RU2465725C1 - Широкополосная система радиосвязи кв диапазона - Google Patents

Широкополосная система радиосвязи кв диапазона Download PDF

Info

Publication number
RU2465725C1
RU2465725C1 RU2011115963/07A RU2011115963A RU2465725C1 RU 2465725 C1 RU2465725 C1 RU 2465725C1 RU 2011115963/07 A RU2011115963/07 A RU 2011115963/07A RU 2011115963 A RU2011115963 A RU 2011115963A RU 2465725 C1 RU2465725 C1 RU 2465725C1
Authority
RU
Russia
Prior art keywords
input
block
output
inputs
outputs
Prior art date
Application number
RU2011115963/07A
Other languages
English (en)
Inventor
Владимир Александрович Маковий (RU)
Владимир Александрович Маковий
Сергей Александрович Чупеев (RU)
Сергей Александрович Чупеев
Original Assignee
Открытое акционерное общество "Концерн "Созвездие"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Концерн "Созвездие" filed Critical Открытое акционерное общество "Концерн "Созвездие"
Priority to RU2011115963/07A priority Critical patent/RU2465725C1/ru
Application granted granted Critical
Publication of RU2465725C1 publication Critical patent/RU2465725C1/ru

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Изобретение относится к области передачи широкополосных (шумоподобных) сигналов с повышенной скоростью в коротковолновом (KB) диапазоне частот и может быть использовано в системах KB, дальней KB связи, а также в других системах связи, в которых наблюдается многолучевое распространение радиоволн. Технический результат заключается в увеличении скорости передачи информации в системе радиосвязи. Для этого устройство содержит как минимум две радиостанции, в каждой из которых содержится радиотракт высокой частоты (1), содержащий входной тракт приемника (3) и усилитель мощности (5), а также содержит блок цифровой обработки сигнала (2), содержащий аналого-цифровой преобразователь (4), блок быстродействующих синтезаторов (6), параллельный анализатор спектра (7), блок центрального процессора (8), генератор преамбулы (10), блок обнаружителей сигнала (11), блок обнаружителей информационных символов (12), обнаружитель преамбулы (13), блок умножителей на постоянный коэффициент (18), два сдвиговых регистра (16, 17), два декодера многозначного кода (14, 15) и два кодера многозначного кода (9, 19). 4 ил.

Description

Изобретение относится к области передачи широкополосных (шумоподобных) сигналов с повышенной скоростью в коротковолновом (KB) диапазоне частот и может быть использовано в системах KB, дальней KB связи, а также в других системах связи, в которых наблюдается многолучевое распространение радиоволн.
Такие системы описаны, например, в работах «Методы цифровой реализации алгоритмов многочастотных модемов», Электросвязь, 1978, №12, авторы Байдан И.Н., Гинзбург В.В., Дутовинов С.И., Рахович Л.М.; «Помехоустойчивость модемов типа МС», Электросвязь, 1976 г., №5, авторы Гинзбург В.В., Гиршов B.C., Кустов О.В., Лутовинов С.И., Окунев Ю.Б.
В этих системах вместо одного канала одновременно передается М аналогичных сигналов. Например, в полосе от 300 Гц до 3400 Гц можно организовать 30 гармонических колебаний с нарезкой частот через 100 Гц, причем каждая из них может использоваться как несущая частота для отдельного низкоскоростного канала со скоростью 100 бит/с. В этом случае общая скорость будет равна 3000 бит/с. Недостатком таких устройств является ограничение максимальной скорости величиной 3000 бит/с, а также наличие пикфактора группового сигнала вследствие очень большого количества гармонических составляющих, что требует от передатчика значительной мощности при сравнительно небольшой мощности излучения.
Известны радиостанции, из которых строятся системы KB радиосвязи, описаные в CHESS A NEW Reliable High Speed HF Radio Dr David L Herrik, Dr. Poulk Lee. Sanders - Lockhed Martin Company, Nashua, IEEE, 8, 1996. В этих устройствах для каждого передаваемого символа осуществляется передача одного гармонического колебания из n. Таким образом, алфавит передаваемого сообщения составляет n символов, что соответствует log2(n) битам передаваемой информации. Следовательно, при n=64 один символ передаваемой информации будет содержать 6 бит. При этом с ростом n количества бит, содержащихся в одном символе, скорость передачи растет очень медленно, как логарифмическая функция, что сильно ограничивает возможность применения данного устройства.
Известно также устройство, описанное в патенте на изобретение №2221330 «Широкополосная система радиосвязи KB диапазона», которое осуществляет последовательную передачу информации на k частотах из n. При этом размер алфавита можно определить как log2(n), то есть так же, как и в вышеприведенном аналоге, но учитывая, что гармонические колебания передаются последовательно, время передачи каждого символа увеличивается в k раз по отношению к вышеприведенному аналогу. Следовательно, в итоге скорость передачи информации будет еще меньше, чем в предыдущем аналоге.
Наиболее близкой к заявляемой является система радиосвязи KB диапазона, описанная в патенте №2209511 «Широкополосная система радиосвязи KB диапазона», Бокк О.Ф., Маковий В.А., Аджемов С.С., Бокк Т.О., опублик. 2001 г.
На фиг.1 представлена функциональная схема устройства-прототипа, где обозначено:
3 - входной тракт приемника;
4 - аналого-цифровой преобразователь;
5 - усилитель мощности;
6.1, 6.2 - первый и второй быстродействующие синтезаторы;
7 - параллельный анализатор спектра;
8 - блок центрального процессора;
9 - кодер многозначного кода;
10 - генератор преамбулы;
11.1, 11.2 - первый и второй обнаружители сигнала;
12.1, 12.2 - первый и второй обнаружители информационных символов;
13 - обнаружитель преамбулы;
14 - декодер многозначного кода.
Устройство-прототип состоит, как минимум, из двух радиостанций, каждая из которых содержит последовательно соединенные входной тракт приемника 3, аналого-цифровой преобразователь 4, параллельный анализатор спектра 7, первый обнаружитель сигнала 11.1, первый обнаружитель информационных символов 12.1 и декодер многозначного кода 14, выход которого соединен с первым входом блока центрального процессора 8, первый выход которого является информационным выходом радиостанции.
Кроме того, выход параллельного анализатора спектра 7 соединен с входом второго обнаружителя сигнала 11.2, выход которого через второй обнаружитель информационных символов 12.2 соединен со вторым входом декодера многозначного кода 14. Выход первого обнаружителя сигнала 11.1 также соединен со входом обнаружителя преамбулы 13, выход которого соединен с управляющими входами первого 12.1 и второго 12.2 обнаружителей информационных символов. Второй выход блока центрального процессора 8 соединен с входами генератора преамбулы 10 и кодера многозначного кода 9, первый выход которого соединен с выходом генератора преамбулы 10 и с входом первого быстродействующего синтезатора 6.1.
Второй выход первого кодера многозначного кода 9 соединен с входом второго быстродействующего синтезатора 6.2, выход которого соединен с выходом первого быстродействующего синтезатора 6.1 и входом усилителя мощности 5, выход которого является ВЧ выходом передатчика и соединен с антенной. Второй вход блока центрального процессора 8 является информационным входом радиостанции. При этом входной тракт приемника 3 соединен с антенной и является ВЧ входом приемника.
Система-прототип работает следующим образом.
С одной стороны станция включается в режим передачи, а с другой - в режим приема.
На стороне передачи по команде блока центрального процессора 8 генератор преамбулы 10 вырабатывает команды на заданную последовательность скачков по частоте для первого быстродействующего синтезатора 6.1, который генерирует последовательный по времени набор из N гармонических колебаний и подает его на усилитель мощности 5, который усиливает эти колебания и подводит к антенне. Таким образом, преамбула излучается. После излучения преамбулы по команде блока центрального процессора 8 начинает работать кодер многозначного кода 9, который в соответствии с передаваемой информацией вырабатывает команды на 2 частоты из N возможных, причем одна команда передается на первый 6.1, а другая - на второй 6.2 быстродействующие синтезаторы, которые генерируют на выходе гармонические колебания с заданными частотами, формируя двухчастотный скачок, который усиливается усилителем мощности 5 и посредством антенны излучается.
На стороне приема радиостанция работает следующим образом. Сигнал, принятый антенной, после усиления и преобразования по частоте входным трактом приемника 3, подается на АЦП 4, с выхода которого в цифровой форме передается на параллельный анализатор спектра 7, в котором производится селекция и детектирование N заранее заданных частот из всех имеющихся на выходе блока 3. Обнаружитель сигнала 11.1 на основании известной, предполагаемой формы огибающей сигнала, ширины его спектра и его уровня определяет наличие скачка и передает сигнал о наличии, если оно имеет место, на вход обнаружителя преамбулы 13. Если последовательность из N скачков по частоте, выработанная обнаружителем сигнала 11.1, и одной из преамбул в обнаружителе 13 совпадут, то приемное устройство переходит в режим выделения информации. В режиме выделения информации сигналы параллельного анализатора спектра 7, в обнаружителях сигнала 11.1 и 11.2 вырабатываются команды на обнаружители информационных символов 12.1 и 12.2, которые из обнаруженных сигналов с учетом синхронизации от обнаружителя преамбулы 13 выделяют информационные символы.
По сути, обнаруживаются номера частот в каждом скачке, по номерам частот этих сигналов декодер многозначного кода 14 преобразует принятую информацию в двоичную форму и передает ее на блок центрального процессора 8. Отметим, что первый обнаружитель сигнала 11.1 выделяет максимальный сигнал, второй обнаружитель 11.2 выделяет минимальный из двух максимальных сигналов. В блоке центрального процессора 8 происходит окончательная обработка принятого сигнала: декодирование с целью коррекции и обнаружения ошибок, формирование выходного информационного сигнала в форме, необходимой для работы оконечного оборудования, формирование сигналов индикации начала, окончания передачи сообщения, качества канала связи и т.д.
Недостатком прототипа является недостаточно эффективное использование полосы частот при увеличении скорости передачи.
Задачей, решаемой в заявляемом устройстве, является увеличение размера алфавита передаваемых символов при неизменной величине полосы используемых частот, количестве передаваемых гармонических колебаний и скорости модуляции без увеличения занимаемой полосы частот.
Техническим результатом решения поставленной задачи является увеличение скорости передачи информации в системе радиосвязи.
Для решения поставленной задачи заявляется широкополосная система радиосвязи KB диапазона, характеризующаяся наличием как минимум двух радиостанций, каждая из которых включает радиотракт высокой частоты (ВЧ) и блок цифровой обработки сигнала (БЦОС), причем радиотракт ВЧ содержит входной тракт приемника, вход которого является ВЧ входом радиостанции, и усилитель мощности, выход которого является ВЧ выходом радиостанции и соединен с входом входного тракта приемника, выход которого соединен с входом БЦОС, который содержит два кодера многозначного кода, два декодера многозначного кода, два сдвиговых регистра, блок обнаружителей сигнала, блок обнаружителей информационных символов, обнаружитель преамбулы, генератор преамбулы, блок центрального процессора, блок быстродействующих синтезаторов, блок умножителей на постоянный коэффициент, а также последовательно соединенные аналого-цифровой преобразователь, вход которого является входом БЦОС, и параллельный анализатор спектра, при этом выход параллельного анализатора спектра соединен с объединенными k входами блока обнаружителей сигнала, k выходов которого соединены соответственно с k сигнальными входами блока обнаружителей информационных символов, k выходов которого соединены соответственно с k входами первого и второго декодеров многозначного кода, выходы которых соединены соответственно с первым и вторым входами первого сдвигового регистра, выход которого соединен с первым входом блока центрального процессора, первый выход которого является информационным выходом радиостанции, второй вход - информационным входом радиостанции; второй выход блока центрального процессора соединен с входом второго сдвигового регистра, первый и второй выходы которого соединены соответственно с входами первого и второго кодеров многозначного кода; k выходов первого кодера многозначного кода соединены соответственно с k входами блока быстродействующих синтезаторов, k выходов которого соединены соответственно с k сигнальными входами блока умножителей на постоянный коэффициент; k выходов второго кодера многозначного кода соединены соответственно с k управляющими входами блока умножителей на постоянный коэффициент, k выходов которого объединены между собой в выход БЦОС, который соединен со входом усилителя мощности радиотракта ВЧ; кроме того, второй выход блока центрального процессора через генератор преамбулы соединен с первым входом блока быстродействующих синтезаторов; первый выход блока обнаружителей сигнала через обнаружитель преамбулы соединен с объединенными k управляющими входами блока обнаружителей информационных символов.
Функциональная схема заявляемой широкополосной системы радиосвязи KB диапазона представлена на фиг. 2, где обозначено:
1 - радиотракт высокой частоты (ВЧ);
2 - блок цифровой обработки сигнала (БЦОС);
3 - входной тракт приемника;
4 - аналого-цифровой преобразователь (АЦП);
5 - усилитель мощности;
6 - блок быстродействующих синтезаторов;
7 - параллельный анализатор спектра;
8 - блок центрального процессора;
9, 19 - первый и второй кодеры многозначного кода;
10 - генератор преамбулы;
11 - блок обнаружителей сигнала;
12 - блок обнаружителей информационных символов;
13 - обнаружитель преамбулы;
14, 15 - первый и второй декодеры многозначного кода;
16, 17 - первый и второй сдвиговые регистры;
18 - блок умножителей на постоянный коэффициент.
Заявляемое устройство состоит как минимум из двух радиостанций, каждая из которых содержит соединенные между собой радиотракт ВЧ 1 и блок цифровой обработки сигнала (БЦОС) 2.
Радиотракт ВЧ 1 содержит входной тракт приемника 3, вход которого является ВЧ входом радиостанции, и усилитель мощности 5, выход которого является ВЧ выходом радиостанции и соединен с входом входного тракта приемника 3, выход которого соединен с входом БЦОС 2.
БЦОС 2 содержит последовательно соединенные аналого-цифровой преобразователь (АЦП) 4, вход которого является входом БЦОС 2, и параллельный анализатор спектра 7, выход которого соединен с объединенными k входами блока обнаружителей сигнала 11, k выходов которого соединены соответственно с k сигнальными входами блока обнаружителей информационных символов 12, k выходов которого соединены соответственно с k входами первого 14 и второго 15 декодеров многозначного кода, выходы которых соединены соответственно с первым и вторым входами первого сдвигового регистра 16, выход которого соединен с первым входом блока центрального процессора 8, первый выход которого является информационным выходом радиостанции, второй вход - информационным входом радиостанции.
Второй выход блока центрального процессора 8 соединен с входом второго сдвигового регистра 17, первый и второй выходы которого соединены соответственно с входами первого 9 и второго 19 кодеров многозначного кода; k выходов первого кодера многозначного кода 9 соединены соответственно с k входами блока быстродействующих синтезаторов 6, k выходов которого соединены соответственно с k сигнальными входами блока умножителей на постоянный коэффициент 18; k выходов второго кодера многозначного кода 19 соединены соответственно с k управляющими входами блока умножителей на постоянный коэффициент 18, k выходов которого объединены между собой в выход БЦОС 2 и соединены со входом усилителя мощности 5 радиотракта ВЧ 1.
Кроме того, первый выход блока обнаружителей сигнала 11 через обнаружитель преамбулы 13 соединен с объединенными k управляющими входами блока обнаружителей информационных символов 12; второй выход блока центрального процессора 8 через генератор преамбулы 10 соединен с первым входом блока быстродействующих синтезаторов 6.
Заявляемое устройство работает следующим образом.
С одной стороны станция включается в режим передачи, а с другой - в режим приема.
В режиме передачи информации по команде блока центрального процессора 8 генератор преамбулы 10 вырабатывает команды на заданную последовательность скачков по частоте, подаваемую на первый вход блока 6, состоящего из k идентичных независимо работающих синтезаторов 6.1-6.k, где он подается на первый синтезатор 6.1. Блок 6 генерирует последовательный по времени набор из N гармонических колебаний, который подается на первый сигнальный вход блока 18, состоящий из k идентичных независимо работающих умножителей 18.1-18.k. В первом умножителе 18.1 происходит умножение сигнала на единицу, и выходной сигнал с блока 18, являющийся выходным сигналом БЦОС 2, подается на радиотракт ВЧ 1, где он поступает на усилитель мощности 5, который усиливает эти колебания и передает в антенну. Таким образом, преамбула излучается.
После излучения преамбулы по команде блока центрального процессора 8 начинает работать второй сдвиговый регистр 17, который поток информации, подготовленной блоком 8, разделяет на два потока. Далее каждый поток информации кодируется соответствующим кодером многозначного кода - первым 9 и вторым 19. При этом первый кодер многозначного кода 9 в соответствии с информацией, поступившей на его вход, вырабатывает команды на k частот из n возможных, причем команды с k выходов блока 9 передаются соответственно на k входов блока 6. Одновременно второй кодер многозначного кода 19 в соответствии с передаваемой информацией, поступившей на его вход, вырабатывает команды для управления блоком умножителей 18 таким образом, чтобы m из k умножителей на постоянный коэффициент осуществляли умножение на некоторый коэффициент, больший единицы, а остальные m-k умножителей блока 18 - умножение на единицу.
Блок 6 генерирует на k выходах гармонические колебания с заданными частотами, после прохождения которых через блок 18 формируется k гармонических колебаний, из которых m-k колебаний с единичной амплитудой и m колебаний с увеличенной амплитудой. При этом увеличение амплитуды m гармонических колебаний производится в блоке 18. Данная сумма гармонических колебаний усиливается усилителем мощности 5 и посредством антенны излучается. Фактически в режиме передачи осуществляется формирование суммы гармонических сигналов из k синусоид, в которых, в отличие от прототипа, m синусоид имеют большую амплитуду.
В режиме приема радиостанция работает следующим образом.
Сигнал, принятый антенной, после усиления и преобразования по частоте входным трактом приемника 3, подается на АЦП 4, с выхода которого в цифровой форме передается на параллельный анализатор спектра 7, в котором производится селекция и детектирование N заранее заданных частот из всех имеющихся на выходе блока 3. Далее сигнал с выхода блока 7 поступает на блок 11, состоящий из k идентичных независимо работающих обнаружителей сигнала 11.1-11.k, который на основании известной, предполагаемой формы огибающей сигнала, ширины его спектра и его уровня определяет наличие скачка и передает сигнал о наличии сигнала, если оно имеет место, на вход блока 13. Если последовательность из n скачков по частоте, выработанная блоком 11.1, и одной из преамбул в блоке 13 совпадут, то устройство переходит в режим выделения информации.
В режиме выделения информации сигналы параллельного анализатора спектра 7, в котором производится селекция и детектирование n заранее заданных частот, поступают на k входов блока обнаружителей сигнала 11, в которых вырабатываются k команд о выделенном сигнале, после чего они подаются на k соответствующих входов блока обнаружителей информационных символов 12. Блок 12, состоящий из k идентичных независимо работающих обнаружителей информационных символов 12.1-12.k, из обнаруженных сигналов, с учетом синхронизации от обнаружителя преамбулы 13 выделяет информационные символы. По сути, обнаруживаются k номеров частот из n, на которых предполагается наличие переданных гармонических сигналов; по номерам частот этих сигналов первый декодер многозначного кода 14 преобразует принятую информацию в двоичную форму и передает ее на первый вход первого сдвигового регистра 16.
Таким образом, блок 11 обнаруживает k максимальных сигналов из n, а в блоке 12 из обнаруженных сигналов производится обнаружение информационных символов. При этом k обнаруженных информационных символов далее передаются в блоки 14 и 15. В блоке 14 производится декодирование k частот из n, а в блоке 15 производится декодирование m частот с большей амплитудой из k частот. Фактически производится процедура, обратная процедуре, осуществляемой во втором кодере многозначного кода 19. Далее с выхода второго декодера многозначного кода 15 информация поступает на второй вход первого сдвигового регистра 16, где производится объединение двух потоков информации. С выхода блока 16 объединенный поток информации поступает на первый вход блока центрального процессора 8, где происходит окончательная обработка принятого сигнала: декодирование с целью коррекции и обнаружения ошибок, формирование выходного информационного сигнала в форме, необходимой для работы оконечного оборудования, формирование сигналов индикации начала, окончания передачи сообщения, качества канала связи и т.д.
Построение параллельного анализатора спектра 7 аналогично прототипу может быть реализовано на основе конвейерной обработки сигнала в двух блоках быстрого преобразования Фурье и подробно описано в указанном выше источнике информации CHESS A NEW. Кроме того, аналогичные блоки рассмотрены на основе гребенки фильтров, например, в работах: В.И.Коржик, Л.М.Финк, Н.Н.Щелкунов "Расчет помехоустойчивости систем передачи дискретных сообщений". Справочник. - М.: Радио и связь, 1981. Бокк О.Ф. "Обнаружение сигнала на фоне окрашенного шума". Часть 1. Техника средств связи. - Сер. Техника радиосвязи. - 1989. - Вып. 3. Бокк О.Ф. "Обнаружение сигнала на фоне окрашенного шума". Часть 3. Техника средств связи. - Сер. Техника радиосвязи. -1989. - Вып.7 и др.
Обнаружитель преамбулы 13 может быть выполнен аналогично описанному в прототипе и содержит коррелятор (многоканальный коррелятор), генератор копии сигнала с тактовым генератором, решающую схему (схему сравнения с порогом). Реализация описана, например, В.И.Коржик, Л.М.Финк, Н.Н.Щелкунов "Расчет помехоустойчивости систем передачи дискретных сообщений". Справочник. - М.: Радио и связь, 1981, "Шумоподобные сигналы в системах передачи информации". Под редакцией Пестрякова В.Б. Авторы В.Б. Пестряков, В.П. Афанасьев, В.Л. Гурвиц и др. - М.: Советское радио, 1973.
Блок 11 может быть выполнен из набора идентичных независимо работающих обнаружителей сигнала 11.1-11.k, реализация каждого из которых принципиально известна и описана, например, "Шумоподобные сигналы в системах передачи информации". Под редакцией Пестрякова В.Б. Авторы В.Б.Пестряков, В.П.Афанасьев, В.Л.Гурвиц и др. - М.: Советское радио, 1973. Обнаружитель сигнала представляет собой схему выбора максимума сигнала на выходах параллельного анализатора спектра и сравнения его с порогом. Величина порога определяет вероятность ложной тревоги, а величина превышения порога сигналом - вероятность пропуска.
Блок 12 может быть выполнен из набора идентичных независимо работающих обнаружителей, информационных символов 12.1-12.k, реализация каждого из которых принципиально известна и описана в прототипе. В простейшем случае обнаружитель информационного символа может представлять собой ключ, на вход которого подается напряжение, превысившее порог от схемы обнаружения сигнала, а на управляющий вход - тактовые импульсы от генератора тактовой частоты обнаружителя преамбулы. Таким образом, если превышение порога наблюдается в моменты, синхронные с тактовыми импульсами, то это информация.
Реализация блока умножителей на постоянный коэффициент 18 принципиально известна. Он состоит из набора независимо работающих умножителей 18.1-18.k. Работа одного умножителя, содержащегося в блоке 18, описана в монографии Пауль Хоровиц и Уинфилд Хилл. Искусство схемотехники в 2-х томах. Том 1. М.: Мир, 1986 г., стр. 388.
Блок 6, как указано выше, реализуется из набора идентичных независимо работающих синтезаторов 6.1-6.k, аналогичных синтезаторам, описанным в прототипе.
Реализация блоков 3, 4, 5, 8, 9, 13, 14, 15, 16 в заявляемой широкополосной системе радиосвязи KB диапазона аналогична блокам прототипа.
Реализация второго кодера многозначного кода 19 аналогична реализации первого кодера многозначного кода 9 и может быть выполнена, например, в соответствии с книгой Кларк Дж., мл., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи. Пер. с англ. - М.: Радио и связь, 1987.
Методы реализации сдвиговых регистров принципиально известны и описаны в книге «Искусство схемотехники», издание 5-е переработанное, авторов Пауль Хоровиц и Уинфилд Хилл, М.: Мир, 1998 год, стр. 551.
Для доказательства эффективности работы заявляемого устройства приведем следующие сравнительные характеристики.
Представление сигнала, который принимает и передает радиостанция, в спектральной области можно определить следующим образом. Имеется n частот, на которых производится одновременная передача k гармонических колебаний. При этом k гармонических колебаний могут иметь любое размещение на n частотах, таким образом, всего будет
Figure 00000001
таких размещений. Фактически получаем размер алфавита передаваемых и принимаемых символов устройства-прототипа, но в отличие от устройства-прототипа в заявляемом устройстве из k гармонических колебаний m гармонических колебаний имеют амплитуду равной 2u и k-m колебаний имеют амплитуду равной 1u, где u - амплитуда одного гармонического колебания. Таким образом, появляется возможность дополнительно кодировать гармонические колебания, отличающиеся по амплитуде. Поскольку можно любым способом размещать m гармоник с увеличенной амплитудой на k частотах, на которых осуществляется передача гармонических колебаний, то размер алфавита в данном случае увеличивается на
Figure 00000002
.
В качестве примера на фиг.3 показан амплитудный спектр А(ω) одного из символов. Здесь взят символ с n=10, k=6, m=3.
Для сравнения вычислим количество бит информации в одном передаваемом символе прототипа:
Figure 00000003
где n - количество частотных позиций,
k - количество одновременно передаваемых гармонических колебаний.
Figure 00000004
При введении в состав системы связи блоков, позволяющих реализовать дополнительную модуляцию по амплитуде передаваемых гармонических колебаний, количество бит информации в передаваемом символе будет определяться как
Figure 00000005
где m - количество сигналов с большей амплитудой (таких, при передаче которых в умножителях на постоянный коэффициент была увеличена амплитуда).
Для рассматриваемого случая, когда кодирование и декодирование символов в заявляемом устройстве осуществляется независимо двумя кодерами, количество бит информации, кодируемых обоими кодерами, будет равно:
Figure 00000006
.
Полученные значения доказывают, что в заявляемом устройстве получаем существенный выигрыш в размере алфавита, а как следствие, и в количестве передаваемых бит информации, что и является решаемой задачей в данном устройстве.
В выражении (2) второе слагаемое описывает увеличение количества информации в символе за счет кодирования амплитуды передаваемых гармонических колебаний.
Следовательно, увеличение скорости при неизменной полосе частот и при сохранении количества одновременно передаваемых гармонических колебаний возрастает в t раз:
Figure 00000007
На фиг. 4 приводится рассчитанный по формуле (3) график увеличения скорости передачи информации в зависимости от изменения числа m при n=64 и k=16. Из представленного на фиг. 4 графика видно, что в данном конкретном случае достигается увеличение скорости передачи данных по KB каналу в 1,27 раз. При этом используется та же полоса частот и та же скорость манипуляции, что и в системе-прототипе.
Таким образом, при использовании заявляемого устройства достигается увеличение скорости передачи информации без расширения полосы излучаемых частот и увеличения скорости манипуляции.

Claims (1)

  1. Широкополосная система радиосвязи KB диапазона, характеризующаяся наличием как минимум двух радиостанций, каждая из которых включает радиотракт высокой частоты (ВЧ) и блок цифровой обработки сигнала (БЦОС), причем радиотракт ВЧ содержит входной тракт приемника, вход которого является ВЧ входом радиостанции, и усилитель мощности, выход которого является ВЧ выходом радиостанции и соединен с входом входного тракта приемника, выход которого соединен с входом БЦОС, который содержит два кодера многозначного кода, два декодера многозначного кода, два сдвиговых регистра, блок обнаружителей сигнала, блок обнаружителей информационных символов, обнаружитель преамбулы, генератор преамбулы, блок центрального процессора, блок быстродействующих синтезаторов, блок умножителей на постоянный коэффициент, а также последовательно соединенные аналого-цифровой преобразователь, вход которого является входом БЦОС, и параллельный анализатор спектра, при этом выход параллельного анализатора спектра соединен с объединенными k входами блока обнаружителей сигнала, k выходов которого соединены соответственно с k сигнальными входами блока обнаружителей информационных символов, k выходов которого соединены соответственно с k входами первого и второго декодеров многозначного кода, выходы которых соединены соответственно с первым и вторым входами первого сдвигового регистра, выход которого соединен с первым входом блока центрального процессора, первый выход которого является информационным выходом радиостанции, второй вход - информационным входом радиостанции; второй выход блока центрального процессора соединен с входом второго сдвигового регистра, первый и второй выходы которого соединены соответственно с входами первого и второго кодеров многозначного кода; k выходов первого кодера многозначного кода соединены соответственно с k входами блока быстродействующих синтезаторов, k выходов которого соединены соответственно с k сигнальными входами блока умножителей на постоянный коэффициент; k выходов второго кодера многозначного кода соединены соответственно с k управляющими входами блока умножителей на постоянный коэффициент, k выходов которого объединены между собой в выход БЦОС, который соединен со входом усилителя мощности радиотракта ВЧ; кроме того, второй выход блока центрального процессора через генератор преамбулы соединен с первым входом блока быстродействующих синтезаторов; первый выход блока обнаружителей сигнала через обнаружитель преамбулы соединен с объединенными k управляющими входами блока обнаружителей информационных символов.
RU2011115963/07A 2011-04-21 2011-04-21 Широкополосная система радиосвязи кв диапазона RU2465725C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011115963/07A RU2465725C1 (ru) 2011-04-21 2011-04-21 Широкополосная система радиосвязи кв диапазона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011115963/07A RU2465725C1 (ru) 2011-04-21 2011-04-21 Широкополосная система радиосвязи кв диапазона

Publications (1)

Publication Number Publication Date
RU2465725C1 true RU2465725C1 (ru) 2012-10-27

Family

ID=47147651

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011115963/07A RU2465725C1 (ru) 2011-04-21 2011-04-21 Широкополосная система радиосвязи кв диапазона

Country Status (1)

Country Link
RU (1) RU2465725C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2824041C1 (ru) * 2024-02-28 2024-08-01 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Система связи с широкополосным многочастотным сигналом в коротковолновом диапазоне частот

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751223A1 (de) * 1977-11-16 1979-05-17 Standard Elektrik Lorenz Ag Empfaenger fuer impulsfoermige funksignale, insbesondere fuer eine dme- abfrage- oder antwortstation
RU2000659C1 (ru) * 1989-07-24 1993-09-07 Воронежский научно-исследовательский институт св зи Устройство дл приема широкополосных сигналов
RU2000665C1 (ru) * 1991-06-17 1993-09-07 Воронежский научно-исследовательский институт св зи Устройство коррел ционной обработки широкополосных сигналов
RU2209511C2 (ru) * 2001-07-30 2003-07-27 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Широкополосная система радиосвязи кв диапазона
RU2221330C2 (ru) * 2002-01-10 2004-01-10 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Широкополосная система радиосвязи кв-диапазона
RU2308160C2 (ru) * 2004-08-12 2007-10-10 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Система связи с широкополосными сигналами
USRE40231E1 (en) * 1997-03-17 2008-04-08 Conexant, Inc. High data spread spectrum transceiver and associated methods
RU2407197C2 (ru) * 2002-07-18 2010-12-20 Квэлкомм Инкорпорейтед Способ и устройство для гибридной коррекции с решающей обратной связью
EP2267919A1 (en) * 2009-06-23 2010-12-29 Imec EHF wireless communication receiver using beamforming with scalable number of antenna paths

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751223A1 (de) * 1977-11-16 1979-05-17 Standard Elektrik Lorenz Ag Empfaenger fuer impulsfoermige funksignale, insbesondere fuer eine dme- abfrage- oder antwortstation
RU2000659C1 (ru) * 1989-07-24 1993-09-07 Воронежский научно-исследовательский институт св зи Устройство дл приема широкополосных сигналов
RU2000665C1 (ru) * 1991-06-17 1993-09-07 Воронежский научно-исследовательский институт св зи Устройство коррел ционной обработки широкополосных сигналов
USRE40231E1 (en) * 1997-03-17 2008-04-08 Conexant, Inc. High data spread spectrum transceiver and associated methods
RU2209511C2 (ru) * 2001-07-30 2003-07-27 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Широкополосная система радиосвязи кв диапазона
RU2221330C2 (ru) * 2002-01-10 2004-01-10 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Широкополосная система радиосвязи кв-диапазона
RU2407197C2 (ru) * 2002-07-18 2010-12-20 Квэлкомм Инкорпорейтед Способ и устройство для гибридной коррекции с решающей обратной связью
RU2308160C2 (ru) * 2004-08-12 2007-10-10 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Система связи с широкополосными сигналами
EP2267919A1 (en) * 2009-06-23 2010-12-29 Imec EHF wireless communication receiver using beamforming with scalable number of antenna paths

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Байдан И.Н., Гинзбург В.В., Дутовинов С.И., Рахович Л.М. Методы цифровой реализации агоритмов многочастотных модемов, Электросвязь, 1978, №12. Гинзбург В.В., Гиршов B.C., Кустов О.В., Лутовинов С.И., Окунев Ю.Б. Помехоустойчивость модемов типа МС, Электросвязь, 1976, №5. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2824041C1 (ru) * 2024-02-28 2024-08-01 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Система связи с широкополосным многочастотным сигналом в коротковолновом диапазоне частот

Similar Documents

Publication Publication Date Title
US8175134B1 (en) Radio communications system and method having decreased capability for detection by an adversary
US8369377B2 (en) Adaptive link communications using adaptive chaotic spread waveform
JP2008523690A (ja) マルチバンド超広帯域通信で拡張デコードを行う方法及び装置
Dutta et al. Performance of chirped-FSK and chirped-PSK in the presence of partial-band interference
US11585914B2 (en) System and methods for generating and receiving doppler tolerant multipurpose communication waveform
KR20180094658A (ko) 주파수 고효율 변복조 시스템 및 방법
RU2465725C1 (ru) Широкополосная система радиосвязи кв диапазона
Frolov et al. On a multiple-access in a vector disjunctive channel
RU2411663C1 (ru) Радиолиния с псевдослучайной перестройкой рабочей частоты
CN114374586B (zh) 数据传输方法、发射机和接收机
US10142143B2 (en) Receiving apparatus and demodulation method
RU2356167C1 (ru) Способ адаптивной передачи данных в радиолинии с псевдослучайной перестройкой рабочей частоты
RU2822453C1 (ru) Способ помехозащищенной передачи шестнадцатипозиционных сигналов на основе однополосной модуляции
US10535283B2 (en) Transmission security method using bounded arbitrary frequency modulation
Leonov et al. Application of invariant properties of chaotic signals in the synthesis of noise-immune broadband systems for data transmission
RU2663240C1 (ru) Способ защиты узкополосных каналов передачи данных в условиях многолучевого распространения радиосигналов и комплекс средств для его реализации
RU2221330C2 (ru) Широкополосная система радиосвязи кв-диапазона
US8369376B2 (en) Bit error rate reduction in chaotic communications
Qasem et al. Enhancing the power spectral density of PPM TH-IR UWB signals using sub-slots technique
Uryvskyi et al. the convolutional codesаnalysis technique on the optimum block codes grounds
CN109818635A (zh) 一种基于零中频接收机的信号传输方法
RU2824041C1 (ru) Система связи с широкополосным многочастотным сигналом в коротковолновом диапазоне частот
RU2789517C1 (ru) Способ помехозащищенной передачи дискретных сигналов на основе однополосной модуляции
RU2762376C1 (ru) Способ передачи и приема сигналов в режиме псевдослучайной перестройки рабочей частоты
RU2209511C2 (ru) Широкополосная система радиосвязи кв диапазона