JP5682576B2 - Exhaust gas recovery method for converter - Google Patents

Exhaust gas recovery method for converter Download PDF

Info

Publication number
JP5682576B2
JP5682576B2 JP2012004894A JP2012004894A JP5682576B2 JP 5682576 B2 JP5682576 B2 JP 5682576B2 JP 2012004894 A JP2012004894 A JP 2012004894A JP 2012004894 A JP2012004894 A JP 2012004894A JP 5682576 B2 JP5682576 B2 JP 5682576B2
Authority
JP
Japan
Prior art keywords
exhaust gas
furnace
flow rate
converter
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012004894A
Other languages
Japanese (ja)
Other versions
JP2013144819A (en
Inventor
健 岩村
健 岩村
隆浩 古庄
隆浩 古庄
晶 佐藤
晶 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012004894A priority Critical patent/JP5682576B2/en
Publication of JP2013144819A publication Critical patent/JP2013144819A/en
Application granted granted Critical
Publication of JP5682576B2 publication Critical patent/JP5682576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉の吹錬中に発生するCOガスに富んだ排ガスを回収する転炉の排ガス回収方法に関する。   The present invention relates to a converter exhaust gas recovery method for recovering exhaust gas rich in CO gas generated during blowing of a converter.

転炉では、酸素を炉内に吹込みさらに生石灰などの副原料を投入して、溶鋼に含まれる炭素、珪素およびりん等を酸化して除去する。その際、脱炭反応に伴ってCO成分に富んだ排ガスが多量に発生する。この排ガスは、図1に示したように、スカートを介してフード内へと誘引され、冷却して除塵した後、切換弁により、CO濃度の高い排ガスは有価ガスとして回収され、CO濃度の低い排ガスは煙突を通して頂部で燃焼させて大気中に放散される。以下に、転炉における一般的な排ガス回収の流れを示す。   In the converter, oxygen is blown into the furnace, and auxiliary materials such as quick lime are added to oxidize and remove carbon, silicon, phosphorus and the like contained in the molten steel. At that time, a large amount of exhaust gas rich in CO component is generated along with the decarburization reaction. As shown in FIG. 1, this exhaust gas is drawn into the hood through the skirt, cooled and dust-removed, and then the exhaust gas having a high CO concentration is recovered as a valuable gas by the switching valve, and the CO concentration is low. The exhaust gas is burned at the top through the chimney and released into the atmosphere. The general flow of exhaust gas recovery in the converter is shown below.

<STEP1>
炉内への酸素吹込みが開始されると、脱炭反応が進行し排ガス中のCO濃度が上昇する。排ガス成分分析計によって連続的に測定される排ガス中のCOガス濃度がある設定値を上回ると、ガスホルダーヘのガス回収が開始される。
<STEP1>
When oxygen blowing into the furnace is started, the decarburization reaction proceeds and the CO concentration in the exhaust gas increases. When the CO gas concentration in the exhaust gas continuously measured by the exhaust gas component analyzer exceeds a set value, gas recovery to the gas holder is started.

<STEP2>
排ガス回収の開始後は、COガスの回収効率を高めるために、炉口部に設置された圧力検出器によって炉圧を検出し、主にフィードバック制御によって炉内圧が外気圧と等しくなるように、ダンパー開度を操作量として、炉内圧が制御される。これは、炉内圧が外気圧より高いと、排ガスが炉口とスカートとの隙間から炉外へと流出してCOガスの損失となり、また逆に、炉内圧が外気圧より低いと、外気が炉内へと流入し炉内のCOガスと外気中の酸素とが反応してCOガスが燃焼し、これもCOガスの損失となることによる。
<STEP2>
After the start of exhaust gas recovery, in order to increase the recovery efficiency of CO gas, the furnace pressure is detected by a pressure detector installed at the furnace port, and the internal pressure of the furnace becomes equal to the external pressure mainly by feedback control. The furnace pressure is controlled using the damper opening as the operation amount. This is because if the furnace pressure is higher than the external pressure, the exhaust gas flows out of the furnace through the gap between the furnace port and the skirt, resulting in CO gas loss. Conversely, if the furnace pressure is lower than the external pressure, This is because the CO gas flows into the furnace and the CO gas in the furnace reacts with oxygen in the outside air to burn the CO gas, which is also a loss of the CO gas.

<STEP3>
酸素吹込みに伴う脱炭反応が進行し、溶鋼中の炭素濃度が低くなると、排ガス中のCO濃度も低下する。そこで、排ガス成分分析計によって測定されたCO濃度がある設定値を下回ると、排ガス回収を終了する。回収終了後の排ガスは、煙突を通して放散される。
<STEP3>
When the decarburization reaction accompanying oxygen blowing proceeds and the carbon concentration in the molten steel decreases, the CO concentration in the exhaust gas also decreases. Therefore, when the CO concentration measured by the exhaust gas component analyzer falls below a certain set value, exhaust gas recovery is terminated. The exhaust gas after completion of recovery is diffused through the chimney.

STEP1およびSTEP3の排ガス回収開始・終了の判断基準として、従来技術では、排ガス成分分析計によって測定したCO濃度を使用していた。しかし、排ガス成分分析計による濃度測定には数十秒の分析時間が必要であるため、現時点で出力されたCO濃度は過去のデータである。それゆえ、この排ガス成分分析計によるCO濃度測定値に基づいて、排ガス回収開始・終了を判断すると、図2に示したように、回収ロスや、ガスホルダー蓄積ガスの品質低下(回収基準未達ガスの回収によるカロリー低下。以下において同じ。)といった問題が生じる。   In the prior art, the CO concentration measured by the exhaust gas component analyzer was used as the judgment standard for the start and end of exhaust gas recovery in STEP 1 and STEP 3. However, since concentration time measurement with an exhaust gas component analyzer requires an analysis time of several tens of seconds, the CO concentration output at this time is past data. Therefore, if the start / end of exhaust gas recovery is judged based on the measured CO concentration by the exhaust gas component analyzer, as shown in FIG. The problem of calorie reduction due to gas recovery.

STEP2に示した炉内圧制御に関する技術は、これまで数多く開示されている。たとえば、特許文献1には、副原料投入時や吹込み酸素量の変更時の急激な排ガス発生量の変化に対し、急激な炉内圧変動を抑制するため、炉内圧目標値を所定量、所定時間だけ変更する制御方法が開示されている。また、特許文献2には、予測時点の炉内発生排ガス量の推定値と実績値との偏差を求め、その偏差で予測時点の発生排ガス量の推定値を修正し、また、炉内圧を求めるパラメータを時々刻々と変化する実績巻込空気量と目標巻込空気量との比を基に修正して炉圧目標値として設定する制御装置が開示されている。   Many techniques related to furnace pressure control shown in STEP 2 have been disclosed so far. For example, Patent Document 1 discloses that a furnace internal pressure target value is set to a predetermined amount in order to suppress a rapid fluctuation in the internal pressure of the furnace with respect to a sudden change in the amount of exhaust gas generated when the auxiliary raw material is charged or when the amount of injected oxygen is changed. A control method for changing only the time is disclosed. In Patent Document 2, the deviation between the estimated value and the actual value of the amount of exhaust gas generated in the furnace at the time of prediction is obtained, the estimated value of the amount of generated exhaust gas at the time of prediction is corrected with the deviation, and the internal pressure of the furnace is obtained. A control device is disclosed in which a parameter is corrected based on a ratio of a tracked air amount and a target air amount that change from moment to moment and set as a furnace pressure target value.

特公平6−74449号公報Japanese Patent Publication No. 6-74449 特公昭62−17003号公報Japanese Examined Patent Publication No. 62-17003

特許文献1に開示されている技術および特許文献2に開示されている技術では、急激な炉内圧変動をできるだけ抑制してガス回収効率向上を図っている。しかしながら、最も急激な炉内圧変動が発生するスロッピングに関する記載が無い。スロッピングが発生すると炉内圧の制御が困難になるため、スロッピングを考慮していない両文献の技術を適用しても、スロッピング発生時にはガスホルダーに蓄積されるガスの品質低下の問題が生じると予想される。   With the technique disclosed in Patent Document 1 and the technique disclosed in Patent Document 2, a rapid furnace pressure fluctuation is suppressed as much as possible to improve gas recovery efficiency. However, there is no description regarding slopping in which the most rapid fluctuation in the furnace pressure occurs. Since control of the furnace pressure becomes difficult when slopping occurs, even if the techniques of both documents that do not consider slopping are applied, there will be a problem of deterioration in the quality of the gas accumulated in the gas holder when slopping occurs. It is expected to be.

そこで本発明は、排ガスの回収ロスやガスホルダーに蓄積されるガスの品質低下を抑制することが可能な、転炉の排ガス回収方法を提供することを課題とする。   Then, this invention makes it a subject to provide the exhaust gas recovery method of a converter which can suppress the recovery loss of exhaust gas, and the quality fall of the gas accumulate | stored in a gas holder.

以下、本発明について説明する。なお、本発明の理解を容易にするため、添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。   The present invention will be described below. In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are appended in parentheses, but the present invention is not limited to the illustrated embodiments.

本発明は、排気ガスダクトの先端にフードおよびスカートを取り付け、転炉炉口上に配置し、吹錬中に転炉から発生する排ガスを排気ガスダクトを介して吸引して排ガスの回収を行う転炉の排ガス回収装置(10)を用いる、転炉の排ガス回収方法において、転炉の排ガス回収装置(10)は、主原料情報を初期値とし、時々刻々の副原料投入情報および上底吹きガス流量情報から炉内発生ガス流量を求める炉内発生ガス流量演算部(4)と、時々刻々のスカートの高さ、ダンパー開度、誘引圧、炉内発生ガス流量演算部(4)で算出した炉内発生ガス流量、および、スカートの高さを用いて表されるスカート・炉口間の流入抵抗と、ダンパー開度を用いて表されるダンパーの流入抵抗とから炉内圧を求める炉内圧演算部(5)と、該炉内圧演算部(5)で算出した炉内圧、および、スカート・炉口間の流入抵抗から、スカートと転炉炉口との隙間から侵入する空気量を求める侵入空気量演算部(6)と、炉内発生ガス流量演算部(4)で算出した炉内発生ガス流量、および、侵入空気量演算部(6)で算出した侵入空気量から排気ガスダクト内の排ガス成分および排ガス流量を求める排ガス成分・流量演算部(7)と、を有し、排ガス成分・流量演算部(7)で算出される排ガスCO濃度が、任意の設定値以上となる場合に、転炉の排ガス回収装置(10)を用いて排ガス回収を行うことを特徴とする転炉の排ガス回収方法である。
The present invention is a converter of a converter in which a hood and a skirt are attached to the tip of an exhaust gas duct, arranged on the converter furnace port, and exhaust gas generated from the converter during blowing is sucked through the exhaust gas duct to recover the exhaust gas. In the converter exhaust gas recovery method using the exhaust gas recovery device (10), the converter exhaust gas recovery device (10) uses the main raw material information as an initial value, the sub raw material input information and the top bottom blowing gas flow rate information every moment. The in-furnace gas flow calculation unit (4) for obtaining the in-furnace generated gas flow rate from the furnace and the skirt height, damper opening, induction pressure, in-furnace generated gas flow rate calculation unit (4) Furnace pressure calculation unit that calculates the furnace pressure from the flow rate of the generated gas and the inflow resistance between the skirt and the furnace port expressed using the height of the skirt and the inflow resistance of the damper expressed using the damper opening ( 5) and the furnace pressure An intrusion air amount calculation unit (6) for determining the amount of air entering from the gap between the skirt and the converter furnace port from the furnace pressure calculated in the calculation unit (5) and the inflow resistance between the skirt and the furnace port; Exhaust gas component and flow rate for obtaining exhaust gas component and exhaust gas flow rate in exhaust gas duct from furnace generated gas flow rate calculated by internally generated gas flow rate calculation unit (4) and intrusion air amount calculated by intrusion air amount calculation unit (6) An exhaust gas recovery device (10) for the converter when the CO concentration of the exhaust gas calculated by the exhaust gas component / flow rate calculation unit (7) is not less than an arbitrary set value. An exhaust gas recovery method for a converter, characterized in that exhaust gas recovery is performed.

また、上記本発明において、スカートの高さの線形式を用いて、スカート・炉口間の流入抵抗を求めることが好ましい。   In the present invention, it is preferable to determine the inflow resistance between the skirt and the furnace port by using a linear form of the skirt height.

また、上記本発明において、ダンパー開度のべき乗式を用いて、ダンパーの流入抵抗を求めることが好ましい。   Moreover, in the said invention, it is preferable to obtain | require the inflow resistance of a damper using the power equation of a damper opening degree.

また、上記本発明において、排ガス成分分析値、排ガス流量実測値、上底吹きガス流量、副原料投入量および溶銑成分から酸素収支を計算して求める炉内蓄積酸素量原単位Oから、上記排ガス成分・流量演算部で算出した排ガス成分および排ガス流量、上底吹きガス流量、副原料投入量ならびに溶銑成分から酸素収支を計算して得られる炉内蓄積酸素量原単位O’を差し引いた値O−O’が任意の設定値以下となる場合に、排ガス回収を行うことが好ましい。 In the above present invention, the exhaust gas component analysis value, the exhaust gas flow rate measured value, an upper bottom blown gas flow rate, the oxygen balance from the furnace accumulated oxygen per unit O S obtaining by calculation from the sub-raw material input and the hot metal components, the minus exhaust gas components and gas flow rate calculated in exhaust gas components, flow rate calculation unit, an upper bottom blown gas flow rate, a secondary raw material input and furnace accumulated oxygen per unit obtained by calculating the oxygen balance from the hot metal components O S ' It is preferable to perform exhaust gas recovery when the value O S −O S ′ is equal to or less than an arbitrary set value.

本発明によれば、転炉の吹錬中に発生する排ガスの成分や流量(以下において、「排ガス成分・流量」ということがある。)を高精度で推定可能となり、排ガス成分分析計の分析時間遅れの影響を受けることがなくなり、CO濃度の高い排ガスをより多量に回収することが可能になる。したがって、スロッピング発生時においても、排ガスの回収ロスやガスホルダーに蓄積されるガスの品質低下を抑制することが可能な、転炉の排ガス回収方法を提供することができる。   According to the present invention, it becomes possible to estimate the components and flow rate of exhaust gas generated during blowing of a converter (hereinafter sometimes referred to as “exhaust gas component / flow rate”) with high accuracy, and the analysis of the exhaust gas component analyzer. It is not affected by the time delay, and a larger amount of exhaust gas having a high CO concentration can be recovered. Accordingly, it is possible to provide a converter exhaust gas recovery method capable of suppressing the exhaust gas recovery loss and the deterioration of the quality of the gas accumulated in the gas holder even when slopping occurs.

転炉排ガス回収設備の概要図である。It is a schematic diagram of a converter exhaust gas recovery equipment. 排ガスCO濃度の推移の概念図である。It is a conceptual diagram of transition of exhaust gas CO concentration. OGモデルの概念図である。It is a conceptual diagram of an OG model. 転炉炉内反応モデルで考慮する反応を説明する図である。It is a figure explaining reaction considered with a reaction model in a converter furnace. 統合モデルの考え方を説明する図である。It is a figure explaining the view of an integrated model. 炉内圧および排ガス成分・流量の推定値と実績値との推移を示す図である。It is a figure which shows transition of the estimated value and actual value of a furnace internal pressure, exhaust gas component, and flow volume. 転炉の排ガス回収装置10を説明する図である。It is a figure explaining the exhaust gas recovery apparatus 10 of a converter. ΔOの推移例を説明する図である。Is a diagram illustrating an example of progression of delta O.D. S. 本発明の転炉の排ガス回収方法を説明する図である。It is a figure explaining the exhaust gas recovery method of the converter of the present invention.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

排ガス回収開始・終了の判断基準である排ガス中CO濃度として、排ガス成分分析計による測定値ではなく、数式モデルによる排ガス中CO濃度推定値を用いることができれば、先に示した分析遅れの問題を解決できる。特許文献2では、転炉炉内の発生ガス流量を数式モデルにて計算することが提案されているが、転炉からダクトを経てガスホルダーへと至る排ガスは、モデル化の対象となっていない。
そこで、本発明者らは検討を重ねた結果、炉内の溶鋼・スラグ成分温度をダイナミックに計算し、炉内発生ガス流量を推定する数式モデルと、炉口部の炉内圧および炉口とスカートとの間から侵入する空気量を推定する数式モデルとを組み合わせて、排ガスの成分や流量を推定する方法に着目した。
If the estimated value of CO concentration in exhaust gas by a mathematical model can be used as the CO concentration in exhaust gas, which is the criterion for determining the start and end of exhaust gas recovery, instead of the measured value by the exhaust gas component analyzer, the above-mentioned problem of analysis delay can be solved. Solvable. In Patent Document 2, it is proposed to calculate the generated gas flow rate in the converter furnace by a mathematical model, but the exhaust gas from the converter through the duct to the gas holder is not the object of modeling. .
Therefore, as a result of repeated studies, the inventors have dynamically calculated the molten steel / slag component temperature in the furnace and estimated the flow rate of the gas generated in the furnace, the furnace pressure of the furnace mouth, the furnace mouth and the skirt. We focused on a method for estimating the components and flow rate of exhaust gas in combination with a mathematical model that estimates the amount of air intruding from between.

また、炉内で発生したCOガスやCOガスがスラグ中にトラップされるとフォーミング(泡立ち)状態となり、さらにフォーミングが成長するとスラグが炉外に溢れ出すスロッピングに至る。スロッピングに至るようなフォーミングを検知できれば、排ガス回収を中断してガスホルダーに蓄積される排ガスの品質低下を回避できるが、フォーミングの発生・成長機構の精緻なモデル化は非常に困難である。
そこで、本発明者らは検討を重ねた結果、前述の排ガスの成分や流量の推定値を用いて求めた炉内蓄積酸素量原単位(算出方法については後述する)を活用して、フォーミング状態を推定する方法に着目した。
Further, when CO gas or CO 2 gas generated in the furnace is trapped in the slag, a foaming state is formed, and when the forming grows, slag overflows out of the furnace. If forming that can lead to slopping can be detected, exhaust gas recovery can be interrupted and quality degradation of the exhaust gas accumulated in the gas holder can be avoided, but precise modeling of the formation and growth mechanism of the forming is very difficult.
Therefore, as a result of repeated studies, the present inventors have utilized the in-furnace oxygen storage basic unit (a calculation method will be described later) obtained using the above-described estimated values of exhaust gas components and flow rates to form a state. We focused on the method of estimating.

はじめに、炉内圧および侵入空気量の推定方法について説明する。図1に示した転炉および排ガス回収設備を、図3に示したように、(i)転炉、(ii)スカート、(iii)煙道、および、(iv)IDFの4つのブロックに分割して考える。図中の圧力の定義を表1に、ガス流量の定義を表2に、それぞれ示す。   First, a method for estimating the furnace pressure and the intrusion air amount will be described. As shown in FIG. 3, the converter and exhaust gas recovery facility shown in FIG. 1 are divided into four blocks: (i) converter, (ii) skirt, (iii) flue, and (iv) IDF. Think about it. The definition of pressure in the figure is shown in Table 1, and the definition of gas flow rate is shown in Table 2.

まず、圧力とガス流量との関係を下記式(1)にて定義する。ガス流量はブロック間の圧力差の平方根に比例するというもので、ベルヌーイの定理に基づいている。Kは抵抗を表すパラメータである。   First, the relationship between pressure and gas flow rate is defined by the following formula (1). The gas flow rate is proportional to the square root of the pressure difference between the blocks, and is based on Bernoulli's theorem. K is a parameter representing resistance.

次に、上記考え方に基づいて、排ガス流量および炉口からの侵入空気量をそれぞれ下記式(2)及び下記式(3)で表す。   Next, based on the above concept, the exhaust gas flow rate and the amount of intrusion air from the furnace port are expressed by the following formula (2) and the following formula (3), respectively.

ここで、FIDFは(ii)スカート部および(iv)IDFのブロック間のガス流量(=排ガス流量)であり、Fは大気および(ii)スカート部のブロック間のガス流量(=侵入空気量)である。また、ダンパーの流入抵抗Kはダンパー開度hの関数(べき乗式)とし、スカート・炉口間の流入抵抗Kはスカート高さhの関数(線形式)とする。Kはh、α、および、βを用いて下記式(4)の形態で表され、Kはh、α、および、βを用いて下記式(5)の形態で表される。 Here, F IDF is (ii) a skirt portion and (iv) gas flow rate between blocks of IDF (= exhaust gas flow rate), F a gas flow rate between blocks of the atmosphere and (ii) a skirt portion (= intrusion air Amount). Furthermore, inflow resistance K D of the damper is a function of the damper opening h D (power equation), inflow resistance K S between the skirt furnace port is a function of the skirt height h S (linear equation). The K D h D, alpha D, and, using a beta D is represented in the form of the following formula (4), K S is h S, alpha S, and, by using a beta S form of the following formula (5) It is represented by

また、圧力およびガス流量の応答は十分に速いという前提のもと、ガス流量に関して下記式(6)が成り立つとする。   Further, it is assumed that the following equation (6) is established regarding the gas flow rate on the premise that the response of the pressure and the gas flow rate is sufficiently fast.

式(6)において、侵入空気量Fに乗じた0.79は、侵入空気中酸素による二次燃焼に伴う酸素消失を表している。 In the formula (6), 0.79 multiplied by the intrusion air quantity F a represents an oxygen loss due to secondary combustion with entering air oxygen.

以上より、大気圧(P=0[Pa])、IDF吸気圧(PIDF[Pa])、転炉内発生ガス流量(FCV[Nm/h])、ダンパー開度(h)、および、スカート高さ(h)が与えられれば、式(2)および式(3)を式(6)へと適用することにより、下記式(7)が得られる。下記式(7)は、炉内圧(P)のみを変数とする非線形方程式となり、これを解くことにより炉内圧(P)を算出できる。さらに、算出した炉内圧(P)を使って、式(2)および式(3)より排ガス流量(FIDF)および侵入空気量(F)を求めることができる。 From the above, atmospheric pressure (P a = 0 [Pa]), IDF intake pressure (P IDF [Pa]), converter generated gas flow rate (F CV [Nm 3 / h]), damper opening (h D ) When the skirt height (h S ) is given, the following equation (7) is obtained by applying the equations (2) and (3) to the equation (6). The following equation (7) becomes a nonlinear equation having only the furnace pressure (P 0 ) as a variable, and the furnace pressure (P 0 ) can be calculated by solving this equation. Further, the exhaust gas flow rate (F IDF ) and the intrusion air amount (F a ) can be obtained from the equations (2) and (3) using the calculated furnace pressure (P 0 ).

さらに、下記式(8)乃至式(10)により、排ガス中のCOガス流量、COガス流量、および、Nガス流量(FIDF,CO[Nm/h]、FIDF,CO2[Nm/h]、FIDF,N2[Nm/h])を求めることができ、最終的に下記式(11)乃至式(13)から排ガス成分濃度推定値(CCO[%]、CCO2[%]、CN2[%])を求めることができる。以下において、炉内圧、侵入空気量、および、排ガス成分・流量を求める一連の数式モデルを「OGモデル」という。また、FCV,COは炉内発生COガス流量[Nm/h]であり、FCV,CO2は炉内発生COガス流量[Nm/h]である。 Further, according to the following formulas (8) to (10), the CO gas flow rate, the CO 2 gas flow rate in the exhaust gas, and the N 2 gas flow rate (F IDF, CO [Nm 3 / h], F IDF, CO 2 [Nm] 3 / h], F IDF, N2 [Nm 3 / h]), and finally, the exhaust gas component concentration estimated values (C CO [%], C CO2 can be calculated from the following formulas (11) to (13). [%], C N2 [%]). Hereinafter, a series of mathematical models for obtaining the furnace pressure, the intrusion air amount, and the exhaust gas component / flow rate are referred to as “OG model”. F CV, CO is the in-furnace generated CO gas flow rate [Nm 3 / h], and F CV, CO 2 is the in-furnace generated CO 2 gas flow rate [Nm 3 / h].

次に、炉内発生ガス流量(FCV)の推定方法について説明する。
炉内発生ガス流量FCVは、炉内の脱炭反応で生成する炉内発生COガス流量と、炉内発生COガスの二次燃焼にて生成する炉内発生COガス流量との和として定義される。炉内発生COガス流量は、転炉炉内反応モデルから求めることができ、これまでに多くの転炉炉内反応モデルが提案されている。ここでは、物質収支式と熱収支式とから吹錬中の溶鋼成分と温度の変化を計算する、鞭によって提案されたモデル(鞭巌、森山昭 著、「冶金反応工学」、養賢堂、1972年)を使って説明する。
Next, a method for estimating the furnace generated gas flow rate (F CV ) will be described.
The in-furnace generated gas flow rate F CV is the sum of the in-furnace generated CO gas flow rate generated by the decarburization reaction in the furnace and the in-furnace generated CO 2 gas flow rate generated by the secondary combustion of the in-furnace generated CO gas. Defined. The flow rate of CO gas generated in the furnace can be obtained from a converter reaction model, and many converter reaction models have been proposed so far. Here, a model proposed by the whip that calculates the changes in the molten steel composition and temperature during blowing from the mass balance equation and the heat balance equation (Whizuru, Akira Moriyama, “Metallurgy Reaction Engineering”, Yokendo, 1972).

転炉吹錬の反応として、図4に示したような6種類の反応(火点反応、COガスの酸化反応、スラグ生成反応、スラグ−メタル間反応、スクラップや冷銑の融解、および、副原料分解)を考える。なお、図4は、『高橋亮一著、「鉄鋼業における制御」、コロナ社、2002年、p.39』に記載されている図面である。   As the converter blowing reaction, six types of reactions as shown in FIG. 4 (fire point reaction, CO gas oxidation reaction, slag generation reaction, slag-metal reaction, scrap and cold metal melting, and secondary reaction Consider material decomposition. FIG. 4 shows “Ryoichi Takahashi,“ Control in the Steel Industry ”, Corona, 2002, p. 39 ”.

火点反応では、供給酸素により溶鋼中の各成分が酸化される。この際、各成分酸化へのO分配比率は、各成分の濃度と反応速度定数との積に比例すると考える。すなわち、 In the hot spot reaction, each component in the molten steel is oxidized by the supplied oxygen. At this time, the O 2 distribution ratio to each component oxidation is considered to be proportional to the product of the concentration of each component and the reaction rate constant. That is,

ここで、σはi成分酸化へのO分配比率、κはi成分酸化の反応速度定数[kg/(kmol・s)]、Cimはメタル中のi成分濃度[kmol/kg]である。 Here, σ i is the O 2 distribution ratio to i-component oxidation, κ i is the reaction rate constant [kg / (kmol · s)] of i-component oxidation, and C im is the i-component concentration in the metal [kmol / kg]. It is.

そして、吹錬過程における溶鋼中の各成分の変化は、火点反応における変化量、スラグメタル間反応による変化量、および、スクラップや冷銑の溶解に伴ってスクラップや冷銑から溶鋼へと移動する量の総和として表される。溶鋼中炭素の収支式は、下記式(15)で表される。   And the change of each component in the molten steel in the blowing process moves from the scrap or cold metal to the molten steel with the amount of change in the hot spot reaction, the amount of change due to the reaction between slag metals, and the melting of the scrap and cold metal. It is expressed as the sum of the amount to do. The balance equation of carbon in molten steel is represented by the following formula (15).

ここで、Wは溶鋼重量[kg]、WCMは冷銑重量[kg]、WSCはスクラップ重量[kg]、CiCMは冷銑中のi成分濃度[kmol/kg]、CiSCはスクラップ中のi成分濃度[kmol/kg]、VO2は酸素供給速度[kmol/s]である。 Here, W m is the molten steel weight [kg], W CM is Hiyazuku weight [kg], W SC scrap weight [kg], C iCM the i component concentration in Hiyazuku [kmol / kg], C iSC is The i component concentration in the scrap [kmol / kg], V O2 is the oxygen supply rate [kmol / s].

炉内発生COガス流量および炉内発生COガス流量は、式(15)より下記式(16)及び下記式(17)のように表される。下記式(18)は二次燃焼率を表す式であり、上吹き酸素流量やランス湯面間距離等の関数として定義される。 The in-furnace generated CO gas flow rate and the in-furnace generated CO 2 gas flow rate are expressed by the following formula (16) and the following formula (17) from the formula (15). The following equation (18) is an equation representing the secondary combustion rate, and is defined as a function such as the upper blown oxygen flow rate or the lance hot water surface distance.

ここで、COは炉内発生COガス量[Nm]、CO2は炉内発生COガス量[Nm]、αCO2は二次燃焼率、FO2は上吹き送酸速度[Nm/s]、Lνはランス湯面間距離[m]である。 Here, CO V is the amount of CO gas generated in the furnace [Nm 3 ], CO 2 V is the amount of CO 2 gas generated in the furnace [Nm 3 ], α CO2 is the secondary combustion rate, and FO 2 is the upper blowing acid rate [Nm 3 3 / s], L ν is the distance between lances [m].

図4に示した反応熱や融解熱、分解熱のほかに鉄皮および炉口からの放散熱やスラグメタル間の伝熱等の各熱量が、それぞれ一定の比率で溶鋼へ分配されるとすると、熱収支式は下記式(19)のように表される。   In addition to the heat of reaction, heat of fusion, and heat of decomposition shown in FIG. 4, each amount of heat, such as heat dissipated from the iron skin and furnace opening and heat transfer between slag metals, is distributed to the molten steel at a certain ratio. The heat balance equation is expressed as the following equation (19).

ここで、cは溶鋼比熱[kcal/(kg・℃)]、Tは溶鋼温度[℃]、Qは火点反応熱、Qはスラグ生成熱、Qはスラグメタル反応熱、Qは炉内二次燃焼熱、Qはスクラップ融解熱、Qは副原料分解熱である。 Here, c P is the molten steel specific heat [kcal / (kg · ℃) ], T m is the molten steel temperature [° C.], Q 1 fire point reaction heat, Q 2 is slag generated heat, Q 3 slag metal reaction heat, Q 4 are furnace secondary combustion heat, Q 5 is a scrap melting heat, Q 6 is an auxiliary raw material decomposition heat.

そして、初期値として主原料情報を用い、時々刻々の副原料投入情報および上底吹きガス流量情報を基に、物質収支式および熱収支式からなる連立微分方程式を解くことにより、炉内発生ガス流量(=炉内発生COガス流量(CO)+炉内発生COガス流量(CO2))が得られる。 Then, the main raw material information is used as an initial value, and the gas generated in the furnace is solved by solving the simultaneous differential equations consisting of the material balance equation and the heat balance equation based on the information on the input of the auxiliary raw material and the information on the top bottom blowing gas flow. A flow rate (= in-furnace generated CO gas flow rate (CO V ) + in-furnace generated CO 2 gas flow rate (CO 2 V )) is obtained.

上記転炉炉内反応モデルとOGモデルとを組み合わせることにより、時々刻々の排ガス成分・流量の推定計算が可能となる(以下において、転炉炉内反応モデルとOGモデルとを組み合わせたモデルを「統合モデル」という。)すなわち、図5に示したように、転炉炉内反応モデルで計算される炉内発生ガス流量をOGモデルへの入力情報とすることにより、炉内反応の結果を基に、実際の排ガス回収設備の情報(スカート高さ、ダンパー開度、誘引圧)を反映した排ガス成分・流量をダイナミックに推定できる。図6に、炉内圧および排ガス成分・流量の推定値と実績値とを示す。図6に示したように、すべて良好に推定できている。   By combining the reactor internal reaction model and the OG model, it is possible to estimate and calculate exhaust gas components and flow rates from moment to moment (hereinafter, a model combining the reactor internal reaction model and the OG model is referred to as “ In other words, as shown in FIG. 5, the in-furnace gas flow calculated in the converter reaction model is used as input information to the OG model, so that the results of the in-furnace reaction can be obtained. In addition, it is possible to dynamically estimate exhaust gas components and flow rates that reflect actual exhaust gas recovery equipment information (skirt height, damper opening, and attractive pressure). FIG. 6 shows estimated values and actual values of furnace pressure and exhaust gas components / flow rates. As shown in FIG. 6, all can be estimated well.

そして、図6に推定値および実績値を例示した排ガス中CO濃度の推定値を用いて、排ガス回収開始・終了の判断をすることにより、排ガス成分分析計を使用せずに排ガスを回収できる。すなわち、かかる形態とすることにより、排ガス成分分析計による分析遅れ時間の影響を受けることなく、真に効率的な排ガス回収が可能となる。   And exhaust gas can be collect | recovered without using an exhaust gas component analyzer by judging exhaust gas collection | recovery start / end using the estimated value of CO concentration in exhaust gas which illustrated the estimated value and the actual value in FIG. That is, by adopting such a configuration, it is possible to truly recover exhaust gas without being affected by the analysis delay time by the exhaust gas component analyzer.

次に、上記の統合モデルによる排ガス成分および排ガス流量の推定値を活用して、スロッピングに至るようなフォーミングを検知する方法について説明する。   Next, a description will be given of a method for detecting forming that leads to slapping by using the estimated values of the exhaust gas component and the exhaust gas flow rate by the integrated model.

まず、排ガス成分分析計による排ガス成分測定値、および、ベンチュリー流量計による排ガス流量測定値に基づく、炉内蓄積酸素量原単位Oの計算方法を示す。炉内蓄積酸素量原単位Oは、炉内における酸素収支に基づいて計算され、一般的に、生成したスラグ中のFeOに対応するとされている。 First, exhaust gas components measured by the exhaust gas components analyzer, and, based on the exhaust gas flow rate value measured by the venturi flow meter, the method of calculating the furnace accumulated oxygen per unit O S. Furnace accumulated oxygen per unit O S is calculated based on the oxygen balance in the furnace, generally, there is a corresponding FeO of the generated slag.

排ガス中のCO流量VCO[Nm/h]、排ガス中のCO流量VCO2[Nm/h]、排ガス中のO流量VO2[Nm/h]、排ガス中のN流量VN2[Nm/h]、炉内発生CO流量VCO [Nm/h]、および、炉内発生CO流量VCO2 [Nm/h]は、それぞれ、下記式(20)乃至式(25)で表される。 CO flow rate V CO [Nm 3 / h] in exhaust gas, CO 2 flow rate V CO2 [Nm 3 / h] in exhaust gas, O 2 flow rate V O2 [Nm 3 / h] in exhaust gas, N 2 flow rate in exhaust gas V N2 [Nm 3 / h], in-furnace generated CO flow rate V CO V [Nm 3 / h], and in-furnace generated CO 2 flow rate V CO2 V [Nm 3 / h] are respectively the following formulas (20): Thru | or Formula (25).

ここで、hCOおよびhCO2は排ガス成分測定値[%]、Qoffgasは排ガス流量測定値[Nm/h]、i_delayは排ガス分析遅れ[−]である。 Here, h CO and h CO2 are exhaust gas component measured values [%], Q offgas is an exhaust gas flow rate measured value [Nm 3 / h], and i_delay is an exhaust gas analysis delay [−].

また、炉内蓄積酸素変化量dO[Nm/s]および炉内蓄積酸素量原単位O[Nm/ton]は、下記式(26)および式(27)で表される。 Further, the in-furnace accumulated oxygen change amount dO S [Nm 3 / s] and the in-furnace accumulated oxygen amount basic unit O S [Nm 3 / ton] are expressed by the following formulas (26) and (27).

ここで、(%SiO)消費酸素は溶銑の脱Si時期におけるSiO形成で消費される酸素量[m]、Wstは溶鋼重量[ton]である。 Here, (% SiO 2 ) consumed oxygen is the amount of oxygen [m 3 ] consumed by SiO 2 formation in the hot metal de-Si period, and W st is the molten steel weight [ton].

仮にフォーミングが発生しているとすると、本来は炉外へと流出する炉内発生COガスおよび炉内発生COガスがスラグ中にトラップされるため、上記の計算方法に基づいた炉内蓄積酸素量原単位Oは見かけ上大きくなる。しかし、炉内蓄積酸素量原単位Oの増加が認められても、それがフォーミングによるものなのか脱炭反応効率の低下によるものなのかの判断は困難である。 Assuming that forming has occurred, the internally generated CO gas that flows out of the furnace and the CO 2 gas generated in the furnace are trapped in the slag. Therefore, the oxygen stored in the furnace based on the above calculation method. per unit O S is apparently increased. However, even if the increase in furnace accumulated oxygen per unit O S was observed, determination of whether it is a thing due to the decrease in such the either the decarburization reaction efficiency due to the forming is difficult.

一方、統合モデルはスラグが正常な状態を前提としているため、炉内発生COガスや炉内発生COガスがスラグにトラップされない排ガス成分・流量を推定する。そして、これら推定値に基づいて算出した炉内残留酸素量原単位O’と上記の炉内蓄積酸素量原単位Oとを比べれば、フォーミング状態にあるか否かを判断できる。 On the other hand, since the integrated model is based on the assumption that the slag is in a normal state, the exhaust gas component / flow rate at which the CO gas generated in the furnace or the CO 2 gas generated in the furnace is not trapped by the slag is estimated. Then, compared with these estimates furnace residual oxygen per unit O S calculated based on 'the above furnace accumulated oxygen per unit O S, can be determined whether there are any forming state.

すなわち、式(28)で表される、排ガス成分分析計による排ガス成分測定値、および、ベンチュリー流量計による排ガス流量測定値に基づいた炉内蓄積酸素量原単位Oと、統合モデルで推定した排ガス成分および排ガス流量を基に求めた炉内蓄積酸素量原単位O’との差が、ある設定値以上になった場合には、スロッピングに至る危険性のあるフォーミング状態にあると判断することができる。したがって、ΔOがある設定値以下の場合に排ガス回収を行うようにすれば、ガスホルダーに蓄積される排ガスの品質低下を回避できる。 That is, the formula (28), exhaust gas components measured by the exhaust gas components analyzer, and, the furnace accumulates oxygen per unit O S based on exhaust gas flow rate value measured by the venturi flow meter, estimated in integration model determining the difference between the exhaust gas components and gas flow furnace accumulation was determined on the basis of oxygen per unit O S 'is, when it becomes more than a certain set value is in the forming state at risk of leading to slopping can do. Therefore, if the exhaust gas is recovered when ΔO S is equal to or less than a certain set value, it is possible to avoid a reduction in the quality of the exhaust gas accumulated in the gas holder.

以下、本発明の実施形態を図面に基づいて説明する。図7に、本発明の転炉の排ガス回収方法を適用可能な転炉の排ガス回収装置10の構成例を示す。
溶銑データ1は、チャージ毎の溶銑重量、溶銑成分(C、Si、Mn、P等)、溶銑温度、溶銑率等の溶銑条件のデータである。目標データ2は、チャージ毎の目標成分(C、Si、Mn、P等)、目標温度のデータである。パラメータ3では、ダンパー開度のべき乗式(式(4))やスカート高さの線形式(式(5))の係数、排ガス回収基準CO濃度、フォーミング判定基準値等のパラメータを設定する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 7, the structural example of the exhaust gas recovery apparatus 10 of the converter which can apply the exhaust gas recovery method of the converter of this invention is shown.
Hot metal data 1 is data of hot metal conditions such as hot metal weight for each charge, hot metal components (C, Si, Mn, P, etc.), hot metal temperature, and hot metal ratio. The target data 2 is data of target components (C, Si, Mn, P, etc.) and target temperature for each charge. In parameter 3, parameters such as a coefficient of a power expression of the damper opening (formula (4)) and a linear form of the skirt height (formula (5)), exhaust gas recovery reference CO concentration, forming determination reference value, and the like are set.

炉内発生ガス流量演算部4では、転炉炉内反応モデルに基づいて、溶鋼成分・温度とともに炉内発生ガス流量の推定値を算出する。   The in-furnace generated gas flow rate calculation unit 4 calculates an estimated value of the in-furnace generated gas flow rate together with the molten steel components and temperature based on the converter furnace reaction model.

炉内圧演算部5では、時々刻々のスカート高さ、ダンパー開度、および、誘引圧等の排ガス回収設備データと、スカート・炉口間の流入抵抗と、ダンパーの流入抵抗と、炉内発生ガス流量演算部4で算出した炉内発生ガス流量の推定値と、に基づいて、式(7)から炉内圧の推定値を算出する。   In the furnace pressure calculation unit 5, exhaust gas recovery equipment data such as skirt height, damper opening, and attraction pressure, the inflow resistance between the skirt and the furnace opening, the inflow resistance of the damper, and the generated gas in the furnace Based on the estimated value of the generated gas flow rate in the furnace calculated by the flow rate calculation unit 4, the estimated value of the in-furnace pressure is calculated from the equation (7).

侵入空気量演算部6では、炉内圧演算部5で算出した炉内圧の推定値と、スカート・炉口間の流入抵抗とに基づいて、式(3)から、スカートと炉口との隙間から侵入する空気量の推定値を算出する。   Based on the estimated value of the furnace pressure calculated by the furnace pressure calculation unit 5 and the inflow resistance between the skirt and the furnace port, the intrusion air amount calculation unit 6 calculates from the gap between the skirt and the furnace port. Calculate the estimated amount of air that enters.

排ガス成分・流量演算部7では、炉内発生ガス流量演算部4で算出した炉内発生ガス流量の推定値と、炉内圧演算部5で算出した炉内圧の推定値と、侵入空気量演算部6で算出した侵入空気量の推定値とに基づいて、排ガス成分・流量の推定値を算出する。そして、算出された排ガスCO濃度の推定値がある設定値(例えば、40%〜60%)以上の場合に、排ガスを回収するように回収弁11を作動させる。先の設定値がたとえば小さい値(20%程度)の場合には、ガスホルダーに蓄積されるガスのカロリーが低下する問題が発生し、逆に設定値が大きすぎると(80%程度)ガスホルダーに蓄積されるガスのカロリー自体は上昇するものの、放散によってロスするCOガスが増えてしまう。通常の転炉操業であれば40%〜60%に設定しておくのが一般的である。   In the exhaust gas component / flow rate calculation unit 7, the estimated value of the in-furnace generated gas flow calculated by the in-furnace generated gas flow rate calculation unit 4, the estimated value of the in-furnace pressure calculated by the in-furnace pressure calculation unit 5, and the intrusion air amount calculation unit Based on the estimated value of the intrusion air amount calculated in step 6, the estimated value of the exhaust gas component / flow rate is calculated. Then, when the estimated value of the calculated exhaust gas CO concentration is a certain set value (for example, 40% to 60%) or more, the recovery valve 11 is operated so as to recover the exhaust gas. For example, when the previous set value is a small value (about 20%), there is a problem that the calorie of the gas accumulated in the gas holder decreases, and conversely, if the set value is too large (about 80%), the gas holder Although the calories themselves of the gas accumulated in the gas rise, the CO gas lost due to diffusion increases. In general converter operation, it is generally set to 40% to 60%.

炉内蓄積酸素量原単位演算部8では、溶銑データ1と、上底吹き酸素流量と、副原料投入量と、排ガス情報(排ガス流量計12による排ガス流量の測定値および排ガス成分分析計13による排ガス成分の分析値)とに基づいて炉内残留酸素量原単位Oを算出するとともに、統合モデルによる排ガス情報(排ガス流量の推定値および排ガス成分の推定値)に基づいて炉内残留酸素量原単位O’を算出する。そして、ΔO(=O−O’)がある設定値(例えば、4.0[Nm/ton])以下の場合に、排ガスを回収するように回収弁11を作動させる。
ここで、図8には大規模なスロッピングが発生した場合のΔOの推移例を示す。図8の縦軸はΔO[Nm/ton]であり、横軸は吹錬時間[s]である。図8に示したように、大規模なスロッピングが発生した場合は、通常の吹錬と比べるとΔOが大幅に大きくなることがわかる。先の設定値として、たとえば4.0[Nm/ton]程度を設定しておけば、スロッピング発生時のガス回収を止めることが可能となりガスホルダーに蓄積されるガスの品質低下を抑制できる。
In the in-furnace oxygen storage unit calculation unit 8, the hot metal data 1, the top bottom blown oxygen flow rate, the amount of auxiliary raw material input, and the exhaust gas information (exhaust gas flow rate measured by the exhaust gas flow meter 12 and exhaust gas component analyzer 13 calculates the furnace residual oxygen per unit O S based on the analytical values of the exhaust gas components), furnace residual oxygen quantity based on the exhaust gas information by integrating the model (estimated value of the estimated value and exhaust gas components of the exhaust gas flow rate) The basic unit O S 'is calculated. When ΔO S (= O S −O S ′) is equal to or less than a certain set value (for example, 4.0 [Nm 3 / ton]), the recovery valve 11 is operated so as to recover the exhaust gas.
Here, FIG. 8 shows a transition example of ΔO S when large-scale slapping occurs. The vertical axis in FIG. 8 is ΔO S [Nm 3 / ton], and the horizontal axis is the blowing time [s]. As shown in FIG. 8, when large-scale slopping has occurred, it can be seen that ΔO S is greatly increased compared to ordinary blowing. If, for example, about 4.0 [Nm 3 / ton] is set as the previous set value, it is possible to stop the gas recovery at the time of the occurrence of the slopping, and the deterioration of the quality of the gas accumulated in the gas holder can be suppressed. .

入出力部9は、排ガス成分の推定値や炉内蓄積酸素量原単位の表示や、目標データ2およびパラメータ3の修正入力などのインターフェイス機能を有している。   The input / output unit 9 has an interface function such as displaying an estimated value of exhaust gas components and a basic unit of oxygen amount accumulated in the furnace, and correction input of target data 2 and parameter 3.

次に、排ガス成分・流量演算部7および炉内蓄積酸素量原単位演算部8で行われる処理の詳細を、図9に示したフローチャートを使って説明する。   Next, details of processing performed by the exhaust gas component / flow rate calculation unit 7 and the in-furnace oxygen storage unit calculation unit 8 will be described using the flowchart shown in FIG.

S1では、溶銑重量などのデータを溶銑データ1から収集する。S2では、吹錬中の上底吹きガス流量および副原料投入量を逐次収集して、転炉炉内反応モデルにより炉内発生ガス流量を求める。   In S1, data such as hot metal weight is collected from hot metal data 1. In S2, the top bottom blowing gas flow rate and the amount of auxiliary raw material input during blowing are collected sequentially, and the in-furnace generated gas flow rate is obtained by a converter furnace reaction model.

S3では、S2で求めた炉内発生ガス流量の推定値と、ダンパー開度、スカート高さ、および、誘引圧等の排ガス回収装置データを収集して、炉内圧の推定値を求める。S4では、S3で求めた炉内圧の推定値を使って、式(3)にしたがって侵入空気量を求める。S5では、S4で求めた侵入空気量を用いて、排ガス成分・流量を推定する。S6では、S5で求めた排ガス成分・流量に基づいた炉内残留酸素原単位O’と、排ガス情報(排ガス流量計12による排ガス流量の測定値および排ガス成分分析計13による排ガス成分の分析値)に基づいた炉内残留酸素量原単位Oを求める。その後、S7では、吹錬中か否かを判断し、吹錬中であればS2に戻って同じ処理を繰り返す。 In S3, the estimated value of the in-furnace gas flow obtained in S2 and the exhaust gas recovery device data such as the damper opening, the skirt height, and the induction pressure are collected to obtain the estimated value of the in-furnace pressure. In S4, the intrusion air amount is obtained according to the equation (3) using the estimated value of the furnace pressure obtained in S3. In S5, the exhaust gas component / flow rate is estimated using the intrusion air amount obtained in S4. In S6, the residual oxygen intensity O S ′ in the furnace based on the exhaust gas component / flow rate obtained in S5 and the exhaust gas information (the measured value of the exhaust gas flow rate by the exhaust gas flow meter 12 and the analyzed value of the exhaust gas component by the exhaust gas component analyzer 13). ) furnace residual oxygen per unit O S based on finding. Thereafter, in S7, it is determined whether or not blowing is in progress. If blowing, the process returns to S2 and the same process is repeated.

そして、上記フローで求められる排ガスCO濃度推定値がある設定値以上となる場合に排ガス回収を行うことにより、CO濃度の高い排ガスをより多量に回収できる。さらに、上記フローで求められるΔO(=O−O’)がある設定値以下の場合に排ガス回収を行うようにすれば、スロッピングが発生しても、ガスホルダーに蓄積されたガスの品位を低下させることなく排ガス回収が行える。以上の手順に従えば、転炉の吹錬中に発生する排ガスの成分・流量を高精度に推定することが可能となり、排ガス成分分析計の分析時間遅れの影響を受けることがなくなり、CO濃度の高い排ガスをより多量に回収することができる。 And when exhaust gas CO density | concentration estimated value calculated | required by the said flow becomes more than a preset value, exhaust gas with a high CO density | concentration can be collect | recovered more by performing exhaust gas recovery. Further, if the exhaust gas is recovered when ΔO S (= O S −O S ′) obtained by the above flow is equal to or smaller than a certain set value, the gas accumulated in the gas holder can be obtained even if slapping occurs. The exhaust gas can be recovered without degrading the quality. By following the above procedure, it becomes possible to accurately estimate the components and flow rate of the exhaust gas generated during the blowing of the converter, without being affected by the analysis time delay of the exhaust gas component analyzer, and the CO concentration A large amount of high exhaust gas can be recovered.

1…溶銑データ
2…目標データ
3…パラメータ
4…炉内発生ガス流量演算部
5…炉内圧演算部
6…浸入空気量演算部
7…排ガス成分・流量演算部
8…炉内蓄積酸素量原単位演算部
9…入出力部
10…転炉の排ガス回収装置
11…回収弁
12…排ガス流量計
13…排ガス成分分析計
DESCRIPTION OF SYMBOLS 1 ... Hot metal data 2 ... Target data 3 ... Parameter 4 ... Furnace generation gas flow rate calculation part 5 ... Furnace pressure calculation part 6 ... Intrusion air amount calculation part 7 ... Exhaust gas component and flow rate calculation part 8 ... In-furnace oxygen storage basic unit Arithmetic unit 9: Input / output unit 10 ... Converter exhaust gas recovery device 11 ... Recovery valve 12 ... Exhaust gas flow meter 13 ... Exhaust gas component analyzer

Claims (4)

排気ガスダクトの先端にフードおよびスカートを取り付け、転炉炉口上に配置し、吹錬中に転炉から発生する排ガスを前記排気ガスダクトを介して吸引して前記排ガスの回収を行う転炉の排ガス回収装置を用いる、転炉の排ガス回収方法において、
前記転炉の排ガス回収装置は、
主原料情報を初期値とし、時々刻々の副原料投入情報および上底吹きガス流量情報から炉内発生ガス流量を求める炉内発生ガス流量演算部と、
時々刻々の前記スカート高さ、ダンパー開度、誘引圧、前記炉内発生ガス流量演算部で算出した炉内発生ガス流量、および、前記スカートの高さを用いて表されるスカート・炉口間の流入抵抗と、前記ダンパー開度を用いて表されるダンパーの流入抵抗とから炉内圧を求める炉内圧演算部と、
前記炉内圧演算部で算出した炉内圧、および、前記スカート・炉口間の流入抵抗から、前記スカートと前記転炉炉口との隙間から侵入する空気量を求める侵入空気量演算部と、
前記炉内発生ガス流量演算部で算出した炉内発生ガス流量、および、前記侵入空気量演算部で算出した侵入空気量から前記排気ガスダクト内の排ガス成分および排ガス流量を求める排ガス成分・流量演算部と、を有し、
前記排ガス成分・流量演算部で算出される前記排ガスCO濃度が、任意の設定値以上となる場合に、前記転炉の排ガス回収装置を用いて排ガス回収を行うことを特徴とする転炉の排ガス回収方法。
Exhaust gas recovery of a converter that attaches a hood and a skirt to the tip of the exhaust gas duct, arranges it on the converter furnace mouth, sucks exhaust gas generated from the converter during blowing, and collects the exhaust gas through the exhaust gas duct In an exhaust gas recovery method for a converter using an apparatus,
The converter exhaust gas recovery device,
The main raw material information is set as an initial value, and the in-furnace generated gas flow rate calculation unit for obtaining the in-furnace generated gas flow rate from the momentary sub raw material input information and the top bottom blowing gas flow rate information,
Said skirt height every moment, the damper opening, attractants pressure, the furnace generating the gas flow furnace generating the gas flow rate calculated by the calculation unit, and the skirt-furnace port which is represented with the height of said skirt A furnace pressure calculation unit for obtaining a furnace pressure from an inflow resistance between the damper and an inflow resistance of the damper represented by using the damper opening;
An intrusion air amount calculation unit for obtaining the amount of air entering from the gap between the skirt and the converter furnace port from the furnace pressure calculated by the furnace pressure calculation unit and the inflow resistance between the skirt and the furnace port;
An exhaust gas component / flow rate calculation unit for obtaining an exhaust gas component in the exhaust gas duct and an exhaust gas flow rate from the in-furnace generated gas flow rate calculated by the in-furnace generated gas flow rate calculation unit and the intrusion air amount calculated by the intrusion air amount calculation unit And having
When the CO concentration of the exhaust gas calculated by the exhaust gas component / flow rate calculation unit is not less than an arbitrary set value, exhaust gas recovery is performed using the exhaust gas recovery device of the converter. Exhaust gas recovery method.
前記スカートの高さの線形式を用いて、前記スカート・炉口間の流入抵抗を求めることを特徴とする、請求項1に記載の転炉の排ガス回収方法。   The exhaust gas recovery method for a converter according to claim 1, wherein an inflow resistance between the skirt and the furnace port is obtained using a linear form of the height of the skirt. 前記ダンパー開度のべき乗式を用いて、前記ダンパーの流入抵抗を求めることを特徴とする、請求項1又は2に記載の転炉の排ガス回収方法。   The exhaust gas recovery method for a converter according to claim 1 or 2, wherein an inflow resistance of the damper is obtained by using a power expression of the damper opening degree. 排ガス成分分析値、排ガス流量実測値、上底吹きガス流量、副原料投入量および溶銑成分から酸素収支を計算して求める炉内蓄積酸素量原単位Oから、前記排ガス成分・流量演算部で算出した前記排ガス成分および前記排ガス流量、前記上底吹きガス流量、前記副原料投入量ならびに溶銑成分から酸素収支を計算して得られる炉内蓄積酸素量原単位O’を差し引いた値O−O’が任意の設定値以下となる場合に、排ガス回収を行うことを特徴とする、請求項1〜3のいずれか1項に記載の転炉の排ガス回収方法。 Exhaust gas component analysis value, the exhaust gas flow rate measured value, an upper bottom blown gas flow rate, the oxygen balance from the furnace accumulated oxygen per unit O S obtaining by calculation from the sub-raw material input and the hot metal components in the exhaust gas components, flow rate calculation unit A value O S obtained by subtracting the oxygen storage basic unit O S ′ obtained by calculating the oxygen balance from the calculated exhaust gas component and the exhaust gas flow rate, the top bottom blowing gas flow rate, the auxiliary raw material input amount, and the hot metal component. The exhaust gas recovery method for a converter according to any one of claims 1 to 3, wherein exhaust gas recovery is performed when -O S 'is not more than an arbitrary set value.
JP2012004894A 2012-01-13 2012-01-13 Exhaust gas recovery method for converter Active JP5682576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012004894A JP5682576B2 (en) 2012-01-13 2012-01-13 Exhaust gas recovery method for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004894A JP5682576B2 (en) 2012-01-13 2012-01-13 Exhaust gas recovery method for converter

Publications (2)

Publication Number Publication Date
JP2013144819A JP2013144819A (en) 2013-07-25
JP5682576B2 true JP5682576B2 (en) 2015-03-11

Family

ID=49040767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004894A Active JP5682576B2 (en) 2012-01-13 2012-01-13 Exhaust gas recovery method for converter

Country Status (1)

Country Link
JP (1) JP5682576B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515385B2 (en) * 2015-07-22 2019-05-22 日本製鉄株式会社 Hot metal pretreatment method and hot metal pretreatment control device
CN105907915B (en) * 2016-04-21 2018-04-24 中冶东方工程技术有限公司 A kind of Revolving furnace coal gas recovery utilizing system and technique
CN107604124A (en) * 2017-10-20 2018-01-19 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of converter mouth differential pressure adjusting means and method with fuzzy Prediction compensation
CN113403445A (en) * 2021-05-18 2021-09-17 山东师范大学 Intelligent control system and control method for purifying and recycling converter flue gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451907A (en) * 1977-10-03 1979-04-24 Nippon Steel Corp Method of controlling flow rate of exhaust gas
JPS5839204B2 (en) * 1979-04-09 1983-08-29 新日本製鐵株式会社 Furnace pressure control device in converter waste gas treatment equipment
JPS59143013A (en) * 1983-02-04 1984-08-16 Sumitomo Metal Ind Ltd Predicting method of amount of gas generated in converter
JPS60100611A (en) * 1983-11-02 1985-06-04 Nippon Kokan Kk <Nkk> Control device for recovery of waste gas from converter
JP3874696B2 (en) * 2002-05-22 2007-01-31 株式会社神戸製鋼所 Converter pressure control method and apparatus for converter

Also Published As

Publication number Publication date
JP2013144819A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5682576B2 (en) Exhaust gas recovery method for converter
JP5527180B2 (en) Converter blowing method and converter blowing system
WO2019181562A1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal production method
JP6314484B2 (en) Hot metal dephosphorization method
JP2013023696A (en) Converter blowing control method
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP2019073799A (en) Molten metal temperature correction device, molten metal temperature correction method, and production method of molten metal
TWI488973B (en) Compensating apparatus, method and method for refining iron
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP6264943B2 (en) Converter decarburization processing method
JP5790607B2 (en) Hot metal dephosphorization method, hot metal dephosphorization system, low phosphorus hot metal manufacturing method and low phosphorus hot metal manufacturing apparatus
CN104775006A (en) Furnace gas analysis model-based decarburization control method of vacuum oxygen decarburization refining
JP2018178199A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
CN104060024A (en) Forecast method of real-time temperature of converter in the process of vanadium extraction by converter
TWI450969B (en) Method for estimating termperature of iron water of a blast furnace
Ksiazek et al. Measurement of metal temperature during tapping of an industrial FeSi furnace
JP6235197B2 (en) Converter operation method
JP2011202252A (en) Method for assuming phosphor concentration in molten steel with sufficient accuracy
TWI841072B (en) Furnace state estimation device, furnace state estimation method and molten steel manufacturing method
JP4887742B2 (en) Molten steel temperature control method and molten steel temperature control device during degassing treatment
WO2023095647A1 (en) Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method
Andersen et al. Measurement and Evaluation of Tapping Gas Energy from the Silicon Furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R151 Written notification of patent or utility model registration

Ref document number: 5682576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350