermally decomposed or carbonized to be useful for life safety; Organic substances such as bacteria, blood, and proteins attached to used contact lenses are thermally decomposed or carbonized for safe disposal It can be applied to the processing. Furthermore, the surface treatment method of the present invention includes sterilization before embedding catheters, artificial blood vessels and the like in the body, sterilization of fungi adhering after removal from the living body, and the like. Processing to remove; Processing to safely dispose of used DNA specimen detection devices; To dispose of fungi adhering to non-woven fabric used in air filters, masks, etc. by pyrolyzing or carbonizing them safely It can also be applied to processing.

また本発明のエッチング技術は、親水性の透明有機材料の表面に微細な凹凸を付与し、光学用途での反射防止機能を発現したり、特定の視野角度でのみ、視認性が発現したりする、プライバシーフィルターへの加工へも利用することができる。さらに、金属膜の表面を水分子由来の化学種だけでエッチングすることができ、半導体デバイスにおける高密度多層配線のダマシンプロセスにおいて、廃液処理の費用を低減することができ、製造コストの低減に有効である。   In addition, the etching technique of the present invention gives fine irregularities to the surface of the hydrophilic transparent organic material, reveals an antireflection function in optical applications, or reveals visibility only at a specific viewing angle. It can also be used for processing into privacy filters. In addition, the surface of the metal film can be etched only with chemical species derived from water molecules, and the cost of waste liquid treatment can be reduced in the damascene process of high-density multilayer wiring in semiconductor devices, which is effective in reducing manufacturing costs. It is.

また、近年の半導体多層配線デバイスでは、配線の密度が高くなり、より微細な加工が必要とされており、その場合は、絶縁膜に多孔質珪素膜からなる、低誘電率材料が提案されている。この絶縁膜は、細孔容積が大きく、材料は水に対する接触角が疎水性であるので、通常のケミカル・メカニカル・ポリシングプロセスでは、研磨液が絶縁膜によりはじかれてしまい、金属膜を削ったあとで、全体を平坦にすることが難しい。一方、本発明の方法を用いると、低誘電率膜として、水に対する接触角が90度以下である材料を選定することにより、水蒸気気泡プラズマ中のOHラジカルが低誘電率膜をエッチングするので、平坦な絶縁膜/多層配線金属の構造体を得ることができる。   Also, in recent semiconductor multilayer wiring devices, the wiring density has increased and finer processing is required. In that case, a low dielectric constant material consisting of a porous silicon film as an insulating film has been proposed. Yes. Since this insulating film has a large pore volume, and the material has a hydrophobic contact angle with water, the polishing liquid is repelled by the insulating film in the normal chemical mechanical polishing process, and the metal film is scraped off. Later, it is difficult to flatten the whole. On the other hand, when the method of the present invention is used, by selecting a material having a contact angle with water of 90 degrees or less as the low dielectric constant film, OH radicals in the water vapor bubble plasma etch the low dielectric constant film. A flat insulating film / multilayer wiring metal structure can be obtained.

また、本発明のエッチング技術では、水蒸気気泡プラズマとの接触時間を制御し短時間にすることで、疎水性部分のみを選択的にエッチングすることができる。この技術は、親水性表面と疎水性の両表面部分を併せ持つ、有機材料、無機材料、炭素材料などの各種材料に対して、選択的に疎水性部分をエッチング加工する際に適用できる。特に、炭素材料、シリコンウエハなどの材料は、耐熱温度が高いために表面加工が難しいが、本技術を用いることにより容易にエッチング加工が可能となる。   In the etching technique of the present invention, only the hydrophobic portion can be selectively etched by controlling the contact time with the water vapor bubble plasma to be a short time. This technique can be applied when selectively etching a hydrophobic portion with respect to various materials such as an organic material, an inorganic material, and a carbon material having both a hydrophilic surface and a hydrophobic surface portion. In particular, materials such as carbon materials and silicon wafers are difficult to surface-process due to their high heat-resistant temperature, but can be easily etched using this technique.

11 液体
12 容器
13 電極
14 対向電極
15 物品
16 支持具
17 水蒸気気泡
18 水滴
19 空気相
γSV 液体(水)の蒸気と吸着平衡にある固体の表面張力 (室温、大気圧)
γSL 固体と液体との界面張力
γLV その蒸気(水蒸気)と平衡にある液体(水)の表面張力
DESCRIPTION OF SYMBOLS 11 Liquid 12 Container 13 Electrode 14 Counter electrode 15 Article 16 Support 17 Water vapor bubble 18 Water drop 19 Air phase γ SV Surface tension of solid in adsorption equilibrium with liquid (water) vapor (room temperature, atmospheric pressure)
γ SL Interfacial tension between solid and liquid γ LV Surface tension of liquid (water) in equilibrium with its vapor (water vapor)

Claims (6)

水を含む液体中の水蒸気気泡内に発生した熱プラズマを、前記液体中において、水に対する接触角が90度以下である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、高分子電解質膜である表面処理方法The thermal plasma generated in the water vapor bubbles in the liquid containing water is brought into contact with the organic matter attached to the material having a contact angle with respect to water of 90 degrees or less in the liquid to remove the organic matter from the material. A surface treatment method , wherein the material is a polymer electrolyte membrane . 水を含む液体中の水蒸気気泡内に発生した熱プラズマを、前記液体中において、水に対する接触角が90度以下である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、ガラスである表面処理方法。The thermal plasma generated in the water vapor bubbles in the liquid containing water is brought into contact with the organic matter attached to the material having a contact angle with respect to water of 90 degrees or less in the liquid to remove the organic matter from the material. A surface treatment method, wherein the material is glass. 水を含む液体中の水蒸気気泡内に発生した熱プラズマを、前記液体中において、水に対する接触角が90度以下である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、セラミックスである表面処理方法。The thermal plasma generated in the water vapor bubbles in the liquid containing water is brought into contact with the organic matter attached to the material having a contact angle with respect to water of 90 degrees or less in the liquid to remove the organic matter from the material. A surface treatment method, wherein the material is ceramic. 水を含む液体中の水蒸気気泡内に発生した熱プラズマを、前記液体中において、水に対する接触角が70度〜0度の範囲である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、高分子電解質膜である表面処理方法A thermal plasma generated in water vapor bubbles in a liquid containing water is brought into contact with an organic substance adhering to a material having a contact angle with respect to water in the range of 70 degrees to 0 degrees in the liquid. A surface treatment method for removing from a material, wherein the material is a polymer electrolyte membrane . 水を含む液体中の水蒸気気泡内に発生した熱プラズマを、前記液体中において、水に対する接触角が70度〜0度の範囲である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、ガラスである表面処理方法 A thermal plasma generated in water vapor bubbles in a liquid containing water is brought into contact with an organic substance adhering to a material having a contact angle with respect to water in the range of 70 degrees to 0 degrees in the liquid. A surface treatment method for removing from a material, wherein the material is glass . 水を含む液体中の水蒸気気泡内に発生した熱プラズマを、前記液体中において、水に対する接触角が70度〜0度の範囲である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法であって、前記材料が、セラミックスである表面処理方法 A thermal plasma generated in water vapor bubbles in a liquid containing water is brought into contact with an organic substance adhering to a material having a contact angle with respect to water in the range of 70 degrees to 0 degrees in the liquid. A surface treatment method for removing from a material, wherein the material is ceramic .
JP2012187000A 2005-03-25 2012-08-27 Surface treatment method Active JP5725304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187000A JP5725304B2 (en) 2005-03-25 2012-08-27 Surface treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005089631 2005-03-25
JP2005089631 2005-03-25
JP2012187000A JP5725304B2 (en) 2005-03-25 2012-08-27 Surface treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006519696A Division JP5518281B2 (en) 2005-03-25 2006-03-24 Surface treatment method

Publications (3)

Publication Number Publication Date
JP2013031842A JP2013031842A (en) 2013-02-14
JP2013031842A5 JP2013031842A5 (en) 2013-03-28
JP5725304B2 true JP5725304B2 (en) 2015-05-27

Family

ID=37053300

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006519696A Active JP5518281B2 (en) 2005-03-25 2006-03-24 Surface treatment method
JP2012187000A Active JP5725304B2 (en) 2005-03-25 2012-08-27 Surface treatment method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006519696A Active JP5518281B2 (en) 2005-03-25 2006-03-24 Surface treatment method

Country Status (5)

Country Link
US (1) US20080210664A1 (en)
JP (2) JP5518281B2 (en)
KR (1) KR100938323B1 (en)
TW (1) TWI405608B (en)
WO (1) WO2006104043A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9275934B2 (en) * 2010-03-03 2016-03-01 Georgia Tech Research Corporation Through-package-via (TPV) structures on inorganic interposer and methods for fabricating same
US10369327B2 (en) * 2010-04-28 2019-08-06 Clph, Llc Catheters with lubricious linings and methods for making and using them
JP5696447B2 (en) * 2010-11-25 2015-04-08 Jfeスチール株式会社 Method for producing surface-treated metal material
JP5645163B2 (en) * 2011-01-26 2014-12-24 国立大学法人大阪大学 Surface modification method of fluororesin material and laminate of fluororesin material and metal material
KR101405721B1 (en) * 2011-04-29 2014-06-13 한국과학기술연구원 A porous media with enhanced hydrophobicity and a fabrication method thereof
KR101349075B1 (en) * 2011-10-10 2014-01-16 한국과학기술연구원 Fuel Cell with Enhanced Mass Transport Capability
US9809493B2 (en) * 2015-04-27 2017-11-07 Ford Global Technologies, Llc Surface treatment of glass bubbles
JP2019029333A (en) * 2017-07-26 2019-02-21 東芝メモリ株式会社 Plasma processing apparatus and method of manufacturing semiconductor device
KR102148831B1 (en) 2018-10-02 2020-08-27 삼성전기주식회사 Coil component
KR102619877B1 (en) * 2019-09-11 2024-01-03 삼성전자주식회사 Substrate treatment apparatus
JP7427475B2 (en) 2020-02-28 2024-02-05 株式会社Screenホールディングス Substrate processing method
JP7399209B2 (en) * 2022-04-05 2023-12-15 エルジー・ケム・リミテッド Treatment equipment, method for producing decomposition products, and treatment method

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110716A (en) * 1985-11-06 1987-05-21 Power Reactor & Nuclear Fuel Dev Corp Method for changing property by submerged plasma heating
DE3827630A1 (en) * 1988-08-16 1990-02-22 Hoechst Ag AREA OF A SUBSTRATE AND A COATING AND METHOD FOR THE PRODUCTION THEREOF
JPH03231199A (en) * 1990-02-06 1991-10-15 Mitsubishi Heavy Ind Ltd Reducing method of volume of chopped piece of spent fuel
JP3837783B2 (en) * 1996-08-12 2006-10-25 森 勇蔵 Processing method with hydroxyl groups in ultrapure water
EP0867924B1 (en) * 1997-02-14 2011-08-31 Imec Method for removing organic contaminants from a semiconductor surface
US6360754B2 (en) * 1998-03-16 2002-03-26 Vlsi Technology, Inc. Method of protecting quartz hardware from etching during plasma-enhanced cleaning of a semiconductor processing chamber
US6106653A (en) * 1998-03-31 2000-08-22 Exxon Research And Engineering Co. Water vapor plasma treatment of glass surfaces
JPH11345797A (en) * 1998-06-02 1999-12-14 Shimada Phys & Chem Ind Co Ltd Two-fluid injection nozzle, and device and method for two-fluid jet washing using the same
JP3224777B2 (en) * 1998-06-09 2001-11-05 三菱重工業株式会社 Reactor structure automatic dismantling device
JP2001058184A (en) * 1999-08-24 2001-03-06 Mitsubishi Heavy Ind Ltd Method and apparatus for treating harmful substance
JP2002313358A (en) * 2001-04-10 2002-10-25 Aisin Seiki Co Ltd Manufacturing method for film-electrode junction and solid highpolymer electrolyte fuel cell
US6593161B2 (en) * 2001-12-12 2003-07-15 Sharp Laboratories Of America, Inc. System and method for cleaning ozone oxidation
JP3624239B2 (en) * 2002-10-29 2005-03-02 株式会社テクノネットワーク四国 Liquid plasma generator, thin film forming method, and silicon carbide film
WO2003086615A1 (en) * 2002-04-01 2003-10-23 Techno Network Shikoku Co., Ltd. Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
AUPS220302A0 (en) * 2002-05-08 2002-06-06 Chang, Chak Man Thomas A plasma formed within bubbles in an aqueous medium and uses therefore
ITMI20021985A1 (en) * 2002-09-18 2004-03-19 St Microelectronics Srl METHOD FOR THE MANUFACTURE OF ELECTRONIC SEMICONDUCTOR DEVICES
JP4111858B2 (en) * 2003-03-06 2008-07-02 正之 佐藤 Underwater discharge plasma method and liquid treatment apparatus
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
WO2004100245A1 (en) * 2003-05-02 2004-11-18 Ekc Technology, Inc. Removal of post-etch residues in semiconductor processing
JP2005058887A (en) * 2003-08-11 2005-03-10 Mitsubishi Heavy Ind Ltd Waste water treatment apparatus using high-voltage pulse
US7019288B2 (en) * 2003-09-30 2006-03-28 Sequenom, Inc. Methods of making substrates for mass spectrometry analysis and related devices
JP4452775B2 (en) * 2003-09-30 2010-04-21 国立大学法人愛媛大学 Method for producing functionalized fibers
JP4370378B2 (en) * 2004-02-23 2009-11-25 国立大学法人愛媛大学 Porous membrane, production apparatus and production method thereof
US7323080B2 (en) * 2004-05-04 2008-01-29 Semes Co., Ltd. Apparatus for treating substrate
CN101112132B (en) * 2004-12-03 2012-07-04 株式会社丰田自动织机 Submerged plasma-use electrode, submerged plasma generating device and submerged plasma generating method
JP2006253495A (en) * 2005-03-11 2006-09-21 Sumitomo Heavy Ind Ltd Surface cleaning device and cleaning method

Also Published As

Publication number Publication date
TW200637648A (en) 2006-11-01
KR20070113313A (en) 2007-11-28
TWI405608B (en) 2013-08-21
US20080210664A1 (en) 2008-09-04
JP5518281B2 (en) 2014-06-11
WO2006104043A1 (en) 2006-10-05
JPWO2006104043A1 (en) 2008-09-04
KR100938323B1 (en) 2010-01-22
JP2013031842A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5725304B2 (en) Surface treatment method
Lai et al. Transparent superhydrophobic/superhydrophilic TiO 2-based coatings for self-cleaning and anti-fogging
Stevens et al. Wettability of photoresponsive titanium dioxide surfaces
EP1079003B1 (en) Electrolytic machining method and apparatus
KR100998521B1 (en) ?? treated membranes
WO1998008248A1 (en) Method and device for washing electronic parts member, or the like
TWI607043B (en) Hydrophilizing ptfe membranes
KR100703032B1 (en) Nano porous photocatalytic membrane, method of manufacturing the same, water treatment purification system and air purification system using the nano porous photocatalytic membrane
BR112021009630A2 (en) device for purifying a fluid, in particular, waste water
Sanz et al. UV-black rutile TiO2: an antireflective photocatalytic nanostructure
Misra et al. Effect of laser parameters on laser-induced graphene filter fabrication and its performance for desalination and water purification
CN1271248C (en) Production process of alumina template with nano holes
JP2008280549A (en) Apparatus for producing hydrogen peroxide, and air conditioner, air cleaner and humidifier using the same
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
Lim et al. Fabrication of a silica ceramic membrane using the aerosol flame deposition method for pretreatment focusing on particle control during desalination
KR101466914B1 (en) Method for Manufacturing Titanium Dioxide Nanotube Photocatalyst and water treatment apparatus Using the Same
WO2007132832A1 (en) Method for processing object substance in aqueous solution, and apparatus and photocatalyst material used for the method
JP5598829B2 (en) Patterning method using ozone water
JP2009142733A (en) Insoluble electrode and electrochemical liquid treatment apparatus
KR20120130320A (en) Ultra-porous Photocatalytic Material, Method for the Manufacture and the Uses therof
López et al. Electrophoretical deposition of nanotube TiO2 conglomerates detached during Ti anodizing used for decomposing methyl orange in water
JP2004335783A (en) Wet cleaning device and wet cleaning method
CN212663243U (en) Silicon carbide filter membrane
RU2561416C2 (en) Method of modifying surface of porous silicon
RU2427415C1 (en) Method of producing nano orifices

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5725304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250