JP5696674B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP5696674B2
JP5696674B2 JP2012032648A JP2012032648A JP5696674B2 JP 5696674 B2 JP5696674 B2 JP 5696674B2 JP 2012032648 A JP2012032648 A JP 2012032648A JP 2012032648 A JP2012032648 A JP 2012032648A JP 5696674 B2 JP5696674 B2 JP 5696674B2
Authority
JP
Japan
Prior art keywords
power
storage device
unit
voltage
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012032648A
Other languages
English (en)
Other versions
JP2013169132A (ja
Inventor
達 中村
達 中村
真士 市川
真士 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012032648A priority Critical patent/JP5696674B2/ja
Publication of JP2013169132A publication Critical patent/JP2013169132A/ja
Application granted granted Critical
Publication of JP5696674B2 publication Critical patent/JP5696674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、電動車両に関し、特に、車両外部の電源から非接触で電力を受ける電動車両に関する。
国際公開第2010/035321号パンフレット(特許文献1)は、車両外部の電源(以下「外部電源」とも称する。)から非接触で電力を受ける電動車両において、効率のよい受電を実現する電力制御手法を開示する。この電動車両は、外部電源から非接触で受電するためのコイルを含む受電部と蓄電装置との間にDC/DCコンバータを備える。そして、外部電源からの受電時に、DC/DCコンバータを制御して受電部とDC/DCコンバータとの間の電圧を所定の目標電圧に調整することにより、給電側と受電側(電動車両)とでインピーダンスマッチングがとられる。したがって、この電動車両によれば、外部電源から高効率に受電することができる(特許文献1参照)。
国際公開第2010/035321号パンフレット 国際公開第2010/131348号パンフレット 国際公開第2010/131349号パンフレット
上記特許文献1に開示される電動車両は、給電側と受電側(電動車両)とでインピーダンスマッチングをとることによって高効率な受電を実現できる点で有用であるが、インピーダンスマッチングをとるために受電部と蓄電装置との間にDC/DCコンバータを設ける必要があるので、その分コストが増加する。
それゆえに、この発明の目的は、外部電源から非接触で電力を受ける電動車両において、効率のよい受電を低コストで実現することである。
この発明によれば、電動車両は、蓄電装置と、駆動装置と、昇圧装置と、受電部とを備える。駆動装置は、蓄電装置から電力を受けて車両駆動力を発生する。昇圧装置は、蓄電装置と駆動装置との間に設けられ、駆動装置の入力電圧を蓄電装置の電圧以上に調整可能である。受電部は、外部電源から非接触で受電する。受電部は、昇圧装置と駆動装置との間に配線される電力線に電気的に接続される。
好ましくは、電動車両は、制御装置をさらに備える。制御装置は、昇圧装置を制御することによって電力線の電圧を所定の目標電圧に調整する。そして、制御装置は、受電部による受電電力の大きさに基づいて目標電圧を設定する。
好ましくは、制御装置は、受電電力の目標値に目標インピーダンスを乗算した値の平方根から成る値に目標電圧を設定する。
好ましくは、目標インピーダンスは、外部電源のインピーダンスに設定される。
好ましくは、昇圧装置は、リアクトルと、第1および第2のスイッチング素子と、第1および第2のダイオードとを含む。リアクトルは、蓄電装置の正極に一端が接続される。第1のスイッチング素子は、リアクトルの他端と電力線との間に接続される。第2のスイッチング素子は、リアクトルの他端と蓄電装置の負極との間に接続される。第1および第2のダイオードは、第1および第2のスイッチング素子にそれぞれ逆並列に接続される。そして、外部電源から電動車両へ送電する際のインピーダンス調整機能を外部電源が有する場合、受電部による外部電源からの受電時に第1のスイッチング素子はオン状態となる。
好ましくは、昇圧装置は、リアクトルと、第1および第2のスイッチング素子と、第1および第2のダイオードとを含む。リアクトルは、蓄電装置の正極に一端が接続される。第1のスイッチング素子は、リアクトルの他端と電力線との間に接続される。第2のスイッチング素子は、リアクトルの他端と蓄電装置の負極との間に接続される。第1および第2のダイオードは、第1および第2のスイッチング素子にそれぞれ逆並列に接続される。そして、受電部による受電電力の電圧と蓄電装置の電圧との差が所定値よりも小さい場合、受電部による外部電源からの受電時に第1のスイッチング素子はオン状態となる。
好ましくは、昇圧装置は、リアクトルと、第1および第2のスイッチング素子と、第1および第2のダイオードとを含む。リアクトルは、蓄電装置の正極に一端が接続される。第1のスイッチング素子は、リアクトルの他端と電力線との間に接続される。第2のスイッチング素子は、リアクトルの他端と蓄電装置の負極との間に接続される。第1および第2のダイオードは、第1および第2のスイッチング素子にそれぞれ逆並列に接続される。そして、蓄電装置の充電状態が満充電状態に近づいたことを示す所定量に充電状態が達すると蓄電装置の充電電力を低減させる満充電制御の実行時、第1のスイッチング素子はオン状態となる。
好ましくは、電動車両は、電力線に接続される放電抵抗をさらに備える。そして、受電部による受電状況に基づいて外部電源と電動車両との相対位置関係が推定されるとき、昇圧装置は停止する。
好ましくは、電動車両は、電力線に接続される放電抵抗と、第1および第2のリレーとをさらに備える。第1のリレーは、蓄電装置と昇圧装置との間に設けられる。第2のリレーは、電力線と受電部との間に設けられる。そして、受電部による外部電源からの受電が終了すると、第1のリレーが非導通状態となり、その後、第2のリレーが非導通状態となる。
好ましくは、外部電源は、受電部へ非接触で送電する送電部を含む。受電部の固有周波数と送電部の固有周波数との差は、受電部の固有周波数または送電部の固有周波数の±10%以下である。
好ましくは、外部電源は、受電部へ非接触で送電する送電部を含む。受電部と送電部との結合係数は0.1以下である。
好ましくは、外部電源は、受電部へ非接触で送電する送電部を含む。受電部は、受電部と送電部との間に形成される磁界、および受電部と送電部との間に形成される電界の少なくとも一方を通じて、送電部から受電する。磁界および電界の少なくとも一方は、特定の周波数で振動する。
この発明においては、車両駆動力を発生する駆動装置の入力電圧を蓄電装置の電圧以上に調整可能な昇圧装置が設けられる。そして、外部電源から非接触で受電する受電部は、昇圧装置と駆動装置との間に配線される電力線に電気的に接続される。これにより、外部電源からの受電用に電圧コンバータを別途設けることなく、外部電源からの受電時に、受電部が接続される電力線の電圧を上記昇圧装置を用いて調整することができ、受電電力に応じてインピーダンスマッチングをとることが可能である。したがって、この発明によれば、効率のよい受電を低コストで実現することができる。
この発明による電動車両の全体構成図である。 外部充電時における昇圧コンバータの目標電圧を示した図である。 外部充電時に正極線および負極線間の電圧を昇圧コンバータによって調整したときの効果を説明するための図である。 外部充電時における昇圧コンバータの制御に関するECUの機能ブロック図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。 電流源または磁流源からの距離と電磁界の強度との関係を示した図である。 実施の形態2における、外部充電時の昇圧コンバータの制御に関するECUの機能ブロック図である。 外部充電時の蓄電装置の充電電力およびSOCの変化の一例を示した図である。 実施の形態3における、外部充電時の昇圧コンバータの制御に関するECUの機能ブロック図である。 給電設備の送電部と電動車両の受電部との相対位置関係と、電動車両の受電電圧との関係を示した図である。 実施の形態4における、外部充電時の昇圧コンバータの制御に関するECUの機能ブロック図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明による電動車両の全体構成図である。図1を参照して、電動車両100は、蓄電装置10と、システムメインリレー(以下「SMR(System Main Relay)」と称する。)12と、昇圧コンバータ14と、インバータ16と、モータジェネレータ18と、正極線PL1,PL2と、負極線NLと、電圧センサ20,22と、放電抵抗24とを備える。また、電動車両100は、受電部30と、受電用リレー42と、電子制御ユニット(以下「ECU(Electronic Control Unit)」と称する。)50とをさらに備える。
蓄電装置10は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池によって構成される。蓄電装置10は、車両外部に設けられる給電設備60から供給される電力を蓄えるほか、車両の制動時等にモータジェネレータ18によって発電される回生電力も蓄える。なお、蓄電装置10として、大容量のキャパシタも採用可能である。SMR12は、蓄電装置10と正極線PL1,負極線NLとの間に設けられる。SMR12は、ECU50からの信号SE1に基づいて、蓄電装置10と正極線PL1,負極線NLとの電気的な接続/切離を行なう。
昇圧コンバータ14は、蓄電装置10とインバータ16との間に設けられ、正極線PL2および負極線NL間の電圧VHを、正極線PL1および負極線NL間の電圧(すなわち蓄電装置10の電圧VB)以上に調整可能である。一例として、昇圧コンバータ14は、電流可逆型の昇圧チョッパ回路によって構成される。具体的には、昇圧コンバータ14は、リアクトルLと、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する。)S1,S2と、ダイオードD1,D2とを含む。リアクトルLの一方端は、正極線PL1に接続され、他方端は、スイッチング素子S1とスイッチング素子S2との中間点、すなわち、スイッチング素子S1のエミッタとスイッチング素子S2のコレクタとの接続点に接続される。スイッチング素子S1,S2は、正極線PL2と負極線NLとの間に直列に接続される。そして、スイッチング素子S1のコレクタは正極線PL2に接続され、スイッチング素子S2のエミッタは負極線NLに接続される。また、スイッチング素子S1,S2のコレクタ−エミッタ間に、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ接続される。
なお、上記のスイッチング素子S1,S2として、たとえば、IGBT(Insulated Gate Bipolar Transistor)や電力用MOS(Metal Oxide Semiconductor)トランジスタ等を用いることができる。
インバータ16は、正極線PL2および負極線NLに電気的に接続され、昇圧コンバータ14を介して蓄電装置10から供給される電力を用いてモータジェネレータ18を駆動する。インバータ16は、正極線PL2から供給される直流電力を交流に変換してモータジェネレータ18へ出力する。また、インバータ16は、車両の制動時等にモータジェネレータ18により発電された交流電力を直流に変換して正極線PL2へ出力する。インバータ16は、たとえば、三相ブリッジ回路によって構成される。
モータジェネレータ18は、車両駆動力を発生する電動発電機であり、たとえば、三相交流同期電動発電機によって構成される。モータジェネレータ18は、図示されない駆動輪に機械的に連結され、車両を駆動するためのトルクを発生する。なお、電動車両100がエンジン(図示せず)を搭載したハイブリッド自動車の場合には、モータジェネレータ18は、エンジンの動力を用いて発電する発電機として動作し、かつ、エンジンの始動を行なう電動機としてハイブリッド自動車に組み込まれるようにしてもよい。
電圧センサ20は、蓄電装置10の電圧VBを検出し、その検出値をECU50へ出力する。電圧センサ22は、正極線PL2と負極線NLとの間の電圧VHを検出し、その検出値をECU50へ出力する。放電抵抗24は、正極線PL2と負極線NLとの間に接続され、電気システムの停止時等に残留電荷を放電するために設けられる。
受電部30は、給電設備60から非接触で電力を受けるための装置である。一例として、受電部30は、コイル32と、キャパシタ34と、整流器36と、フィルタ38と、センサユニット40とを含む。コイル32は、キャパシタ34とともに共振回路を形成し、給電設備60の送電部64から出力される電力を非接触で受電する。なお、送電部64から受電部30への非接触電力伝送については、後ほど詳しく説明する。
整流器36は、コイル32によって受電された交流電力を整流してフィルタ38へ出力する。フィルタ38は、整流器36から出力される電力に含まれる高周波ノイズを除去する。センサユニット40は、フィルタ38から出力される電圧VC(受電電圧)および電流IC(受電電流)を検出してECU50へ出力する。
受電部30は、受電用リレー42を介して正極線PL2および負極線NLに接続される。受電用リレー42は、センサユニット40と正極線PL2,負極線NLとの間に設けられ、受電部30と正極線PL2,負極線NLとの電気的な接続/切離を行なう。具体的には、受電用リレー42は、ECU50からの信号SE2に基づいて、給電設備60からの受電時は正極線PL2および負極線NLに受電部30を電気的に接続し、給電設備60からの非受電時は正極線PL2および負極線NLから受電部30を電気的に切離す。
なお、給電設備60は、車両外部に設けられ、電源部62と、送電部64と備える。電源部62は、交流電力を発生する。一例として、電源部62は、系統電源から電力を受けて高周波の交流電力を発生する。送電部64は、電動車両100へ非接触で電力を送出するための装置である。一例として、送電部64は、コイル66と、キャパシタ68とを含む。コイル66は、キャパシタ68とともに共振回路を形成し、電動車両100の受電部30へ非接触で送電する。
なお、図1に示される受電部30および送電部64の構成は一例であって、給電設備60から電動車両100への非接触電力伝送を実現するための構成は、このような構成に限定されるものではない。
たとえば、特に図示しないが、受電部30において、コイル32およびキャパシタ34によって閉ループを形成し、コイル32により受電された交流電力を電磁誘導によりコイル32から取出して整流器36へ出力するコイルを別途設けてもよい。同様に、送電部64において、コイル66およびキャパシタ68によって閉ループを形成し、電源部62から出力される交流電力を電磁誘導によりコイル66へ供給するコイルを別途設けてもよい。また、受電部30のキャパシタ34および送電部64のキャパシタ68は、共振回路の固有周波数を調整するために設けられるものであり、コイル32,66の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ34,68を設けない構成としてもよい。
ECU50は、予め記憶されたプログラムをCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、車両の走行制御や、蓄電装置10の充電管理、受電部30を用いた給電設備60による蓄電装置10の充電制御を実行する(以下では、給電設備60による蓄電装置10の充電を「外部充電」とも称する。)。
ECU50は、車両の走行時、昇圧コンバータ14を駆動するための信号PWC、およびインバータ16を駆動するための信号PWIを生成し、その生成された信号PWC,PWIをそれぞれ昇圧コンバータ14およびインバータ16へ出力する。また、ECU50は、蓄電装置10の電圧VB、および図示されない電流センサによって検出される蓄電装置10の入出力電流に基づいて、蓄電装置10の充電状態(以下「SOC(State Of Charge)」と称し、蓄電装置10の容量に対する百分率(%)で示される。)を算出し、蓄電装置10の充電量を管理する。なお、SOCの算出方法については、種々の公知の手法を用いることができる。
ECU50は、さらに、給電設備60からの受電時、昇圧コンバータ14を制御することによって、正極線PL2と負極線NLとの間の電圧VHを蓄電装置10の電圧VB以上の所定の目標電圧に調整する。ここで、ECU50は、受電部30による給電設備60からの受電電力の大きさに基づいて、目標電圧VHrefを次式により設定する。
VHref=√(P×R) …(1)
ここで、Pは、受電部30による受電電力の目標値であり、Rは、目標インピーダンスである。受電部30による受電電力が出力される正極線PL2の電圧を上記の目標電圧VHrefに制御することにより、受電電力に依存することなくインピーダンスを目標インピーダンスRに設定することができる。そして、たとえば目標インピーダンスRを給電設備60側のインピーダンスに基づいて設定することにより、給電側の給電設備60と受電側の電動車両100とのインピーダンスマッチングをとることができる。
なお、給電設備60のインピーダンスの値は、図示されない通信装置によって給電設備60から取得することができる。また、受電部30による受電電力は、センサユニット40により検出される電圧VC(受電電圧)および電流IC(受電電流)から算出することができる。
図2は、外部充電時における昇圧コンバータ14の目標電圧VHrefを示した図である。図2を参照して、横軸は、受電部30による受電電力の目標値Pを示し、縦軸は、正極線PL2および負極線NL間の電圧VHの目標値である目標電圧VHrefを示す。上記(1)式に基づいて目標電圧VHrefを算出し、電圧VHが目標電圧VHrefに一致するように昇圧コンバータ14を制御することによって、外部充電時における給電設備60と電動車両100とのインピーダンスマッチングをとることができる。
図3は、外部充電時に正極線PL2および負極線NL間の電圧VHを昇圧コンバータ14によって調整したときの効果を説明するための図である。図3を参照して、横軸は、受電部30による受電電力を示し、縦軸は、受電効率(たとえば、給電設備60からの送電電力に対する、受電部30による受電電力または蓄電装置10の充電電力の比)を示す。
曲線C1は、外部充電時に、昇圧コンバータ14によって上記(1)式の目標電圧VHrefに電圧VHを調整したときの受電効率を示す。なお、比較例として、曲線C2は、外部充電時に昇圧コンバータ14の上アームを常時オン状態(スイッチング素子S1を常時オン)として電圧VHを調整しない場合(すなわち、受電部30が正極線PL1および負極線NLに接続される場合に相当する。)の受電効率を示す。
受電効率は、主に、給電設備60の電源部62(図1)の効率と、給電設備60の送電部64と受電部30との間の伝送効率とによって決まる。電源部62の効率は、電源部62の出力電力が小さいと低下し、出力電力の増大に応じて高くなる。送電部64と受電部30との間の伝送効率は、インピーダンスによって変化し、最適設計された目標インピーダンスRでピークを持つ。
外部充電時に昇圧コンバータ14の上アームを常時オン状態として電圧VHを調整しない場合、受電部30の出力電圧(受電部30による受電電圧)は蓄電装置10の電圧VBに固定され、受電部30出側のインピーダンスは受電電力によって変化する(反比例)。したがって、外部充電時に昇圧コンバータ14の上アームを常時オン状態として電圧VHを調整しない場合、受電電力によってインピーダンスが変化するので、受電効率は、曲線C2に示されるように目標インピーダンスRに対応する受電電力でピークを持つ曲線となる。すなわち、受電電力が小さいとき、あるいは逆に増大したとき、受電効率は低下する。なお、上述のように、電力の大きさによって電源部62の効率も変化するけれども、この場合は、受電電力に応じたインピーダンスの変化による伝送効率の変化が支配的となる。
一方、外部充電時に、昇圧コンバータ14によって上記(1)式の目標電圧VHrefに電圧VHを調整する場合は、受電電力に依存することなくインピーダンスを最適な目標インピーダンスRにすることができる。これにより、送電部64と受電部30との間の伝送効率は、受電電力に依存することなく高効率となる。したがって、受電効率の変化は、電源部62の効率の変化が支配的となり、受電効率は、曲線C1に示されるように電源部62の効率変化に依存した曲線となる。このように、外部充電時に昇圧コンバータ14によって目標電圧VHrefに電圧VHを調整することによって、受電効率を高めることができる。
図4は、外部充電時における昇圧コンバータ14の制御に関するECU50の機能ブロック図である。図4を参照して、ECU50は、目標電圧設定部80と、コンバータ制御部82とを含む。目標電圧設定部80は、給電設備60(図1)から受電する電力の目標値Pと目標インピーダンスRとに基づいて、上記の(1)式に従って目標電圧VHrefを算出する。
コンバータ制御部82は、電圧センサ22(図1)によって検出された電圧VHが目標電圧VHrefに一致するように昇圧コンバータ14を駆動するためのPWM(Pulse Width Modulation)信号を生成し、その生成したPWM信号を信号PWCとして昇圧コンバータ14へ出力する。
次に、給電設備60から電動車両100への非接触電力伝送を実現する電力伝送システムについて詳細に説明する。再び図1を参照して、この電力伝送システムにおいては、給電設備60の送電部64の固有周波数と、電動車両100の受電部30の固有周波数との差は、送電部64の固有周波数または受電部30の固有周波数の±10%以下である。このような範囲に送電部64および受電部30の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる。
なお、受電部30(送電部64)の固有周波数とは、コイル32およびキャパシタ34(コイル66およびキャパシタ68)によって構成される電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、受電部30(送電部64)の共振周波数とは、コイル32およびキャパシタ34(コイル66およびキャパシタ68)によって構成される電気回路(共振回路)において、制動力または電気抵抗を零としたときの固有周波数を意味する。
図5および図6を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図5は、電力伝送システムのシミュレーションモデルを示す図である。また、図6は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
図5を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。
共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(2)によって示され、第3コイル96の固有周波数f2は、下記の式(3)によって示される。
f1=1/{2π(Lt×C1)1/2}・・・(2)
f2=1/{2π(Lr×C2)1/2}・・・(3)
ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図6に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
図6に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数での電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(4)によって示される。
(固有周波数のズレ)={(f1−f2)/f2}×100(%)・・・(4)
図6からも明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
再び図1を参照して、電動車両100の受電部30および給電設備60の送電部64は、受電部30と送電部64との間に形成される磁界および電界の少なくとも一方を通じて、非接触で電力を授受する。受電部30と送電部64との間に形成される磁界および/または電界は、特定の周波数で振動する。そして、受電部30と送電部64とを電磁界によって共振(共鳴)させることで、送電部64から受電部30へ電力が伝送される。
なお、上記では、受電部30および送電部64にコイル(たとえばヘリカルコイル)を採用したが、コイルに代えて、メアンダラインなどのアンテナなどを採用してもよい。メアンダラインなどのアンテナなどを採用した場合には、送電部64に特定の周波数の電流が流れることで、特定の周波数の電界が送電部64の周囲に形成される。そして、この電界を通して、送電部64と受電部30との間で電力伝送が行われる。
この電力伝送システムにおいては、電磁界の「静電磁界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。
図7は、電流源または磁流源からの距離と電磁界の強度との関係を示した図である。図7を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電磁界」と「誘導電磁界」と「静電磁界」との強さが略等しくなる距離は、λ/2πと表わすことができる。
「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態1に係る電力伝送システムでは、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、近接する固有周波数を有する送電部64および受電部30(たとえば一対のコイル)を共鳴させることにより、送電部64から他方の受電部30へエネルギー(電力)を伝送する。この「静電磁界」は遠方にエネルギーを伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によってエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
このように、この電力伝送システムにおいては、送電部64と受電部30とを電磁界によって共振(共鳴)させることで、送電部64と受電部30との間で非接触で電力が伝送される。受電部30と送電部64との結合係数κは、たとえば、0.3以下程度であり、好ましくは、0.1以下である。当然のことながら、結合係数κが0.1〜0.3程度の範囲も採用することができる。結合係数κは、このような値に限定されるものでなく、電力伝送が良好となる種々の値をとり得る。
なお、電力伝送における、上記のような送電部64と受電部30との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
送電部64と受電部30とが上記のようにコイルによって形成される場合には、送電部64と受電部30とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、上記のように、送電部64と受電部30とにメアンダライン等のアンテナを採用することも可能であり、この場合には、送電部64と受電部30とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。
以上のように、この実施の形態1においては、電動車両100は、インバータ16の入力電圧を蓄電装置10の電圧VB以上に調整可能な昇圧コンバータ14を搭載する。給電設備60から非接触で受電する受電部30は、昇圧コンバータ14とインバータ16との間に配線される正極線PL2および負極線NLに接続される。これにより、外部充電時に、昇圧コンバータ14を用いて、受電部30が接続される正極線PL2の電圧VHを調整可能であるので、給電設備60からの受電電力に依存することなくインピーダンスを設定可能である。そして、このインピーダンスを給電設備60のインピーダンス値に基づいて設定することにより、送電側の給電設備60と受電側の電動車両100とのインピーダンスマッチングをとることができる。したがって、この実施の形態1によれば、効率のよい受電を低コストで実現することができる。
[実施の形態2]
再び図1を参照して、この実施の形態2では、外部充電が実行される場合に、受電部30による受電電力の電圧と蓄電装置10の電圧VBとの差が所定値よりも小さいとき、昇圧コンバータ14の上アーム(スイッチング素子S1)がオン状態となる。上記所定値は、昇圧コンバータ14の上アームがオンされることによって受電電圧が蓄電装置10の電圧VBとなることによる受電効率の変化が大きくならない程度に適宜設定される。
この実施の形態2における電動車両の全体構成は、図1に示した電動車両100と基本的に同じである。
図8は、実施の形態2における、外部充電時の昇圧コンバータ14の制御に関するECU50Aの機能ブロック図である。図8を参照して、ECU50Aは、目標電圧設定部80と、コンバータ制御部82Aとを含む。目標電圧設定部80については、図4において説明したので、説明を繰り返さない。
コンバータ制御部82Aは、電圧センサ22(図1)によって検出された電圧VHが目標電圧VHrefに一致するように昇圧コンバータ14を駆動するための信号PWCを生成して昇圧コンバータ14へ出力する。ここで、コンバータ制御部82Aは、受電部30による受電電力の電圧VCと蓄電装置10の電圧VBとの差が所定値よりも小さいとき、昇圧コンバータ14の上アーム(スイッチング素子S1)をオン状態とするための信号PWCを生成して昇圧コンバータ14へ出力する。なお、受電電力の電圧VCは、センサユニット40(図1)において図示されない電圧センサにより検出される。
なお、上記においては、電圧VCと電圧VBとの差が所定値よりも小さいときに昇圧コンバータ14の上アームをオン状態とするものとしたが、上記の(1)式を用いて算出される目標電圧VHrefと蓄電装置10の電圧VBとの差が所定値よりも小さいときに昇圧コンバータ14の上アームをオン状態とするようにしてもよい。
以上のように、この実施の形態2によれば、外部充電時に昇圧コンバータ14が不必要に動作することによる損失を抑制することができる。
[実施の形態3]
受電部30を用いた外部充電により所定の満充電状態(たとえばSOC80%)まで蓄電装置10が充電される場合、この実施の形態3では、2段階に分けて充電制御が実行される。
図9は、外部充電時の蓄電装置10の充電電力PchgおよびSOCの変化の一例を示した図である。図9を参照して、受電部30を用いた外部充電が開始されると、蓄電装置10は、充電電力Pchgの最大値P1(たとえば蓄電装置10の入力許容電力Win)で充電される。時刻t2において、蓄電装置10のSOCが満充電状態Sfの直前の所定値Suに達すると、充電電力PchgがP2(<P1)に制限される(満充電制御)。そして、時刻t3においてSOCが満充電状態Sfに達すると、充電が終了する。
この実施の形態3では、外部充電時、蓄電装置10のSOCが所定値Suに達するまでは、受電電力の目標値を上記最大値P1として上記(1)式に基づいて目標電圧VHrefが設定され、電圧VHが目標電圧VHrefに一致するように昇圧コンバータ14が制御される。蓄電装置10のSOCが所定値Suに達すると、充電電力PchgをP2に制限した満充電制御が実行される。そして、満充電制御時は、昇圧コンバータ14の上アーム(スイッチング素子S1)がオン状態に制御される。満充電制御時は、充電電力Pchgが小さいことにより目標電圧VHrefが低くなるので、この実施の形態3では、満充電制御時は昇圧コンバータ14の上アームをオン状態とすることとしたものである。
この実施の形態3における電動車両の全体構成は、図1に示した電動車両100と基本的に同じである。
図10は、実施の形態3における、外部充電時の昇圧コンバータ14の制御に関するECU50Bの機能ブロック図である。図10を参照して、ECU50Bは、目標電圧設定部80と、コンバータ制御部82Bと、満充電制御部84とを含む。目標電圧設定部80については、図4において説明したので、説明を繰り返さない。
満充電制御部84は、外部充電時、蓄電装置10のSOCが満充電状態Sfの直前の所定値Suに達したか否かを判定する。SOCは、電圧センサ20(図1)によって検出される蓄電装置10の電圧VB、および図示されない電流センサによって検出される蓄電装置10の入出力電流に基づいて算出される。そして、蓄電装置10のSOCが所定値Suに達すると、満充電制御部84は、その旨をコンバータ制御部82Bへ通知する。
コンバータ制御部82Bは、満充電制御部84から上記通知を受けるまでは、すなわち、蓄電装置10のSOCが所定値Suに達するまでは、上記の(1)式に基づき算出される目標電圧VHrefに電圧VHが一致するように昇圧コンバータ14を駆動するための信号PWCを生成して昇圧コンバータ14へ出力する。なお、SOCが所定値Suに達するまでは、たとえば、定格充電電力(たとえば蓄電装置10の入力許容電力Win)で蓄電装置10が充電され、その定格充電電力を実現する受電電力の目標値に基づいて、上記(1)式を用いて目標電圧VHrefが算出される。
一方、コンバータ制御部82Bが満充電制御部84から通知を受けると、すなわち、蓄電装置10のSOCが所定値Suに達すると、コンバータ制御部82Bは、昇圧コンバータ14の上アーム(スイッチング素子S1)をオン状態とするための信号PWCを生成して昇圧コンバータ14へ出力する。
以上のように、この実施の形態3によれば、蓄電装置10の満充電制御時に昇圧コンバータ14が不必要に動作することによる損失を抑制することができる。
[実施の形態4]
この実施の形態4では、給電設備60における送電電圧を一定とし、かつ、電動車両100のインピーダンスを一定としたときの電動車両100の受電電圧に基づいて、給電設備60と電動車両100との相対位置関係、より詳しくは給電設備60の送電部64と電動車両100の受電部30との相対位置関係が推定される。
図11は、給電設備60の送電部64と電動車両100の受電部30との相対位置関係と、電動車両100の受電電圧との関係を示した図である。なお、給電設備60における送電電圧は一定とし、かつ、電動車両100のインピーダンスも一定であるとする。
図11を参照して、横軸は、送電部64と受電部30との相対位置関係を表す、送電部64と受電部30との間の距離Lを示す。縦軸は、電動車両100において受電部30により受電される電圧を示す。給電設備60における送電電圧が一定であり、かつ、電動車両100のインピーダンスが一定のとき、送電部64と受電部30との間の距離Lに応じて受電部30の受電電圧が変化する。
そこで、この実施の形態4では、図11に示される関係を予め測定する等してマップ等を作成しておき、給電設備60における送電電圧を一定としたときの受電部30の受電電圧に基づいて、給電設備60と電動車両100との相対位置関係が推定される。ここで、電動車両100のインピーダンスを一定にする必要があるところ、この実施の形態4では、受電部30が接続される正極線PL2および負極線NLの間に接続される放電抵抗24が用いられる。すなわち、給電設備60と電動車両100との相対位置関係の推定が行なわれるときは、昇圧コンバータ14が停止され、正極線PL2および負極線NLの間に接続される放電抵抗24によって一定のインピーダンスが実現される。
この実施の形態4における電動車両の全体構成は、図1に示した電動車両100と基本的に同じである。
図12は、実施の形態4における、外部充電時の昇圧コンバータ14の制御に関するECU50Cの機能ブロック図である。図12を参照して、ECU50Cは、目標電圧設定部80と、コンバータ制御部82Cと、相対位置関係推定部86とを含む。目標電圧設定部80については、図4において説明したので、説明を繰り返さない。
相対位置関係推定部86は、給電設備60と電動車両100との相対位置関係、詳しくは給電設備60の送電部64と電動車両100の受電部30との相対位置関係を推定する。具体的には、給電設備60と電動車両100との相対位置関係の推定するために給電設備60における送電電圧が一定のとき、相対位置関係推定部86は、昇圧コンバータ14の停止を指示する停止通知をコンバータ制御部82Cへ出力する。
なお、送電部64と受電部30との相対位置関係は、送電部64と受電部30との位置関係を一次元、二次元または三次元のいずれかで把握できる位置関係を含む。また、相対位置関係推定部86による送電部64と受電部30との相対位置関係の推定は、たとえば、給電設備60から電動車両100への給電開始を利用者が指示するための給電開始スイッチがオン操作されたとき等に実施される。
そして、相対位置関係推定部86は、図11に示される関係を示すものとして予め作成されたマップ等を用いて、センサユニット40により受電部30の受電電圧として検出される電圧VCに基づいて、送電部64と受電部30との相対位置関係を推定する。なお、推定された相対位置関係は、たとえば、図示されない表示装置によって利用者に提供される。
コンバータ制御部82Cは、昇圧コンバータ14の停止通知を相対位置関係推定部86から受けていないときは、上記(1)式に基づき算出される目標電圧VHrefに電圧VHが一致するように昇圧コンバータ14を駆動するための信号PWCを生成して昇圧コンバータ14へ出力する。
一方、コンバータ制御部82Bは、昇圧コンバータ14の停止通知を相対位置関係推定部86から受けると、昇圧コンバータ14の停止を指示する指令を昇圧コンバータ14へ出力する。これにより、給電設備60と電動車両100との相対位置関係の推定時に、昇圧コンバータ14が停止され、受電部30が接続される正極線PL2および負極線NLに接続される放電抵抗24によって電動車両100のインピーダンスが一定にされる。
以上のように、この実施の形態4においては、給電設備60と電動車両100との相対位置関係の推定用に、電動車両100のインピーダンスを一定にするための抵抗を別途設ける必要がない。したがって、この実施の形態4によれば、給電設備60と電動車両100との相対位置関係の推定機能を低コストで実現することができる。
なお、特に図示しないが、インピーダンスを調整するためのインピーダンス整合器が給電設備60に設けられている場合や、電源部62がインピーダンス調整機能を有する場合には、外部充電時に昇圧コンバータ14の上アーム(スイッチング素子S1)を常時オン状態としてもよい。
すなわち、上記の各実施の形態においては、外部充電時に、上記(1)式に基づいて設定される目標電圧VHrefに電圧VHが一致するように昇圧コンバータ14を制御することによってインピーダンスマッチングをとるものとした。しかしながら、インピーダンス調整機能を給電設備60側が有している場合には、電動車両100側でインピーダンスを調整しなくてもよい。そこで、インピーダンス調整機能を給電設備60側が有している場合には、外部充電時に昇圧コンバータ14が不必要に動作することによる損失を抑制するために、昇圧コンバータ14の上アームを常時オン状態とするのが好ましい。
また、外部充電が終了し、SMR12および受電用リレー42を非導通状態とする場合、まず、SMR12を非導通状態とし、その後、受電用リレー42を非導通状態とするのが好ましい。これにより、受電部30が接続される正極線PL2および負極線NLの間に接続される放電抵抗24を用いて、受電部30の残留電荷(たとえば、フィルタ38の残留電荷)を確実に放電させることができる。
すなわち、SMR12が導通状態の間は、受電部30が接続される正極線PL2に蓄電装置10の電圧VBがかかるので、正極線PL2に接続される放電抵抗24を用いて受電部30の残留電荷を十分に放電することができない。そこで、外部充電が終了すると、まず、SMR12を非導通状態にして正極線PL1から蓄電装置10を電気的に切離し、受電部30の残留電荷を放電抵抗24によって放電させてから受電用リレー42を非導通状態にするのが好ましい。
なお、上記の各実施の形態は、互いに組合わせることができる。また、上記の各実施の形態に記載の発明については、車両以外の受電設備にも適用可能である。たとえば、情報携帯端末や家電製品等にも適用可能である。
また、上記においては、給電設備60の送電部64と電動車両100の受電部30とを電磁界によって共振(共鳴)させることで、送電部64から受電部30へ非接触で電力が伝送されるものとしたが、電磁誘導により送電部64から受電部30へ非接触で電力を伝送してもよい。
なお、上記において、インバータ16およびモータジェネレータ18は、この発明における「駆動装置」の一実施例を形成し、昇圧コンバータ14は、この発明における「昇圧装置」の一実施例に対応する。また、ECU50,50A〜50Cは、この発明における「制御装置」の一実施例に対応する。さらに、SMR12は、この発明における「第1のリレー」の一実施例に対応し、受電用リレー42は、この発明における「第2のリレー」の一実施例に対応する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 蓄電装置、12 SMR、14 昇圧コンバータ、16 インバータ、18 モータジェネレータ、20,22 電圧センサ、24 放電抵抗、30 受電部、32,66 コイル、34,68 キャパシタ、36 整流器、38 フィルタ、40 センサユニット、42 受電用リレー、50,50A〜50C ECU、60 給電設備、62 電源部、64 送電部、80 目標電圧設定部、82,82A〜82C コンバータ制御部、84 満充電制御部、86 相対位置関係推定部、100 電動車両、PL1,PL2 正極線、NL 負極線、L リアクトル、S1,S2 スイッチング素子、D1,D2 ダイオード。

Claims (9)

  1. 電動車両であって、
    蓄電装置と、
    前記蓄電装置から電力を受けて車両駆動力を発生する駆動装置と、
    前記蓄電装置と前記駆動装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧以上に調整可能な昇圧装置と、
    車両外部の電源から非接触で受電する受電部とを備え、
    前記受電部は、前記昇圧装置と前記駆動装置との間に配線される電力線に電気的に接続され、
    前記昇圧装置は、
    前記蓄電装置の正極に一端が接続されるリアクトルと、
    前記リアクトルの他端と前記電力線との間に接続される第1のスイッチング素子と、
    前記リアクトルの他端と前記蓄電装置の負極との間に接続される第2のスイッチング素子と、
    前記第1および第2のスイッチング素子にそれぞれ逆並列に接続される第1および第2のダイオードとを含み、
    前記電源から前記電動車両へ送電する際のインピーダンス調整機能を前記電源が有する場合、前記受電部による前記電源からの受電時に前記第1のスイッチング素子はオン状態となる、電動車両。
  2. 蓄電装置と、
    前記蓄電装置から電力を受けて車両駆動力を発生する駆動装置と、
    前記蓄電装置と前記駆動装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧以上に調整可能な昇圧装置と、
    車両外部の電源から非接触で受電する受電部とを備え、
    前記受電部は、前記昇圧装置と前記駆動装置との間に配線される電力線に電気的に接続され、
    前記昇圧装置は、
    前記蓄電装置の正極に一端が接続されるリアクトルと、
    前記リアクトルの他端と前記電力線との間に接続される第1のスイッチング素子と、
    前記リアクトルの他端と前記蓄電装置の負極との間に接続される第2のスイッチング素子と、
    前記第1および第2のスイッチング素子にそれぞれ逆並列に接続される第1および第2のダイオードとを含み、
    前記蓄電装置の充電状態が満充電状態に近づいたことを示す所定量に前記充電状態が達すると前記蓄電装置の充電電力を低減させる満充電制御の実行時、前記第1のスイッチング素子はオン状態となる、電動車両。
  3. 蓄電装置と、
    前記蓄電装置から電力を受けて車両駆動力を発生する駆動装置と、
    前記蓄電装置と前記駆動装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧以上に調整可能な昇圧装置と、
    車両外部の電源から非接触で受電する受電部とを備え、
    前記受電部は、前記昇圧装置と前記駆動装置との間に配線される電力線に電気的に接続され、
    前記電力線に接続される放電抵抗と、
    前記蓄電装置と前記昇圧装置との間に設けられる第1のリレーと、
    前記電力線と前記受電部との間に設けられる第2のリレーとをさらに備え、
    前記受電部による前記電源からの受電が終了すると、前記第1のリレーが非導通状態となり、その後、前記第2のリレーが非導通状態となる、電動車両。
  4. 前記昇圧装置を制御することによって前記電力線の電圧を所定の目標電圧に調整する制御装置をさらに備え、
    前記制御装置は、前記受電部による受電電力の大きさに基づいて前記目標電圧を設定する、請求項3に記載の電動車両。
  5. 前記制御装置は、前記受電電力の目標値に目標インピーダンスを乗算した値の平方根から成る値に前記目標電圧を設定する、請求項4に記載の電動車両。
  6. 前記目標インピーダンスは、前記電源のインピーダンスに設定される、請求項5に記載の電動車両。
  7. 前記電源は、前記受電部へ非接触で送電する送電部を含み、
    前記受電部の固有周波数と前記送電部の固有周波数との差は、前記受電部の固有周波数または前記送電部の固有周波数の±10%以下である、請求項1から請求項6のいずれか1項に記載の電動車両。
  8. 前記電源は、前記受電部へ非接触で送電する送電部を含み、
    前記受電部と前記送電部との結合係数は0.1以下である、請求項1から請求項6のいずれか1項に記載の電動車両。
  9. 前記電源は、前記受電部へ非接触で送電する送電部を含み、
    前記受電部は、前記受電部と前記送電部との間に形成される磁界、および前記受電部と前記送電部との間に形成される電界の少なくとも一方を通じて、前記送電部から受電し、
    前記磁界および前記電界の前記少なくとも一方は、特定の周波数で振動する、請求項1から請求項6のいずれか1項に記載の電動車両。
JP2012032648A 2012-02-17 2012-02-17 電動車両 Active JP5696674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032648A JP5696674B2 (ja) 2012-02-17 2012-02-17 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032648A JP5696674B2 (ja) 2012-02-17 2012-02-17 電動車両

Publications (2)

Publication Number Publication Date
JP2013169132A JP2013169132A (ja) 2013-08-29
JP5696674B2 true JP5696674B2 (ja) 2015-04-08

Family

ID=49179092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032648A Active JP5696674B2 (ja) 2012-02-17 2012-02-17 電動車両

Country Status (1)

Country Link
JP (1) JP5696674B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060878B2 (ja) 2013-11-20 2017-01-18 トヨタ自動車株式会社 送受電部を備えた車両
JP6146272B2 (ja) 2013-11-22 2017-06-14 トヨタ自動車株式会社 受電装置および送電装置
JP6160504B2 (ja) 2014-02-20 2017-07-12 トヨタ自動車株式会社 受電装置
JP6658403B2 (ja) * 2016-08-29 2020-03-04 株式会社Ihi 送電装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011699A (ja) * 2008-06-30 2010-01-14 Toyota Central R&D Labs Inc 電力制御装置
RU2469880C1 (ru) * 2008-09-25 2012-12-20 Тойота Дзидося Кабусики Кайся Система подачи энергии и транспортное средство с электроприводом
JP4759610B2 (ja) * 2008-12-01 2011-08-31 株式会社豊田自動織機 非接触電力伝送装置
JP5474463B2 (ja) * 2009-09-16 2014-04-16 トヨタ自動車株式会社 非接触受電装置およびそれを備える電動車両
JP5139469B2 (ja) * 2010-04-27 2013-02-06 株式会社日本自動車部品総合研究所 コイルユニットおよび非接触給電システム

Also Published As

Publication number Publication date
JP2013169132A (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
JP6119756B2 (ja) 非接触給電システムおよび送電装置
US9533591B2 (en) Vehicular power reception device, power supply apparatus, and electric power transfer system
JP5643270B2 (ja) 車両および非接触給電システム
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
US10886786B2 (en) Multi-mode wireless power receiver control
EP2773019B1 (en) Non-contact power receiving apparatus
JP5083480B2 (ja) 非接触給電設備、車両および非接触給電システムの制御方法
JP4868077B2 (ja) 給電システムおよび電動車両
WO2012086051A1 (ja) 非接触給電システム、車両、給電設備および非接触給電システムの制御方法
US20140327395A1 (en) Vehicular power reception device and vehicle equipped with the same, power supply apparatus, and electric power transmission system
JP2013005614A (ja) 送電装置、受電装置、車両、および非接触給電システム
WO2013061441A1 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP6003696B2 (ja) 変換ユニット
JP5788819B2 (ja) 電源装置、送電装置、および電力伝送システム
CN105052008A (zh) 供电装置以及非接触供电系统
JP5696674B2 (ja) 電動車両
JP5884698B2 (ja) 非接触受電装置
JP6015491B2 (ja) 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム
JP2015027224A (ja) 非接触受電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R151 Written notification of patent or utility model registration

Ref document number: 5696674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151