JP5691562B2 - 磁場測定装置 - Google Patents

磁場測定装置 Download PDF

Info

Publication number
JP5691562B2
JP5691562B2 JP2011016163A JP2011016163A JP5691562B2 JP 5691562 B2 JP5691562 B2 JP 5691562B2 JP 2011016163 A JP2011016163 A JP 2011016163A JP 2011016163 A JP2011016163 A JP 2011016163A JP 5691562 B2 JP5691562 B2 JP 5691562B2
Authority
JP
Japan
Prior art keywords
temperature
unit
temperature difference
region
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011016163A
Other languages
English (en)
Other versions
JP2012154876A (ja
JP2012154876A5 (ja
Inventor
文彦 大沼
文彦 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011016163A priority Critical patent/JP5691562B2/ja
Publication of JP2012154876A publication Critical patent/JP2012154876A/ja
Publication of JP2012154876A5 publication Critical patent/JP2012154876A5/ja
Application granted granted Critical
Publication of JP5691562B2 publication Critical patent/JP5691562B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁場を測定する技術に関する。
光ポンピングを利用した磁気センサーが、MRI(magnetic resonance imaging:磁気
共鳴画像法)装置などに用いられている。この磁気センサーにおいては、円偏光成分を有
するポンプ光と直線偏光成分を有するプローブ光とが交差するように(望ましくは、直交
するように)セルに照射され、さらに、これらの光の照射方向に対して直交する方向の磁
場が印加される(例えば、特許文献1参照)。
ポンプ光とプローブ光が照射されるセルには、アルカリ金属などの原子が気体の状態で
封入されている。この原子は、ポンプ光により励起されると外部から印加された磁場に応
じてプローブ光に含まれる直線偏光の偏光面を回転させる。磁気センサーは、このセルを
透過したプローブ光の偏光面の回転角を計測することで、磁場を測定する。
ところで、磁場の測定に先駆けて、上述した原子が気体の状態を保つようにセルが加熱
されるが、測定の最中や、測定が終了した後に、セルの温度制御がなされない期間がある
ために、セル内の原子が露点以下に冷やされて壁面等に析出(結露)することがある。こ
のとき、セルの壁面のうち、磁場測定のための光(ポンプ光やプローブ光)が照射される
領域に原子が析出すると、析出したその原子が光を吸収して測定の妨げとなる。このよう
な領域への原子の析出を低減させるために、例えば、特許文献2は、容器の窓部以外の部
分(特に窓部近傍)に、容器内部に向かって凹部を有する複数の突起部を設けるとともに
、容器を加熱するヒーターを設けることを開示する。特許文献2に記載の技術は、突起部
を冷却するとともにヒーターによって容器の窓部を加熱することで、突起部よりも窓部が
高温となる温度差を発生させ、その突起部にアルカリ金属を集める。
特開2009−14708号公報 特開2010−205875号公報
しかしながら、突起部を冷却する冷却装置に例えばペルティエ素子を採用した場合、こ
れにより発生する磁気ノイズが、上記の回転角の計測に影響する可能性があるため、計測
中に突起部を冷却することは望ましくない。そのため、計測中において、ペルティエ素子
等にセルを冷却させ続けるべきではない。
本発明は、光が透過する領域に原子が析出し難くなるように適切なタイミングでセル内
部の温度差を制御することを目的とする。
本発明は、光により励起されると磁場に応じて直線偏光の偏光面を回転させる原子を含
む物質を内部に封入し、気体状態の前記物質に照射される前記直線偏光を透過させるセル
と、前記セルを透過した前記直線偏光の偏光面の回転角を計測する計測部と、前記セルの
うち前記直線偏光が透過する第1領域の温度を測定する第1温度測定部と、前記セルのう
ち前記直線偏光が透過しない領域であって、予め定められた第2領域の温度を測定する第
2温度測定部と、前記第1領域および前記第2領域の各温度のうち、少なくとも一方の温
度に関する値が予め定められた条件を満たす場合に、前記第1領域よりも前記第2領域の
温度が低く、且つ、前記第1領域と前記第2領域との温度差が予め定められた閾値を上回
るように、前記温度差を制御する温度差制御部とを備えることを特徴とする磁場測定装置
を提供する。この構成によれば、光の透過する領域に原子が析出し難くなるように適切な
タイミングでセル内部の温度差を制御することができる。
上記磁場測定装置において、前記温度差制御部は、前記第1領域と前記第2領域との前
記温度差が、予め定められた目標温度差に近づくように、当該温度差を制御するとよい。
この構成によれば、光が透過する領域に原子が析出し難くなるように適切なタイミングで
セル内部の温度差を制御することができる。
また、上記磁場測定装置において、前記温度差制御部は、前記温度差を拡大させる処理
を行う温度差拡大部を有し、前記温度差が、予め定められた最低温度差を下回ったときに
、前記温度差拡大部に前記処理を開始させ、前記温度差が、予め定められた最高温度差を
上回ったときに、前記温度差拡大部に前記処理を停止させるとよい。この構成によれば、
光が透過する領域に原子が析出し難くなるように適切なタイミングでセル内部の温度差を
制御することができる。
また、上記磁場測定装置において、前記温度差制御部は、前記第2領域を冷却する冷却
部を有し、前記冷却部に前記第2領域を冷却させることにより前記温度差を拡大させると
よい。この構成によれば、光が透過する第1領域よりも光の透過しない第2領域に原子を
析出し易くさせることができる。
また、上記磁場測定装置において、前記温度差制御部は、前記第1領域を加熱する加熱
部を有し、前記加熱部に前記第1領域を加熱させることにより前記温度差を拡大させると
よい。この構成によれば、光の透過しない第2領域よりも光が透過する第1領域に原子を
析出し難くさせることができる。
また、上記磁場測定装置において、前記温度に関する値は、前記温度の単位時間あたり
の変化を示す温度変化速度であり、前記温度差制御部は、前記温度変化速度が予め定めら
れた閾値を上回った場合に、前記温度差を制御するとよい。この構成によれば、急激な温
度変化に伴って、光が透過する領域に原子が析出し難くすることができる。
第1実施形態に係る磁場測定装置の構成を示す図である。 第1実施形態に係るセルの構成を示す斜視図である。 被覆層によってセルが覆われた様子を示す図である。 図3における矢視IV−IVからセルを見た断面図である。 図3における矢視V−Vからセルを見た断面図である。 磁場測定装置の制御に関する構成を示すブロック図である。 制御部による磁場測定装置の制御の流れを示すフロー図である。 第1実施形態において、磁場の測定を停止する際に計測される領域温度の時間変化を示した図である。 第2実施形態に係るセルの構成を示す斜視図である。 第2実施形態において、磁場の測定を停止する際に計測される領域温度の時間変化を示した図である。
1.第1実施形態
1−1.構成
図1は、本発明の第1実施形態に係る磁場測定装置100の構成を示す図である。磁場
測定装置100は、例えば心磁(心臓からの磁気)や脳磁(脳からの磁気)などの生体か
ら発生する微弱な磁場の測定に用いられる。磁場測定装置100は、セル1と、被覆層2
と、ポンプ光照射部3と、プローブ光照射部4と、プローブ光計測部5と、冷却部6と、
加熱部7と、温度計測部8とを備える。
磁場測定装置100の各構成の配置を説明するため、各構成が配置される空間をxyz
右手系座標空間として表す。図1に示す座標記号のうち、内側が白い円の中に黒い円を描
いた記号は、紙面奥側から手前側に向かう矢印を表している。また、後述する図4に示す
座標記号のうち、内側が白い円の中に交差する2本の線分を描いた記号は、紙面手前側か
ら奥側に向かう矢印を表している。空間においてx成分が増加する方向を+x方向といい
、x成分が減少する方向を−x方向という。同様に、y、z成分についても、+y方向、
−y方向、+z方向、−z方向を定義する。
図1に示すように、セル1は被覆層2に覆われており、セル1の−x方向には、ポンプ
光照射部3が設置される。ポンプ光照射部3は円偏光成分を有するポンプ光を、+x方向
に平行な矢印D1方向に沿ってセル1に照射する。
プローブ光照射部4は、セル1の−y方向に設置されており、直線偏光成分を有するプ
ローブ光を、+y方向に平行な矢印D2方向に沿ってセル1に照射する。プローブ光計測
部5は、セル1の+y方向に設置される。プローブ光計測部5は、プローブ光照射部4か
ら矢印D2方向に沿って照射され、セル1を透過したプローブ光を受ける。磁場測定装置
100は、測定対象の磁場の中にセル1が位置するように配置される。具体的には、磁場
測定装置100は、セル1から見て−z方向に測定対象が位置するように配置される。
図2は、第1実施形態に係るセル1の構成を示す斜視図である。セル1は、中空の立方
体の一面から末端が閉ざされた管が延びた形状をしており、ガラス等の光を透過する材料
で形成される。セル1の上述した中空の立方体は、外部と内部とを仕切り、光を透過する
少なくとも4枚の部材を有している。この光を透過する4枚の部材とは、セル1の+x方
向、−x方向、+y方向、および−y方向に面した各部材であり、−x方向の部材を壁面
11a(図2において図示せず)と、+x方向の部材を壁面11bという。また、セル1
の部材のうち、−y方向の部材を壁面12aと、+y方向の部材を壁面12b(図2にお
いて図示せず)という。また、セル1を構成する部材のうちポンプ光およびプローブ光が
照射されない+z方向の部材を壁面13bといい、−z方向の部材を壁面13aという(
図2において図示せず)。そして、壁面13bから+z方向に延びてさらに−x方向に曲
がる、末端の閉塞された筒状の部材を筒状部14という。なお、セル1の形状は、他の立
体形状であってもよい。
セル1の内部には、例えばアルカリ金属などの原子を含む物質(以下、偏光面回転物質
という)が気体の状態(すなわちガス状態)で封入される。この偏光面回転物質に含まれ
る原子は、例えばリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム
(Rb)、セシウム(Cs)、フランシウム(Fr)である。セル1内の原子は、円偏光
により励起されて原子の外殻電子のスピンが偏極されるため、磁場に応じて直線偏光の偏
光面を回転させる。すなわち、偏光面回転物質は、光により励起されると磁場に応じて直
線偏光の偏光面を回転させる原子を含む物質の一例である。なお、セル1の内部には、典
型的には単一種類の偏光面回転物質が封入されるが、複数種類の偏光面回転物質が含まれ
ていてもよい。また、セル1内の偏光面回転物質は、常時気体の状態である必要はなく、
磁場の測定を行うときに気体の状態であればよい。さらに、セル1の内部には、セル1の
壁との衝突等による偏光面回転物質の緩和を穏やかにするために、ヘリウム(He)、窒
素(N)などが緩衝ガスとして含まれていてもよい。
冷却部6は、例えばペルティエ素子であり、筒状部14の末端に接触してその接触面か
ら吸熱することでセル1の内部に封入された気体を冷却する。加熱部7は、例えば電熱ヒ
ーターであり、セル1と壁面13aで接触し、その接触面を介してセル1の内部に封入さ
れた気体を加熱する。
温度計測部8は、筒状部14の外表面のうち、壁面13bとの境界よりも筒状部14の
末端部に近い位置に取り付けられた温度計測部8aと、壁面12aの外表面のうち、他の
壁面よりも、プローブ光照射部4から照射されるプローブ光が透過する領域に近い位置に
取り付けられた温度計測部8bとを含む。温度計測部8aは、筒状部14の上記の位置に
おいて温度を計測することで、筒状部14の局所的な領域温度Taを得る。すなわち、温
度計測部8aは、セルのうち直線偏光が透過しない領域であって、予め定められた第2領
域の温度を測定する第2温度測定部の一例である。
温度計測部8bは、壁面12aの上記の位置において温度を計測することで、セル1の
内部であって、壁面12aのプローブ光が透過する領域の近傍における局所的な領域温度
Tbを得る。すなわち、温度計測部8bは、セルのうち直線偏光が透過する第1領域の温
度を測定する第1温度測定部の一例である。この場合、セル1の材質および厚み、または
実験結果などに基づいて温度計測部8a,8bの計測値を補正して、これらの領域温度T
a,Tbを得てもよい。
被覆層2は、+z方向および−z方向にそれぞれ正方形の開口部を有する四角柱状の部
材であり、セル1を−z方向に移動させてその開口部に嵌め込むことで、壁面11a、壁
面11b、壁面12a、および壁面12bに接し、これらをそれぞれ外側から覆う。
図3は、被覆層2によってセル1が覆われた様子を示す図である。図4は、図3におけ
る矢視IV−IVからセル1、被覆層2、冷却部6、および加熱部7を見た断面図である。そ
して、図5は、図3における矢視V−Vからセル1、被覆層2、冷却部6、加熱部7および
温度計測部8を見た断面図である。被覆層2には、ポンプ光を透過させるための孔21a
(図2において図示せず)および孔21bと、プローブ光を透過させるための孔22aお
よび孔22b(図2において図示せず)が設けられている。
被覆層2は、材質として例えば炭化ケイ素などを含んでおり、セル1内に封入された偏
光面回転物質をガス状態にするために加熱部7がセル1を加熱するときに、セル1ととも
に加熱される。
ポンプ光照射部3は、光源と、半波長板と、偏光ビームスプリッターと、四分の一波長
板とを備える。光源は、無偏光のレーザー光を図1に示す矢印D1方向に照射する。半波
長板は、光源から照射された光の偏光面を回転させる。偏向ビームスプリッターは、半波
長板を透過した光のp偏光成分(入射面に対して平行な成分)を透過させ、s偏光成分(
入射面に対して垂直な成分)を反射させる。このs偏光成分は、例えばレーザー光の出力
のモニタリングに用いられてもよいし、光を吸収する部材により吸収されてもよい。四分
の一波長板は、偏向ビームスプリッターを透過した光を円偏光に変化させる。これにより
、四分の一波長板を透過した光は、円偏光成分を有するポンプ光となる。
プローブ光照射部4は、光源と、半波長板と、偏向ビームスプリッターと、偏光板とを
備える。光源は、無偏光のレーザー光を図1に示す矢印D2方向に照射する。半波長板は
、光源から照射された光の偏光面を回転させる。偏向ビームスプリッターは、半波長板を
透過した光のp偏光成分を透過させ、s偏光成分を反射させる。偏光板は、偏向ビームス
プリッターを透過した光のうち特定方向に偏光した光だけを透過させる。これにより、偏
光板を透過した光は、直線偏光成分を有するプローブ光となる。なお、ポンプ光とプロー
ブ光とは、互いに直交する関係であることが好ましいが、交差する関係であれば完全に直
交しなくてもよい。
プローブ光計測部5(計測部の一例)は、プローブ光照射部4から照射されセル1を透
過したプローブ光を検出し、検出したプローブ光に含まれる直線偏光の偏光面の回転角を
計測する。プローブ光計測部5は、半波長板と、液晶パネルと、光センサーと、A/D変
換器と、メモリーと、演算部とを備える。半波長板は、セル1を透過したプローブ光の偏
光面を回転させる。液晶パネルは、ネマティック液晶と呼ばれる液晶を用いて、半波長板
を通過したプローブ光のp偏光成分又はs偏光成分を透過させる。ここで液晶パネルは時
分割制御されるため、上述したp偏光成分とs偏光成分とは時分割された期間ごとに透過
されて分離される。
光センサーは、例えばフォトダイオードであり、液晶パネルを透過したプローブ光を電
気信号に変換して出力する。A/D変換器は、光センサーから出力された電気信号をデジ
タルデータに変換して出力する。メモリーは、A/D変換器から出力されたデータを記憶
する。演算部は、メモリーに記憶されたデータを用いて、光センサーにより検出されたプ
ローブ光のp偏光成分とs偏光成分との差分を算出する。なお、プローブ光計測部5は、
偏光ビームスプリッターを用いて、セル1を透過したプローブ光をp偏光成分とs偏光成
分に分離し、これらの差分を算出してもよい。
図6は、磁場測定装置100の制御に関する構成を示すブロック図である。制御部9は
、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random
Access Memory)や、ハードディスクドライブなどの記憶部を有し、記憶部やROMに記
憶されているコンピュータープログラムを読み出して実行することにより、ポンプ光照射
部3,プローブ光照射部4、プローブ光計測部5、冷却部6、加熱部7および温度計測部
8を制御する。具体的には、制御部9は、温度計測部8が計測した領域温度Ta,Tbの
各値を取得し、これらに基づいて加熱部7による壁面13aの加熱や、冷却部6による筒
状部14の冷却などを制御する。ここで冷却部6は、稼動状態において筒状部14の末端
部を冷却することにより、セル1の内部のうち、筒状部14の末端部近傍の空間と壁面1
1,12,13に囲まれた空間との温度差を拡大させるので、温度差拡大部として機能す
る。
なお、利用者からの操作を受け付ける操作部や、操作部を備えた外部機器と通信を行う
通信インターフェイスなどを備えており、これらを介して利用者の指示を示す指示信号を
取得する。また、これら操作部や通信インターフェイスなどは、利用者からの指示を受け
付けているが、例えば、異常が検知された際における緊急停止指示のように、利用者以外
からの指示を受け付けてもよい。要するに、これら操作部や通信インターフェイスなどは
、指示を示す指示信号を取得する取得手段の一例である。そして、これらの指示信号を取
得したことを契機として、制御部9は、上記の制御や磁場の測定の制御を行う。
磁場測定装置100は、これらの構成のほかに、例えば、測定対象以外の磁場を遮蔽す
るための磁気シールドや、外部からの磁場に対する補正用の磁場を印加するコイルなどを
備えていてもよい。また、被覆層2が磁気シールドを兼ねていてもよい。
1−2.動作
次に、磁場測定装置100の動作を説明する。図7は、制御部9による磁場測定装置1
00の制御の流れを示すフロー図である。制御部9は、上述した操作部や通信インターフ
ェイスなどから取得した指示信号が計測を停止する旨の指示を示す計測停止指示信号であ
るか否かを判定する(ステップS101)。そして、取得したその指示信号が計測停止指
示信号出ない場合(ステップS101でNO)、次に取得する指示信号について、この判
定を繰り返す。一方、取得したその指示信号が計測停止指示信号である場合(ステップS
101でYES)、制御部9は、ポンプ光照射部3、プローブ光照射部4、プローブ光計
測部5、および加熱部7を停止する(ステップS102)。なお、これらの機器は、制御
部9が計測停止指示信号を受け取ってすぐに停止されてもよいが、計測停止指示信号を受
け取ってから、それぞれの機器について予め定められた時間が経過した後に停止されても
よい。
そして、制御部9は、温度計測部8aが計測した領域温度Taと温度計測部8bが計測
した領域温度Tbとを取得し、温度差ΔT=(Tb−Ta)が予め定められた第1の閾値
である最低温度差ΔTLを下回るか否か判定する(ステップS103)。温度差ΔTが最
低温度差ΔTLを下回る場合(ステップS103でYES)、制御部9は、温度差拡大部
としての冷却部6を稼動させる(ステップS104)。ここで、制御部9は、冷却部6を
稼働させるために、冷却を開始させる旨の信号を冷却部6に送るが、冷却部6が既に稼働
中である場合には、この信号は無視される。また同様に、制御部9が冷却部6を停止させ
るために送る信号は、冷却部6が既に停止中である場合には、無視される。
一方、温度差ΔTが最低温度差ΔTLを下回らない場合(ステップS103でNO)、
制御部9は、温度差ΔTが予め定められた第2の閾値である最高温度差ΔTHを上回るか
否か判定する(ステップS105)。
温度差ΔTが最高温度差ΔTHを上回る場合(ステップS105でYES)、制御部9
は、温度差拡大部としての冷却部6を停止させる(ステップS106)。一方、温度差Δ
Tが最高温度差ΔTHを上回らない場合(ステップS105でNO)、制御部9は、領域
温度Tbが予め定められた第3の閾値である露点TFを下回るか否か判定する(ステップ
S107)。
領域温度Tbが露点TFを下回らない場合(ステップS107でNO)、制御部9は、
処理をステップS103に戻す。一方、領域温度Tbが露点TFを下回る場合(ステップ
S107でYES)、制御部9は、温度差拡大部としての冷却部6を停止させ(ステップ
S108)、処理を終了する。
図8は、第1実施形態において、磁場の測定を停止する際に温度計測部8(8a,8b
)により計測される領域温度Ta,Tbの時間変化を示した図である。図8における横軸
は時間経過を表しており、縦軸は計測される領域温度を表している。
時刻t0より前において、領域温度Taは予め定められた温度Ta0に、領域温度Tb
は予め定められた温度Tb0に、それぞれなるように温度制御が行われている。具体的に
制御部9は、間欠的に加熱部7を稼動させたり停止させたりすることにより、系の熱収支
をバランスさせ、擬似的な定常状態を維持させる。
時刻t0において、制御部9が利用者から磁場の測定を停止する旨の指示を示す計測停
止指示信号を取得すると、制御部9は、ポンプ光照射部3およびプローブ光照射部4に照
射を停止させ、プローブ光計測部5に計測を停止させ、加熱部7に加熱を停止させるとと
もに、冷却部6に冷却を開始させる。加熱部7による加熱が停止されると、壁面13aを
介してセル1内の空間に流入する熱が断たれるため、壁面11a,11b,12a,12
b(以下、光透過壁面という)の内壁の温度が低下する。これに伴い、温度計測部8bが
計測する領域温度Tbが低下する。
一方、温度計測部8aが設置されている筒状部14は、温度計測部8bが設置されてい
る壁面12aよりも、加熱部7によって加熱される壁面13aから遠い位置にある。その
ため、加熱部7による加熱停止直後において、温度計測部8aにより計測される領域温度
Taは、温度計測部8bにより計測される領域温度Tbに比べてゆっくりと低下する。そ
の結果、ΔT=(Tb−Ta)は小さくなっていき、温度差ΔTが最低温度差ΔTLを下
回ったときに、制御部9は、冷却部6による筒状部14の末端部の冷却を開始する。これ
により、領域温度Taは急速に低下し、時刻t1において領域温度Tbとの温度差が最高
温度差ΔTHを上回ったとき、制御部9は冷却部6による冷却を停止させる。
この後も、図8に示すように時刻t2,t4においてΔTが最低温度差ΔTLを下回る
ため、制御部9はこれらのタイミングで冷却部6を稼動させ、時刻t3においてΔTが最
高温度差ΔTHを上回るため、制御部9はこのタイミングで冷却部6を停止する。そして
、時刻t5において、計測された領域温度Tbが予め定められた露点TFを下回る。この
ため、制御部9は、冷却部6による冷却を停止し、計測停止の処理を終了する。
以上説明したように、磁場測定装置100の制御部9は、加熱部7による加熱の停止に
伴って、温度差拡大部としての冷却部6を稼働させることにより、放冷されるセル1の内
部空間に温度差を生じさせる。この温度差とは、具体的には光透過壁面よりも筒状部14
の末端部の方が低温となる温度差である。これによりセル1の内部でガス状態となってい
る偏光面回転物質のうち結露する可能性があるものは冷却されている筒状部14の末端部
に集まるため、光透過壁面における結露が防止される。
2.第2実施形態
2−1.構成
第2実施形態に係る磁場測定装置100aについて説明する。第2実施形態に係る磁場
測定装置100aは第1実施形態に係る磁場測定装置100と共通の構成を有しており、
磁場測定装置100が温度差拡大部として冷却部6を備えていたのに対し、磁場測定装置
100aは、温度差拡大部として補助加熱部6aを備えている点が異なっている。
図9は、第2実施形態に係るセル1の構成を示す斜視図である。第2実施形態において
、セル1は第1実施形態と同じように、被覆層2によって+x方向、−x方向、+y方向
、および−y方向が覆われているが、セル1と被覆層2との間にはさらに、補助加熱部6
aが設けられている。補助加熱部6aは、例えば電熱線等で構成されるヒーターであり、
被覆層2のうちセル1を覆う面に固定され、セル1の内部を加熱する加熱手段である。な
お、補助加熱部6aは、ポンプ光やプローブ光が照射される領域を避けて設けられている
ため、これにより、ポンプ光やプローブ光が妨げられることはない。
2−2.動作
次に、第2実施形態に係る磁場測定装置100aの動作を説明する。図10は、第2実
施形態において、磁場の測定を停止する際に計測される領域温度Ta,Tbの時間変化を
示した図である。図10における横軸は時間経過を表しており、縦軸は計測される領域温
度を表している。
時刻t6より前において、領域温度Taは予め定められた温度Ta0に、領域温度Tb
は予め定められた温度Tb0に、それぞれなるように温度制御が行われており、擬似的な
定常状態が維持されている。
時刻t6において、制御部9が利用者から磁場の測定を停止する旨の指示を示す計測停
止指示信号を取得すると、制御部9は、ポンプ光照射部3およびプローブ光照射部4に照
射を停止させ、プローブ光計測部5に計測を停止させ、加熱部7に加熱を停止させるとと
もに、補助加熱部6aに光透過壁面の加熱を開始させる。加熱部7による加熱が停止され
ると、壁面13aを介してセル1内の空間に流入する熱が断たれるため、光透過壁面の内
壁の温度が低下する。これに伴い、温度計測部8bが計測する領域温度Tbが低下する。
一方、温度計測部8aが設置されている筒状部14は、温度計測部8bが設置されてい
る壁面12aよりも、加熱部7によって加熱される壁面13aから遠い位置にある。その
ため、加熱部7による加熱停止直後において、温度計測部8aにより計測される領域温度
Taは、温度計測部8bにより計測される領域温度Tbに比べてゆっくりと低下する。そ
の結果、ΔT=(Tb−Ta)は小さくなっていき、温度差ΔTが最低温度差ΔTLを下
回ったときに、制御部9は、補助加熱部6aによる光透過壁面の加熱を開始する。これに
より、領域温度Tbは急速に上昇し、時刻t7において領域温度Taとの温度差が最高温
度差ΔTHを上回ったとき、制御部9は補助加熱部6aによる加熱を停止させる。
この後も、図10に示すように時刻t8,t10においてΔTが最低温度差ΔTLを下
回るため、制御部9はこれらのタイミングで補助加熱部6aを稼動させ、時刻t9,t1
1においてΔTが最高温度差ΔTHを上回るため、制御部9はこれらのタイミングで補助
加熱部6aを停止する。そして、時刻t12において、計測された領域温度Tbが予め定
められた露点TFを下回る。このため、制御部9は、補助加熱部6aによる加熱を停止し
、計測停止の処理を終了する。
以上説明したように、磁場測定装置100aの制御部9は、加熱部7による加熱の停止
に伴って、温度差拡大部としての補助加熱部6aを稼働させることにより、放冷されるセ
ル1の内部空間に温度差を生じさせる。これにより第1実施形態と同様に、光透過壁面に
おける結露が防止される。
3.変形例
本発明は、上述した実施形態に限定されるものではなく、以下のように変形させて実施
してもよい。また、以下の変形例を組み合わせてもよい。
3−1.セル1に照射されるポンプ光及びプローブ光は、出射されてからセル1に入射す
るまでの進行方向が一定である必要はない。つまり、ポンプ光及びプローブ光は、セル1
に入射するときに所定の方向になっていればよく、途中でミラー等によって反射され、進
行方向が変更されてもよい。したがって、例えば、光の照射位置や検出位置を1箇所に集
中させることも可能である。
また、プローブ光がポンプ光を兼ねてもよい。この場合、プローブ光照射部4により照
射された光により、セル1に封入された偏光面回転物質が励起し、その励起された偏光面
回転物質によって、その光に含まれた直線偏光成分の偏光面が回転すればよい。なお、こ
の変形例において、ポンプ光照射部3はなくてもよい。
3−2.磁場測定装置100,100aは、セル1を透過したポンプ光を検出してもよい
。また、磁場測定装置100,100aには、セル1を透過したポンプ光を吸収する部材
を設けてもよい。この部材は、シート状であるとより好ましい。
3−3.磁場測定装置100,100aは、プローブ光計測部5で検出した光に応じた信
号を可視化し、これを表示する手段を備えてもよい。また、磁場測定装置100,100
aは、プローブ光計測部5で検出した光に応じた信号を生成し、これを外部装置(表示装
置、コンピュータ装置など)に出力する構成を備えていてもよい。
3−4.被覆層2が透明な材質である場合、または、磁場測定に影響を与えない程度に光
を吸収する材質である場合には、被覆層2に孔21aなどを設けなくてもよい。また、被
覆層2はなくてもよい。第2実施形態において、被覆層2がない場合には、セル1の光透
過壁面を覆うように補助加熱部6aが配置されていてもよい。
3−5.上述の実施形態において、セル1には、筒状部14が設けられていたが、筒状部
14はなくてもよい。第1実施形態において、筒状部14がない場合には、壁面13bに
接するように冷却部6が配置されていてもよい。これにより、セル1内部の偏光面回転物
質は、光透過壁面よりも壁面13bに結露しやすくなるため、偏光面回転物質の光透過壁
面への結露が防止される。
また、壁面13bに代えて、壁面13aに冷却部6が配置されていてもよい。加熱部7
によって加熱されていた壁面13aを、加熱部7の加熱を停止させた後に、冷却部6によ
って冷却することで、セル1内部の偏光面回転物質は、光透過壁面よりも壁面13aに結
露しやすくなる。
3−6.上述の実施形態において、温度差拡大部としての冷却部6や補助加熱部6aは、
制御部9により温度差ΔTが最低温度差ΔTLを下回ったときに稼動させられ、最高温度
差ΔTHを上回ったときに停止させられていたが、他の方法により、ΔTが予め定められ
た値となるように制御されてもよい。例えば、温度差拡大部の出力が温度差ΔTの大きさ
に応じて変化するように構成してもよい。具体的には、例えば、目標とされる温度差であ
る目標温度差ΔTdが予め定められており、制御部9は、計測された領域温度Ta,Tb
により算出される温度差ΔTと、目標温度差ΔTdとの差(ΔTd−ΔT)を求める。そ
して、制御部9は、求めたこの差に比例して温度差拡大部の出力が大きくなるように、温
度差拡大部を制御すればよい。この場合、制御部9と温度差拡大部とは、第1領域と第2
領域との温度差が、予め定められた目標温度差に近づくように、当該温度差を制御する温
度差制御部の一例である。
また、上述した目標温度差ΔTdは、領域温度Ta,Tbに連動して変化してもよい。
この場合、目標温度差ΔTdは、領域温度Taまたは領域温度Tbの関数として予め定め
られていてもよい。要するに、磁場測定装置100,100aは、温度計測部8が計測し
た領域温度Taまたは領域温度Tbのうち、少なくとも一方の温度に関する値が予め定め
られた条件を満たす場合に、光透過壁面(第1領域)よりも筒状部14(第2領域)の温
度が低く、且つ、光透過壁面と筒状部14との温度差が予め定められた閾値を上回るよう
に、温度差を制御すればよい。
3−7.上述の実施形態において、計測停止指示信号を取得すると、制御部9は、加熱部
7等を停止させるとともに、冷却部6や補助加熱部6aの温度差拡大部を稼働させていた
が、計測を開始する旨の指示を示す指示信号である計測開始指示信号を取得したことを契
機として、温度差拡大部を稼働させてもよい。この場合、領域温度Ta,Tbは時間経過
とともに上昇するが、温度差拡大部が稼働するために、これらの温度差ΔTは、予め定め
られた最低温度差ΔTLを上回り、且つ最高温度差ΔTHを下回るように、あるいは、目
標温度差ΔTdに近づくように、制御されればよい。
3−8.上述の実施形態において、温度差ΔTと、最低温度差ΔTL、最高温度差ΔTH
、または目標温度差ΔTdとの比較結果に応じて、制御部9は、温度差拡大部を制御して
いたが、温度変化の値が予め定められた条件を満たしたときに、温度差拡大部を制御して
もよい。例えば、領域温度Ta,Tb、および温度差ΔTについて、単位時間あたりの変
化を監視し、その変化を示す温度変化速度や、その変化の時間についての二次微分などを
これら温度に関する値として特定する。そして、特定した温度に関する値が予め定められ
た条件を満たした場合に、制御部9は、温度差拡大部を制御すればよい。
具体的には、上述した温度変化速度などが、予め定められた閾値を上回った場合に、温
度差ΔTを制御するようにすればよい。温度変化速度が或る値を上回るということは、セ
ル1内部に急激な温度変化が生じていることを意味しており、温度分布の拡散よりも速い
局所的な温度変化によって、内部ガスが結露する可能性が高いからである。なお、この場
合、制御部9および温度差拡大部とは、温度変化速度が予め定められた閾値を上回った場
合に、温度差を制御する温度差制御部の一例である。
3−9.上述した第1実施形態および第2実施形態を組み合わせてもよい。すなわち、磁
場測定装置100,100aは冷却部6と補助加熱部6aとをともに備えていてもよい。
この場合でも、上述したタイミングで、冷却部6と補助加熱部6aとを制御することによ
り、セル1の内壁に温度差が生じるので光透過壁面における結露が防止される。
1…セル、11a,11b,12a,12b,13a,13b…壁面、14…筒状部、2
…被覆層、21a,21b,22a,22b…孔、3…ポンプ光照射部、4…プローブ光
照射部、5…プローブ光計測部、6…冷却部、6a…補助加熱部、7…加熱部、8,8a
,8b…温度計測部、9…制御部、100,100a…磁場測定装置。

Claims (1)

  1. 原子を含む物質を内部に封入し、光を透過させるセルと、
    前記セルを透過した前記光の回転角を計測する計測部と、
    前記セルに光が透過する第1領域の温度を測定する第1温度測定部と、
    前記セルの光が透過しない第2領域の温度を測定する第2温度測定部と、
    前記第1領域および前記第2領域の各温度のうち、少なくとも一方の温度の値が予め定められた条件を満たす場合に、前記第1領域よりも前記第2領域の温度が低く、且つ、前記第1領域と前記第2領域との温度差が予め定められた閾値を上回るように前記温度差を制御する温度差制御部と、を備え、
    前記の温度に関する値は、前記温度の単位時間あたりの変化を示す温度変化速度であり、
    前記温度差制御部は、前記温度変化速度が予め定められた閾値を上回った場合に、前記温度差を制御することを特徴とする磁場測定装置。
JP2011016163A 2011-01-28 2011-01-28 磁場測定装置 Expired - Fee Related JP5691562B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016163A JP5691562B2 (ja) 2011-01-28 2011-01-28 磁場測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016163A JP5691562B2 (ja) 2011-01-28 2011-01-28 磁場測定装置

Publications (3)

Publication Number Publication Date
JP2012154876A JP2012154876A (ja) 2012-08-16
JP2012154876A5 JP2012154876A5 (ja) 2014-01-23
JP5691562B2 true JP5691562B2 (ja) 2015-04-01

Family

ID=46836737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016163A Expired - Fee Related JP5691562B2 (ja) 2011-01-28 2011-01-28 磁場測定装置

Country Status (1)

Country Link
JP (1) JP5691562B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029362A (ja) * 2014-07-24 2016-03-03 セイコーエプソン株式会社 ガスセルおよび磁気測定装置
JP2017215226A (ja) * 2016-06-01 2017-12-07 セイコーエプソン株式会社 ガスセル、磁場計測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985449B2 (ja) * 2008-02-13 2012-07-25 東京エレクトロン株式会社 成膜装置
JP2010205875A (ja) * 2009-03-03 2010-09-16 Seiko Epson Corp ガスセル

Also Published As

Publication number Publication date
JP2012154876A (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5823195B2 (ja) 脳磁計及び脳磁測定方法
JP5666687B2 (ja) 光ポンピング磁力計、脳磁計及びmri装置
US20170023653A1 (en) Optically pumped magnetometer and magnetic sensing method
JP2017026405A (ja) 光ポンピング磁力計および磁気センシング方法
US9692432B2 (en) Gas cell, quantum interference device, atomic oscillator, electronic device, and moving object
US20150349791A1 (en) Atom cell, quantum interference device, atomic oscillator, electronic apparatus, and moving object
Zheng et al. Anomalous Damping of a Microelectromechanical Oscillator in Superfluid He 3-B
JP5691562B2 (ja) 磁場測定装置
JP2017215226A (ja) ガスセル、磁場計測装置
US9577652B2 (en) Atomic resonance transition device, atomic oscillator, electronic apparatus, and moving object
JP5741021B2 (ja) 磁場測定装置およびセル
KR20230110745A (ko) 저속 원자빔 생성 장치, 물리 패키지, 광격자 시계용 물리 패키지, 원자 시계용 물리 패키지, 원자 간섭계용 물리 패키지, 양자 정보 처리 디바이스용 물리 패키지 및 물리 패키지 시스템
JP5736795B2 (ja) 磁場測定装置
US9503110B2 (en) Gas cell, quantum interference device, atomic oscillator, electronic device, and moving object
US10826510B2 (en) Atomic oscillator and frequency signal generation system
Lü et al. Improvement on temperature measurement of cold atoms in a rubidium fountain
JP2017041662A (ja) 量子干渉装置、原子発振器、電子機器および移動体
EP3401920B1 (en) Plasma diagnostic system using multiple reciprocating path thomson scattering
JP2012154875A (ja) 磁場測定装置および容器
JP6264876B2 (ja) 量子干渉装置、原子発振器、および電子機器
WO2011016378A1 (ja) 3次元光共振装置、偏光レーザー発振方法、偏光レーザー発振システム
JP5889061B2 (ja) 光加熱による固体表面温度の計測装置及び計測方法
JP2011106968A (ja) 磁気計測装置
JP6213986B2 (ja) 絶対光強度測定装置及び測定方法
JP6024114B2 (ja) 磁場測定装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees