JP5694444B2 - ハイブリッド判定フィードバック等化に関する方法及び装置 - Google Patents

ハイブリッド判定フィードバック等化に関する方法及び装置 Download PDF

Info

Publication number
JP5694444B2
JP5694444B2 JP2013122368A JP2013122368A JP5694444B2 JP 5694444 B2 JP5694444 B2 JP 5694444B2 JP 2013122368 A JP2013122368 A JP 2013122368A JP 2013122368 A JP2013122368 A JP 2013122368A JP 5694444 B2 JP5694444 B2 JP 5694444B2
Authority
JP
Japan
Prior art keywords
sinr
slicer
sample
estimate
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013122368A
Other languages
English (en)
Other versions
JP2013243680A (ja
Inventor
スリカント・ジャヤラマン
イバン・ジーザス・フェルナンデズ・コーバトン
ジョン・イー・スミー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/199,158 external-priority patent/US7035329B2/en
Priority claimed from US10/199,159 external-priority patent/US7046726B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2013243680A publication Critical patent/JP2013243680A/ja
Application granted granted Critical
Publication of JP5694444B2 publication Critical patent/JP5694444B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03254Operation with other circuitry for removing intersymbol interference
    • H04L25/03267Operation with other circuitry for removing intersymbol interference with decision feedback equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • H04L2025/0349Tapped delay lines time-recursive as a feedback filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • H04L2025/03496Tapped delay lines time-recursive as a prediction filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Complex Calculations (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Dc Digital Transmission (AREA)
  • Networks Using Active Elements (AREA)
  • Control Of Electric Motors In General (AREA)
  • Exchange Systems With Centralized Control (AREA)

Description

本発明は、一般に、受信した信号の等化に係り、より具体的には、ハイブリッド判定フィードバック等化に関する。
[関連出願]
発明に関する本出願は、本出願と共に提出された、代理人文書番号第020330U2を有する、スリカント・ジャヤラマン(Srikant Jayaraman)らによる“ハイブリッド判定フィードバック等化におけるソフト・スライサ”に関係し、本出願の譲受人に譲渡されている。
ディジタル情報の伝送は、一般に、ディジタル情報をアナログ波形にマッピングする変調器を採用する。マッピングは、送信されるべき情報シーケンス中に含まれたビットのブロックについて実施される。波形は、強度、位相、周波数、若しくはそれらの組み合わせにおいて異なることがある。情報は、その後、対応する波形として送信される。ディジタル・ドメインからアナログ・ドメインへマッピングするプロセスは、変調として呼ばれる。
無線通信システムにおいて、変調された信号は、無線チャネルを渡って送信される。受信機は、その後、受信した信号を復調して、オリジナルのディジタル情報シーケンスを抽出する。受信機において、送信された信号は、チャネルによって導入された線形歪、同様に外部から加わるノイズ及び干渉を受ける。チャネルの特性は、一般に時間変化し、そしてそれゆえ、受信機にはアプリオリ(a priori:前もって)知られない。受信機は、種々の方法でチャネルによって導入された歪及び干渉を補正する。受信した信号中の歪を補正し、干渉を減少させる1方法は、イコライザを採用する。等化は、一般に、通信チャネルにおける歪効果を減少させるために使用される方法を含む。受信した信号から、イコライザは、オリジナルのディジタル情報の推定値を発生する。
現在の等化方法は、受信した信号に関する複数の仮定に基づいている。そのような仮定は、一般に、各種のコーディング、変調及び送信シナリオに関して正確ではない、それゆえ、これらのイコライザは、多くの条件下で良好に機能しない。そのうえ、判定フィードバックを採用する現在のイコライザは、分離された判定エラーの効果を増幅するエラー伝播効果の影響をしばしば受ける。さらに、判定フィードバック・プロセスは、各シンボルに関するハード判定を含み、シンボル判定が正確であることの尤度(likelihood)を考慮しない。
それゆえ、各種のオペレーティング条件に関する受信した信号中の線形歪を減少させる等化方法に関してこの分野における必要性がある。しかもさらに、判定フィードバック・イコライザにおいてエラー伝播を減少させる必要性がある。そのうえ、判定フィードバック・プロセスに対する尤度の尺度を提供する必要性がある。
図1Aは、通信システム中の構成要素のブロック図である。 図1Bは、図1Aにおける通信システムの詳細な部分である。 図2は、通信システム内部の判定フィードバック・イコライザの概念的なモデルである。 図3は、図2における判定フィードバック・イコライザのブロック図である。 図4は、シンボル・レベル・スライサの数学的モデルである。 図5は、判定フィードバック・イコライザ中のフィルタ係数を最適化するためのアルゴリズムである。 図6は、判定フィードバック・イコライザ中のフィルタ係数を最適化するために最小二乗法を適用できるフィルタリング・アルゴリズムである。 図7は、周期的なバースト・パイロットを採用しているシステムに関する判定フィードバック・イコライザ中のフィルタ係数を最適化するための最小二乗適応フィルタリング・アルゴリズムである。 図8Aは、8相−位相変調(PSK)に関するコンステレーション・マッピングである。 図8Bは、図8Aのコンステレーション・マッピング上に重ねられるようなソフト・スライサ判定に使用される格子領域を図示する。 図9Aは、2相位相変調(BPSK)若しくは2相−PSKのケースに関するコンステレーション・マッピングである。 図9Bは、図9Aのコンステレーション・マッピング上に重ねられるようなソフト・スライサ判定に使用される格子領域を図示する。 図10は、“ソフト・スライシング”判定プロセスを実行する判定フィードバック・イコライザである。 図11は、“ソフト・スライシング”判定プロセスに関するプロセスである。 図12は、テーラー級数演算を適用する“ソフト・スライシング”判定プロセスに関するプロセスである。 図13は、“ソフト・スライサ”のブロック図である。 図14は、テーラー級数演算を適用する“ソフト・スライサ”のブロック図である。
詳細な説明
用語“具体例の(exemplary)”は、“例、事例、若しくは実例として働くこと”を意味するとして、ここでは用いられる。“具体例の“としてここで説明されたいずれかの実施形態が、他の実施形態に対して好ましい若しくは優位であるとして解釈される必要性はない。
図1Aは、通信システム100の構成要素の一部分を説明する。その他のブロック及びモジュールが、図に示されたこれらのブロックに加えて通信システムに組み込まれることができる。ソース(図示せず)によって生成されたビットは、フレーム化され、エンコードされ、そしてそれからシグナリング・コンステレーション中のシンボルにマッピングされる。ソースによって供給された2進数のシーケンスは、情報シーケンスとして呼ばれる。情報シーケンスは、エンコーダ102によってエンコードされ、エンコーダ102は、ビット・シーケンスを出力する。エンコーダ102の出力は、マッピング・ユニット104に供給される。マッピング・ユニット104は、通信チャネルに対するインターフェースとして働く。マッピング・ユニット104は、複素数の値にされたシグナリング・コンステレーション中のシンボルy(n)にエンコーダの出力シーケンスをマッピングする。さらに、変調ブロックを含む伝送処理、同様に、通信チャネル及びアナログ受信機処理は、セクション120によってモデル化される。
図1Bは、図1Aのセクション120内部に含まれるいくつかの詳細を説明する。図1Bに図示されたように、複素シンボルy(n)は、アナログ信号パルス上へと変調され、そして、結果の複素ベースバンド波形は、キャリア信号の同相及び直交位相のブランチ上へとサイン関数的に変調される。結果のアナログ信号は、通信チャネルを渡ってRFアンテナ(図示せず)により送信される。種々の変調スキームが、この方式で実行されることができる、例えば、M相−位相変調(M−PSK)、2値直交振幅変調(2QAM)、等である。
各変調スキームは、関係付けられた“シグナリング・コンステレーション”を有し、固有の複素シンボルに対して1若しくはそれより多くのビットをマッピングする。例えば、4相−PSK変調において、2個のエンコードされたビットは、4個の可能性のある複素数値{1,i,−1,−i}のうちの1つにマッピングされる。これゆえ、各複素シンボルy(n)は、4個の可能性のある値を取ることができる。M相−PSKに関して一般的に、logMにエンコードされたビットは、複素単位円上に存在するM個の可能性のある複素値のうちの1つにマッピングされる。
図1Aを続けて、受信機において、アナログ波形は、ナイキスト(Nyquist)レートの適切な倍数のようなもので、ダウン−コンバートされ、フィルタリングされ、そしてサンプリングされる。結果のサンプルx(n)は、イコライザ110によって処理される。イコライザ110は、セクション120によってモデル化されたように、信号歪及びチャネルによって導入された他のノイズ及び干渉を補正する。イコライザ110は、送信されたシンボルy^(n)の推定値を出力する。シンボル推定値は、それからデコーダによって処理されて、オリジナル情報ビット、すなわち、エンコーダ102への入力であるソース・ビット、を決定する。
図1A及び図1Bに図示された、受信機のフロント−エンド中のパルス−フィルタ、I−Q変調器、チャネル、及びアナログ・プロセッサの組み合わせは、インパルス応答{h}及びz−変換H(z)を有する線形フィルタ106によってモデル化される。ここでは、チャネルによって導入された干渉及びノイズは、付加的白色ガウス・ノイズ(Additive White Gaussian Noise)(AWGN)としてモデル化される。
図1Bは、それぞれ、同相(I)及び直交(Q)成分を処理するためのベースバンド・フィルタ126及び128に接続されたフロント・エンド処理ユニット122を含むような処理セクション120の詳細を説明する。各ベースバンド・フィルタ126,128は、次に、それぞれのキャリアを増倍するためにそれぞれ乗算器に接続される。結果の波形は、それから、サミング・ノード134において合計されて、受信機へ通信チャネルを渡って送信される。受信機において、アナログ事前処理ユニット142は、送信された信号を受信する。送信された信号は、処理されて、整合フィルタ144へ渡される。整合フィルタ144の出力は、それから、アナログ/ディジタル(A/D)コンバータ146へ供給される。その他のモジュールは、設計及びオペレーション基準にしたがって実装されることができることに、注意する。図1A及び図1Bの構成要素及びエレメントは、下記の議論を理解するために与えられ、通信システムの全体の説明を目的としているのではない。
上記に説明されたように、送信されたシンボルのシーケンスは、{y(n)}として認識される。この説明に関して、シンボル{y(n)}は、平均単位エネルギーを持つように正規化される、すなわち、E|y=1。チャネル出力がフィルタリングされ、シンボル・レート(これはナイキスト・レートであることも、そうでないこともある)でサンプリングされるのであれば、チャネル出力は、次式で与えられる:
ここでは、ηは、分散(E/N−1を有する白色ガウス・ノイズである。イコライザは、係数{f}を有し、z変換F(z)により規定される線形フィルタとして通常実装される。y^はイコライザの出力を表すとする。ここでは、y^は、次式で与えられる:
ここでは、G(z)=F(z)H(z)及び
式(2)のカギかっこ、[...]、内の第2項が、シンボル間干渉(Inter-Symbol Interference)(ISI)及びノイズを表すことに、注意する。式(2)の第1項は、過去のシンボルに関係付けられた干渉に対応する、一方で、第2項は、今後のシンボルに関係付けられる干渉に対応する。第1項は、しばしば“原因となる(causal)”ISIとして呼ばれる、これに対して、第2項は、しばしば“反−原因となる(anti-causal)”ISIとして呼ばれる。過去のシンボルが正しく検出されたと設計者が仮定するのであれば、原因となるISI項は、削除される可能性がある。理想的な場合では、イコライザがコンステレーション・シンボルyn−1,yn−2,K、すなわち、時刻nの前に送信されたコンステレーション・シンボル、の知識を有するのであれば、推定値y^を決定する場合に、イコライザは、式(2)の[...]の第1項を取り去ることによってシンボル間干渉の一部を削除できる。実際のシステムでは、しかしながら、y^n−1,y^n−2,Kのような、前に生成されたシンボル推定値の知識を有するだけである。干渉及びノイズが十分に小さいのであれば、推定値y^に関するシンボル判定が、オリジナルの送信されたコンステレーション・シンボルyをもたらすはずであることを期待することは、理にかなっている。そのようなシンボル判定を行う装置は、”スライサ”と呼ばれ、そして、そのオペレーションは、σ(.)によって表される。受信機は、それから、スライサからのシンボル判定のシーケンスを使用して原因となるISIの推定値を形成するはずであり、イコライザの出力からこの推定値を引き算して、次式を生み出す:
次式を仮定する。
これは、判定フィードバック等化の鍵となる原理である。ここでは、原因となるISIは、イコライザの出力に対して動作しているシンボル・レベル・スライサによって行われたシンボル判定を因果的にフィルタリングすることによって除去される。
図3は、判定フィードバック・イコライザ(DFE)340を採用する通信システム350を説明する。通信システム350は、シンボルのシーケンスyをフィルタリングする、等価線形チャネル352を有するとしてモデル化される。ノイズ及び干渉、η、は、サミング・ノード354において足し算されて、その出力、x、は、受信機においてフロント−エンド処理及びサンプリングの後で受信した信号サンプルを表す。DFE340は、xを処理し、そしてxをフィルタリングして、推定値y^を生成する。DFE340は、線形フィードフォワード・フィルタ356及び線形フィードバック・フィルタ358を有するようにモデル化される。フィードフォワード・フィルタ356は、{f}として示されるタップ係数を有し、z変換F(z)を実行する。DFE340は、原因となるISIの推定値を生成するフィードバック・ループを形成するスライサ360に接続された純粋に原因となるフィードバック・フィルタ358も含む。言い換えると、フィードバック・フィルタ358は、前に検出されたシンボルによって生じた現在のシンボル推定値からISIのその部分を削除する。フィードバック・フィルタ358からの原因となるISI推定値は、サミング・ノード308へ供給される。サミング・ノード308は、フィードフォワード・フィルタ356の出力から原因となるISI推定値を引き算する。サミング・ノード308の結果の出力は、イコライザ出力y^である。イコライザ出力y^も、送信されたシンボルyの推定値であり、オリジナルの情報シーケンスを決定するためにデコーダ364へ供給される。
スライサ360は、サミング・ノード308からのイコライザ出力を処理し、それに応じてオリジナルのシンボルyについて決定する。スライサ360の出力は、その後、純粋に原因となるフィードバック・フィルタ358に供給される。フィードフォワード・フィルタ356は、ここでは、フィードフォワード・フィルタ(FFF)としても呼ばれる。フィードバック・フィルタ358は、ここではフィードバック・フィルタ(FBF)としても呼ばれる。DFEにおいて、フィードフォワード・フィルタ356及びフィードバック・フィルタ358の、両者のフィルタ係数の最適化は、イコライザの性能に直接的に影響する。この最適化を実施するデバイスは、図3では係数オプティマイザ362として設計される。フィルタ係数を最適化するために利用できる種々の方法がある。従来、FFF及びFBF係数は、スライサのシンボル決定が完全に信頼できること、及び原因となるISI、すなわち、過去のシンボルからの干渉、がFBFによって完全に除去されることを、暗黙のうちに仮定して最適化される。この仮定の下では、FFF係数は、式(3)の残留干渉及びノイズ項が小さくなるように最適化される。より詳しくは、FFFのz変換、F(z)は、式(3)のy^が平均二乗の観点でyに近くなるように最適化される。
実際には、FFF及びFBFは、有限インパルス応答(Finite Impulse Response)(FIR)フィルタにより多くの場合実装され、そして初期のトレーニング/プリアンブル/適合期間の間に、FFF及びFBFは、完全なスライサ性能、すなわち、σ(y^)=y、を仮定することによってパイロット・シンボルにおいて“トレーニング(trained)” される。これは、スライサをバイパスすることにより、そして、FBFの中へと、スライスされた(これゆえ、おそらく誤っている)パイロット・シンボル判定よりはむしろ、ローカルに生成された(そして、これゆえ正確な)パイロット・シンボルをフィードバックすることによって実現される。最小二乗法(LMS)、帰納的最小二乗法(RLS)、直接マトリックス反転、その他、のような適応性のあるアルゴリズムを含む、各種のアルゴリズムは、トレーニング期間の間にフィルタ係数最適化のために実行されることができる。一旦、トレーニング期間が完了すると、スライサ360は作動され(engaged)、スライスされたデータ・シンボルは、FBFを経由してフィードバックされる。
従来のDFE最適化アルゴリズムは、種々の可能性のある問題を導入する。強いコーディングを採用するシステムに関して、スライサ決定は、しばしば大きなシンボル・エラー・レート(SER)を有する。例えば、25%若しくはそれより多くのSERは、1%パケット・エラー・レート点において動作している場合に、16−QAMのような、中間の大きさのコンステレーション、及び、1/3のレートのような、低いレートのターボ・コード、を採用するシステムに対して珍しくない。これに対して、DFEのFFF及びFBF係数は、スライサの決定が完全に信頼性があるという、誤った仮定の下で従来から最適化されている。
付け加えると、FFF及びFBF係数は、原因となるISIが完全に除去されることを仮定して最適化される。その結果、反−原因となるISIは、より大きな原因となるISIを犠牲にして削減される。ここに与えられた方程式(具体的に、式(1)−(3))による、従来のDFE最適化アルゴリズムは、g値に導き、g値はk>0に対して大きくなるが、k<0に対して小さくなる傾向がある。スライサSERが無視できない場合、しかしながら、誤ったシンボル判定は、FBFに感染し(infect)、そしてそれ以降誤って引き算される。k>0に対するg値が大きい場合に、残留干渉は、そのようにして増幅され、おそらく後続のシンボルにおけるさらなるスライサ・エラーに帰結する。この現象は、エラー伝播と呼ばれる。
エラー伝播を緩和する試みは、ローカルに生成された(これゆえ正確な)パイロット・サンプルをフィードバックすることによってFFF及びFBFをトレーニングすることとは反対に、トレーニングの期間にスライスされたパイロット・シンボルをフィードバックすることを含む。スライスされたパイロット・シンボルは、時折誤っていて、したがってFFF及びFBFを調節することを強制する。この方法は、問題がないことはない。スライスされたパイロット・シンボル及びスライスされたデータ・シンボルは、パイロット・シンボルがBPSK、すなわち、2相−PSK、(若しくは、他のより小さなコンステレーション)を介して一般的に送信されるので、全く異なったエラー・レートを受けることがある、しかし、データ・シンボルは、より大きなコンステレーションを介して一般的に送信される。その結果、パイロット・シンボル及びデータ・シンボルのSERは、全く異なるはずである。この場合には、FFF及びFBF係数がスライスされたパイロット・シンボルに基づいて最適化されるので、データ・シンボルの処理におけるこれらの係数の効果は、次善の成果に帰結する。
これらの問題は、図3のスライサ360によって引き起こされたエラーを考慮してFFF及びFBF係数を最適化することによって解決される。言い換えると、係数オプティマイザ362は、原因となるISIがスライサ・エラーのために完全に除去されない可能性があることを認識するように変形される。このアプローチは、前の方法とは異なる。前の方法は、スライサはエラーがなく、そして、それゆえ、原因となるISIが完全に除去されることを、暗黙のうちに仮定する。
1実施形態を支持している理論は、Q(y^|y)のラベルが付けられた、独立した、同一の分布をした(i.i.d.)“チャネル”によってスライサ・オペレーションをモデル化することである。“チャネル”は、式(0)において{η}として示されたノイズ・プロセス、及び{y}として示された送信されたシンボル・シーケンスとは独立していると仮定される。この“チャネル”は、自身の条件付き密度Q(y|y)によって完全に特徴付けられる。ここで、y及びyは、それぞれスライサの出力及び実際に送信されたシンボルを示す。そのようなチャネルがFBFにおけるシンボル・エラーの原因であると仮定する。実際に、シンボル・エラーは、バースト(burst)で発生する、その理由は、現在のシンボルにおけるスライサ・エラーが、後続のシンボルが不正確にスライスされる大きな確率を有する可能性があるためである。ここで考慮された単純化されたスライサ・モデルでは、スライサ・エラーは、i.i.d.であると仮定される。
図2は、判定フィードバック・イコライザを有する通信システムの概念的なモデル300を説明する。伝達関数H(z)によってモデル化された通信チャネル302を介して送信されたシンボルは、サミング・ノード304において付加されるノイズによって汚染される(corrupt)。結果としての信号は、FFF306によってフィルタリングされる。オリジナルの送信されたシンボルの推定値は、サミング・ノード308においてエラー項を引き算することによって生成される。オリジナルの送信されたシンボルの推定値は、デコーダ316に対して利用可能である。エラー項は、伝達関数B(z)を有する、原因となるフィードバック・フィルタ310によって生成される。これは、“チャネル” Q(y|y)314の出力をフィルタする。フィードバック・フィルタ310によって生成されたエラー項は、FFF306の出力中に存在する原因となるISIの推定値を表す。“チャネル” Q(y|y)は、図3のスライサ360の統計的な挙動を模倣する、すなわち、チャネル314の入力と出力との間の統計的な関係は、送信されたシンボルyとスライサ360の対応する出力y =σ(y^)との間の統計的な関係と同一である。係数オプティマイザ320は、FFF306及びFBF310に関するフィルタ係数を最適化することに責任がある。図3と図2との間の主な違いは、“チャネル” Q(y|y)314の概念的なモデルを用いてスライサ360を置き換えることである。
上に述べたように、スライサは、“チャネル” Q(y|y)を選択することによって図2にモデル化されて、スライサ・エラーの時間での統計的な依存性を無視しつつ、実際のスライサの統計的な挙動をモデル化する。実際のスライサは、イコライザの出力に対して動作するので、関係する限界の統計値(marginal statistics)は、残留干渉を含む結果となる。SINRは、イコライザの出力における、すなわち、図2におけるサミング・ノード308の出力における、信号対干渉及びノイズ比を表すとする。イコライザの出力における残留干渉及びノイズは、それぞれが変数σ有する、独立した実数部及び虚数部を有するゼロ平均複素ガウス・ランダム変数Zとしてモデル化されることができる、ここでは:
σ=1/2(SINR) (6)
限界の統計値は、等価チャネルQ(y|y)により与えられる、ここでは:
Q(y|y)=Pr{σ(y+Z)=y} (7)
ここでは、σ()は、次式で与えられる最小距離スライシング関数を表す:
そして、式(7)中のZは、上記に説明された特性を有する残留干渉をモデル化する、ゼロ平均複素ガウス・ランダム変数である。図4は、上記に与えられた仮定及び式にしたがってモデル化されたチャネルQ(y|y)を説明する。具体的に、図2におけるQ(y|y)314の数学的記述は、システム380として図示される。スライサ384への入力は、y^によって示され、付加されたノイズ及び干渉によって破損され、送信されたシンボルyとしてモデル化される。ノイズ及び干渉は、複素ガウス・ランダム変数Zによってモデル化される。スライサ384は、式(8)に説明されたように最小距離スライシング関数を実行して、yで記されたスライサ出力を結果として生じる。y及びyを結び付ける結合統計は、“チャネル”Q(y|y)に関するモデルの完全な数学的記述を構成する。図4に図示されたチャネルQ(y|y)の構成は、新規であり、ノイズZがゼロでない変動を有する可能性があることにおいて、以前の方法とは異なっている。以前の方法は、Zがゼロに完全に等しくなると暗黙のうちに仮定する。そのようにして、スライサに関するこのモデルは、スライサはエラーが無いと仮定する以前の方法とは対照的に、判定エラーを生じると仮定される。
図2に戻って、f及びbは、送信されたシンボルy(チャネル302の入力)とシンボル推定値y^(サミング・ノード308の出力)との間の平均二乗誤差を最小にするように選択されたFFF及びFBF係数を表すとする。言い換えると、係数f及びbは、“ウィナー(Wiener)MMSE最適値”である。以下に明確にされる理由のために、これらの係数は、“ウィナー・ハイブリッドDFE”係数として呼ばれる。係数f及びbは、標準のウィナー・ホッフ(Wiener-Hopf)最適化によって決定される可能性があり、次式によって規定される:
ここでは、Rは、FFFの内容の共分散を表し、Rは、FBFの内容の共分散を表し、RF,Bは、FFF及びFBFの内容のクロス−共分散を表し、及びpは、FFFの内容と送信されたシンボルとの間のクロス−共分散を表す。これらの共分散及びクロス−共分散は、H(z)で記載された説明される線形チャネル302に依存する。Y中のシンボル、すなわち、送信コンステレーション、が等しい確率で使用されると仮定すると、ρは下記のように規定される:
ここでは、|Y|は、Yの濃度、すなわち、送信コンステレーション中の可能性のあるシンボルの数、を表す。そのように、所定のQ(y|y)及びz変換H(z)を有するチャネルに関して、MMSE係数f及びbは、式(4)及び式(5)の適用によって決定される。
Q(y|y)は、イコライザの出力におけるSINRの値を仮定することによって、式(6)及び式(7)にしたがって規定されたことを思い出す。従って、式(4)及び式(5)の適用は、MMSE係数f及びbをもたらす。FFF及びFBF係数に関するこれらの値が図2のFFF306及びFBF310において使用される場合に、イコライザの出力における結果としてのSINRは、元々仮定したSINR値から異なることがあり得る。そのため、仮定したSINR値は、一致するかもしれないし、一致しないかもしれない。しかしながら、矛盾の無いSINR値、及びそれゆえMMSE係数f及びbの矛盾の無いセット、は、繰り返すことによって、すなわち、新たな“チャネル” Q(y|y)を規定するために新たに見つけられたSINR値を使用すること、対応するMMSE係数の新たなセットを見つけること、等によって見出されることができる。この反復プロセスは、以下のように模式的に表されることができる:
(SINR)→(f,b)→(SINR)→(f,b)→(SINR)...
特に、反復アルゴリズムは、ウェイナー・ハイブリッドDFEを算出するために使用されることができる。本実施形態のアルゴリズムは、図5に図示される。プロセス400は、ステップ402においてn=0に設定することによって、及びSINRを任意に選択することによって開始する。プロセスは、ステップ404において式(5)、(6)、及び(7)を適用することによりSINRを決定すること及びρ(SINR)を算出することによって継続する。フィルタ係数fQ,bQは、式(4)を使用することによってステップ406において算出される。本実施形態にしたがって、プロセスは、ステップ408においてSINRn+1=SINR(f,b,SINR)を算出する。SINR(f,b,x)が、FFF係数f、及びFBF係数b、並びにSINRxを有するスライサ・チャネル
を有するイコライザの出力におけるSINRを表すことに、注意する。スライサ・チャネルは、式(6)及び式(7)によって規定される。プロセスが判断ダイアモンド410において収束するのであれば、処理は、ステップ412へ続いて、フィルタ係数を設定する。プロセスが収束しなかったならば、処理は、ステップ404へ戻る。
図5の反復アルゴリズムにおいて説明したように、SINRの値は、任意に選択されることができることに、注意する。2つの極端条件SINR=0、SINR=∞、は、それぞれ全く信頼性のないスライサ若しくは完全なスライサを用いて開始することに対応する。
ρは、スライサの出力と実際の送信されたシンボルとの間の相関を表し、そして、それはそれとして、ρは、イコライザの出力SINRの関数であることに、注意する。イコライザの出力が非常にノイズが多ければ、相関は小さい。この場合には、スライサのシンボル判定は、非常に信用できなくなり、原因となるISIの正確な推定は、不可能である。予想されたように、この場合には、図5のアルゴリズムは、線形イコライザのものに非常に良く似ている、すなわち、FBF係数がゼロになるように強制されFFF及びFBF係数に収束する。一方で、イコライザの出力がほとんどノイズがない場合には、スライサの相関ρは、1に近づく傾向がある。この場合には、図5のアルゴリズムは、“理想的な”DFE、すなわち、完全に信頼できるスライサを有するDFE、のものとよく似ているFFF及びFBF係数に収束する。これらの極端条件の間で、図5のアルゴリズムは、これらの2つの限界の極端条件の“ハイブリッド(混成)”であるFFF及びFBF係数に収束する。この“ハイブリダイゼーション(hybridization:混成形成)”は、反復アルゴリズムによって自動的に達成される。この理由のために、そのように得られたFFF及びFBF係数は、“ハイブリッドDFE”係数として呼ばれる。
これまでに説明された(複数の)実施形態は、式(4)の種々の共分散及びクロス−共分散を形成するためにチャネルH(z)の明確な知識を必要とする。ウィナー・ハイブリッドFFF及びFBF係数は、その後、f,bに対して式(4)を解くことによって決定される。実行上では、しかしながら、H(z)は、一般に受信機において知られていず、FFF及びFBFに関するウィナー・ハイブリッドDFE係数を決定する代わりの方法が、望まれる。適応ハイブリッドDFE(Adaptive Hybrid DFE)として呼ばれる、代わりの実施形態は、チャネルH(z)の明確な知識を必要としない。初めに、次式として平均二乗誤差(MSE)を規定する:
ここでは、Xは、時刻nにおけるFFFの内容であり、Zは、エラー−フリー・フィードバックを仮定するFBFの内容であり、そしてΔは、“チャネル” Q(y|y)によって導入されたフィードバック・シンボル・エラーである。Q(y|y)によって導入されたエラーがi.i.d.そして独立していると仮定されるので、式(9)は、下記のように書き直されることができる:
ここで、Eは、Q(y|y)に関しての“期待値”を表す。送信されたコンステレーションが、単位エネルギーに正規化されることの事実及び式(5)のρの定義を使用して、次式の結果になる:
式(9b)を式(9a)と統合することは、次式の結果になる:
式(9c)に現れる下記の項が、FBF係数中の“エネルギー”として説明されることに、注意する。
式(9c)は、種々の適応アルゴリズム(adaptive algorithm)を導出するための出発点である。例えば、帰納的最小二乗(Recursive Least-Squares)(RLS)法に基づいて適応アルゴリズムを導出するために、新たなコスト関数は、統計的な期待値を、例えば、n=1,...,Nにわたるサンプル平均で置き換えることによって規定される。標準技術は、それから、このコスト関数の帰納的オプティマイザ(optimizer)を導出するために適用される。1実施形態は、次式で規定されるコスト関数のRLSオプティマイザを実装する:
ここでは、
α=1+λ −2ρ (9e)
aは、“フィードバック・フィルタ係数のエネルギーの変形された尺度”若しくは“エラー補正項”として呼ばれることがあることに、注意する。RLS最適化は、送信された情報中に存在するパイロット・シンボル上で実施されることができる。
最小平均二乗アルゴリズム: 式(9c)を最適化する他の1の実施形態は、最小平均二乗(LMS)アルゴリズムに基づく。最小平均二乗(LMS)アルゴリズムは、式(9c)において規定されたMSEを最小にするようにハイブリッドDFEのFFF及びFBF係数を帰納的に調節する。固定チャネルQ(y|y)に関して、最小平均二乗(LMS)アルゴリズム更新は、次式で与えられる:
ここでは、MSEは、式(9c)に規定され、μは、LMSステップ−サイズであり、そしてEは、式(9c)の定義において統計的な期待値を下げることを表す。部分導関数を計算することは、次式に帰結する:
μの値が相応に小さく選択される場合に、式(11)から式(13)によって規定された反復のシーケンスは、適切であり、式(4)を解く係数のセットに収束する。この反復のシーケンスは、式(4)の共分散及びクロス−共分散を明確に推定する必要がないことに、注意する。
図6は、1実施形態にしたがったLMSアルゴリズムを図示する。アルゴリズム500は、ステップ502において初期SINR値を選択することで始まる。そのうえ、インデックスkは、k=0として初期化される。ステップ504において、SINRの値が推定され、α(SINR)が計算される若しくは事前に計算されたルック−アップ・テーブル(Look-Up Table)(LUT)から決定される。上に与えられた式(11)から式(13)は、収束基準がステップ506において満足されるまで、送信された情報中のパイロット・シンボルに基づいて、反復して計算される。そのような反復の結果は、(f,b)に関する値を決定する。ステップ508において、プロセスはSINRk+1を推定する。これは、FFF及びFBF係数が(f,b)である場合に、イコライザ出力におけるSINRである。推定は、送信された情報中のパイロット・シンボルを使用して行われることができる。プロセスは、その後、インデックスkを増加する。判断ダイアモンド510においてSINRが収束するとともに、プロセスはステップ512へ進み、フィルタ係数を適用する。それ以外は、処理はステップ504へ戻る。
定期的なパイロット・バーストを用いたアルゴリズム: 他の1の実施形態にしたがって、通信システムは、定期的に送信されるパイロット・バーストを組み込む。パイロット・バーストは、受信機のイコライザ中のフィルタ係数を調節するために受信機によって使用される。そのような調節は、“イコライザのトレーニング”としてしばしば呼ばれる。そのようなシステムの一例は、“TIA/EIA−IS−856 CDMA2000高レート・パケット・データ・エアー・インターフェース仕様書”(IS−856標準)に規定されたような高データ・レート(HDR)をサポートしているシステムである。HDRシステムでは、96のパイロット・シンボルが、0.833ms毎に送信される。96のパイロット・シンボルの各グループは、“パイロット・バースト”として呼ばれる。複数のパイロット・バーストの間において、HDRシステムは、受信機に向けられたデータ・シンボルを送信する。図7は、そのようなシステムにおいてLMSに基づくハイブリッドDFEを適用するためのアルゴリズムを図示する。アルゴリズム600は、ステップ602において、SINRを0若しくは∞に等しいとして、初めに設定する。SINRの初期選択は、明確に指定されていず、決定的なものでないことがあるが、最速の収束に対して、∞に等しいSINRが、好まれることがある。インデックスkも、初期化され、0に等しく設定される。ステップ604において、アルゴリズムは、SINRを決定し、α(SINR)を算出する、若しくは事前に計算されたルック−アップ・テーブルを調べることによって必要な値を決定する。f及びbの初期値は、ステップ606においてf=0及びb=0として設定される。(k+1)番目のパイロット・バーストの間に、プロセスは、パイロット・バーストの全てのチップに対して式(11)から(13)を繰り返す、ステップ608。本HDRの例では、アルゴリズム600は、パイロット・バーストの96チップに対して繰り返され、f及びbの最後の値がセーブされる。ステップ610において、以前のパイロット・バーストの96チップを使用して、プロセスは、SINRk+1を推定する。(k+1)パイロット・バーストに続くデータ部分の間に、f及びbのセーブされた値は、FFF及びFBFにロードされ、データ・シンボルは、標準の判定フィードバック方式で等化される。ステップ614において、プロセスは、α(SINRk+1)の値を算出し、kを増加する。プロセスは、復調操作の間アルゴリズムを実行し続ける。
図7のアルゴリズムは、ゆっくりと経時変化しているチャネルに対して、準定常状態SINRとして、適応可能であり、そしてそれゆえ、α(SINR)、は、LMSアルゴリズムの収束時間にわたり大きく変化することは予想されない。
ソフト・スライサ: 上記に説明したように、エラー伝播は、チャネル・コーディングを採用している通信システムにおけるDFEの使用を著しく制限する。原因となるISIが個々のシンボルにおけるフィードバック判定によってキャンセルされるために、1個の孤立した判定エラーは、引き続く判定エラーのバーストに導く可能性があり、イコライザの出力における残留干渉を大きく拡大する。チャネル・コードが強ければ、シンボル判定エラーの確率は、無視できない(一般に、25%のオーダーである)、そしてエラー伝播は、DFEの成果に重大な影響を有することがある。そのようなエラー伝播によってもたらされた効果を回避する1つの方法は、通常の“最小距離”スライサが、シンボル判定に対する確信のないレベルを付与することを、認識することである。言い換えると、従来のスライサ判定は、シンボル判定の精度若しくは正確さの尺度を提供しない。判定が、疑わしい精度であると思われるならば、誤った判定を引き算することによって残留干渉が混合されるリスクよりはむしろ、カーソルの次のテール(post-cursor tail)に対するそのシンボルの寄与をキャンセルすることを回避することがより良いと思われる。言い換えると、低い精度のシンボル判定は、原因となるISIをキャンセルするフィードバック・ループに含まれるべきではない。
判定プロセスに確信レベルを組み込むスライサの1実施形態は、“ソフト・スライサ”としてここでは呼ばれる。1つのソフト・スライサは、下記に説明されるように数学的モデルによって記述される。第1に、スライサへの入力シンボルは、次式で与えられると仮定する:
y^=y+n (14)
ここでは、yは、コンステレーションΨに属する送信されたシンボルであり、nは、残留ノイズ及びシンボル間干渉からなる。yはΨに関して一様に分布し、その結果、全てのコンステレーション点が、同じ確率で送信されることを仮定する。L(y,y)を、送信されたシンボルがyであるときに、スライサがyを判定する場合にもたらされた損失を測定する損失関数(loss function)であるとする。最適なスライサσ:y^→y、は、ベイズの法則(Bayes Rule)により与えられる、ここでは、“最適な”は、予想される損失を最小にするスライサを呼ぶ:
次式として与えられる最小エラー確率(Minimum Error Probability)(MEP)損失関数に関して:
予想された損失は、次式に帰結する:
そして、それゆえ:
そのうえ、干渉nが、ゼロ平均及び分散σを有するガウス・ランダム変数であると仮定すると、その時は:
は、σに独立である。これは、旧来の“最小距離(minimum distance)”スライサであり、そして式(16)の損失関数に対する“ベイズ−最適値(Bayes-optimum)”であるけれども、スライサは、上に説明した理由のためにエラー伝播に導くことがある。代わりのスライサ設計は、二次の損失関数を考慮する:
これは、MEP損失関数とは異なり、小さなエラーよりもさらに著しく大きなエラーを不利にする。式(15)から続いて:
そして、条件付平均は、次式に等しくなる:
重要な注目点は、式(19)のスライサと異なることであり、式(22)のスライサは、干渉及びノイズ変動σ(例えば、σ=1/2(SINR))の推定値を必要とする。式(22)のスライサは、コンステレーション・シンボル上の帰納的分布の重心、すなわち、式(22)のかぎ括弧[...]中の項の重心、に対応することも、注意する。そのように、σが大きければ、対称的なコンステレーション上の一様な前の分布の仮定は、ほぼ一様な後の分布を意味し、それゆえ、重心は、ほぼゼロになる。他方で、σが小さい場合に、後の分布は、実際に送信されたシンボル及びその隣接するコンステレーション点上に集中した自身の重量(mass)を有する;それゆえ、重心は、送信されたシンボルに近い。式(22)のスライサは、それゆえに“ソフト・スライサ”と呼ばれる。
ソフト・スライサは、最小の変形で適応ハイブリッドDFEに使用されることができる。FFF及びFBF係数は、次式のMSEの定義を最適化するように選択される:
式(5)と同様に、λ は、次式として定義される:
“チャネル” Q(y|y)は、次式として定義される:
Q(y|y)=Pr{σ(y+Z)=y} (25)
ここでは、σ(.)は、式(22)において定義されたソフト・スライサを表し、そしてZは、式(7)と全く同一の方法で定義された複素ガウス・ノイズである。LMSアルゴリズムに基づいた最適化スキームの類似の開発に引き続いて、α=1+λ −2ρが式(24a)、(24b)及び式(25)で定義されたソフト・スライサに基づいて算出されることの事実を除いて、式(11)、(12)及び(13)は、変化しないことを見出した。前のように、漏れ係数(1−2ρ+λ )は、SINRに依存し、テーブル・ルックアップによって決定されることができる。
上に説明されたようにLMSに基づいたアルゴリズムは、付加的な変化を必要としない。スロットのパイロット/トレーニング部分の期間に、適応は、以前のように実施される;スロットのデータ部分の期間に、条件付き平均スライサは、“ハード”、最小距離スライサ、の代わりに使用される。
ソフト・スライサに含まれる演算、すなわち、式(22)、は、ある種の実際的な実装のために複雑すぎる可能性がある。1つの実施形態は、スライサの出力が最大でN個の値を取るように制限するようにスライサの設計を単純化する。同等に、これは、スライサの入力が多くともN個の値を取るように制限していることに相当する。言い換えると、スライサ入力Y^は、Q:Y^→{Y^,...,Y^}:によって定義されたコンタイザを使用してN点のうちの1つに量子化される。その後、k=1,...,Nに対して、σ(Y^)は、以下のように算出される:
量子化されたスライサの動作は、下記のようにまとめられる:1)N個の可能性のある値の1つにY^を量子化する;及び2)Y=σ(Y^)を決定するために、この値及びルックアップ・テーブル中のインデックスとしてSINRの知識を使用する。この設計における複雑性が、ステップ1)に存在するので、さらなる単純化は、Y^,...,Y^が一様な四角のグリッド上に存在するように制限するはずであり、それから “最近接”基準を使用して、Y^の実数部及び虚数部を別々に量子化することによってY^を量子化する。そのようなスライサの機能は、単純な論理を用いて実行されることができる、すなわち、初めに、Y^の実数配位に基づいて最近接の隣接するもののセットを算出し、その後、Y^の虚数配位に基づいてこのサブセット中の最近接のものを算出する。付け加えると、ルックアップ・テーブルは、大部分の実施に関して十分な1dBステップを有し、SINRではかなり粗いことがある。例えは、SINR=5dB及びSINR=6dBに対して{σ}のルックアップ・テーブルが与えられると、中間のSINR値、例えば、5.4dB、に対する適切なσ値は、2つのLUTの間を適切に補間することによって決定されることができる。言い換えると、中間のSINR値に対する適切なσ値は、スライサ・デバイスの内部で発生される可能性があり、そのようにして必要なメモリ/記憶装置の要求を削減する。
ハイブリッドDFE(HDFE)へのソフト・スライサの応用の説明として、図8A及び図8Bを考える。図8Aは、8相−PSKコンステレーションを説明し、ここでは、8個の複素シンボルは、変調のためにマッピングされた3個のエンコードされたビットを表す。図示されたように、複数の丸は、送信機において変調のために使用されるコンステレーション点を表す。“x”印は、受信機において受信されたままのサンプルを示し、送信の間に導入されたノイズ及び干渉を含む。受信したサンプルが実際のコンステレーション・シンボルに適合する必要性がないことに、注意する。この場合には、受信機は、どのコンステレーション・シンボルが実際に送られたかを判定する。典型的には、受信した点は、実際に送信されたコンステレーション・シンボルの周りに集中する。
受信したサンプルから送信されたシンボルを決定するための1つの方法は、図8Bに示されたように、パイ・スライス(pie slice)にコンステレーション・マップを分割することである。ここでは、コンステレーション・マップは、8個のスライス、702,704,706,708,710,712,714、及び716に分割される。スライスは、例えば、最小距離基準にしたがって決定される、これは、境界を選択するために2つのコンステレーション点の間のユークリッド距離若しくは間隔を使用する。受信したサンプルが2つのコンステレーション点の間でほぼ等距離(すなわち、ほぼ境界線上)にある場合に、問題が存在する。この場合に、判定プロセスが誤ったコンステレーション・シンボルを選択するならば、このエラーは、DFEのフィードバック・ループに伝播するはずである。そのようなエラー及びDFEにおける付随した増幅を回避するために、ソフト・スライサは、コンステレーション・シンボルにおいて必ずしも必要でない値を出力することを適用される。ソフト・スライサは、受信したサンプルから確信レベルを暗に判断する。確信レベルは、サンプルを評価するガイドラインを有するシステムを提供する。確信レベルが低ければ、すなわち、エラーの可能性があるならば、サンプルは、イコライザのフィードバック部分では強調されない。確信レベルが高ければ、サンプルは、信頼性があると考えられ、それゆえ、そこから導き出された適切なシンボル推定値は、イコライザのフィードバック部分において使用されることができる。
図9Aは、2相−PSKコンステレーション・マップを図示する。コンステレーション・シンボルの最小距離に基づいてなされた判定が、“x”で記されたもののように受信したサンプルに関するエラーに帰する可能性があることに、注意する。1実施形態にしたがったソフト・スライサのアプリケーションは、図9Bに図示されたようにコンステレーション・マップを長方形に分割する。プロットされたように、長方形720のような、長方形は、y−方向に半無限であり、全ての長方形がコンステレーション・シンボルを含むのではない。スライサの入力サンプルが、半無限の長方形の1つの内部にある場合に、条件付き平均値が指定される。長方形の内部の実効的に全ての点は、共通の値にマッピングされる。この値は、送信されたシンボルの条件付き平均を表し、スライサの入力サンプルが関心のある長方形の内部であることを与える。対応する条件付き平均値への各長方形のマッピングは、信号対干渉及びノイズ比(SINR)の関数である。例えば、所定の長方形は、第1のレベルにおけるSINR、例えば、SINR=4dB、に関するσにマッピングする可能性がある。同一の長方形は、第2のレベルにおけるSINR,例えば、SINR=5dB、に関するσ‘にマッピングする可能性がある。マッピング及び関係する条件付き平均値は、検索を容易にするためにルックアップ・テーブル中に記憶される。他の実施形態は、事前に決められたアルゴリズムにしたがって条件付き平均値を計算する。正方形若しくは長方形のグリッドは、容易に与えられ、より複雑なコンステレーションに拡張できることに、注意する。
図10は、ソフト・スライサを使用するイコライザ800を図示する。イコライザ800は、サミング・ノード804に接続されたFFF802を含む。FFF802は、適応等化アルゴリズム808によって制御される。適応制御ユニット808は、SINR推定ユニット816に応答する。代わりの実施形態では、SINR推定ユニット816は、MSE推定ユニットとして実装されることができる。SINR推定ユニット816は、SINR推定値をルックアップ・テーブル(LUT)810に提供する。SINR推定値は、LUT810中に記憶された値とともに使用されて、式(24a),(24b)及び(25)にしたがって定義されたα(SINR)=1+λ −2ρを決定する。適応等化アルゴリズム808は、LUT810から生成されたα値を使用して、式(11)、(12)及び(13)を繰り返すことによってFFF802及びFBF806の係数を更新する。式(11)、(12)及び(13)は、LMSアルゴリズムに基づいており、式(23)で定義されたMSEコスト関数を最適化するために設計されることを、思い出す。代わりの実施形態では、適応等化アルゴリズム808は、RLSのような、他の適応フィルタリング・アルゴリズムを実装することができ、式(23)で定義されたMSEコスト関数を最適化する。FBF806は、FFF802の出力中に存在する原因となるISIの推定値を出力する。FBF806の出力は、サミング・ノード804に接続される。そこでは、FFF802の出力から引き算される。サミング・ノード804の出力、すなわち、送信されたシンボルの推定値、は、その後、デコーダ802、SINR/MSE推定ユニット816、及びソフト・スライサ812に提供される。ソフト・スライサ812は、SINR/MSE推定ユニット816からSINR/MSE推定値を受信して、送信されたシンボルのさらなる推定値を発生し、そして、FBF806におけるフィルタリングのためにこのさらなるシンボル推定値を出力する。
図11は、1実施形態にしたがったソフト・スライサを組み込んでいるソフト・スライサ・プロセスのフローチャートである。プロセスは、ステップ902において、スライサ入力サンプルy^の量子化に対応する、コンステレーション・マップ上のグリッド四角若しくは長方形のような、領域を初めに決定する。決定は、ステップ904におけるSINR値からなされる。ステップ906において、プロセスは、SINR値の関数として適切なマッピングを選択する。ある実施形態にしたがって、メモリ記憶デバイスの別々の部分は、別々のルック・アップ・テーブルを記憶する。テーブルは、SINR値にしたがってアクセスされる。ステップ908において、条件付き平均値は、適切なマッピングから決定され、そしてこれは、スライサの出力である。
他の1つのソフト・スライサ実施形態は、コンステレーション・マップに四角のグリッドを適用し、より正確な条件付き平均値を生成するためにテーラー拡張を使用する。この実施形態では、複数の小さなルックアップ・テーブルが、各SINR値に対応する値を記憶する。プロセス920が、図12に図示される。ソフト・スライサ入力y^の領域が、ステップ921において決定される。ステップ922において、SINR値が、決定される。SINR値は、ステップ924において、適切なマッピングσ(・)及びσ(・)を決定するために使用される。ステップ920の領域は、値σ(y^)にマッピングされる。ここでは、iは、領域に対応する。第2のマッピングは、その後、SINR値及びステップ920の領域と矛盾がないようにステップ922において実施されて、σ(y^)を得る。条件付き平均値は、σ(y^)+(y^−y^)σ(y^)としてステップ928において近似される。マッピングσ(.)及びσ(.)は、式(22)に定義されたσ(.)の0次及び1次の導関数と密接に関係する。
図13は、1実施形態にしたがったソフト・スライサ954を図示する。SINR推定器952は、1若しくはそれより多くのシンボル推定値を受信し、1つのSINR推定値SINR(n)を出力する。SINR(n)は、オプションのコンタイザ956において量子化される可能性があり、そしてLUTのようなメモリ記憶装置960に供給される。ソフト・スライサ入力に対応するシンボル推定値も、コンタイザ956に供給される。そこでは、シンボル推定値は、量子化され、量子化された値は、SINR推定値とともに使用されて、メモリ記憶装置960に記憶された対応する値を決定する。ある実施形態では、情報は、行及び列に記憶される、そこでは、行は、SINR値に対応し、列は、シンボル値に対応することに、注意する。代わりの実施形態は、しかしながら、種々の方法のいずれかで情報を記憶することができる。そこでは、情報は、SINR値及びシンボル値に基づいて検索可能である。メモリ記憶装置960に記憶された値は、式(22)、(26)及び(27)に定義されたような、ソフト・スライサ入力推定値を与えられた、実際のコンステレーション・シンボルの条件付き平均であり得る。図14は、テーラー級数演算を実行する代わりの実施形態にしたがったソフト・スライサ980を図示する。図示されたように、1若しくはそれより多くの受信したシンボルは、SINR推定器982に供給され、ソフト・スライサ入力に対応する1つのシンボル推定値が、同様にソフト・スライサ980に直接供給される。受信したシンボルは、送信チャネルによって破損され(corrupted)、それゆえ、ここでは受信した“サンプル”としても呼ばれることに、注意する。SINR推定器982は、ソフト・スライサ980にSINR推定値SINR(n)を供給する。SINR(n)は、オプションの量子化器986に供給されることがある。量子化された若しくは量子化されていないSINR(n)は、2個のメモリ記憶ユニット、A988及びB990に供給される。ソフト・スライサ入力シンボル推定値は、量子化器984に供給され、その出力も、メモリ記憶ユニットA988及びB990に供給される。メモリ記憶ユニットA988及びB990は、ソフト・スライサ入力シンボル推定値を与えられた、実際のコンステレーション・シンボルの条件付き平均値を算出するために使用される情報を記憶する。そのような値は、式(22)、(26)及び式(27)に与えられたような、ソフト・スライサ入力シンボル推定値を与えられた実際のコンステレーション・シンボルの条件付き平均の0次及び1次の導関数であり得る。SINR(n)値及び量子化されたシンボル値は、メモリ記憶ユニットA988及びB990中の対応する値を識別するために使用される。サミング・ユニット992は、テーラー級数演算を実行するために使用される。ソフト・スライサ入力シンボル推定値、同様に量子化された値は、サミング・ユニット992へ供給される。それに加えて、メモリ記憶ユニットA988及びB990に記憶された値も、サミング・ユニット992へ供給される。サミング・ユニット992は、入力を使用して、実際のコンステレーション・シンボルの条件付き平均推定値である、出力を算出する。本発明は、無線通信システムに関して説明されてきたが、そのようなシステムは、単に例として提供される。ここに説明された概念は、有線モデムにおける実施、等のような、有線通信システムを含む、種々の通信システムにおいて適用可能であるが、これに限定されることはない。本発明は、高データ・レート通信システムにおいて適用可能であり、受信機の感度を高めることによって、及び通信データ・レートを増加させることによってデータ通信システムにおけるリソース及び能力の最適化を可能にする。この分野に知識のある者は、情報及び信号が、各種の異なる技術及び技法のいずれかを使用して表されることができることを、理解するはずである。例えば、上記の説明の全体を通して参照されることができる、データ、指示、命令、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁場若しくは磁力粒子、光場若しくは光粒子、若しくはこれらの任意の組み合わせによって表されることができる。
この分野に知識のある者は、ここに開示された実施形態に関連して説明された各種の実例となる論理ブロック、モジュール、回路、及びアルゴリズムのステップが、電子ハードウェア、コンピュータソフトウェア、若しくは両者の組み合わせとして実装されることがあり得ることを、さらに認識するはずである。ハードウェア及びソフトウェアのこの互換性をはっきりと説明するために、各種の例示的な構成要素、ブロック、モジュール、回路、及びステップが、その機能性の面から一般的にこれまでに説明されてきた。そのような機能性が、ハードウェア若しくはソフトウェアとして実装されるか否かは、固有のアプリケーション及びシステム全体に課せられた設計の制約に依存する。熟練した職人は、各々の固有のアプリケーションに対して違ったやり方で説明された機能性を実行することができるが、そのような実行の決定は、本発明の範囲から逸脱すること生ずるとして説明されるべきでない。
ここに開示された実施形態に関連して述べられた、各種の例示的な論理ブロック、モジュール、及び回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、用途特定集積回路(ASIC)、フィールド・プログラマブル・ゲートアレイ(FPGA)若しくは他のプログラマブル論理デバイス、ディスクリート・ゲート論理回路若しくはトランジスタ論理回路、ディスクリート・ハードウェア構成要素、若しくはここに説明した機能を実施するために設計されたこれらの任意の組み合わせを用いて、実行若しくは実施されることができる。汎用プロセッサは、マイクロプロセッサであり得るが、代案では、プロセッサは、いずれかの従来型のプロセッサ、コントローラ、マイクロコントローラ、若しくはステート・マシン(state machine)であり得る。プロセッサは、演算デバイスの組み合わせとして実装されることができる。例えば、DSPとマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと結合した1若しくはそれより多くのマイクロプロセッサ、若しくはいずれかの他のそのような構成であり得る。
ここに開示された実施形態に関連して説明された方法若しくはアルゴリズムのステップは、ハードウェアにおいて、プロセッサにより実行されるソフトウェア・モジュールにおいて、若しくは、2つの組み合わせにおいて直接実現される可能性がある。ソフトウェア・モジュールは、RAMメモリ、フラッシュ・メモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハード・ディスク、脱着可能なディスク、CD−ROM、若しくは、この分野で知られている他のいずれかの記憶媒体の中に存在することができる。ある具体例の記憶媒体は、プロセッサと接続され、その結果、プロセッサは、記憶媒体から情報を読み出し、そこに情報を書き込める。代案では、記憶媒体は、プロセッサに集積されることができる。プロセッサ及び記憶媒体は、ASIC中に存在することができる。ASICは、ユーザ端末中に存在することができる。代案では、プロセッサ及び記憶媒体は、ユーザ端末中に単体素子として存在することができる。
開示された実施形態のこれまでの説明は、本技術分野に知識のあるいかなる者でも、本発明を作成し、使用することを可能にするために提供される。これらの実施形態に対する各種の変形は、本技術分野に知識のある者に、容易に実現されるであろう。そして、ここで規定された一般的な原理は、本発明の精神若しくは範囲から逸脱することなく他の実施形態にも適用されることができる。それゆえ、本発明は、ここに示された実施形態に制限されることを意図したものではなく、ここに開示された原理及び新規な特性と整合する広い範囲に適用されるものである。

Claims (8)

  1. コンステレーションマップにマッピングされる送信されたシンボルを推定するための方法において、前記方法は、判定フィードバックイコライザの判定に用いられ、
    サンプルを受信することと、
    前記サンプルの信号対干渉及びノイズ比(SINR)を推定することと、
    前記SINR及び前記サンプルに基づいて前記送信されたシンボルを推定することと、を具備し、
    ここにおいて、前記送信されたシンボルを推定することは、
    以下の関係式により定義された前記受信されサンプルの変動を計算し、
    σ =1/2(SINR)
    及び、次式として条件付き平均値を評価すること、を具備する:
    ここにおいて、Y^はソフト・スライサへの入力サンプルを表し、yはコンステレーションマッピングΨに属する前記送信されたシンボルを表し、σ(Y^)は前記送信されたシンボルの推定値を表し、
    前記送信されたシンボルの推定値はメモリ記憶ユニットに格納され、前記コンステレーションマップの各領域は対応する推定値を有し、
    前記方法は、さらに、
    前記サンプルを量子化して前記コンステレーションマップの領域に第1の値を生成することと、
    前記コンステレーションマップの領域に対応する推定値を決定することと、
    を具備する、方法。
  2. 前記サンプルをNの値のセットから選択された第1の値に量子化することと、
    前記第1の値および前記SINRに対応する前記メモリ記憶ユニットのエントリを決定することと、
    をさらに具備する請求項の方法。
  3. 前記サンプルを量子化することは、最小ユークリッド距離基準(Minimum Euclidean Distance criterion)を用いて前記サンプルを量子化することを具備する、請求項の方法。
  4. SINR値のセットに関して前記推定値が前記メモリ記憶ユニットに格納され、前記方法は、
    前記メモリ記憶ユニット内のエントリを補間して第1のSINR値に関する第1の推定値を決定することをさらに具備し、前記第1のSINR値は前記SINR値のセット内に無い、請求項の方法。
  5. 各領域は長方形である、請求項の方法。
  6. ソフト・スライサを用いた、コンステレーションマップΨにマップされる送信されたシンボルを推定する装置において、前記装置は、判定フィードバックイコライザの判定に用いられ、
    サンプルを受信する手段と、
    前記サンプルの信号対干渉及びノイズ比SINRを推定する手段と、
    前記SINRと前記サンプルとに基づいて前記送信されたシンボルを推定する手段と、を具備し、
    前記送信されたシンボルを推定する手段は、
    以下の関係式により定義される、前記受信されたサンプルの変動を計算する手段と、
    以下のように条件付き平均値を評価する手段と、
    ここにおいて、Y^は前記ソフト・スライサへの入力サンプルを表し、yは前記コンステレーションマップΨに属する送信されたシンボルを表し、σ(Y^)は前記送信されたシンボルの推定値を表し、
    前記送信されたシンボルの推定値はメモリ記憶ユニットに格納され、前記コンステレーションマップの各領域は対応する推定値を有し、
    前記サンプルを量子化して前記コンステレーションマップの領域に第1の値を生成する手段と、
    前記コンステレーションマップの領域に対応する推定値を決定する手段と、
    を具備する、装置。
  7. コンピュータ上で実行されると、請求項乃至のいずれかの方法のステップを実行する、コンピュータ実行可能な命令を記憶するコンピュータ読み取り可能記録媒体であって、前記方法が判定フィードバックイコライザの判定に用いられる、コンピュータ読み取り可能記録媒体。
  8. ンピュータプログラムがコンピュータ上で実行されると、請求項乃至のいずれかの方法のステップを実行するコンピュータ実行可能な命令を具備するコンピュータプログラム。
JP2013122368A 2002-07-18 2013-06-11 ハイブリッド判定フィードバック等化に関する方法及び装置 Expired - Fee Related JP5694444B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/199,158 2002-07-18
US10/199,158 US7035329B2 (en) 2002-07-18 2002-07-18 Soft slicer in a hybrid decision feedback equalizer
US10/199,159 US7046726B2 (en) 2002-07-18 2002-07-18 Method and apparatus for hybrid decision feedback equalization
US10/199,159 2002-07-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011180517A Division JP5405541B2 (ja) 2002-07-18 2011-08-22 ハイブリッド判定フィードバック等化に関する方法及び装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014161197A Division JP5855716B2 (ja) 2002-07-18 2014-08-07 ハイブリッド判定フィードバック等化に関する方法及び装置

Publications (2)

Publication Number Publication Date
JP2013243680A JP2013243680A (ja) 2013-12-05
JP5694444B2 true JP5694444B2 (ja) 2015-04-01

Family

ID=30772526

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2004523610A Expired - Fee Related JP4373330B2 (ja) 2002-07-18 2003-07-18 ハイブリッド判定フィードバック・イコライゼーションに関する方法及び装置
JP2009132927A Expired - Fee Related JP4902696B2 (ja) 2002-07-18 2009-06-02 ハイブリッド判定フィードバック等化に関する方法及び装置
JP2011180517A Expired - Fee Related JP5405541B2 (ja) 2002-07-18 2011-08-22 ハイブリッド判定フィードバック等化に関する方法及び装置
JP2013122368A Expired - Fee Related JP5694444B2 (ja) 2002-07-18 2013-06-11 ハイブリッド判定フィードバック等化に関する方法及び装置
JP2014161197A Expired - Fee Related JP5855716B2 (ja) 2002-07-18 2014-08-07 ハイブリッド判定フィードバック等化に関する方法及び装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2004523610A Expired - Fee Related JP4373330B2 (ja) 2002-07-18 2003-07-18 ハイブリッド判定フィードバック・イコライゼーションに関する方法及び装置
JP2009132927A Expired - Fee Related JP4902696B2 (ja) 2002-07-18 2009-06-02 ハイブリッド判定フィードバック等化に関する方法及び装置
JP2011180517A Expired - Fee Related JP5405541B2 (ja) 2002-07-18 2011-08-22 ハイブリッド判定フィードバック等化に関する方法及び装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014161197A Expired - Fee Related JP5855716B2 (ja) 2002-07-18 2014-08-07 ハイブリッド判定フィードバック等化に関する方法及び装置

Country Status (15)

Country Link
EP (5) EP2254294A3 (ja)
JP (5) JP4373330B2 (ja)
KR (1) KR101013628B1 (ja)
CN (1) CN100583853C (ja)
AT (3) ATE506792T1 (ja)
AU (1) AU2003256623C1 (ja)
BR (1) BRPI0312747B1 (ja)
CA (1) CA2493106C (ja)
DE (2) DE60336863D1 (ja)
ES (1) ES2365730T3 (ja)
IL (2) IL165868A0 (ja)
MX (1) MXPA05000707A (ja)
NO (1) NO20050863L (ja)
RU (2) RU2328081C2 (ja)
WO (1) WO2004010665A2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60336863D1 (de) * 2002-07-18 2011-06-01 Qualcomm Inc Verfahren und Vorrichtung zur Verwendung bei einer Entscheidungsrückgekoppelten Entzerrung
US20050260528A1 (en) * 2004-05-22 2005-11-24 Hynix Semiconductor Inc. Liquid composition for immersion lithography and lithography method using the same
KR100708482B1 (ko) * 2005-03-04 2007-04-18 삼성전자주식회사 채널 등화기 및 채널 등화 방법
US7522663B2 (en) * 2005-03-10 2009-04-21 Stmicroelectronics, Inc. Burst error limiting feedback equalizer system and method for multidimensional modulation systems
US8218615B2 (en) * 2005-03-29 2012-07-10 Qualcomm Incorporated Method and apparatus for block-wise decision-feedback equalization for wireless communication
US8098722B2 (en) * 2005-03-29 2012-01-17 Qualcomm Incorporated Method and apparatus for equalization control
US8615035B2 (en) 2005-03-29 2013-12-24 Qualcomm Incorporated Method and apparatus for block-wise decision-feedback equalization for wireless communication
CN1845539B (zh) * 2005-04-08 2010-12-29 上海奇普科技有限公司 一种具有重叠结构的时域自适应均衡器
ATE449475T1 (de) * 2005-08-02 2009-12-15 Alcatel Lucent Empfänger eines optischen signals
US7590197B2 (en) 2005-12-20 2009-09-15 Research In Motion Limited Correction circuit for improving performance in a channel decoder
DE602005009235D1 (de) * 2005-12-20 2008-10-02 Research In Motion Ltd Korrekturschaltung zur Funktionsverbesserung in einem Kanaldekoder
US7826523B2 (en) * 2006-03-31 2010-11-02 Intel Corporation Effective adaptive filtering techniques
US8116364B2 (en) * 2007-04-18 2012-02-14 Mediatek Inc. Selective slicing equalizer
KR101096769B1 (ko) 2009-12-31 2011-12-21 한국산업기술대학교산학협력단 Dtv 방송 시스템 환경에서 동일 채널 중계기를 위한 다중 레벨 상관 lms 기반의 채널 등화 방법 및 장치
RU2465725C1 (ru) * 2011-04-21 2012-10-27 Открытое акционерное общество "Концерн "Созвездие" Широкополосная система радиосвязи кв диапазона
US8913901B2 (en) * 2012-02-20 2014-12-16 Tyco Electronics Subsea Communications Llc System and method for blind equalization and carrier phase recovery in a quadrature amplitude modulated system
GB2503073B (en) * 2013-03-27 2014-04-23 Imagination Tech Ltd Efficient tracking of decision-feedback equaliser coefficients
RU2558609C2 (ru) * 2013-06-18 2015-08-10 Федеральное государственное бюджетное учреждение науки Научно-исследовательский институт системных исследований Российской академии наук (НИИСИ РАН) Передатчик со следящей обратной связью
US9660842B2 (en) 2013-06-27 2017-05-23 Intel Corporation Low power equalizer and its training
DE102014201233B4 (de) * 2014-01-23 2023-12-14 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Entzerrungsfilter
US9768913B1 (en) * 2016-03-09 2017-09-19 Samsung Electronics Co., Ltd System and method for multiple input multiple output (MIMO) detection with soft slicer
CN108111182A (zh) * 2016-11-25 2018-06-01 晨星半导体股份有限公司 错误限制方法、错误限制器以及数字接收电路
US10135645B1 (en) * 2017-10-18 2018-11-20 Cisco Technology, Inc. Equalizer optimization for FEC-protected communication links
CN112166558A (zh) * 2018-05-18 2021-01-01 麦克姆技术解决方案控股有限公司 限幅器的动态星座适应
DE102018208210A1 (de) * 2018-05-24 2019-11-28 Siemens Aktiengesellschaft Einrichtung und Verfahren zum Ermitteln eines Zeitversatzes zwischen zwei Zeitbasen
KR102192377B1 (ko) * 2018-12-05 2020-12-18 서울여자대학교 산학협력단 두개악안면영상에서의 자동 치아 분리방법 및 시스템
CN110138696A (zh) * 2019-05-28 2019-08-16 科大讯飞股份有限公司 信道均衡方法及装置
CN111131101B (zh) * 2019-12-28 2022-02-08 芯动微电子科技(珠海)有限公司 一种反馈均衡电路
CN116187064B (zh) * 2023-02-14 2024-03-12 中国科学院国家空间科学中心 一种连续信号时间序列二阶导数的数值仿真方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269933B2 (ja) * 1995-03-20 2002-04-02 富士通株式会社 キャリア再生回路
JP3660068B2 (ja) * 1996-09-12 2005-06-15 株式会社ルネサステクノロジ 位相比較器
BR9901056A (pt) * 1998-04-30 2000-01-18 Lucent Technilogies Inc Estimação de canal usando realimentação de decisão temporária.
JP2000315957A (ja) * 1999-04-30 2000-11-14 Jisedai Digital Television Hoso System Kenkyusho:Kk 復号装置
US7023931B2 (en) 2001-11-05 2006-04-04 Texas Instruments Incorporated System and method for soft slicing
DE60336863D1 (de) * 2002-07-18 2011-06-01 Qualcomm Inc Verfahren und Vorrichtung zur Verwendung bei einer Entscheidungsrückgekoppelten Entzerrung

Also Published As

Publication number Publication date
EP1956783A1 (en) 2008-08-13
EP2254293A2 (en) 2010-11-24
JP4902696B2 (ja) 2012-03-21
ATE506792T1 (de) 2011-05-15
JP2005533457A (ja) 2005-11-04
ATE527792T1 (de) 2011-10-15
BR0312747A (pt) 2007-06-26
DE60336863D1 (de) 2011-06-01
EP2254294A2 (en) 2010-11-24
JP5855716B2 (ja) 2016-02-09
EP2254295B1 (en) 2011-10-05
WO2004010665A2 (en) 2004-01-29
RU2005104433A (ru) 2005-09-20
CA2493106C (en) 2014-11-25
ATE507639T1 (de) 2011-05-15
CN1669282A (zh) 2005-09-14
JP4373330B2 (ja) 2009-11-25
WO2004010665A3 (en) 2004-06-17
AU2003256623A1 (en) 2004-02-09
MXPA05000707A (es) 2005-04-08
JP2012029305A (ja) 2012-02-09
JP2009268120A (ja) 2009-11-12
AU2003256623C1 (en) 2009-05-28
EP2254294A3 (en) 2010-12-08
JP5405541B2 (ja) 2014-02-05
EP1525727B1 (en) 2011-04-27
DE60336903D1 (de) 2011-06-09
EP1525727A2 (en) 2005-04-27
AU2003256623B2 (en) 2008-12-04
CN100583853C (zh) 2010-01-20
KR20050019861A (ko) 2005-03-03
RU2407197C2 (ru) 2010-12-20
EP2254293A3 (en) 2010-12-08
NO20050863L (no) 2005-02-17
EP1956783B1 (en) 2011-04-20
EP2254295A1 (en) 2010-11-24
ES2365730T3 (es) 2011-10-10
IL202168A (en) 2010-12-30
IL165868A0 (en) 2006-01-15
BRPI0312747B1 (pt) 2016-11-22
CA2493106A1 (en) 2004-01-29
JP2015008491A (ja) 2015-01-15
RU2328081C2 (ru) 2008-06-27
KR101013628B1 (ko) 2011-02-10
RU2005120491A (ru) 2007-01-20
JP2013243680A (ja) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5694444B2 (ja) ハイブリッド判定フィードバック等化に関する方法及び装置
US7046726B2 (en) Method and apparatus for hybrid decision feedback equalization
US7035329B2 (en) Soft slicer in a hybrid decision feedback equalizer
JP5606864B2 (ja) 仮想並列イコライザを備えた通信レシーバー
CN113300988B (zh) 低频水声通信的模态间干扰抑制方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5694444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees