JP5693877B2 - 電源のためのコントローラ、電源、および電源を制御する方法 - Google Patents

電源のためのコントローラ、電源、および電源を制御する方法 Download PDF

Info

Publication number
JP5693877B2
JP5693877B2 JP2010124365A JP2010124365A JP5693877B2 JP 5693877 B2 JP5693877 B2 JP 5693877B2 JP 2010124365 A JP2010124365 A JP 2010124365A JP 2010124365 A JP2010124365 A JP 2010124365A JP 5693877 B2 JP5693877 B2 JP 5693877B2
Authority
JP
Japan
Prior art keywords
signal
detection signal
current
coupled
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010124365A
Other languages
English (en)
Other versions
JP2010284071A (ja
JP2010284071A5 (ja
Inventor
デイビッド・カング
ウィリアム・エム・ポリブカ
Original Assignee
パワー・インテグレーションズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パワー・インテグレーションズ・インコーポレーテッド filed Critical パワー・インテグレーションズ・インコーポレーテッド
Publication of JP2010284071A publication Critical patent/JP2010284071A/ja
Publication of JP2010284071A5 publication Critical patent/JP2010284071A5/ja
Application granted granted Critical
Publication of JP5693877B2 publication Critical patent/JP5693877B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

背景情報
開示の分野
この発明は、概して電源に関し、より具体的には、この発明は、電源入力から受けた充電量を測定することによって電源の出力を調整する制御回路に関する。
背景
典型的なスイッチモード電源用途において、AC−DC電源は、実効値で100〜240ボルトの入力を通常のAC電気コンセントから受ける。電源中のスイッチは、オンとオフとに制御回路によって切換えられて、電子機器の操作または電子機器に電力を提供する電池の充電に適していてもよい調整された出力を提供する。調整出力は、典型的に、DC10ボルト未満のDC電圧である。さらに、出力からの電流は、通常、電源が電池を充電しているとき調整される。
安全機関は、一般に、電源が電源の入力と出力との間にガルバニック絶縁を提供することを要求する。ガルバニック絶縁は、DC電流が電源の入力と出力との間を流れないようにする。言い換えれば、電源の入力端子と出力端子の間に印加された高いDC電圧は、電源の入力端子と出力端子の間にDC電流を発生させない。ガルバニック絶縁の要件は、電源のコストの一因となる問題である。
ガルバニック絶縁を備えた電源は、入力を出力から電気的に分離する絶縁障壁を維持しなくてはならない。エネルギは、絶縁障壁にわたって伝達されて、電力を出力に供給しなくてはならず、多くの場合フィードバック信号の形態を取る情報は、絶縁障壁にわたって伝達されて、出力を調整する。ガルバニック絶縁は、典型的に、電磁装置と電気光学装置とで得られる。変圧器および結合インダクタなどの電磁装置は、一般に、エネルギを入力と出力との間に伝達して出力電力を提供するために用いられるが、電気光学装置は、一般に、信号を出力と入力の間で伝達して入力と出力の間でのエネルギの伝達を制御するために用いられる。
電源のコストを削減する努力は、電気光学装置および電気光学装置の関連する回路をなくすことに焦点を当ててきた。代替的な解決法は、一般に、たとえば変圧器またはたとえば結合インダクタなどの単一のエネルギ伝達要素を用いて、エネルギを出力に提供し、また出力を制御するのに必要な情報を得る。最も低コストの構成は、典型的に、制御回路と高電圧スイッチとを絶縁障壁の入力側に設置する。コントローラは、出力についての情報をエネルギ伝達要素の巻線の電圧の観察から間接的に得る。情報を提供する巻線も、絶縁障壁の入力側にある。コストと複雑さとを一層削減するために、コントローラは、エネルギ伝達要素の同じ巻線を用いて、電源への入力についての情報を得ることもできる。
絶縁障壁の入力側は、1次側と称されることがあり、絶縁障壁の出力側は、2次側と称されることがある。1次側からガルバニック絶縁されていないエネルギ伝達要素の巻線も、1次側巻線であり、1次基準巻線と呼ばれることがある。入力電圧に結合され、入力電圧からエネルギを受ける1次側にある巻線は、単に1次巻線と称されることがある。エネルギを1次側にある回路に供給する他の1次基準巻線は、それらの主な機能を説明する名前を有してもよく、たとえばバイアス巻線またはたとえば検出巻線などである。1次側巻線からガルバニック絶縁されている巻線は、2次側巻線であり、出力巻線と呼ばれることがある。
絶縁障壁の入力側にある巻線を用いて、ガルバニック絶縁された出力電圧についての情報を間接的に得ることは非常に簡単明瞭であるものの、ガルバニック絶縁された出力電流についての情報を間接的に得ることは別の難題である。多くの電源トポロジにおいて、入力巻線中の電流の測定単独では、出力電流を決定するのに不十分である。出力電流を測定するための従来の解決法は、通常、電流−電圧変換を含み、この変換は、電力を無駄にし、信号を絶縁障壁にわたって伝達するためにコストのかかる構成部品を用いる。
図面の簡単な説明
この発明の非限定的かつ非網羅的な実施例および例を以下の図面を参照して説明する。図中、同様の参照番号は、特に指定がない限りさまざまな図面を通して同様の部品を指す。
この発明の教示に従った、電源の出力を調整された電圧領域および調整された電流領域に制御する定電圧定電流コントローラを含むDC−DC電源を説明する機能ブロック図である。 この発明の教示に従った、調整された電圧の領域と調整された電流の領域とを含むものとしての電源の出力特性を説明するグラフである。 この発明の教示に従った、定電流制御回路例を説明する機能ブロック図である。 この発明の教示に従った、代替的な定電流制御回路例を説明する機能ブロック図である。 この発明の教示に従った、算術演算子回路例を説明する概略図である。 この発明の教示に従った、算術演算子回路例を説明する概略図である。 図6の算術演算子回路からの信号の波形を説明するタイミング図である。 この発明の教示に従った、調整された出力電流の領域で動作しているフライバック電源例を説明する機能ブロック図である。 この発明の教示に従った、調整された出力電圧の領域で動作しているフライバック電源例を説明する機能ブロック図である。 調整された電圧領域と調整された電流領域とを備えた出力を提供する入力電圧および出力電圧の間接検出を備えたフライバック電源例を説明する機能ブロック図である。 この発明の教示に従った、代替的な算術演算子回路例を説明する概略図である。 この発明の教示に従った、調整された電圧領域と調整された電流領域とを備えた出力を提供する電源の制御方法を説明するフロー図である。
詳細な説明
電源が調整された電圧領域と調整された電流領域とを有するガルバニック絶縁された出力を提供することを可能にする方法および装置が開示される。以下の説明において、この発明の十分な理解を与えるために数多くの特定の詳細が述べられる。しかしながら、当業者にとっては、この発明を実施するためにはその特定の詳細を採用する必要はないことは明らかであるであろう。他の例では、周知の材料または方法は、この発明を曖昧にしないために、詳細には説明されていない。
この明細書全体を通して、「1つの実施例」、「ある実施例」、「1つの例」または「ある例」の記載は、その実施例または例に関連して説明された特定の特徴、構造、または特性が、この発明の少なくとも1つの実施例に含まれることを意味する。よって、「1つの実施例において」、「ある実施例において」、「1つの例において」または「ある例において」という表現がこの明細書全体を通してさまざまな場所に表われても、必ずしもすべてが同じ実施例または例を参照しない。さらに、特定の特徴、構造、または特性は、1つ以上の実施例または例において任意の適切な組合せおよび/または下位の組合せで組合されてもよい。加えて、この明細書とともに提供される図面は、当業者への説明を目的とするものであり、図面は、必ずしも一律の縮尺に従わずに描かれていることが理解される。
図1の機能ブロック図には、入力電圧VIN105を受けて出力電圧VO140と出力電流IO135とを負荷145で発生させるDC−DC電源100の1つの例が示されている。1つの例において、電源100は、AC−DC電源であり、DC入力電圧VIN105は、入力電圧源(図示せず)から受けた、整流され、フィルタをかけられたAC入力電圧である。入力電圧VIN105は、入力帰線108に対して正である。出力電圧VO140は、出力帰線112に対して正である。
図1の例におけるDC−DC電源100は、出力電圧VO140および出力電流IO135を調整するコントローラ155によって制御されるDC−DCコンバータ115を含む。コントローラ155は、DC−DCコンバータ115の出力が定電圧(CV:constant voltage)領域と定電流(CC:constant current)領域とを有するように制御するために利用されることがあるため、CV−CCコントローラと呼ばれることがある。DC−DCコンバータ115は、典型的に、少なくとも1つのスイッチ120と、少なくとも1つの結合インダクタ125と、少なくとも1つのキャパシタ130とを含む。たとえばフライバックコンバータおよびたとえばバックコンバータの多くの変形例などの、ガルバニック絶縁された出力を提供するために典型的に用いられる脈動入力電流を備えたすべての標準的なコンバータ構成は、図1の例においてDC−DCコンバータブロック115によって表わされるスイッチと、結合インダクタと、キャパシタとの配置によって実現化されてもよい。
図1の例において、CV−CCコントローラ155は、入力電流IIN110を表わすIINSENSE信号150と、入力電圧VIN105を表わすVINSENSE信号175と、出力電圧VO140を表わすVOSENSE信号180とを受ける。図1の例において、DC−DCコンバータ115に含まれるスイッチ120は、CV−CCコントローラ155から受けたCVOUTCCOUT信号185に応答する。図1の例において、CVOUTCCOUT185は、スイッチング周期TS内でハイまたはローである論理信号である。1つの例において、スイッチ120は、CVOUTCCOUT185がハイであるとき閉じており、スイッチ120は、CVOUTCCOUT185がローであるとき開いている。閉じたスイッチは、オン状態であると称されることがある。開いたスイッチは、オフ状態であると称されることがある。言い換えると、オンになるスイッチは閉じ、オフになるスイッチは開く。
1つの例において、スイッチ120は、金属酸化物半導体電界効果トランジスタ(MOSFET)である。別の例において、CV−CCコントローラ155は、モノリシック集積回路として実現化されてもよく、または個別電気部品もしくは個別部品と集積部品との組み合わせで実現化されてもよい。CV−CCコントローラ155およびスイッチ120は、ハイブリッド集積回路かモノリシック集積回路かのいずれかとして製造された集積回路の一部を形成し得る。IINSENSE信号150を発生させる電流センサも、集積回路の一部を形成してもよい。
図1の例において、入力電流IIN110は、CVOUTCCOUT信号185がローのとき実質的にゼロである脈動電流である。入力電流IIN110の波形は、2つの別個の形状を示すことがある。各形状は、DC−DCコンバータ115の異なる動作モードに対応する。入力電流が、スイッチ120が閉じた直後に大きさがゼロである三角形状を有するとき、DC−DCコンバータ115は、不連続伝導モード(DCM:discontinuous conduction mode)で動作している。入力電流が、スイッチ120が閉じた直後に大きさがゼロでない台形形状を有するとき、DC−DCコンバータ115は、連続伝導モード(CCM:continuous conduction mode)で動作している。動作モードは、入力電圧VIN105、出力電圧VO140、負荷145、およびコンバータの特定の設計に依存する。たとえば、動作モードは、典型的に、入力電圧VIN105が上昇するにつれてCCMからDCMに変化し、動作モードは、典型的に、負荷が増加するにつれてDCMからCCMに変化する。DC−DCコンバータ115は、入力電圧および負荷の制限された範囲内でCCMのみで動作するまたはDCMのみで動作するように設計されてもよいことが理解される。この発明に従った例は、DCMおよびCCM動作のための出力電圧および出力電流の所望の調整を提供する単一の設計を可能にする。
図1の例におけるCV−CCコントローラ155は、定電流制御回路160と、定電圧制御回路170と、論理回路165とを含む。図1の例において、定電流制御回路160および定電圧制御回路170は、入力電流検出信号IINSENSE150と、入力電圧検出信号VINSENSE175と、出力電圧検出信号VOSENSE180とを受ける。
入力電圧検出信号VINSENSE175および出力電圧検出信号VOSENSE180は、それぞれ入力電圧VIN105および出力電圧VO140と既知の関係を有する任意の信号であってもよいことが理解される。言い換えれば、それぞれの信号VINSENSE175およびVOSENSE180を得るために入力電圧を直接検出するまたは出力電圧を直接検出することは必要ではない。たとえば、インダクタ中の電流は、インダクタにかかる電圧に正比例する速度で変化する。したがって、1つの例において、信号VINSENSE175は、インダクタ中の電流が第1の値よりも大きく第2の値よりも小さい間ハイであるタイミング信号であってもよい。1つの例において、VINSENSE175は、インダクタ中の電流が第1の値から第2の値に変化するのにかかる時間量を表わしてもよい。1つの例において、VINSENSE175は、デジタル信号の平均値を表わしてもよく、このデジタル信号は、インダクタ中の電流が第1の値から第2の値に変化するのにかかる時間中、ハイであり、そのため入力電圧VIN105の値を導き出すことができる。
定電流制御回路160は、制御信号190を発生させて、DC−DCコンバータ115を、調整された出力電流領域で動作させる。定電圧制御回路170は、制御信号195を発生させて、DC−DCコンバータ115を調整された出力電圧領域で動作させる。論理回路165は、制御信号195および190に応答して、適切なCVOUTCCOUT信号185を発生させて、DC−DCコンバータ115中のスイッチ120を、図2中のグラフによって示されるような調整された電圧領域および調整された電流領域のために制御する。
図2は、調整された出力電圧の領域210と調整された出力電流の領域220とを有する電源の出力特性200のグラフ例である。出力特性200は、図1の電源100の1つのあり得る出力特性である。この例は、出力電流IO135が、1つの例においては調整された値IREG240であってもよいしきい値電流未満であるとき、出力電圧VO140が実質的に一定の調整された値VREG230であることを示している。この例は、出力電圧VO140がしきい値電圧値未満であり最適自動再始動電圧VAR260よりも大きいとき、出力電流IO135が実質的に一定の調整された値IREG240であることも示している。1つの例において、しきい値電圧値は、調整された値VREG230であってもよい。
調整された電流領域220をゼロボルトの出力電圧まで拡張することが望ましくない例もある。たとえば、電池を充電する電源は、通常、ゼロボルトの出力電圧を有さない。なぜなら、完全に放電された電池でさえ、充電されているとき最小電圧を示すためである。したがって、最小値未満の出力電圧は、電池の不良を示し、電源は、典型的に、そのような状況下で、調整されたよりも実質的に少ない電流を供給することを要求される。
他の例において、実用的回路の制約は、出力電圧がゼロボルトであるとき電源が電流を指定の限度内に調整しないようにするであろう。したがって、電源は、出力電圧が最小値を下回るとき、自動再始動モードに入って、平均出力電流が最大所望値を超えないことを保証してもよい。自動再始動モードで動作しているとき、電源は、典型的に、通常の状況下で出力電圧を自動再始動値VAR260より上に上昇させるのに十分に長い時間、電源の最大出力電流を供給する。出力電圧が、割当られた時間の後、自動再始動値VAR260を上回っていない場合、電源は、典型的に、数百または数千のスイッチング周期であってもよいかなり長い時間出力電流を供給せず、その後で最大出力電流の供給を繰返すであろう。
負荷145の特性は、電源が出力特性200のグラフ上のどこで動作するかを決定する。負荷145が、値IREG240よりも実質的に少ない低い電流を要求するとき、出力は、値がVREG230の調整された電圧であるだろう。この条件下で、論理回路165は、定電圧制御回路170からの制御信号195を選択して、DC−DCコンバータ115のスイッチ120を制御する。負荷145がより多くの電流を調整された電圧VREGで取るにつれて、出力からの電力は、電力がDC−DCコンバータ115の設計限界に達するまで増加するであろう。DC−DCコンバータ115の設計限界は、最大出力電力250に対応する。負荷がIREG240よりも多い電流を要求するとき、出力電圧VO140は、調整された値VREG230より下に下がる。論理回路165は、出力電圧VO230の低下に対する定電圧制御回路170の応答を検出し、定電流制御回路160からの制御信号190を選択して、出力電圧がグラフ上の点270で自動再始動値VAR260に下がるまで、出力電流IO135を値IREG240に調整する。
負荷145に供給された出力電流IO135が値IREG240未満であり、かつ出力電圧VOが自動再始動値VAR260よりも大きいとき、出力電圧VO140は、調整された値VREG230に達するまで上昇する。負荷電流がさらに減少するとき、論理回路165は、出力電圧VO230の上昇に対する定電圧制御回路170の応答を検出し、定電圧制御回路170からの制御信号195を選択して、出力電圧VO140を値VREG230に調整する。
図1の電源例100における定電圧制御回路170は、電源の出力電圧の調整のために、この技術分野において知られているいくつかの技術のうち任意のものを用いてもよい。こういった技術の例には、一定のスイッチング周期でのパルス幅変調(PWM)、可変スイッチング周期でのPWM、固定パルス幅でのパルス周波数変調(PFM)、およびオン/オフ制御が含まれる。パルス幅変調は、スイッチング周期中にスイッチが伝導する時間の長さを変化させる技術である。スイッチング周期は、一定か可変かのいずれかであってもよい。スイッチング周期が一定であるとき、スイッチが伝導する時間の長さと、スイッチが伝導しない時間の長さとの両方が変化しなくてはならない。スイッチング周期が可変であるとき、スイッチが伝導する時間の長さとスイッチが伝導しない時間の長さとは、独立して変化してもよい。パルス周波数変調は、オン時間を実質的に一定に維持しながら、スイッチがオフである時間の長さを変化させる技術である。オン/オフ制御は、スイッチング周期中、スイッチに伝導させるかスイッチが伝導しないようにするかのいずれかである技術であって、スイッチが伝導するスイッチング周期もあればスイッチが伝導しないスイッチング周期もある一連の定期的なスイッチング周期を発生させる。よって、この発明の例は、出力電圧を調整する多くの異なる技術と共に用いられてもよい。
この開示において説明される発明の例は、入力電流IIN110を電流検出信号IINSENSE150として検出する多くの技術も用いてもよい。図1中の電流センサ記号114は、多くの知られている電流検出法のうち任意のものを表わしてもよい。たとえば、入力電流は、個別レジスタ上の電圧として、または変流器からの電流として、または入力電流がトランジスタ中の電流と同じであるとき金属酸化物半導体電界効果トランジスタ(MOSFET)のオン抵抗にかかる電圧として、または電流検出電界効果トランジスタ(senseFET)の検出出力からの電流として検出されてもよい。
出力電圧VO140を入力帰線108に対する電圧として間接的に検出することは有益であるものの、ガルバニック絶縁が不要である例においてまたは電気光学絶縁のコストが許容可能である例において、出力電圧検出信号VOSENSE180は、出力帰線112に対する出力電圧VO140の測定から直接得られてもよい。出力電圧VO140の直接検出は、典型的に、定出力電圧の領域210における所望の値VREG230からの偏差を、間接検出で達成し得るよりも小さくするであろうことが理解される。出力電圧検出信号VOSENSE180は、間接か直接かいずれかの検出方法で得られてもよい。
この発明の例は、出力電流IO135の直接測定がない状態で、調整された電流領域220を備えた出力を提供する。これは、以下に説明されるさまざまな信号値間の数学的関係を利用することによって達成される。
無損失電力コンバータについて、平均入力電力は、平均出力電力と同一である。スイッチング周期TS内の電力バランスは、以下のように書かれてもよい。
Figure 0005693877
スイッチング周期中に時間と共に実質的に変化する唯一の量が入力電流IIN110である図1の例などのDC−DCコンバータについては、方程式(1)は以下のように簡約される。
Figure 0005693877
方程式(2)中の積分は、スイッチング周期TSに亘って入力電圧源から取られた(かつDC−DCコンバータによって受けられた)全電荷Qを表わす。
Figure 0005693877
したがって、出力電流を、他の量の項で以下のように書いてもよい。
Figure 0005693877
出力電流IOを所望の値IREGに保つために、方程式(4)中の電荷Qは、以下のように制御される。
Figure 0005693877
方程式(5)は、各スイッチング周期中に入力電圧105源から取られた電荷が、出力電圧VOに正比例し、入力電圧VINに反比例することを示している。方程式(5)の電荷関係は、方程式(5)の両辺をキャパシタンスCで除算することによって電圧関係に変換されてもよい。
Figure 0005693877
電荷Qは、入力電流IIN110の積分かまたは入力検出信号IINSENSE150の積分かのいずれかから決定されてもよい。同様に、方程式(6)の右辺は、検出量VOSENSEおよびVINSENSの項で表わされてもよく、スケーリング因子は、スケーリング電圧VK中に説明されており、VKは、以下の方程式(8)に与えられている。したがって、我々は、定出力電流に対する要件を以下のように書くことができ、
Figure 0005693877
式中、VQは、スイッチング周期TS内にDC−DCコンバータによって受けられた電荷を表わす積分された信号であり、VKは、スケーリング電圧である。スケーリング電圧VKは、検出比とほかの既知の量から以下のように決定される。
Figure 0005693877
方程式(7)によって説明される関係は、制御回路内で数多くのやり方で用いられて、定電流領域を備えた出力を有するDC−DCコンバータを制御してもよい。図3には、この発明の教示に従った定電流制御回路310の1つの例が説明されている。図3の定電流制御回路例310において、リセット可能な積分器320は、DC−DCコンバータ115中のスイッチ120が閉じている間、入力電流検出信号IINSENSE150を積分する。リセット可能な積分器320は、1つの例においてスイッチング周期TS中に入力電圧VIN105源から取られた充電に比例する電圧である積分された信号VQ330を発生させる。したがって、積分された信号VQ330は、充電信号と称されてもよい。乗算器360は、充電信号VQ330と入力電圧検出信号VINSENSE175との積をスケーリング電圧VKでスケーリングしたものである乗算信号340を発生させる。
図3の例において、クロック信号390は、スイッチング周期TSの始めで、ハイになって、ラッチ380を設定する。ラッチ380の出力は、ラッチ380が設定されるとハイになる制御信号CCOUT190である。制御信号CCOUT190は、ラッチ380がリセットされるとローになる。比較器370の出力は、乗算信号340がVOSENSE信号180より大きくなると、ハイになって、ラッチ380をリセットして、スイッチ120を開く。図3に説明される例において、リセット可能な積分器320は、制御信号CCOUT190の立下がりでリセットされる。言い換えれば、図3の例における定電流制御回路310は、スイッチング周期TSにおいてスイッチ120を開いて、方程式(7)が以下のように一方の辺に出力電圧検出信号VOSENSE180のみを有するように変形されたときの方程式(7)の要件を満たす。
Figure 0005693877
つまり、定電流制御回路310は、制御信号CCOUT190を生成して、スイッチ120の切換を制御して、充電信号VQ330が出力電圧検出信号VOSENSE180と入力電圧検出信号VINSENSE175の比に比例するよう電源の出力電流を調整する。
図4の回路例には、図3のコントローラ例と異なるようにCCOUT信号を発生させる代替的な定電流制御回路410が示されている。定電流制御回路例410は、入力電圧検出信号VINSENSE175ならびにスケーリング電圧VKでスケーリングされた出力電圧検出信号VOSENSE180の乗算、除算およびスケーリングを行なう算術演算子回路420を含む。算術演算子回路420の出力430は、方程式(7)の右辺にある項と等しい基準信号VQREFである。
Figure 0005693877
よって、算術演算子420は、出力電圧検出信号を入力電圧検出信号で除算し、その結果をスケーリング因子VKでスケーリングして、基準信号VQREFを生成するように結合されている。図4の例において、クロック信号390は、スイッチング周期TSの始めで、ハイになって、ラッチ380を設定する。ラッチ380の出力は、ラッチ380が設定されるとハイになる制御信号CCOUT190である。制御信号CCOUT190は、ラッチ380がリセットされると、ローになる。比較器370の出力は、充電信号VQ330がVQREF信号430よりも大きくなると、ハイになって、ラッチ380をリセットして、スイッチ120を開き、このVQREF信号は、示される例において、出力電圧と入力電圧の比に比例する。よって、定電流制御回路410は、制御信号CCOUT190を生成して、スイッチ120の切換を制御して、充電信号VQ330が出力電圧検出信号VOSENSE180と入力電圧検出信号VINSENSE175の比に比例するよう電源の出力電流を調整する。
図3および図4のリセット可能な積分器例320は、キャパシタと、キャパシタを充電する電流源と、キャパシタを放電させるスイッチとを含んでもよい。別の例において、リセット可能な積分器320は、2方向積分器であってもよい。つまり、リセット可能な積分器320は、あるスイッチング周期TS中にキャパシタを充電することによって電流検出信号IINSENSE150を積分してもよく、次に後続のスイッチング周期においてキャパシタを放電させることによって電流検出信号IINSENSE150を積分してもよい。そのような2方向積分器は、制御信号CCOUT190に対して高い最大デューティ比(たとえば99%−100%)が所望される用途において有用であってもよい。リセット可能な積分器回路例は、後にこの開示中で述べられる。
図5には、この発明の教示に従った、図3の乗算器360の機能と図4の算術演算子420の機能とを果たしてもよい回路例500が示されている。図5の回路において、バイポーラNPNトランジスタ530、520、525、および555は整合されている。非常に良好な近似で、バイポーラトランジスタのベース・エミッタ電圧は、コレクタ電流の自然対数に正比例する。つまり、関心領域における実用値(practical value)は、
Figure 0005693877
であり、式中、VBEは、ベース・エミッタ電圧であり、VTは、物理定数によって定められる熱電圧であり、ICは、コレクタ電流であり、ISは、トランジスタのベース・エミッタ接合の逆飽和電流である。
図5の回路については、以下のとおりである。
Figure 0005693877
したがって、全トランジスタのベース電流が無視できるものである条件下で、方程式(11)の関係は、電流IX505とIY560とが、以下の式による関係があることを必要とする。
Figure 0005693877
言い換えれば、方程式(11)の対数関係の図5の回路への適用により、入力電流IX505が、電流源510および535の値IC2によって乗算されることが示される。入力電流IX505が、電流源515および540の値IC3によって除算されることも示される。したがって、IX505が第1の信号に比例し、電流源510および535が第2の信号に比例するとき、2つの信号の乗算は、図5中の回路によって得られてもよい。電流源515および540が第3の信号に比例するとき、第3の信号の逆数による乗算も、得られてもよい。図5の回路例の多くの適切な変形例がこの技術分野において知られている。
1つの例において、電流源IC2510および535は、スケーリング電圧Vkを表わす値に一定であり、電流源IC3515および540は、入力電圧検出信号VINSENSE175によって制御される可変電流源である。よって、入力電流IXが出力電圧検出信号VOSENSE180に正比例するので、方程式10に従って、出力電流IYは、基準信号VQREF430を表わす。
図6は、図4の例の定電流制御回路410において信号VQREF430を提供してもよい別の回路の概略図600である。図6の回路例は、結果の所望される精度を得るために、整合されたバイポーラトランジスタを必要としないという望ましい特徴を有する。
図6の回路例は、一定の速度で2つの固定値の間を変化している信号に必要な時間は、変化の速度に反比例するという原理を用いている。逆に、一定の速度で固定時間の間変化している信号は、変化の速度に正比例する量だけ変化するであろう。次に、図6の回路がどのように時間、変化の速度および固定値を用いて、出力電圧VO140に正比例しかつ入力電圧VIN105に反比例する基準信号VQREF430を発生させるのかが示される。
図6の回路例は、電源の動作のためのタイミング信号を提供する発振器675を含む。図7は、回路600中の信号のタイミング図700である。タイミングをとるための便利な基準信号は、DMAX信号680である。DMAX信号680は、時間t0740と時間t3730との間でローである。DMAX信号680は、時間t3730と時間t4750との間でハイである。スイッチ120は、DMAX680がハイであるとき閉じていてもよい。スイッチ120は、DMAX680がローであるとき開いていなくてはならない。したがって、DMAXは、スイッチ120の最大オン時間TONMAXの間ハイである。
図6の回路例は、入力電圧VIN105に正比例する電流を有する可変電流源605を含む。入力電圧VIN105と電流源605の電流との比は、抵抗RVINである。電流源605は、図6の例において、入力電圧検出信号VINSENSE175によって制御される。
図6の回路例は、出力電圧VO140に正比例する電流を有する可変電流源615も含む。出力電圧VO140と電流源615の電流との比は、抵抗RVOである。電流源615は、図6の例において、出力電圧検出信号VOSENSE180によって制御される。
図7の波形によって説明される図6の回路例において、リセット信号670は、DMAX信号680がローになった後、時間t1720までハイである。リセット可能な積分器685および690は、リセット信号670がハイになるとリセットされる。図7にはキャパシタCRAMP640およびCT&H665がゼロボルトにリセットされて示されているものの、1つの例において、キャパシタCRAMP640およびCT&H665は、電流源605および615からの充電がそれぞれキャパシタCRAMP640およびCT&H665の線形動作範囲において起こるよう、ゼロでない電圧にリセットされる。図6の回路例において、設定信号655は、リセット信号670の立下がりでハイになる。設定信号655の立上がりは、フリップフロップ675を設定する。フリップフロップ675が設定されると、フリップフロップ675の出力にあるトラック信号650がハイになって、nチャネルトランジスタ645が電流源615からの電流を伝導することを可能にする。
MAX信号680がローであるとき、pチャネルトランジスタ695は、電流源605からの電流を伝導する。リセット信号670が時間t1710でローになると、リセット可能な積分器685のnチャネルトランジスタ635は、伝導を止めて、リセット可能な積分器685のキャパシタCRAMP640が電流源605からpチャネルトランジスタ695を通して充電されることを可能にする。また時間t1710において、リセット可能な積分器690のnチャネルトランジスタ660は、伝導を止めて、トラック・ホールドキャパシタCT&H665が電流源615からnチャネルトランジスタ645を通して充電されることを可能にする。キャパシタCT&H665の充電は、電圧VT&H430を発生させる。
キャパシタCRAMP640の充電は、比較器625によって任意基準電圧VA620と比較される電圧VRAMP610を発生させる。電圧VRAMP610は、時間t2720で電圧VA620よりも大きくなって、比較器625の出力630がフリップフロップ675をリセットすることを引き起こす。フリップフロップ675が時間t2720でリセットされると、トラック信号650は、ローになって、電流源615がトラック・ホールドキャパシタCT&H665を充電することを止めさせる。
トラック・ホールドキャパシタCT&H665が時間t2720で充電を止めると、電圧VT&H430は、方程式(10)のVQREFに必要な値に達している。キャパシタCRAMP640は、DMAX680がハイになると、時間t3730で充電を止める。したがって、電圧VT&H430は、時間t2720から時間t4750まで値VQREFにあり、スイッチ120が閉じた後、電圧VQ330と比較されてもよい。図6の回路例について、VQREFの値は、以下のとおりである。
Figure 0005693877
VIN、RVO、CRAMP、CT&H、およびVAの値は、方程式(7)の要件を満たすように選択されてもよい。したがって、図6の回路例600は、ある継続時間、2つの信号を積分して、出力電圧VO140を表わす値に正比例しかつ入力電圧VIN105を表わす値に反比例するスイッチング周期TS内の値VQREFを提供する。
図8には、フライバックコンバータとして知られる特定のDC−DCコンバータを含む電源の1つの例800が示されている。図8のフライバックコンバータ例は、結合インダクタT1 125であり変圧器と称されることがあるエネルギ伝達要素を含む。結合インダクタT1 125は、入力電圧VIN105源に結合された一次巻線820を有する。結合インダクタT1 125は、出力帰線112に結合された二次巻線825を有する。
図8の電源例において、一次巻線820の一方の端部に結合されたスイッチS1 120は、コントローラ155からの駆動信号185に応答して開閉する。1つの例において、スイッチS1 120は、金属酸化物半導体電界効果トランジスタ(MOSFET)であってもよい。別の例において、スイッチS1 120は、バイポーラ接合トランジスタ(BJT)であってもよい。さらに別の例において、スイッチS1 120は、絶縁ゲートバイポーラトランジスタ(IGBT)であってもよい。クランプ回路805は、一次巻線820の両端間に結合されて、スイッチS1 120が開くと一次巻線820にかかる電圧を制限する。
図8の電源例において、コントローラ155は、入力電圧検出信号175、出力電圧検出信号180および入力電流検出信号150に応答して、駆動信号185を生成する。入力電流検出信号150は、スイッチS1 120中の電流ID815の値を表わす。図8の電源例において、電流ID815は、スイッチS1 120が閉じているとき、入力電流IIN110と同じである。この技術分野において実施されたスイッチ中の電流を検出するいくつかの方法のうち任意のものが、電流検出信号150を提供してもよい。図8の例における入力電流検出信号150の波形は、電源が連続伝導モードで動作していることを示している。
図8の電源例において、スイッチS1 120の切換は、二次巻線825中に脈動電流を発生させる。二次巻線825中の電流は、ダイオードD1 810によって整流され、キャパシタC1 130によってフィルタをかけられて、負荷145への実質的に直流の出力電圧VO140および出力電流IO135を発生させる。
図8の例には、図2のグラフに示されるような調整された出力電流の領域220で動作している電源800が説明されている。図8の例における出力電圧VO140は、調整された値VREG230を下回る。したがって、定電圧制御回路170は、常にハイである出力CVOUT195を発生させる。発振器675は、時間TONMAXの間ハイである信号DMAX680を発生させ、定電流制御回路160は、TONMAXよりも短い時間TONCCの間ハイである制御信号CCOUT190を発生させる。論理回路165は、図8の例において信号CCOUT190、CVOUT195およびDMAX680を受けて、駆動信号185を発生させるANDゲートである。ハイ出力185を発生させるためにはANDゲート165への全入力がハイでなくてはならないので、図8の電源例におけるスイッチS1 120は、定電流制御回路160の制御下で動作する。
図9の例には、図2のグラフに示されるような調整された出力電圧の領域210で動作しているフライバック電源900が説明されている。図9の例における出力電流IO135は、調整された値IREG240を下回る。したがって、定電流制御回路160は、常にハイである出力信号CCOUT190を発生させる。発振器675は、時間TONMAXの間ハイである信号DMAX680を発生させ、定電圧制御回路170は、TONMAXより短い時間TONCVの間ハイである信号CVOUT195を発生させる。ハイ出力185を発生させるためにはANDゲート165への全入力がハイでなくてはならないため、図9の電源例におけるスイッチS1 120は、定電圧制御回路170の制御下で動作する。
図10には、3つの巻線を有する結合インダクタT1 1005を含むフライバック電源1000の例が示されている。結合インダクタT1 1005は、電圧VBを提供する巻線1010を含む。1つの例において、巻線1010上の電圧VBは、平均電圧がゼロのAC電圧である。1つの例において、巻線1010上の入力帰線108に対して正の電圧は、出力電圧VO140を表わし、巻線1010上の入力帰線108に対して負の電圧は、入力電圧VIN105を表わす。したがって、巻線1010からの信号1015は、入力電圧検出信号VINSENSE175と、出力電圧検出信号VOSENSE180とを合成してもよい。合成電圧検出信号1015は、コントローラ155において受けられてもよい。図10の例には、電源例が不連続伝導モードで動作していることを示す入力電流検出信号IINSENSE150および合成電圧検出信号1015の波形が示されている。図10の電源1000は、入力電圧VIN105が低下するときまたは出力電流IO135が増加するとき連続伝導モードで動作してもよいことが理解される。
図11には、図10の電源例の合成電圧検出信号1015と共に用いるための図6の回路例600への追加を含む回路図例1100が示されている。図11の例は、VINSENSE信号175とVOSENSE信号180とを合成電圧検出信号1015から抽出する信号分離器回路1105を含む。1つの例において、信号分離器回路1105は、合成電圧検出信号1015を整流する。1つの例において、整流された信号は、CVOUTCCOUT185がハイになると、サンプリングされ、ホールドされて、VINSENSEを発生させ、整流された信号は、CVOUTCCOUTがローになると、サンプリングされ、ホールドされて、VOSENSE180を発生させる。
図12は、この発明の教示に従った、調整された電圧の領域と調整された電流の領域とを備えた出力を有する図10の電源例の制御方法を説明するフローチャート1200である。
ステップ1202において出力電圧ゼロおよび出力電流なしで開始した後、ステップ1204において自動再始動動作を行う。自動再始動モードの間、ステップ1206は、スイッチS1 120が閉じているときのVINSENSEの値を記憶し、ステップ1208は、スイッチS1 120が開いているときのVOSENSEの値を記憶する。
ステップ1210は、出力電圧VO140を自動再始動しきい値電圧VAR260と比較する。出力電圧VO140が自動再始動しきい値電圧VAR260よりも大きい場合、自動再始動は、ステップ1212において終了する。出力電圧VO140が、自動再始動しきい値電圧VAR260よりも大きくない場合、自動再始動は、ステップ1206において継続する。
ステップ1212における自動再始動の終了後、ステップ1214において新しいスイッチング周期が始まる。ステップ1216において、入力電流検出信号IINSENSE150の積分器を初期値にリセットする。ステップ1218は、出力電圧VO140を調整された値VREG230と比較する。出力電圧VO140が調整された値VREG230未満である場合、スイッチS1 120は、ステップ1220において閉じる。出力電圧VO140が調整された値VREG230未満でない場合、スイッチS1 120は、ステップ1232において開いたままであり、ステップ1234においてVOSENSE180の値が記憶され、ステップ1236において出力電圧VO140が自動再始動しきい値電圧VAR260と比較される。
ステップ1236において出力電圧VO140が自動再始動しきい値電圧VAR260未満である場合、フローは、ステップ1204に戻って、自動再始動を行なう。入力電圧VO140がステップ1236において自動再始動しきい値電圧VAR260未満でない場合、コントローラは、ステップ1238においてスイッチング周期の終わりを待ち、その後でステップ1214において別のスイッチング周期が始まる。
ステップ1220においてスイッチS1 120が閉じた後、ステップ1222は、VINSENSE175の値を記憶する。次にステップ1224において、信号DMAX680、CVOUT195およびCCOUT190の集合的な状態を評価する。DMAX680、CVOUT195およびCCOUT190がすべて論理ハイレベルにある場合、ステップ1226で入力検出信号IINSENSE150の積分が始まる。信号DMAX680、CVOUT195およびCCOUT190のうちいずれかが論理ローレベルにある場合、ステップ1232においてスイッチS1 120が開く。
1226において入力電流検出信号IINSENSE150の積分が始まった後、ステップ1228において積分VQ330の結果を基準値VQREF430と比較する。VQ330がVQREF430未満である場合、フローはステップ1224に戻る。VQ330が、VQREF430未満でない場合、ステップ1230においてCCOUT190を論理ローレベルに設定した後で、フローはステップ1224に戻る。
フロー図1200において見られるプロセスブロックのうちいくつかまたはすべての順序は、限定的なものであるとみなされるべきでない。そうではなく、この開示の恩恵を受ける当業者は、プロセスブロックのうちいくつかは、説明されていないさまざまな順序で実行されてもよいことを理解するであろう。
この発明の図示された例の上記の説明は、要約に説明されたことも含めて、網羅的であることまたは開示された厳密な形態に限定することを意図しない。この発明の特定の実施例および例がこの明細書中で例示を目的として説明されたが、さまざまな均等な変形が、この発明のより広い趣旨および範囲から逸脱することなく可能である。それどころか、特定の電圧、電流、周波数、出力領域値、時間などは、説明を目的として与えられたものであり、他の値もこの発明の教示に従って他の実施例および例において用いられてもよいことが理解される。
こういった変形は、上記の詳細な説明に照らして、この発明の例に対して行なうことができる。以下の特許請求の範囲に用いられる用語は、明細書および特許請求の範囲に開示された特定の実施例にこの発明を限定するよう解釈されるべきではない。そうではなく、範囲は、確立されたクレーム解釈論に従って解釈されるべきである以下の特許請求の範囲によってのみ決定されるべきである。したがって、この明細書および図面は、限定的なものとしてではなく例示的なものとして考えられるべきである。
100 電源、105 入力電圧VIN、108 入力帰線、110 入力電流IIN、112 出力帰線、114 電流センサ、115 DC−DCコンバータ、120 スイッチ、125 結合インダクタ、130 キャパシタ、135 出力電流IO、140 出力電圧VO、145 負荷、150 入力電流検出信号IINSENSE、155 CV−CCコントローラ、160 定電流制御回路、165 論理回路、170 定電圧制御回路、175 入力電圧検出信号VINSENSE、180 出力電圧検出信号VOSENSE、185 論理信号CVOUTCCOUT、190 制御信号CCOUT、195 制御信号CVOUT

Claims (25)

  1. 電源のためのコントローラであって、前記コントローラは、
    入力電流検出信号、入力電圧検出信号および出力電圧検出信号を受けるように結合され、電源のスイッチの切換を制御する制御信号を生成することによって電源の出力電流を調整するように構成された定電流制御回路と、
    前記定電流制御回路に含まれており、前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、電源の入力電圧源から取られた充電を表わす積分された信号を生成するように結合された積分器とを備え、前記定電流制御回路は、前記積分された信号が前記出力電圧検出信号と前記入力電圧検出信号の比に比例するよう前記スイッチの切換を制御するように構成されている、コントローラ。
  2. 前記制御信号は、第1の制御信号であり、前記コントローラは、前記出力電圧検出信号に応答して第2の制御信号を生成して、前記スイッチの切換を制御して、電源の出力電圧を調整する定電圧制御回路をさらに備える、請求項1に記載のコントローラ。
  3. 前記定電圧制御回路に結合されていて、前記第2の制御信号に応答して前記スイッチの切換を制御して、前記出力電流がしきい値電流未満であるとき電源の前記出力電圧を調整する論理回路をさらに備え、かつ前記論理回路は、前記定電流制御回路に結合されていて、前記第1の制御信号に応答して前記スイッチの切換を制御して、前記出力電圧がしきい値電圧未満であるとき前記出力電流を調整する、請求項2に記載のコントローラ。
  4. 最大デューティサイクル信号を生成する発振器をさらに備え、前記論理回路の第1の入力は、前記第1の制御信号を受けるように結合されており、前記論理回路の第2の入力は、前記第2の制御信号を受けるように結合されており、前記論理回路の第3の入力は、前記最大デューティサイクル信号を受けるように結合されている、請求項3に記載のコントローラ。
  5. 出力電圧は、前記出力電圧の調整時、前記しきい値電圧に調整され、前記出力電流は、前記出力電流の調整時、前記しきい値電流に調整される、請求項3に記載のコントローラ。
  6. 前記コントローラは、前記出力電圧検出信号と前記入力電圧検出信号の比に比例した値に達している積分された信号に応答して、前記スイッチをオン状態からオフ状態に切換える、請求項1に記載のコントローラ。
  7. 前記定電流制御回路は、前記入力電圧検出信号を乗算、除算、またはスケーリングするように結合された算術演算子回路をさらに含む、請求項1に記載のコントローラ。
  8. 前記算術演算子回路は、前記出力電圧検出信号を前記入力電圧検出信号で除算して、基準信号を生成するよう結合されており、前記定電流制御回路は、前記基準信号を受けるように結合された第1の入力と、前記積分された信号を受けるように結合された第2の入力と、前記制御信号を出力するように結合された出力とを有する比較器をさらに含む、請求項7に記載のコントローラ。
  9. 前記算術演算子回路は、前記入力電圧検出信号を前記積分された信号で乗算して、乗算信号を生成するように結合されており、前記定電流制御回路は、前記乗算信号を受けるように結合された第1の入力と、前記出力電圧検出信号を受けるように結合された第2の入力と、前記制御信号を出力するように結合された出力とを有する比較器をさらに含む、請求項7に記載のコントローラ。
  10. 前記入力電圧検出信号によって制御されて、第1の電流を生成する第1の可変電流源と、
    前記第1の電流を積分して、電圧ランプ信号を生成するように結合された第1の積分器と、
    前記出力電圧検出信号によって制御されて、第2の電流を生成する第2の可変電流源と、
    前記スイッチがオフ状態のとき前記第2の電流を積分して、トラック・ホールド電圧を提供するように結合された第2の積分器とをさらに備え、前記トラック・ホールド電圧は、前記電圧ランプ信号が基準電圧に達する時間での前記出力電圧検出信号と前記入力電圧検出信号の比に比例し、
    前記トラック・ホールド電圧を受けるように結合された第1の入力と、前記積分された信号を受けるように結合された第2の入力と、前記制御信号を出力するように結合された出力とを有する比較器をさらに備える、請求項1に記載のコントローラ。
  11. 電源の前記入力電圧および前記出力電圧を表わす合成電圧検出信号を受けるように結合される入力端子と、
    前記入力端子と前記定電流制御回路との間に結合されて、前記合成電圧検出信号を前記入力電圧検出信号と前記出力電圧検出信号とに分離する信号分離器とをさらに備える、請求項1に記載のコントローラ。
  12. 電源のためのコントローラであって、前記コントローラは、
    入力電流検出信号、入力電圧検出信号および出力電圧検出信号を受けるように結合され、電源のスイッチの切換を制御する制御信号を生成することによって電源の出力電流を調整するように構成された定電流制御回路と、
    前記定電流制御回路に含まれており、前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、電源の入力電圧源から取られた充電を表わす積分された信号を生成するように結合された積分器と、
    前記出力電圧検出信号と前記入力電圧検出信号の比に比例した基準信号を生成するように結合された算術演算子回路と、
    前記積分器および前記算術演算子回路に結合された比較器とを備え、前記比較器は、前記基準信号の値に達している前記積分された信号に応答して、前記スイッチをオフ状態にするように結合される、コントローラ。
  13. 前記スイッチの切換を制御して、前記出力電圧検出信号に応答して電源の出力電圧を調整する定電圧制御回路をさらに備え、
    出力電圧は、前記出力電圧の調整時、しきい値電圧に調整され、前記出力電流は、前記出力電流の調整時、しきい値電流に調整される、請求項12に記載のコントローラ。
  14. 前記算術演算子回路は、前記出力電圧検出信号を前記入力電圧検出信号で除算して、前記基準信号を生成するように結合されている、請求項12に記載のコントローラ。
  15. 前記算術演算子回路は、
    前記入力電圧検出信号によって制御されて、第1の電流を生成する第1の可変電流源と、
    前記第1の電流を積算して、電圧ランプ信号を生成するように結合された第1の積分器と、
    前記出力電圧検出信号によって制御されて、第2の電流を生成する第2の可変電流源と、
    前記スイッチがオフ状態のとき前記第2の電流を積分して、前記基準信号を提供するように結合された第2の積分器とを含み、前記基準信号は、前記電圧ランプ信号が基準電圧に達する時間での前記出力電圧検出信号と前記入力電圧検出信号の比に比例する、請求項12に記載のコントローラ。
  16. 電源のためのコントローラであって、前記コントローラは、
    入力電流検出信号、入力電圧検出信号および出力電圧検出信号を受けるように結合され、電源のスイッチの切換を制御する制御信号を生成することによって電源の出力電流を調整するように構成された定電流制御回路と、
    前記定電流制御回路に含まれており、前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、電源の入力電圧源から取られた充電を表わす積分された信号を生成するように結合された積分器と、
    前記積分された信号で乗算された入力電圧検出信号に比例した乗算信号を生成するように結合された算術演算子回路と、
    前記出力電圧検出信号を受けるように結合されており、前記算術演算子回路に結合された比較器とを備え、前記比較器は、前記出力電圧検出信号の値に達している前記積分された信号に応答して、前記スイッチをオフ状態にするように結合される、コントローラ。
  17. 前記スイッチの切換を制御して、前記出力電圧検出信号に応答して電源の出力電圧を調整する定電圧制御回路をさらに備える、請求項12または16に記載のコントローラ。
  18. 前記定電圧制御回路に結合されていて、前記スイッチの切換を制御して、前記出力電流がしきい値電流未満であるとき電源の前記出力電圧を調整する論理回路をさらに備え、かつ前記論理回路は、前記定電流制御回路に接続されていて、前記スイッチの切換を制御して、前記出力電圧がしきい値電圧未満であるとき前記出力電流を調整する、請求項17に記載のコントローラ。
  19. 最大デューティサイクル信号を生成する発振器をさらに備え、前記論理回路の第1の入力は、前記定電流制御回路に結合されており、前記論理回路の第2の入力は、前記定電圧制御回路に結合されており、前記論理回路の第3の入力は、前記最大デューティサイクル信号を受けるように結合されている、請求項18に記載のコントローラ。
  20. 前記出力電圧は、前記出力電圧の調整時、前記しきい値電圧に調整され、前記出力電流は、前記出力電流の調整時、前記しきい値電流に調整される、請求項18に記載のコントローラ。
  21. 前記スイッチおよび前記定電流制御回路は、単一のモノリシック集積装置に組込まれている、請求項1、12または16に記載のコントローラ。
  22. 電源であって、
    入力電圧源と電源の出力との間に結合されたエネルギ伝達要素と、
    前記エネルギ伝達要素に結合されたスイッチとを備え、前記スイッチは駆動信号に応答して開閉し、さらに、
    前記スイッチに結合されて前記スイッチの切換を制御し、電源の出力電流を調整するように結合されたコントローラを備え、前記コントローラは、
    制御信号に応答して前記駆動信号を生成するように結合された論理回路と、
    前記論理回路に結合され、かつ受けた入力電流検出信号、入力電圧検出信号、および出力電圧検出信号に応答して前記制御信号を生成するように結合された定電流制御回路と、
    前記定電流制御回路に含まれる積分器とを含み、前記積分器は、前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、前記入力電圧源から取られた充電を表わす積分された信号を生成するように構成され、前記定電流制御回路は、前記積分された信号が前記出力電圧検出信号と前記入力電圧検出信号との比に比例するように前記制御信号を生成するように構成されている、電源。
  23. 電源であって、
    入力電圧源と電源の出力との間に結合されたエネルギ伝達要素と、
    前記エネルギ伝達要素に結合されたスイッチとを備え、前記スイッチは駆動信号に応答して開閉し、さらに、
    前記スイッチに結合されて前記スイッチの切換を制御し、電源の出力電流を調整するように結合されたコントローラを備え、前記コントローラは、
    制御信号に応答して前記駆動信号を生成するように結合された論理回路と、
    前記論理回路に結合され、かつ受けた入力電流検出信号、入力電圧検出信号、および出力電圧検出信号に応答して前記制御信号を生成するように結合された定電流制御回路と、
    前記定電流制御回路に含まれる積分器とを含み、前記積分器は、前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、電源の入力電圧源から取られた充電を表わす積分された信号を生成するように構成され、さらに、
    前記出力電圧検出信号と前記入力電圧検出信号との比に比例した基準信号を生成するように結合された算術演算子回路と、
    前記積分された信号を受けるように結合された第1の入力、前記基準信号を受けるように結合された第2の入力、および前記基準信号の値に達している前記積分された信号に応答して前記スイッチをオフ状態にするように結合された出力を有する比較器とを含む、電源。
  24. 定電流出力を有するように電源を制御する方法であって、前記方法は、
    入力電流検出信号、入力電圧検出信号、および出力電圧検出信号を受けることと、
    電源のスイッチの切換を制御し、電源の出力電流を調整するための制御信号を生成することとを備え、前記制御信号を生成することは、
    前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、電源の入力電圧源から取られた充電を表わす積分された信号を生成することと、
    前記積分された信号が前記出力電圧検出信号と前記入力電圧検出信号との比に比例するように前記スイッチの切換を制御することとを含む、方法。
  25. 定電流出力を有するように電源を制御するためのコントローラであって、前記コントローラは、
    入力電流検出信号、入力電圧検出信号、および出力電圧検出信号を受けるための手段と、
    電源のスイッチの切換を制御し、電源の出力電流を調整するための制御信号を生成するための手段とを備え、前記制御信号を生成するための手段は、
    前記制御信号のスイッチング周期中に前記入力電流検出信号を積分して、電源の入力電圧源から取られた充電を表わす積分された信号を生成するための手段と、
    前記積分された信号が前記出力電圧検出信号と前記入力電圧検出信号との比に比例するように前記スイッチの切換を制御するための手段とを含む、コントローラ。
JP2010124365A 2009-06-02 2010-05-31 電源のためのコントローラ、電源、および電源を制御する方法 Expired - Fee Related JP5693877B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/477,058 2009-06-02
US12/477,058 US8139384B2 (en) 2009-06-02 2009-06-02 Method and apparatus for input charge control of a power supply

Publications (3)

Publication Number Publication Date
JP2010284071A JP2010284071A (ja) 2010-12-16
JP2010284071A5 JP2010284071A5 (ja) 2013-07-04
JP5693877B2 true JP5693877B2 (ja) 2015-04-01

Family

ID=42634760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124365A Expired - Fee Related JP5693877B2 (ja) 2009-06-02 2010-05-31 電源のためのコントローラ、電源、および電源を制御する方法

Country Status (4)

Country Link
US (4) US8139384B2 (ja)
EP (2) EP2259418B1 (ja)
JP (1) JP5693877B2 (ja)
CN (2) CN103475228B (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349905B2 (ja) * 2008-10-27 2013-11-20 パナソニック株式会社 放電灯点灯装置、及びこれを用いた車両用前照灯点灯装置
JP2010200450A (ja) * 2009-02-24 2010-09-09 Fujitsu Semiconductor Ltd 半導体集積回路および電源装置
US8098506B2 (en) 2009-06-02 2012-01-17 Power Integrations, Inc. Single-stage power supply with power factor correction and constant current output
US8139384B2 (en) 2009-06-02 2012-03-20 Power Integrations, Inc. Method and apparatus for input charge control of a power supply
US7965151B2 (en) 2009-06-02 2011-06-21 Power Integrations, Inc. Pulse width modulator with two-way integrator
US8593839B2 (en) * 2009-09-17 2013-11-26 Linear Technology Corporation Accuracy of a volt-second clamp in an isolated DC-DC converter
US8384443B2 (en) 2011-01-27 2013-02-26 Maxim Integrated Products, Inc. Current mirror and current cancellation circuit
US8963529B2 (en) 2011-04-28 2015-02-24 Texas Instruments Incorporated Transition mode charge control for a power converter
US8779746B2 (en) * 2011-04-29 2014-07-15 Texas Instruments Incorporated Methods and apparatus for constant power/current control for switch-mode power converters
CN102185502B (zh) * 2011-05-06 2013-04-03 上海新进半导体制造有限公司 开关电源控制器的恒流输出控制电路及开关电源
CN102290972B (zh) * 2011-08-15 2014-03-19 成都芯源系统有限公司 开关电源及其控制电路和控制方法
JP5738777B2 (ja) * 2012-01-23 2015-06-24 株式会社日本自動車部品総合研究所 電力変換装置
JP5804476B2 (ja) * 2012-01-25 2015-11-04 富士電機株式会社 充電装置
JP5804477B2 (ja) * 2012-01-25 2015-11-04 富士電機株式会社 充電装置
CN102570837B (zh) * 2012-02-28 2014-09-03 矽力杰半导体技术(杭州)有限公司 一种恒压恒流控制电路及其控制方法
CN103312180B (zh) * 2012-03-12 2016-06-08 致茂电子(苏州)有限公司 交流换流器中的定电流模式控制器
CN102624254B (zh) * 2012-03-26 2014-06-18 矽力杰半导体技术(杭州)有限公司 一种具有改进的负载调节的恒压恒流控制电路及其控制方法
US8964412B2 (en) * 2012-10-31 2015-02-24 Power Integrations, Inc. Split current mirror line sensing
JP2014092370A (ja) * 2012-10-31 2014-05-19 Agilent Technologies Inc 電圧電流特性発生器
KR101451009B1 (ko) 2013-03-27 2014-10-15 주식회사 엘지씨엔에스 직렬 연결된 다수 개의 전지 직류 마이크로그리드 충방전 시스템
KR101470735B1 (ko) 2013-05-15 2014-12-08 주식회사 엘지씨엔에스 직렬 연결된 다수의 2차 전지 충방전을 위한 능동 벨런스회로와 알고리즘을 구비한 2차 전지 충방전 제어장치 및 방법
FR3008258B1 (fr) * 2013-07-04 2018-11-02 Safran Electronics & Defense Convertisseur ac/dc a isolement galvanique et correcteur de signal
US9490707B2 (en) * 2013-11-26 2016-11-08 Telefonaktiebolaget L M Ericsson (Publ) Control circuit and a method for an energy based pulse skipping mode in a DC/DC converter
US9397560B2 (en) 2014-08-15 2016-07-19 Power Integrations, Inc. Controller for a power supply with transition region regulation
US9431895B2 (en) * 2014-09-22 2016-08-30 Shanghai Sim-Bcd Semiconductor Manufacturing Co., Ltd. High power-factor control circuit and power supply
US9621019B2 (en) 2014-11-07 2017-04-11 Power Intergrations, Inc. Indirect regulation of output current in power converter
US9774248B2 (en) * 2014-11-10 2017-09-26 Power Integrations, Inc. Introducing jitter to a switching frequency by way of modulating current limit
US9584008B2 (en) * 2015-06-26 2017-02-28 Dialog Semiconductor Inc. Switching power converter with adaptive power factor correction
TWI636650B (zh) * 2017-03-17 2018-09-21 通嘉科技股份有限公司 應用於電源轉換器的控制器及其操作方法
CN109149935B (zh) * 2018-09-07 2020-10-23 深圳市德赛微电子技术有限公司 一种开关电源不同工作模式自由切换的控制电路
CN109089350B (zh) * 2018-09-26 2024-04-19 厦门市必易微电子技术有限公司 用于恒流驱动电路的控制电路及获得恒流的控制方法、降压型恒流驱动系统
US11131714B2 (en) 2019-05-31 2021-09-28 Sigmasense, Llc. Battery monitoring and characterization during charging
US11056930B2 (en) 2019-05-31 2021-07-06 Sigmasense, Llc. Wireless power transfer and communications
US11977123B2 (en) 2021-06-01 2024-05-07 Sigmasense, Llc. Sensing voltage using micro-watt sensor
US20230198372A1 (en) * 2021-12-21 2023-06-22 Infineon Technologies Austria Ag Power system and ripple voltage reduction

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920001701Y1 (ko) * 1989-12-15 1992-03-09 주식회사 금성사 전자레인지에서의 출력제어장치
US5450306A (en) * 1992-12-07 1995-09-12 Square D Company Closed loop pulse width modulator inverter with volt-seconds feedback control
JP3587998B2 (ja) * 1997-12-26 2004-11-10 株式会社リコー 電源装置
US6111767A (en) * 1998-06-22 2000-08-29 Heliotronics, Inc. Inverter integrated instrumentation having a current-voltage curve tracer
DE19828038A1 (de) * 1998-06-24 1999-12-30 Philips Corp Intellectual Pty Schaltnetzteil
KR20080086927A (ko) 2000-10-13 2008-09-26 엔엑스피 비 브이 스위치 모드 전원 및 집적 회로 및 모니터링 방법
US6538909B2 (en) * 2001-12-13 2003-03-25 Enova Systems Universal high efficiency power converter
US6674656B1 (en) * 2002-10-28 2004-01-06 System General Corporation PWM controller having a saw-limiter for output power limit without sensing input voltage
US6853563B1 (en) * 2003-07-28 2005-02-08 System General Corp. Primary-side controlled flyback power converter
US7057440B2 (en) 2003-11-03 2006-06-06 System General Corp. Multiplier-divider circuit for a PFC controller
US7054170B2 (en) * 2004-01-05 2006-05-30 System General Corp. Power-mode controlled power converter
US7088598B2 (en) * 2004-04-02 2006-08-08 System General Corp. Power-mode control circuitry for power converters
JP3973652B2 (ja) * 2004-05-24 2007-09-12 松下電器産業株式会社 スイッチング電源装置
US7061225B2 (en) * 2004-06-29 2006-06-13 System General Corp. Apparatus and method thereof for measuring output current from primary side of power converter
US6977824B1 (en) * 2004-08-09 2005-12-20 System General Corp. Control circuit for controlling output current at the primary side of a power converter
US7016204B2 (en) * 2004-08-12 2006-03-21 System General Corp. Close-loop PWM controller for primary-side controlled power converters
US7061780B2 (en) * 2004-09-09 2006-06-13 System General Corp. Switching control circuit with variable switching frequency for primary-side-controlled power converters
US7259972B2 (en) * 2004-10-07 2007-08-21 System General Corporation Primary-side-control power converter having a switching controller using frequency hopping and voltage and current control loops
JP4568858B2 (ja) * 2005-03-14 2010-10-27 富士通テレコムネットワークス株式会社 電流バランス回路
US7593245B2 (en) * 2005-07-08 2009-09-22 Power Integrations, Inc. Method and apparatus to limit maximum switch current in a switching power supply
US7352595B2 (en) * 2005-11-08 2008-04-01 System General Corp. Primary-side controlled switching regulator
US7639517B2 (en) * 2007-02-08 2009-12-29 Linear Technology Corporation Adaptive output current control for switching circuits
EP2135347A1 (en) * 2007-03-23 2009-12-23 System General Corp. Primary-side controlled switching regulator
US20080284400A1 (en) * 2007-05-18 2008-11-20 Eric Gregory Oettinger Methods and apparatus to monitor a digital power supply
JP2008312359A (ja) * 2007-06-15 2008-12-25 Panasonic Corp スイッチング電源装置、並びにレギュレーション回路
US7663352B2 (en) * 2007-08-27 2010-02-16 System General Corp. Control circuit for measuring and regulating output current of CCM power converter
US8068352B2 (en) * 2008-12-19 2011-11-29 Caterpillar Inc. Power inverter control for grid-tie transition
US7965151B2 (en) * 2009-06-02 2011-06-21 Power Integrations, Inc. Pulse width modulator with two-way integrator
US8139384B2 (en) * 2009-06-02 2012-03-20 Power Integrations, Inc. Method and apparatus for input charge control of a power supply
US8098506B2 (en) * 2009-06-02 2012-01-17 Power Integrations, Inc. Single-stage power supply with power factor correction and constant current output

Also Published As

Publication number Publication date
US20140211516A1 (en) 2014-07-31
CN103475228A (zh) 2013-12-25
CN101908824A (zh) 2010-12-08
JP2010284071A (ja) 2010-12-16
EP2538536A2 (en) 2012-12-26
US20130051087A1 (en) 2013-02-28
EP2259418A1 (en) 2010-12-08
CN103475228B (zh) 2016-04-13
US20120146607A1 (en) 2012-06-14
US20100301821A1 (en) 2010-12-02
US8139384B2 (en) 2012-03-20
EP2259418B1 (en) 2014-10-29
CN101908824B (zh) 2013-07-31
US8699252B2 (en) 2014-04-15
US8325505B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
JP5693877B2 (ja) 電源のためのコントローラ、電源、および電源を制御する方法
US10193454B2 (en) Overvoltage protection circuit
JP5816348B2 (ja) 電源コントローラ
US7196503B2 (en) Current averaging circuit for a PWM power converter
JP5618532B2 (ja) フライバックコンバータ、およびフライバックコンバータの出力を調節する方法
CN109120155B (zh) 具有斜坡时间调制的开关模式功率转换器控制器
US9584027B2 (en) Power converter with winding communication
CN110336467B (zh) 同步整流器控制器、开关模式电源和同步整流器控制方法
US20150244275A1 (en) Power Conversion with Delay Compensation
US8552705B2 (en) Lower power controller for DC to DC converters
US9318965B2 (en) Method to control a minimum pulsewidth in a switch mode power supply
US20110194316A1 (en) Switching power supply device
US8797769B2 (en) On time sampling prevention
US11128211B2 (en) Method for driving an electronic switch in a power converter circuit and control circuit
US8964412B2 (en) Split current mirror line sensing
US9401634B2 (en) Saturation prevention in an energy transfer element of a power converter
US8929102B2 (en) Sample and hold buffer
US20190207515A1 (en) Method and system of operating switching power converters based on peak current through the switching element
TW201128916A (en) Switching mode power supply with a spectrum shaping circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5693877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees