JP5699461B2 - ナノインプリント用モールド - Google Patents

ナノインプリント用モールド Download PDF

Info

Publication number
JP5699461B2
JP5699461B2 JP2010152360A JP2010152360A JP5699461B2 JP 5699461 B2 JP5699461 B2 JP 5699461B2 JP 2010152360 A JP2010152360 A JP 2010152360A JP 2010152360 A JP2010152360 A JP 2010152360A JP 5699461 B2 JP5699461 B2 JP 5699461B2
Authority
JP
Japan
Prior art keywords
mold
pattern
resin
body portion
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010152360A
Other languages
English (en)
Other versions
JP2012011728A (ja
Inventor
幸洋 辻
幸洋 辻
柳沢 昌輝
昌輝 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010152360A priority Critical patent/JP5699461B2/ja
Priority to US13/169,139 priority patent/US8827685B2/en
Publication of JP2012011728A publication Critical patent/JP2012011728A/ja
Application granted granted Critical
Publication of JP5699461B2 publication Critical patent/JP5699461B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C2043/141Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles
    • B29C2043/142Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles by moving a single mould or the article progressively, i.e. portionwise

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、ナノインプリント用モールドに関する。
下記特許文献1には、ナノインプリント法による微細パターン形成方法が記載されている。この方法によれば、ナノインプリントに用いるモールドを、光等が透過する材料で構成することにより、ウェハとモールドとのアライメントを行うことが可能であることが記載されている。
特開2000−323461号公報
半導体光デバイスが有する微細パターンを形成する方法として、ナノインプリント法を採用することが検討されている。このような微細パターンとしては、例えば、分布帰還型半導体レーザが有する回折格子を挙げることができる。このような微細パターンをナノインプリント法で形成すれば、分布帰還型半導体レーザ等のデバイスの製造コストを低減させることができる等の利点がある。
ナノインプリント法で半導体光デバイスの微細パターンを形成する場合には、まず、半導体基板上に、微細パターンを形成する半導体層と、樹脂層とをこの順に形成する。そして、微細パターンのための凹凸パターンを有するモールドをこの樹脂層に押し付け、その状態で樹脂層を硬化させた後にモールドと樹脂層とを離間させる。このようにして、モールドの凹凸パターンを樹脂層に転写する。そして、このようなモールドの凹凸パターンの樹脂層への転写は、通常、ナノインプリントを行う位置を変えながら複数回行われる(ステップアンドリピート方式)。つまり、半導体層を複数の部分領域に分割し、それぞれの部分領域上の樹脂層に対して順にモールドによる凹凸パターンの転写が行われる。
その後、この樹脂層をマスクとして半導体層をエッチングすると、半導体層上に残存する樹脂層(樹脂層の残膜)の厚さが薄い領域程、半導体層の表面が早く露出して深くエッチングされるため、モールドの凹凸パターンを半導体層に転写することができる。
このようにナノインプリント法によって微細パターンを形成する際は、微細パターンを形成する半導体層の表面と、モールドの凹凸パターンが形成されたパターン面とを平行に対向させてから、モールドを樹脂層に押し付けることが重要となる。何故なら、半導体層の表面とモールドのパターン面との平行度が悪いと、凹凸パターンが転写された樹脂層の残膜の厚さが所望の値からばらついてしまうからである。例えば、微細パターンとして一定の高さの複数の凹凸からなる回折格子を形成する場合、回折格子の複数の凸部に対応する樹脂層の残膜の厚さは、理想的にはそれぞれ均一である。しかし、半導体層の表面とモールドのパターン面との平行度が悪いと、これらの残膜の厚さがばらついてしまうため、回折格子の凹凸形状もばらついてしまう。そのため、モールドを樹脂層に押し付ける前に、半導体層の表面とモールドのパターン面とを平行に対向させる必要がある。
しかしながら、半導体基板の表面は完全な平坦ではなく、ある程度の高さ分布を有しているため、その上に形成した半導体層の表面も同程度の高さ分布を有している。そのため、半導体層の表面全体とモールドのパターン面との平行度を十分に高くしても、半導体層の部分領域の表面と、モールドのパターン面との平行度が低くなる場合がある。その結果、半導体基板の表面の高さ分布に起因して、形成される回折格子等の微細パターンの形状にばらつきが生じてしまう。
半導体基板としてシリコン基板を用いる半導体光デバイスを製造する場合、シリコン基板の表面の平坦性は非常に高くすることが可能であるため、上述のような半導体基板の表面の高さ分布に起因する微細パターンの形状のばらつきはそれ程問題とならない場合もある。しかし、半導体基板としてInP基板等のIII-V族半導体基板を用いるIII-V族半導体光デバイスを製造する場合、化合物半導体からなるIII-V族半導体基板の表面の平坦性は、シリコン基板の表面の平坦性と比較して非常に低いため、半導体基板の表面の高さ分布に起因する微細パターンの形状のばらつきは大きな問題となる。上記特許文献1においては、半導体基板の表面の平坦性の低さに起因する微細パターンのばらつきの問題については、何も触れられていない。
また、上述のような半導体基板の表面の高さ分布に起因する微細パターンの形状のばらつきを小さくするために、モールドを半導体基板に強く押し付ける方法も考えられる。しかしながら、一般に、半導体基板、特にIII-V族半導体基板は割れやすいため、モールドを半導体基板に強く押し付けると基板が割れる可能性がある。また、モールドを半導体基板に強く押し付けることにより、半導体基板に転位等の結晶欠陥が導入されたりする可能性がある。そのため、モールドを半導体基板に強く押し付けることは、好ましくない。
本発明はこのような課題に鑑みてなされたものであり、加工対象の表面の高さ分布に起因する微細パターンの形状のばらつきを低減させることが可能なナノインプリント用モールドを提供することを目的とする。
上述の課題を解決するため、本発明に係るナノインプリント用モールドは、モールド基体部と、第1面と、第1面とは反対側の第2面とを有するモールド本体部と、モールド基体部の表面と、モールド本体部の第1面との間に固定された弾性体部とを備え、モールド本体部の第2面には、ナノインプリント用のパターンが形成されており、弾性体部の体積弾性率は、モールド本体部の体積弾性率よりも小さいことを特徴とする。
本発明に係るナノインプリント用モールドにおいては、モールド基体部とモールド本体部との間に固定された弾性体部の体積弾性率は、モールド本体部の体積弾性率よりも小さい。そのため、加工対象の部分領域上の樹脂部にモールドの第2面を押し付けると、モールドの第2面が当該部分領域の表面に沿った状態に近づくように、弾性体部は変形する。即ち、モールドを樹脂部に押し付けると、モールドの第2面と当該部分領域の表面との間の間隔が一定の長さに近づくように、弾性体部は変形する。これにより、加工対象の表面に高さ分布が存在しても、この高さ分布に起因して樹脂部に転写される微細パターンの形状がばらつくことは抑制される。その結果、加工対象の表面の高さ分布に起因して加工対象に転写される微細パターンの形状がばらつくことは抑制される。
さらに、本発明に係るナノインプリント用モールドは、モールド基体部の表面に設けられた突出部をさらに備え、この突出部の高さは、モールド基体部の表面からモールド本体部の第2面までの距離よりも低いことが好ましい。これにより、突出部はモールド本体部を保護する保護部材として機能するため、モールド本体部が損傷することを抑制することができる。
さらに、本発明に係るナノインプリント用モールドにおいては、モールド本体部の第1面から第2面までの厚さは、0.1mm以上、0.5mm以下であることが好ましい。
モールド本体部の第1面から第2面までの厚さが0.5mm以下である場合、モールドを樹脂部に押し付けた際、モールドの第2面が当該部分領域の表面に沿った状態により近づくように、モールド本体部が十分に撓むことができる。これにより、加工対象の表面に高さ分布が存在しても、この高さ分布に起因して樹脂部に転写される微細パターンの形状がばらつくことはより抑制される。その結果、加工対象の表面の高さ分布に起因して加工対象に転写される微細パターンの形状がばらつくことはより抑制される。
また、モールド本体部の第1面から第2面までの厚さが0.1mm以上である場合、モールドを樹脂部に押し付けた際のモールド本体部の撓みに起因する第2面のパターンの変形量を十分に小さくすることができる。その結果、モールドを樹脂部に押し付けた際のモールド本体部の撓みに起因して、樹脂部に転写される微細パターンの形状がばらつくことは十分に抑制されるため、加工対象に転写される微細パターンの形状がばらつくことは十分に抑制される。
本発明によれば、加工対象の表面の高さ分布に起因する微細パターンの形状のばらつきを低減させることが可能なナノインプリント用モールドが提供される。
第1実施形態に係るナノインプリント用モールドの斜視図である。 図1のII−II線に沿ったナノインプリント用モールドの断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための平面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第1実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図である。 第2実施形態に係るナノインプリント用モールドの斜視図である。 図12のXIII−XIII線に沿ったナノインプリント用モールドの断面図である。
以下、実施の形態に係るナノインプリント用モールドについて、添付図面を参照しながら詳細に説明する。なお、各図面において、可能な場合には同一要素には同一符号を用いる。また、図面中の構成要素内及び構成要素間の寸法比は、図面の見易さのため、それぞれ任意となっている。
(第1実施形態)
図1は、第1実施形態に係るナノインプリント用モールドの斜視図であり、図2は、図1のII−II線に沿ったナノインプリント用モールドの断面図である。
図1及び図2に示すように、本実施形態のナノインプリント用のモールド1は、モールド基体部3と、モールド本体部5と、弾性体部7とを備えている。なお、図1及び図2においては、直交座標系2を示している。
モールド基体部3は、本実施形態においては、Z軸方向を厚さ方向とし、XY平面に沿って延びる表面3Sを有する矩形の平板状の部材である。モールド基体部3は、例えば、石英、合成石英、Si、ニッケル等からなる。後述のナノインプリント用の樹脂部として紫外線硬化樹脂を用いる場合、モールド基体部3は、石英、合成石英等の、紫外線に対する透過率が十分に高い材料からなることが好ましい。
モールド基体部3のZ軸方向の厚さ3Tは、特に制限されないが、例えば、0.6mm以上、10mm以下とすることができる。モールド基体部3のX軸方向の幅3Wは、特に制限されないが、例えば、60mm以上、150mm以下とすることができる。モールド基体部3のY軸方向の長さ3Lは、特に制限されないが、例えば、60mm以上、150mm以下とすることができる。
モールド本体部5は、本実施形態においては、Z軸方向を厚さ方向とし、XY平面に沿って延びる裏面5B(第1面)及びパターン面5S(第2面)を有する矩形の平板状の部材である。裏面5Bは、弾性体部7を介してモールド基体部3の表面3Sと対向する。また、パターン面5Sは、モールド本体部5の裏面5Bとは反対側の面である。
パターン面5Sには、ナノインプリント用のパターン5Pが形成されている。本実施形態においては、パターン5Pは、分布帰還型半導体レーザ等が有する回折格子を形成するためのパターンである。具体的には、本実施形態のパターン5Pは、X軸に沿って延び、それぞれY軸方向の幅及びZ軸方向の高さが同一の複数のライン部と、X軸に沿って延び、それぞれY軸方向の幅及びZ軸方向の高さが同一の複数のスペース部を有している。パターン5Pは、各ライン部と各スペース部とが交互にX軸方向に配置されたラインアンドスペースパターンである。
各ライン部と各スペース部のZ軸方向の高さは、例えば、50nm以上、300nm以下とすることができる。各ライン部と各スペース部のY軸方向の幅は、例えば、50nm以上、300nm以下とすることができる。Y軸方向のパターン5Pの周期、即ち、一つのライン部のY軸方向の幅と一つのスペース部のY軸方向の幅の合計値は、例えば、200nm以上、250nm以下とすることができる。
モールド本体部5は、例えば、石英、合成石英、Si等からなる。後述のナノインプリント用の樹脂部として紫外線硬化樹脂を用いる場合、モールド本体部5は、石英、合成石英等の、紫外線に対する透過率が十分に高い材料からなることが好ましい。モールド本体部5を構成する材料は、モールド基体部3と同様の材料であってもよいし、異なる材料であってもよい。
モールド本体部5のX軸方向の幅5Wは、特に制限されないが、例えば、10mm以上、25mm以下とすることができる。モールド本体部5のY軸方向の長さ5Lは、特に制限されないが、例えば、10mm以上、25mm以下とすることができる。モールド本体部5のZ軸方向の厚さ5Tは、後述の理由により、0.1mm以上、0.5mm以下であることが好ましい。
弾性体部7は、モールド基体部3の表面3Sと、モールド本体部5の裏面5Bとの間に固定されている。弾性体部7の体積弾性率は、モールド本体部5の体積弾性率よりも小さい。弾性体部7は、このような体積弾性率の条件を満たすような材料からなり、例えば、PET(ポリエチレンテレフタレート)、ポリエチレン、ポリプロピレン等からなる。また、弾性体部7の体積弾性率は、モールド基体部3の体積弾性率よりも低いことが好ましい。後述のナノインプリント用の樹脂部として紫外線硬化樹脂を用いる場合、弾性体部7は、PET(ポリエチレンテレフタレート)、ポリエチレン、ポリプロピレン等の紫外線に対する透過率が十分に高い材料からなることが好ましい。
弾性体部7は、例えば、接着剤(図示せず)によってモールド基体部3の表面3Sと、モールド本体部5の裏面5Bとの間に固定されている。このような弾性体部7と接着剤とが一体化されたものとしては、両面テープを挙げることができる。弾性体部7自体に接着性がある場合、そのような接着剤を用いず、弾性体部7を直接モールド基体部3の表面3Sと、モールド本体部5の裏面5Bに固定することができる。
弾性体部7のZ軸方向の厚さ7Tは、後述の理由により、10μm以上、200μm以下であることが好ましい。また、弾性体部7の厚さ7Tとモールド本体部5の厚さ5Tとの和、即ち、モールド基体部3の表面3Sから、モールド本体部5のパターン面5Sまでの距離9Tは、例えば、0.11mm以上、0.7mm以下とすることができる。
次に、本実施形態のモールド1を用いたナノインプリント法によって、微細パターンを製造する方法について説明する。
図3、図4、及び、図6〜図11は、本実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための断面図であり、図5は、本実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法を説明するための平面図である。
本実施形態のモールドを用いたナノインプリント法によって、微細パターンを製造する方法として、半導体基板上の半導体層に微細パターンとしての回折格子を製造する方法について説明する。このような回折格子としては、例えば、分布帰還型半導体レーザ等の半導体光デバイスが有する回折格子を挙げることができる。
まず、図3に示すように、半導体基板13を準備する。半導体基板13は、例えば、円板状の基板とすることができる。半導体基板13の表面13Sは、完全に平坦ではなく、ある程度の高さ分布(凹凸分布)を有する。図3及び以降の図においては、表面13Sの高さ分布を強調して示している。半導体基板13は、例えば、SiやGe等の単元素半導体や、InP等のIII−V族化合物半導体等の化合物半導体からなる。
半導体基板13がSi等の単元素半導体からなる場合、半導体基板13の表面13Sの高さ分布は、比較的小さくすることができる。この場合の半導体基板13の表面13Sの大きさは、二乗平均平方根値(RMS値)で、例えば、1.0nm以上、1.5nm以下程度である。
一方、半導体基板13がInP等のIII−V族化合物半導体等の化合物半導体からなる場合、半導体基板13が単元素半導体からなる場合と比較して、半導体基板13の表面13Sの高さ分布は一般的に大きくなる。この場合の半導体基板13の表面13Sの大きさは、二乗平均平方根値(RMS値)で、例えば、9nm以上、10nm以下程度である。
続いて、図4及び図5に示すように、半導体基板13の表面13S上に、加工対象としての半導体層15を形成する。半導体層15の表面15Sは、半導体基板13の表面13Sに沿った形状となる。そのため、半導体層15の表面15Sの高さ分布は、半導体基板13の表面13Sの高さ分布と同程度となる。半導体層15は、複数の部分領域15Aに分割されている。後の工程において、各部分領域15A上の樹脂部に対して順に、モールド1によるパターンの転写が行われる(ステップアンドリピート方式)。
続いて、図6に示すように、半導体層15の表面15S上に、紫外線硬化樹脂又は熱硬化樹脂からなる樹脂部17を形成する。樹脂部17は、例えば、半導体層15の表面15S上に、滴下法やスピンコート法によって紫外線硬化樹脂又は熱硬化樹脂を含む樹脂液を設けた後、当該樹脂液を所定の温度に加熱処理することにより、形成することができる。半導体層15の表面15S上に形成された樹脂部17は、図6に示される段階においては、流動性を有している。
樹脂部17は、図6に示すように、複数の部分に分割された状態で半導体層15の表面15S上に分散していてもよいし、半導体層15の表面15S全体を覆うように層状に形成されていてもよい。また、半導体層15と樹脂部17との密着性を向上させる機能を有する密着層を、半導体層15と樹脂部17との間に介在させてもよい。
続いて、図7に示すように、半導体層15の一つの部分領域15Aの表面15Sと、モールド1のパターン面5Sとを対向させる。この際、半導体層15の表面15S全体を平均化した面と、モールド本体部5のパターン面5Sとが、略平行になるようにする。図7においては、直交座標系12が示されており、半導体基板13の厚さ方向にZ軸を設定し、半導体基板13の表面13S全体を平均化した面と平行にX軸及びY軸を設定している。図7に示す状態において、モールド本体部5のパターン面5Sは、XY平面と略平行となっている。半導体層15の表面15Sは、上述のように高さ分布を有しているため、モールド本体部5のパターン面5Sと部分領域15Aの表面15Sとは、平行になっているとは限らない。
次に、図8に示すように、モールド1をZ軸負方向に移動させて、モールド本体部5が半導体層15と接触しないように、モールド本体部5のパターン面5Sを当該部分領域15A上の樹脂部17に押し付ける。すると、弾性体部7の体積弾性率は、モールド本体部5の体積弾性率よりも小さいため、モールド1のパターン面5Sが当該部分領域15Aの表面15Sに沿った状態に近づくように、弾性体部7は変形する。言い換えると、モールド1のパターン面5Sを当該部分領域15A上の樹脂部17に押し付けると、モールド1のパターン面5Sと当該部分領域15Aの表面15Sとの間の間隔が一定の長さに近づくように、弾性体部7は変形する。
この状態で、当該部分領域15Aの表面15S上の樹脂部17を硬化させる。樹脂部17が紫外線硬化樹脂からなる場合、当該樹脂部17に紫外線を照射する。その際、モールド1が紫外線に対する透過率が十分に高い材料からなる場合、紫外線がモールド1の上方からモールド1内を経由して当該樹脂部17に到達するように、当該樹脂部17に紫外線を照射することができる。
その後、図9に示すように、モールド1と樹脂部17とを離間させる。このようにして、半導体層15の当該部分領域15A上の樹脂部17に、樹脂パターン17Pが形成される。
そして、図10に示すように、図7から図9に示した一連の工程を、半導体層15の他の部分領域15A上の樹脂部17に対して、それぞれ順に行う。このようにして、半導体層15の全ての部分領域15A上の樹脂部17に、微細パターンとしての樹脂パターン17Pが形成される。樹脂パターン17Pは、モールド本体部5のパターン5Pが転写されたパターンである。
次に、例えば、反応性イオンエッチング法等のドライエッチング法等によって、樹脂パターン17Pが形成された樹脂部17及び半導体層15の一部をエッチングする。すると、樹脂パターン17Pのうち、残膜の厚さが薄い領域程、その領域下の半導体層15の表面15Sは早く露出して深くエッチングされる。そのため、図11に示すように、樹脂パターン17Pを半導体層15に転写することができる。このようにして、微細パターンとしての回折格子15Pを半導体層15に形成することができる。
上述のような本実施形態のモールド1においては、モールド基体部3とモールド本体部5との間に固定された弾性体部7の体積弾性率は、モールド本体部5の体積弾性率よりも小さい。そのため、加工対象である半導体層15の部分領域15A上の樹脂部17にモールド1のパターン面5Sを押し付けると、モールド1のパターン面5Sが当該部分領域15Aの表面15Sに沿った状態に近づくように、弾性体部7は変形する(図8参照)。即ち、モールド1を樹脂部17に押し付けると、モールド1のパターン面5Sと当該部分領域15Aの部分領域15Aとの間の間隔が一定の長さに近づくように、弾性体部7は変形する(図8参照)。
これにより、加工対象である半導体層15の表面15Sに高さ分布が存在しても、この高さ分布に起因して樹脂部17に転写される微細パターンとしての樹脂パターン17Pの形状がばらつくことは抑制される(図10参照)。その結果、半導体層15の表面15Sの高さ分布に起因して半導体層15に転写される微細パターンとしての回折格子15Pの形状がばらつくことは抑制される(図11参照)。
また、本実施形態のモールド1においては、モールド本体部5の裏面5Bからパターン5Pまでの厚さ5Tは、0.1mm以上、0.5mm以下であることが好ましい(図2参照)。
モールド本体部5の裏面5Bからパターン5Pまでの厚さ5Tが0.5mm以下である場合、モールド1を樹脂部17に押し付けた際、モールド1のパターン面5Sが半導体層15の部分領域15Aの表面15Sに沿った状態により近づくように、モールド本体部5が十分に撓むことができる(図8参照)。これにより、加工対象である半導体層15の表面15Sに高さ分布が存在しても、この高さ分布に起因して樹脂部17に転写される樹脂パターン17Pの形状がばらつくことはより抑制される(図10参照)。その結果、半導体層15の表面15Sの高さ分布に起因して半導体層15に転写される回折格子15Pの形状がばらつくことはより抑制される(図11参照)。
また、モールド本体部5の裏面5Bからパターン5Pまでの厚さ5Tが0.1mm以上である場合、モールド1を樹脂部17に押し付けた際のモールド本体部5の撓みに起因するパターン面5Sのパターン5Pの変形量を十分に小さくすることができる(図8参照)。その結果、モールド1を樹脂部17に押し付けた際のモールド本体部5の撓みに起因して、樹脂部17に転写される樹脂パターン17Pの形状がばらつくことは十分に抑制されるため(図10参照)、半導体層15に転写される回折格子15Pの形状がばらつくことは十分に抑制される(図11参照)。
また、弾性体部7の体積弾性率は、10Pa以上、1010Pa以下であることが好ましい。何故なら、弾性体部7の体積弾性率が10Pa以上であれば、インプリントで圧縮された後、元の状態に弾性体部7が復元し易くなり、繰り返し使える利点があるからである。また、弾性体部7の体積弾性率が1010Pa以下であれば、弾性体部7が、基板に倣うように変形し易くなり、パターン欠陥を抑制するという利点があるからである。
また、弾性体部7の厚さは、10μm以上、200μm以下であることが好ましい。弾性体部7の厚さが10μm以上であれば、基板の面の変化分、弾性体部7が変形可能であるという利点があり、200μm以下であれば、パターンが変形し難いという利点があるためである。
(第2実施形態)
次に、第2実施形態に係るナノインプリント用モールドについて、説明する。図12は、本実施形態に係るナノインプリント用モールドの斜視図であり、図13は、図12のXIII−XIII線に沿ったナノインプリント用モールドの断面図である。
図12及び図13に示す本実施形態のナノインプリント用のモールド1xは、第1実施形態のモールド1と比較して、突出部23をさらに備えている点が異なる。
本実施形態のモールド1xは、モールド基体部3の表面3Sに設けられた突出部23を備えている。即ち、突出部23は、モールド基体部3の表面3Sからモールド基体部3の厚さ方向(Z軸正方向)に向かって突出している。本実施形態の突出部23は、モールド基体部3の厚さ方向から見て、モールド本体部5及び弾性体部7と離間し、かつ、モールド本体部5及び弾性体部7を取り囲むようにモールド基体部3の外縁に沿って設けられている。突出部23は、モールド基体部3に固定されている。
本実施形態においては、突出部23は、モールド基体部3と同様の材料からなり、モールド基体部3と一体成形されている。図12及び図13においては、突出部23とモールド基体部3との境界を破線で示している。ただし、突出部23は、モールド基体部3とは異なる材料で構成されていてもよく、例えば、石英、合成石英、ニッケル、Si等で構成されていてもよい。また、突出部23は、モールド基体部3と一体成形されていなくてもよい。その場合、突出部23とモールド基体部3とは別々に成形され、その後、突出部23はモールド基体部3に固定される。
また、突出部23の高さ23Tは、モールド基体部3の表面3Sからモールド本体部5のパターン面5Sまでの距離9Tよりも低くなっている。そのため、モールド1xを半導体層15上の樹脂部17に押し付ける際、突出部23が障害となることはない。
突出部23の高さ23Tは、例えば、0.4mm以上、0.9mm以下とすることができる。モールド基体部3の表面3Sからモールド本体部5のパターン面5Sまでの距離9Tと、突出部23の高さ23Tとの差P23は、例えば、0.1mm以上、0.5mm以下とすることができる。また、X軸方向における突出部23とモールド本体部5との離間距離、及び、Y軸方向における突出部23とモールド本体部5との離間距離は、例えば、1mm以上、2mm以下とすることができる。
上述のような本実施形態のモールド1xによれば、第1実施形態のモールド1と同様の理由により、加工対象である半導体層15の表面15Sに高さ分布が存在しても、この高さ分布に起因して樹脂部17に転写される微細パターンとしての樹脂パターン17Pの形状がばらつくことは抑制される(図10参照)。その結果、半導体層15の表面15Sの高さ分布に起因して半導体層15に転写される微細パターンとしての回折格子15Pの形状がばらつくことは抑制される(図11参照)。
さらに、上述のような本実施形態のモールド1xは、モールド基体部3の表面3Sに設けられた突出部23をさらに備え、この突出部23の高さ23Tは、モールド基体部3の表面3Sからモールド本体部5のパターン面5Sまでの距離9Tよりも低い(図12及び図13参照)。そのため、突出部23は、モールド1xの使用時等にモールド本体部5を保護する保護部材として機能するため、モールド本体部5が損傷することを抑制することができる。
1、1x・・・ナノインプリント用モールド、3・・・モールド基体部、3S・・・モールド基体部の表面、5・・・モールド本体部、5B・・・モールド本体部の裏面(第1面)、5P・・・ナノインプリント用のパターン、5S・・・パターン面(第2面)、7・・・弾性体部。

Claims (2)

  1. モールド基体部と、
    第1面と、前記第1面とは反対側の第2面と、を有するモールド本体部と、
    前記モールド基体部の表面と、前記モールド本体部の前記第1面との間に固定された弾性体部と、
    前記モールド基体部の前記表面に設けられた突出部と、
    を備え、
    前記モールド本体部の前記第2面には、ナノインプリント用のパターンが形成されており、
    前記弾性体部の体積弾性率は、前記モールド本体部の体積弾性率よりも小さく、
    前記突出部の高さは、前記モールド基体部の前記表面から前記モールド本体部の前記第2面までの距離よりも低く、かつ、前記モールド基体部の前記表面から前記モールド本体部の前記第1面までの距離よりも高く、
    前記突出部は、前記モールド基体部の厚さ方向から見て、前記モールド本体部及び前記弾性体部と離間し、かつ、前記モールド本体部及び前記弾性体部を取り囲むように前記モールド基体部の外縁に沿って設けられていることを特徴とするナノインプリント用モールド。
  2. 前記モールド本体部の前記第1面から前記第2面までの厚さは、0.1mm以上、0.5mm以下であることを特徴とする請求項1に記載のナノインプリント用モールド。
JP2010152360A 2010-07-02 2010-07-02 ナノインプリント用モールド Active JP5699461B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010152360A JP5699461B2 (ja) 2010-07-02 2010-07-02 ナノインプリント用モールド
US13/169,139 US8827685B2 (en) 2010-07-02 2011-06-27 Nano-imprint mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152360A JP5699461B2 (ja) 2010-07-02 2010-07-02 ナノインプリント用モールド

Publications (2)

Publication Number Publication Date
JP2012011728A JP2012011728A (ja) 2012-01-19
JP5699461B2 true JP5699461B2 (ja) 2015-04-08

Family

ID=45399882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152360A Active JP5699461B2 (ja) 2010-07-02 2010-07-02 ナノインプリント用モールド

Country Status (2)

Country Link
US (1) US8827685B2 (ja)
JP (1) JP5699461B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972298B1 (fr) * 2011-03-04 2015-07-31 Commissariat Energie Atomique Procede de metallisation de surfaces texturees
JP5760714B2 (ja) * 2011-06-03 2015-08-12 住友電気工業株式会社 ナノインプリント用モールド
CN103577582A (zh) * 2013-11-08 2014-02-12 无锡英普林纳米科技有限公司 一种纳米压印工艺的优化方法
JP6320183B2 (ja) * 2014-06-10 2018-05-09 キヤノン株式会社 インプリント装置、インプリント方法、および物品製造方法
JP6468478B2 (ja) * 2014-10-22 2019-02-13 大日本印刷株式会社 インプリント用モールド、インプリント方法及びワイヤーグリッド偏光子の製造方法
WO2017056894A1 (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 モールドの作製方法、パターンシートの製造方法、電鋳金型の作製方法、及び電鋳金型を用いたモールドの作製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232307A (ja) * 1992-02-18 1993-09-10 Sony Magnescale Inc 回折格子の作製方法
JP2000323461A (ja) 1999-05-11 2000-11-24 Nec Corp 微細パターン形成装置、その製造方法、および形成方法
JP4269745B2 (ja) * 2003-03-31 2009-05-27 株式会社日立製作所 スタンパ及び転写装置
JP5306989B2 (ja) * 2006-04-03 2013-10-02 モレキュラー・インプリンツ・インコーポレーテッド 複数のフィールド及びアライメント・マークを有する基板を同時にパターニングする方法
JP2008100376A (ja) * 2006-10-17 2008-05-01 Dainippon Printing Co Ltd インプリント用モールド
JP4448868B2 (ja) * 2007-06-29 2010-04-14 株式会社日立産機システム インプリント用スタンパとその製造方法
SG185929A1 (en) * 2007-11-21 2012-12-28 Molecular Imprints Inc Porous template and imprinting stack for nano-imprint lithography
JP4815464B2 (ja) * 2008-03-31 2011-11-16 株式会社日立製作所 微細構造転写スタンパ及び微細構造転写装置
JP5011222B2 (ja) * 2008-06-30 2012-08-29 株式会社日立製作所 インプリント用スタンパおよびインプリント方法
JP5383110B2 (ja) * 2008-07-25 2014-01-08 株式会社東芝 インプリント装置

Also Published As

Publication number Publication date
US20120003348A1 (en) 2012-01-05
US8827685B2 (en) 2014-09-09
JP2012011728A (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5699461B2 (ja) ナノインプリント用モールド
US8740377B2 (en) Imprint recipe creating device and imprint device
US7815430B2 (en) Mold, production process of mold, imprint apparatus, and imprint method
TWI478808B (zh) 製造光學元件的方法
CN109937127B (zh) 结构的显微光刻制造
JP2012035578A (ja) ナノインプリント用モールド
JP5637785B2 (ja) 原版、及びそれを用いた物品の製造方法
JP6300459B2 (ja) インプリント装置およびインプリント方法、それを用いた物品の製造方法
KR20130040723A (ko) 임프린트 방법, 임프린트 장치, 및 디바이스 제조 방법
US20180157170A1 (en) Configuring optical layers in imprint lithography processes
JP2012039012A (ja) ナノインプリント用モールドの製造方法、ナノインプリント法による樹脂パターンの製造方法、及び、ナノインプリント用モールド
JP2016018824A (ja) インプリント装置及び物品の製造方法
JP2017163040A (ja) パターンの欠陥の分析を行う方法、インプリント装置、及び物品の製造方法
JP6478145B2 (ja) インプリント用モールド、インプリント方法、ワイヤーグリッド偏光子の製造方法及びワイヤーグリッド偏光子
US9434093B2 (en) Method of manufacturing master mold
JP6981064B2 (ja) インプリントモールド及びそれを用いた凸状構造体の製造方法
JP6076946B2 (ja) ローラーインプリント用モールドとインプリント方法およびワイヤーグリッド偏光子とその製造方法
US20140346701A1 (en) Pattern formation device, method for pattern formation, and program for pattern formation
TW201605600A (zh) 用複製來製造光學元件的方法及相關的複製工具和光學裝置
JP2010263124A (ja) Iii−v族半導体光デバイスの製造方法
US11131924B2 (en) Method and apparatus for forming pattern on imprint material
KR101616184B1 (ko) 와이어 그리드 편광자의 제조 방법
JP6950224B2 (ja) インプリントモールド及びインプリントモールドの製造方法
CN113557126B (zh) 制造多个光学元件的方法及其产品
CN113573877B (zh) 晶圆对准特征

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250