TWI450969B - Method for estimating termperature of iron water of a blast furnace - Google Patents

Method for estimating termperature of iron water of a blast furnace Download PDF

Info

Publication number
TWI450969B
TWI450969B TW101102204A TW101102204A TWI450969B TW I450969 B TWI450969 B TW I450969B TW 101102204 A TW101102204 A TW 101102204A TW 101102204 A TW101102204 A TW 101102204A TW I450969 B TWI450969 B TW I450969B
Authority
TW
Taiwan
Prior art keywords
historical
furnace
heat loss
molten iron
current
Prior art date
Application number
TW101102204A
Other languages
Chinese (zh)
Other versions
TW201331373A (en
Inventor
Yungchang Ko
Chehsiung Tung
Chungken Ho
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW101102204A priority Critical patent/TWI450969B/en
Publication of TW201331373A publication Critical patent/TW201331373A/en
Application granted granted Critical
Publication of TWI450969B publication Critical patent/TWI450969B/en

Links

Description

高爐鐵水溫度之估測方法Estimation method of blast furnace hot metal temperature

本揭露是有關於一種高爐鐵水溫度之估測方法。The disclosure relates to a method for estimating the temperature of molten iron in a blast furnace.

高爐冶煉係一種將鐵礦石還原成生鐵的連續生產過程。鐵礦石、焦炭和熔劑等固體原料根據爐況來從爐頂裝料裝置分批送入高爐,並使爐喉料面保持一定的高度。焦炭和礦石在爐內形成交替分層架構。礦石料在下降過程中逐步被還原、熔化成鐵和渣,聚集在爐床中,並分別從鐵口和渣口放出。Blast furnace smelting is a continuous production process that reduces iron ore to pig iron. Solid raw materials such as iron ore, coke and flux are fed into the blast furnace in batches from the top loading device according to the furnace conditions, and the dough surface is maintained at a certain height. Coke and ore form an alternating layered structure within the furnace. The ore material is gradually reduced, melted into iron and slag during the descending process, collected in the hearth, and discharged from the iron mouth and the slag port respectively.

高爐的爐熱狀態對於高爐壽命以及鐵水品質有很大的影響,因此業者無不極力發展高爐爐熱狀態的監控技術。在目前爐熱監控技術中,高爐的爐熱一般係以鐵水溫度作為參考指標。然而,當鐵水溫度是鐵水流出高爐後才量測得到的數據,故其值只能作為事後的高爐調整參考,而無法及時反應爐熱狀態。The furnace heat state of the blast furnace has a great influence on the life of the blast furnace and the quality of the molten iron. Therefore, the industry has all tried to develop the monitoring technology of the hot state of the blast furnace. In the current furnace heat monitoring technology, the furnace heat of the blast furnace generally uses the temperature of the molten iron as a reference index. However, when the temperature of the molten iron is measured by the molten iron flowing out of the blast furnace, the value can only be used as a reference for the blast furnace adjustment after the event, and the furnace heat state cannot be reacted in time.

因此,需要一種高爐鐵水溫度之估測方法,其可早期判斷出高爐的鐵水溫度,以供高爐操作人員及時因應高爐溫度的變化而採取適當的處理步驟。Therefore, there is a need for an estimation method for the temperature of the blast furnace molten iron, which can early determine the temperature of the molten iron of the blast furnace, so that the blast furnace operator can take appropriate processing steps in response to changes in the blast furnace temperature.

本發明之一方面是在提供於一種高爐鐵水溫度之估測方法,以供高爐操作人員提早了解鐵水溫度的變化,並採取適當的措施來調整高爐內的溫度。One aspect of the present invention is to provide an estimate of the temperature of the blast furnace hot metal for the blast furnace operator to understand the change in the temperature of the molten iron early and to take appropriate measures to adjust the temperature in the blast furnace.

根據本發明之一實施例,此高爐鐵水溫度之估測方法包含建模階段和溫度估測階段。在建模階段中,首先提供歷史鼓風條件資料。接著,提供複數個歷史碳溶熱損值,其中這些歷史碳溶熱損值係對應至上述之歷史鐵水生產時間點,且這些歷史碳溶熱損值為單位時間內高爐碳溶損反應所需之熱能。然後,提供複數個歷史散逸熱損值,其中這些歷史散逸熱損值係對應至上述之歷史鐵水生產時間點,且這些歷史散逸熱損值為單位時間內由高爐冷卻系統所帶走之熱能與高爐之爐頂氣體所帶走之熱能之總和。接著,提供複數個歷史鐵水滲漏量,其中這些歷史鐵水滲漏量係對應至上述之歷史鐵水生產時間點,且這些歷史鐵水滲漏量為單位時間內由高爐之鼓風嘴區所滴出之鐵水重量。接著,提供複數個歷史鐵水溫度值,其中這些歷史鐵水溫度值為溫度偵測裝置於複數個溫度測量時間點對溫度偵測區中之鐵水所測得之溫度,而每一溫度測量時間點為每一歷史鐵水生產時間點加上一段延遲時間,此延遲時間為鐵水從高爐之爐床區流至溫度偵測區所需之時間。然後,重複進行歷史爐熱指標計算步驟,以利用複數筆歷史高爐資料來計算複數個歷史爐熱指標,其中這些歷史爐熱指標係對應至上述之歷史鐵水生產時間點,而這些歷史高爐資料包含歷史鼓風條件資料、歷史碳溶熱損值、歷史散逸熱損值以及歷史鐵水滲漏量。然後,進行迴歸分析步驟,以利用迴歸分析演算法來對歷史爐熱指標和歷史鐵水溫度值進行迴歸分析,以獲得迴歸方程式。According to an embodiment of the present invention, the method for estimating the temperature of the blast furnace molten iron includes a modeling stage and a temperature estimation stage. In the modeling phase, historical blast conditions are first provided. Next, a plurality of historical carbon heat loss values are provided, wherein the historical carbon heat loss values correspond to the historical hot metal production time points described above, and the historical carbon heat loss values are blast furnace carbon dissolution reaction units per unit time. The heat needed. Then, a plurality of historical heat loss values are provided, wherein the historical heat loss values correspond to the historical hot metal production time points described above, and the historical heat loss values are heat energy taken by the blast furnace cooling system per unit time. The sum of the heat energy carried away from the top gas of the blast furnace. Next, a plurality of historical molten iron leakage amounts are provided, wherein the historical molten iron leakage amounts correspond to the historical hot metal production time points mentioned above, and the historical molten iron leakage amount is the blast furnace nozzle of the blast furnace per unit time. The weight of molten iron dripping from the area. Next, a plurality of historical molten iron temperature values are provided, wherein the historical molten iron temperature values are temperatures measured by the temperature detecting device at a plurality of temperature measuring time points for the molten iron in the temperature detecting region, and each temperature measurement is performed. The time point is a delay time for each historical hot metal production time point, which is the time required for molten iron to flow from the hearth zone of the blast furnace to the temperature detection zone. Then, the historical furnace heat index calculation step is repeated to calculate a plurality of historical furnace heat indexes by using the plurality of historical blast furnace data, wherein the historical furnace heat indexes correspond to the historical hot metal production time points, and the historical blast furnace materials Contains historical blast conditions, historical carbon heat loss values, historical heat loss values, and historical iron leakage. Then, a regression analysis step is performed to perform regression analysis on the historical furnace heat index and the historical hot metal temperature value by using a regression analysis algorithm to obtain a regression equation.

在溫度估測階段中,首先提供目前鼓風條件參數,其中此目前鼓風條件參數係對應至目前鐵水生產時間點。接著,提供目前碳溶熱損值,其中此目前碳溶熱損值係對應至目前鐵水生產時間點,且此目前碳溶熱損值為單位時間內高爐碳溶損反應所需之熱能。然後,提供目前散逸熱損值,其中此目前散逸熱損值係對應至目前鐵水生產時間點,且此目前散逸熱損值為單位時間內由高爐冷卻系統所帶走之熱能以及此高爐之爐頂氣體所帶走之熱能之總和。接著,提供目前鐵水滲漏量,其中此目前鐵水滲漏量係對應至目前鐵水生產時間點,且目前鐵水滲漏量為單位時間內由高爐之鼓風嘴區所滴出之鐵水重量。然後,進行目前爐熱指標計算步驟,以利用複數筆目前高爐資料來計算目前爐熱指標,其中此目前高爐資料包含目前鼓風條件參數、目前碳溶熱損值、目前散逸熱損值以及目前鐵水滲漏量。接著,進行目前爐熱計算步驟,以利用目前爐熱指標和上述之迴歸方程式來計算高爐之目前鐵水溫度。In the temperature estimation phase, the current blast condition parameters are first provided, wherein the current blast condition parameter corresponds to the current molten iron production time point. Next, the current carbon heat loss value is provided, wherein the current carbon heat loss value corresponds to the current hot metal production time point, and the current carbon heat loss value is the heat energy required for the blast furnace carbon dissolution reaction per unit time. Then, providing the current heat loss value, wherein the current heat loss value corresponds to the current hot metal production time point, and the current heat loss value is the heat energy taken by the blast furnace cooling system per unit time and the blast furnace The sum of the heat energy carried by the top gas. Next, the current leakage of molten iron is provided, wherein the current leakage of molten iron corresponds to the current point of production of molten iron, and the current leakage of molten iron is dripped by the blast chamber of the blast furnace per unit time. Hot metal weight. Then, the current furnace heat index calculation step is performed to calculate the current furnace heat index by using the current plurality of blast furnace data, wherein the current blast furnace data includes the current blast condition parameters, the current carbon heat loss value, the current heat loss value, and the current The amount of molten iron leakage. Next, the current furnace heat calculation step is performed to calculate the current molten iron temperature of the blast furnace using the current furnace heat index and the above regression equation.

由上述說明可知,本發明實施例之高爐鐵水溫度之估測方法係利用高爐的鼓風條件、碳溶熱損值、散逸熱損值以及鐵水滲漏量來判斷高爐的鐵水溫度。經實驗證明,本發明實施例之高爐鐵水溫度之估測方法可較習知技術提前1~2小時來判斷出高爐的鐵水溫度,因此本發明實施例之高爐鐵水溫度之估測方法所判斷出的鐵水溫度比習知技術更接近高爐的目前鐵水溫度。It can be seen from the above description that the method for estimating the temperature of the blast furnace molten iron according to the embodiment of the present invention determines the molten iron temperature of the blast furnace by using the blast condition of the blast furnace, the carbon heat loss value, the heat loss value, and the amount of molten iron leakage. It has been experimentally proved that the method for estimating the temperature of the blast furnace molten iron in the embodiment of the present invention can determine the temperature of the molten iron of the blast furnace 1 to 2 hours earlier than the prior art, and therefore the method for estimating the temperature of the blast furnace molten iron according to the embodiment of the present invention The determined molten iron temperature is closer to the current molten iron temperature of the blast furnace than the prior art.

請參照第1圖,其係繪示根據本發明實施例之高爐鐵水溫度之估測方法100的流程示意圖。本實施例之高爐鐵水溫度估測方法100包含建模階段110和溫度估測階段120。建模階段110係對與鐵水溫度高度相關之資料參數進行迴歸分析,以求得代表鐵水溫度的迴歸方程式(亦可稱鐵水溫度模型)。溫度估測階段120則利用建模階段110所求得的鐵水溫度迴歸方程式來計算高爐的目前鐵水溫度。Please refer to FIG. 1 , which is a schematic flow chart of a method 100 for estimating the temperature of a blast furnace molten iron according to an embodiment of the present invention. The blast furnace hot metal temperature estimation method 100 of the present embodiment includes a modeling stage 110 and a temperature estimation stage 120. The modeling stage 110 performs regression analysis on the data parameters highly correlated with the temperature of the molten iron to obtain a regression equation representing the temperature of the molten iron (also referred to as a molten iron temperature model). The temperature estimation phase 120 calculates the current molten iron temperature of the blast furnace using the molten iron temperature regression equation obtained in the modeling stage 110.

在建模階段110中,首先進行資料提供步驟112,以提供高爐的歷史資料。在本實施例中,這些歷史資料包含歷史鼓風條件資料、複數個歷史碳溶熱損值、複數個歷史散逸熱損值、複數個歷史鐵水滲漏量以及複數個歷史鐵水溫度值。In the modeling phase 110, a data providing step 112 is first performed to provide historical data for the blast furnace. In this embodiment, the historical data includes historical blast condition data, a plurality of historical carbon heat loss values, a plurality of historical heat loss values, a plurality of historical molten iron leaks, and a plurality of historical hot metal temperature values.

本實施例之歷史鼓風條件資料包含複數個鼓風條件參數,這些鼓風條件參數係一對一對應至複數個歷史鐵水生產時間點,意即這些鼓風條件參數為高爐在這些歷史鐵水生產時間點所使用之鼓風條件參數,而鼓風條件參數則可為單位時間內由高爐鼓風嘴風徑區所輸入之熱能。在本發明之其他實施例中,鼓風條件參數亦可視為一定值,意即高爐在上述之歷史鐵水生產時間點所使用的鼓風條件參數皆視為相同。The historical blast condition data of the embodiment includes a plurality of blast condition parameters, and the blast condition parameters are one-to-one corresponding to a plurality of historical hot metal production time points, that is, the blast condition parameters are blast furnaces in these historical irons. The blast condition parameters used at the water production time point, and the blast condition parameters may be the heat energy input by the blast furnace blaster wind path area per unit time. In other embodiments of the present invention, the blast condition parameter can also be regarded as a certain value, that is, the blast condition parameters used in the blast furnace at the historical hot metal production time point described above are all considered to be the same.

本實施例之歷史碳溶熱損值係一對一對應至歷史鐵水生產時間點,意即這些歷史碳溶熱損值為高爐在這些歷史鐵水生產時間點所產生的碳溶熱損值,而此處之碳溶熱損值係指單位時間內高爐之碳溶損反應(solution loss reaction of carbon)所需的熱能。The historical carbon heat loss value of this embodiment corresponds one-to-one to the historical hot metal production time point, which means that these historical carbon heat loss values are the carbon heat loss values generated by the blast furnace at these historical hot metal production time points. The carbon heat loss value herein refers to the heat energy required for the solution loss reaction of carbon per unit time.

本實施例之歷史散逸熱損值係一對一對應至歷史鐵水生產時間點,意即這些歷史散逸熱損值為高爐在這些歷史鐵水生產時間點所散逸的熱損值。在高爐冶煉作業中,主要的熱能散逸亦與高爐冷卻系統和高爐爐頂氣相關。高爐冷卻系統一般係以冷水來冷卻高爐的外爐壁,以降低高爐的溫度,因此高爐冷卻系統會走大量的高爐熱能。高爐爐頂氣為高爐冶煉所產生的廢氣,且具有大量的熱能。當這些廢氣從高爐爐頂離開高爐時,會帶走大量的熱能,並造成高爐的熱損。因此,本實施例之散逸熱損值包含了高爐冷卻系統和高爐爐頂氣在單位時間內所造成的熱損值。The historical heat loss value of this embodiment corresponds one-to-one to the historical hot metal production time point, that is, these historical heat loss values are the heat loss values of the blast furnace at these historical hot metal production time points. In blast furnace smelting operations, the main heat dissipation is also related to the blast furnace cooling system and the blast furnace top gas. The blast furnace cooling system generally uses cold water to cool the outer furnace wall of the blast furnace to reduce the temperature of the blast furnace. Therefore, the blast furnace cooling system will take a lot of blast furnace heat energy. The blast furnace top gas is exhaust gas generated by blast furnace smelting and has a large amount of heat energy. When these exhaust gases leave the blast furnace from the top of the blast furnace, they will take away a lot of heat and cause heat loss in the blast furnace. Therefore, the heat loss value of the present embodiment includes the heat loss value caused by the blast furnace cooling system and the blast furnace top gas per unit time.

本實施例之歷史鐵水滲漏量係一對一對應至歷史鐵水生產時間點,意即這些歷史鐵水滲漏量為高爐在這些歷史鐵水生產時間點所滲漏的鐵水。此處的鐵水滲漏量係指高爐鐵水在單位時間內由高爐鼓風嘴區所滴出的鐵水重量。在高爐冶煉作業中,高爐內的鐵水液位一般係低於鼓風嘴的高度。然而,當高爐作業出現異常時,鐵水液位就可能超過鼓風嘴的高度而從鼓風嘴滴出。滴出的鐵水通常具有大量的熱能,因此也會造成高爐的熱損。The historical leakage of molten iron in this embodiment corresponds one-to-one to the historical hot metal production time point, which means that these historical molten iron leakage is the molten iron leaking from the blast furnace at these historical hot metal production time points. The amount of molten iron leakage here refers to the weight of molten iron that is dropped from the blast furnace mouth area of the blast furnace molten iron per unit time. In blast furnace smelting operations, the molten iron level in the blast furnace is generally lower than the height of the blast nozzle. However, when an abnormality occurs in the blast furnace operation, the molten iron liquid level may exceed the height of the blast nozzle and drip out from the blast nozzle. The molten iron usually has a large amount of heat energy, and thus also causes heat loss of the blast furnace.

本實施例之歷史鐵水溫度值係一對一對應至複數個溫度測量時間點,意即這些歷史鐵水溫度值為鐵水在這些溫度測量時間點被測得的溫度。在高爐冶煉作業中,鐵水通常需要一段時間才會由爐床區流至溫度偵測區(例如出鐵口或出鐵間)。在此,將這段時間稱為延遲時間。在本實施例中,每一個歷史鐵水生產時間點加上此延遲時間即為溫度測量時間點,意即當鐵水被產出後,需經過一段延遲時間,才能利用溫度偵測裝置在出鐵口測得鐵水溫度。The historical hot metal temperature values of this embodiment are one-to-one correspondence to a plurality of temperature measurement time points, that is, these historical hot metal temperature values are the temperatures at which the molten iron is measured at these temperature measurement time points. In blast furnace smelting operations, it usually takes a while for the molten iron to flow from the hearth zone to the temperature detection zone (such as the taphole or taphole). Here, this time is called the delay time. In this embodiment, each historical molten iron production time point plus the delay time is the temperature measurement time point, that is, when the molten iron is produced, it takes a delay time to use the temperature detecting device to exit. The iron mouth measured the temperature of the molten iron.

在資料提供步驟112後,接著進行歷史爐熱指標計算步驟114,以利用歷史鼓風條件資料、歷史碳溶熱損值、歷史散逸熱損值以及歷史鐵水滲漏量來計算歷史爐熱指標。After the data providing step 112, a historical furnace heat index calculation step 114 is then performed to calculate historical furnace heat index using historical blast condition data, historical carbon heat loss value, historical heat loss value, and historical iron water leakage. .

請參照第2圖,其係繪示根據本發明實施例之歷史爐熱指標計算步驟114的流程示意圖。在歷史爐熱指標計算步驟114中,首先進行目標資料選取步驟114a,以根據歷史鐵水生產時間點來從歷史鼓風條件資料、歷史碳溶熱損值、歷史散逸熱損值以及歷史鐵水滲漏量中各選取一者來計算歷史爐熱指標。例如,若一歷史鐵水生產時間點為10點時,則從歷史鼓風條件資料、歷史碳溶熱損值、歷史散逸熱損值以及歷史鐵水滲漏量中各選取出對應至10點之目標鼓風條件參數、目標碳溶熱損值、目標散逸熱損值以及目標鐵水滲漏量。Please refer to FIG. 2, which is a schematic flow chart of the historical furnace heat index calculation step 114 according to an embodiment of the present invention. In the historical furnace heat index calculation step 114, the target data selection step 114a is first performed to obtain historical blast condition data, historical carbon heat loss value, historical heat loss value, and historical hot metal according to historical hot metal production time points. One of the leaks is selected to calculate the historical furnace heat index. For example, if a historical hot metal production time point is 10 o'clock, the corresponding historical blast condition data, historical carbon heat loss value, historical heat loss value, and historical iron water leakage amount are selected to correspond to 10 points. The target blast condition parameters, the target carbon heat loss value, the target heat loss value, and the target molten iron leakage.

然後,進行計算步驟114b,以利用爐熱指標方程式來計算爐熱指標,其中爐熱指標方程式係表示如下:Then, a calculation step 114b is performed to calculate the furnace heat index using the furnace heat index equation, wherein the furnace heat index equation is expressed as follows:

EH=(Ht -SLCt -HLt )/P (1) EH = (H t -SLC t -HL t) / P (1)

其中EH為爐熱指標,Ht 為鼓風條件參數,SLCt 為碳溶熱損值,HLt 為散逸熱損值,P為鐵水滲漏量。由於計算步驟114b係將歷史鼓風條件參數、歷史碳溶熱損值、歷史散逸熱損值以及歷史鐵水滲漏量代入爐熱指標方程式來計算爐熱指標,因此計算步驟114b計算而得之爐熱指標為歷史爐熱指標。EH is the furnace heat index, H t is the blast condition parameter, SLC t is the carbon heat loss value, HL t is the dissipation heat loss value, and P is the molten iron leakage amount. Since the calculation step 114b calculates the furnace heat index by substituting the historical blast condition parameter, the historical carbon heat loss value, the historical heat loss value, and the historical iron water leakage amount into the furnace heat index equation, the calculation step 114b is calculated. The furnace heat index is the historical furnace heat index.

藉由重複進行目標資料選取步驟114a和計算步驟114b,即可計算出所有的歷史爐熱指標,其中這些歷史爐熱指標係一對一針對應至所有的歷史鐵水生產時間點。By repeating the target data selection step 114a and the calculation step 114b, all historical furnace heat indexes can be calculated, wherein these historical furnace heat indexes are one-to-one targeted to all historical hot metal production time points.

請回到第1圖,當所有的歷史爐熱指標都計算出來後,接著進行迴歸分析步驟116,以利用迴歸分析演算法來分析歷史爐熱指標與歷史鐵水溫度值之關係,並獲得代表鐵水溫度模型之一迴歸方程式。本發明之實施例所使用的迴歸分析演算法為本領域之公知常識,故不再於此贅述。Returning to Figure 1, after all the historical furnace heat indicators have been calculated, a regression analysis step 116 is performed to analyze the relationship between the historical furnace heat index and the historical hot metal temperature value using the regression analysis algorithm. One of the regression equations for the hot metal temperature model. The regression analysis algorithm used in the embodiments of the present invention is a common knowledge in the art, and therefore will not be described again.

請參照第3圖,其係繪示根據本發明實施例之迴歸分析步驟116的流程示意圖。在迴歸分析步驟116中,首先進行分群步驟116a,以將歷史爐熱指標和歷史鐵水溫度值分為複數個資料群組。在本實施例中,每個資料群組包含一個歷史爐熱指標和一個歷史鐵水溫度值,且位在同一群組中的歷史爐熱指標和歷史鐵水溫度值係對應至相同的歷史鐵水生產時間點。Please refer to FIG. 3, which is a flow chart showing a regression analysis step 116 according to an embodiment of the present invention. In the regression analysis step 116, a grouping step 116a is first performed to divide the historical furnace heat index and the historical hot metal temperature value into a plurality of data groups. In this embodiment, each data group includes a historical furnace heat index and a historical hot metal temperature value, and the historical furnace heat index and the historical hot metal temperature value in the same group correspond to the same historical iron. Water production time point.

如之前所述,每個歷史鐵水溫度值係對應至一個溫度測量時間點,而每個溫度測量時間點等於歷史鐵水生產時間點加上延遲時間。故,每個歷史鐵水溫度值也會對應至一個歷史鐵水生產時間點。分群步驟116a係藉由歷史鐵水生產時間點將歷史爐熱指標和歷史鐵水溫度值互相對應,以獲得複數個資料群組。As mentioned earlier, each historical hot metal temperature value corresponds to a temperature measurement time point, and each temperature measurement time point is equal to the historical hot metal production time point plus the delay time. Therefore, each historical hot metal temperature value will also correspond to a historical hot metal production time point. The grouping step 116a correlates the historical furnace heat index and the historical molten iron temperature value by a historical hot metal production time point to obtain a plurality of data groups.

接著,進行分析步驟116b,以利用迴歸分析演算來分析這些資料群組,以獲得歷史爐熱指標與歷史鐵水溫度值的迴歸方程式。Next, an analysis step 116b is performed to analyze the data sets using regression analysis calculus to obtain a regression equation for the historical furnace heat index and the historical hot metal temperature value.

請回到第1圖。在建模階段110完成後,可得到代表鐵水溫度之迴歸方程式,而在後續的溫度估測階段120中,則會利用此迴歸方程式來計算出鐵水溫度。在溫度估測階段120中,首先進行資料提供步驟122,以提供高爐在目前鐵水生產時間點的資料。在本實施例中,這些資料包含目前鼓風條件參數、目前碳溶熱損值、目前散逸熱損值以及目前鐵水滲漏量。然後,進行爐熱指標計算步驟124,以利用爐熱指標方程式(1)、目前鼓風條件參數、目前碳溶熱損值、目前散逸熱損值以及目前鐵水滲漏量來計算出目前鐵水生產時間點的目前爐熱指標。Please return to Figure 1. After the modeling phase 110 is completed, a regression equation representing the temperature of the molten iron can be obtained, and in the subsequent temperature estimation phase 120, the regression equation is used to calculate the molten iron temperature. In the temperature estimation phase 120, a data providing step 122 is first performed to provide information on the current blast furnace production time point. In this embodiment, the data includes current blast condition parameters, current carbon heat loss values, current heat loss values, and current molten iron leakage. Then, the furnace heat index calculation step 124 is performed to calculate the current iron by using the furnace heat index equation (1), the current blast condition parameter, the current carbon heat loss value, the current heat loss value, and the current molten iron leakage amount. Current furnace heat index at the time of water production.

值得注意的是,若在建模階段110中將歷史鼓風條件參數視為定值,則在溫度估測階段120中也需將目前鼓風條件參數視為此定值來計算目前爐熱指標。It is worth noting that if the historical blast condition parameter is regarded as a fixed value in the modeling stage 110, the current blast condition parameter is also considered as the fixed value in the temperature estimation stage 120 to calculate the current furnace heat index. .

在爐熱指標計算步驟124後,接著進行目前爐熱計算步驟126,以將目前爐熱指標代入建模階段110所獲得之迴歸方程式,以求得高爐的目前鐵水溫度值。由於建模階段110已考慮了高爐出鐵的延遲時間,因此目前爐熱計算步驟126所求得之鐵水溫度值可視為高爐內的目前鐵水溫度,而非出鐵間的鐵水溫度。After the furnace heat index calculation step 124, the current furnace heat calculation step 126 is followed to substitute the current furnace heat index into the regression equation obtained in the modeling stage 110 to determine the current molten iron temperature value of the blast furnace. Since the modeling stage 110 has considered the delay time of the blast furnace tapping, the current molten iron temperature value obtained by the furnace heat calculating step 126 can be regarded as the current molten iron temperature in the blast furnace, not the molten iron temperature between the tapping irons.

由上述說明可知,本實施例之高爐鐵水溫度之估測方法100建立了鐵水溫度的判斷模型,並利用此溫度判斷模型來判斷高爐的鐵水溫度。經實驗證明,本發明實施例之鐵水溫度估測方法具有相當高的準確性,而且可即時判斷出高爐的鐵水溫度。相較於習知技術需要在出鐵間才能量測到鐵水溫度,本發明實施例之估測方法可較習知技術提前1~2小時來判斷出高爐的鐵水溫度。As apparent from the above description, the method for estimating the temperature of the molten iron in the blast furnace of the present embodiment establishes a judgment model of the temperature of the molten iron, and uses the temperature judgment model to judge the temperature of the molten iron of the blast furnace. It has been experimentally proved that the method for estimating the temperature of molten iron according to the embodiment of the present invention has a relatively high accuracy, and the temperature of the molten iron of the blast furnace can be instantly determined. Compared with the prior art, the molten iron temperature can be measured between the tappings. The estimation method of the embodiment of the present invention can determine the molten iron temperature of the blast furnace 1 to 2 hours earlier than the prior art.

請參照第4圖,其係繪示根據本發明另一實施例之高爐鐵水溫度之估測方法200流程示意圖。高爐鐵水溫度之估測方法200係類似於鐵水溫度估測方法100,但不同之處在於鐵水溫度估測方法200利用了另一個參數來判斷鐵水溫度,以提高判斷的準確性。Please refer to FIG. 4, which is a flow chart showing an estimation method 200 of the blast furnace hot metal temperature according to another embodiment of the present invention. The method for estimating the temperature of the blast furnace molten iron 200 is similar to the method for estimating the temperature of the molten iron, but the difference is that the method for estimating the temperature of the molten iron 200 uses another parameter to judge the temperature of the molten iron to improve the accuracy of the judgment.

在鐵水溫度估測方法200中,首先進行建模階段210,以建立出鐵水溫度的模型。在建模階段210中,首先進行資料提供步驟212,以提供高爐的歷史資料。資料提供步驟212係類似於資料提供步驟112,但不同之處在於資料提供步驟212更提供了複數個歷史化學反應熱損值。這些歷史化學反應熱損值係一對一對應至歷史鐵水生產時間點,而這些歷史化學反應熱損為單位時間內高爐化學反應(例如煉鐵原料的氧化還原反應)所需之熱能。接著,進行歷史爐熱指標計算步驟214,以利用歷史化學反應熱損值、歷史鼓風條件資料、歷史碳溶熱損值、歷史散逸熱損值以及歷史鐵水滲漏量來計算歷史爐熱指標。In the molten iron temperature estimation method 200, a modeling phase 210 is first performed to establish a model of the molten iron temperature. In the modeling phase 210, a data providing step 212 is first performed to provide historical data for the blast furnace. The data providing step 212 is similar to the data providing step 112, but differs in that the data providing step 212 provides a plurality of historical chemical reaction heat loss values. These historical chemical reaction heat loss values correspond one-to-one to the historical hot metal production time point, and these historical chemical reaction heat losses are the heat energy required for the blast furnace chemical reaction (such as the redox reaction of the ironmaking raw material) per unit time. Next, a historical furnace heat index calculation step 214 is performed to calculate historical furnace heat using historical chemical reaction heat loss values, historical blast conditions data, historical carbon heat loss values, historical heat loss values, and historical iron water leakage. index.

請參照第5圖,其係繪示根據本發明實施例之歷史爐熱指標計算步驟214的流程示意圖。在歷史爐熱指標計算步驟214中,首先進行目標資料選取步驟214a。目標資料選取步驟214a係類似於目標資料選取步驟114a,但不同之處在於目標資料選取步驟214a更根據歷史鐵水生產時間點來從歷史化學反應熱損值中選取出相應的目標化學反應熱損值,如此目標資料選取步驟214a共選出了目標化學反應熱損值、目標鼓風條件參數、目標碳溶熱損值、目標散逸熱損值以及目標鐵水滲漏量,而這些值係對應至同一個歷史鐵水生產時間點。Please refer to FIG. 5, which is a schematic flow chart of a historical furnace heat index calculation step 214 according to an embodiment of the present invention. In the historical furnace heat index calculation step 214, the target data selection step 214a is first performed. The target data selection step 214a is similar to the target data selection step 114a, but the difference is that the target data selection step 214a selects the corresponding target chemical reaction heat loss from the historical chemical reaction heat loss value according to the historical hot metal production time point. Value, such target data selection step 214a selects a target chemical reaction heat loss value, a target blast condition parameter, a target carbon heat loss value, a target heat loss value, and a target molten iron leakage amount, and these values correspond to The same historical hot metal production time point.

接著,計算步驟214b。計算步驟214b係類似於計算步驟114b,但考慮目標化學反應熱損值的加入,爐熱指標方程式改寫如下:Next, step 214b is calculated. The calculation step 214b is similar to the calculation step 114b, but considering the addition of the target chemical reaction heat loss value, the furnace heat index equation is rewritten as follows:

EH=(Ht -SLCt -Hrt -HLt )/P (2)EH=(H t -SLC t -H rt -HL t )/P (2)

其中EH為爐熱指標,Ht 為鼓風條件參數,SLCt 為碳溶熱損值,HLt 為散逸熱損值,Hrt 為化學反應熱損值,P為鐵水滲漏量。EH is the furnace heat index, H t is the blast condition parameter, SLC t is the carbon heat loss value, HL t is the dissipation heat loss value, H rt is the chemical reaction heat loss value, and P is the molten iron leakage amount.

藉由重複進行目標資料選取步驟214a和計算步驟214b,即可計算出所有的歷史爐熱指標。By repeating the target data selection step 214a and the calculation step 214b, all historical furnace heat indexes can be calculated.

請回到第4圖,當所有的歷史爐熱指標都計算出來後,接著進行迴歸分析步驟116,以利用迴歸分析演算法來分析歷史爐熱指標與歷史鐵水溫度值之關係,並獲得代表鐵水溫度模型之一迴歸方程式。Please return to Figure 4, after all the historical furnace heat indicators are calculated, then carry out the regression analysis step 116 to analyze the relationship between the historical furnace heat index and the historical hot metal temperature value using the regression analysis algorithm, and obtain the representative. One of the regression equations for the hot metal temperature model.

在鐵水溫度模型建立後,接著進行溫度估測階段220。在溫度估測階段220中,首先進行資料提供步驟222。資料提供步驟222係類似於資料提供步驟122,但不同之處在於資料提供步驟222更提供了高爐的目前化學反應熱損值,如此資料提供步驟222提供了目前化學反應熱損值、目前鼓風條件參數、目前碳溶熱損值、目前散逸熱損值以及目前鐵水滲漏量。接著,進行爐熱指標計算步驟224,以利用爐熱指標方程式(2)、目前化學反應熱損值、目前鼓風條件參數、目前碳溶熱損值、目前散逸熱損值以及目前鐵水滲漏量來計算出目前鐵水生產時間點的目前爐熱指標。然後,進行目前爐熱計算步驟226,以將目前爐熱指標代入建模階段210所獲得之迴歸方程式,以求得高爐的目前鐵水溫度值。After the molten iron temperature model is established, a temperature estimation phase 220 is then performed. In the temperature estimation phase 220, a data providing step 222 is first performed. The data providing step 222 is similar to the data providing step 122, but the difference is that the data providing step 222 further provides the current chemical reaction heat loss value of the blast furnace, and the data providing step 222 provides the current chemical reaction heat loss value and the current blast. Conditional parameters, current carbon heat loss value, current heat loss value, and current molten iron leakage. Next, a furnace heat index calculation step 224 is performed to utilize the furnace heat index equation (2), the current chemical reaction heat loss value, the current blast condition parameter, the current carbon heat loss value, the current heat loss value, and the current iron water seepage. The leakage amount is used to calculate the current furnace heat index at the current point of production of molten iron. Then, the current furnace heat calculation step 226 is performed to substitute the current furnace heat index into the regression equation obtained in the modeling stage 210 to determine the current molten iron temperature value of the blast furnace.

由上述說明可知,本實施例之高爐鐵水溫度之估測方法200利用更多的參數來建立鐵水溫度的判斷模型,以增加鐵水溫度的判斷準確性。經實驗證明,本實施例之高爐鐵水溫度之估測方法200比高爐鐵水溫度之估測方法更為準確。It can be seen from the above description that the blast furnace hot metal temperature estimation method 200 of the present embodiment uses more parameters to establish a determination model of the molten iron temperature to increase the judgment accuracy of the molten iron temperature. It has been experimentally proved that the estimation method 200 of the blast furnace molten iron temperature of the present embodiment is more accurate than the estimation method of the blast furnace hot metal temperature.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

100...鐵水溫度估測方法100. . . Hot metal temperature estimation method

110...建模階段110. . . Modeling phase

112...資料提供步驟112. . . Data providing step

114...歷史爐熱指標計算步驟114. . . Historical furnace heat index calculation steps

114a...目標資料選取步驟114a. . . Target data selection step

114b...計算步驟114b. . . calculation steps

116...迴歸分析步驟116. . . Regression analysis step

116a...分群步驟116a. . . Grouping step

116b...分析步驟116b. . . Analysis step

120...溫度估測階段120. . . Temperature estimation stage

122...資料提供步驟122. . . Data providing step

124...爐熱指標計算步驟124. . . Furnace heat index calculation steps

126...目前爐熱計算步驟126. . . Current furnace heat calculation steps

200...鐵水溫度估測方法200. . . Hot metal temperature estimation method

210...建模階段210. . . Modeling phase

212...資料提供步驟212. . . Data providing step

214...歷史爐熱指標計算步驟214. . . Historical furnace heat index calculation steps

214a...目標資料選取步驟214a. . . Target data selection step

214b...計算步驟214b. . . calculation steps

220...溫度估測階段220. . . Temperature estimation stage

222...資料提供步驟222. . . Data providing step

224...爐熱指標計算步驟224. . . Furnace heat index calculation steps

226...目前爐熱計算步驟226. . . Current furnace heat calculation steps

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,上文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

第1圖係繪示根據本發明實施例之高爐鐵水溫度之估測方法的流程示意圖。1 is a schematic flow chart showing an estimation method of blast furnace hot metal temperature according to an embodiment of the present invention.

第2圖係繪示根據本發明實施例之歷史爐熱指標計算步驟的流程示意圖。2 is a flow chart showing a calculation procedure of a historical furnace heat index according to an embodiment of the present invention.

第3圖係繪示根據本發明實施例之迴歸分析步驟的流程示意圖。Figure 3 is a flow chart showing the steps of the regression analysis according to an embodiment of the present invention.

第4圖係繪示根據本發明另一實施例之高爐鐵水溫度之估測方法流程示意圖。4 is a flow chart showing a method for estimating the temperature of molten iron in a blast furnace according to another embodiment of the present invention.

第5圖係繪示根據本發明另一實施例之歷史爐熱指標計算步驟的流程示意圖。FIG. 5 is a schematic flow chart showing a calculation procedure of a historical furnace heat index according to another embodiment of the present invention.

100...鐵水溫度估測方法100. . . Hot metal temperature estimation method

110...建模階段110. . . Modeling phase

112...資料提供步驟112. . . Data providing step

114...歷史爐熱指標計算步驟114. . . Historical furnace heat index calculation steps

116...迴歸分析步驟116. . . Regression analysis step

120...溫度估測階段120. . . Temperature estimation stage

122...資料提供步驟122. . . Data providing step

124...爐熱指標計算步驟124. . . Furnace heat index calculation steps

126...目前爐熱計算步驟126. . . Current furnace heat calculation steps

Claims (10)

一種高爐鐵水溫度之估測方法,包含:進行一建模階段,以建立鐵水溫度模型,其中該建模階段包含:提供一筆歷史鼓風條件資料;提供複數個歷史碳溶熱損值,其中該些歷史碳溶熱損值係對應至複數個歷史鐵水生產時間點,且該些歷史碳溶熱損值為一單位時間內高爐碳溶損反應所需之熱能;提供複數個歷史散逸熱損值,其中該些歷史散逸熱損值係對應至該些歷史鐵水生產時間點,且該些歷史散逸熱損值為該單位時間內由一高爐冷卻系統所帶走之熱能以及該高爐之爐頂氣體所帶走之熱能之總和;提供複數個歷史鐵水滲漏量,其中該些歷史鐵水滲漏量係對應至該些歷史鐵水生產時間點,且該些歷史鐵水滲漏量為該單位時間內由該高爐之一鼓風嘴區所滴出之鐵水重量;提供複數個歷史鐵水溫度值,其中該些歷史鐵水溫度值為一溫度偵測裝置於複數個溫度測量時間點對一溫度偵測區中之鐵水所測得之溫度,而每一該些溫度測量時間點為每一該些歷史鐵水生產時間點加上一段延遲時間,該延遲時間為鐵水從該高爐之一爐床區流至該溫度偵測區所需之時間;重複進行一歷史爐熱指標計算步驟,以利用複數筆歷史高爐資料來計算複數個歷史爐熱指標,其中該些歷史爐熱指標係對應至該些歷史鐵水生產時間點,而該些歷史高爐資料包含該歷史鼓風條件資料、該些歷史碳溶熱損值、該些歷史散逸熱損值以及該些歷史鐵水滲漏量;以及進行一迴歸分析步驟,以利用一迴歸分析演算法來對該些歷史爐熱指標和該些歷史鐵水溫度值進行迴歸分析,以獲得一迴歸方程式;以及進行一溫度估測階段,以利用該迴歸方程式來判斷該高爐之一目前鐵水溫度,其中該溫度估測階段包含:提供一目前鼓風條件參數,其中該目前鼓風條件參數係對應至一目前鐵水生產時間點;提供一目前碳溶熱損值,其中該目前碳溶熱損值係對應至該目前鐵水生產時間點,且該目前碳溶熱損值為該單位時間內高爐碳溶損反應所需之熱能;提供一目前散逸熱損值,其中該目前散逸熱損值係對應至該目前鐵水生產時間點,且該目前散逸熱損值為該單位時間內由該高爐冷卻系統所帶走之熱能以及該高爐之爐頂氣體所帶走之熱能之總和;提供一目前鐵水滲漏量,其中該目前鐵水滲漏量係對應至該目前鐵水生產時間點,且該目前鐵水滲漏量為該單位時間內由該高爐之該鼓風嘴區所滴出之鐵水重量;進行一目前爐熱指標計算步驟,以利用複數筆目前高爐資料來計算一目前爐熱指標,其中該目前高爐資料包含該目前鼓風條件參數、該目前碳溶熱損值、該目前散逸熱損值以及該目前鐵水滲漏量;以及進行一目前爐熱計算步驟,以利用該目前爐熱指標和該迴歸方程式來計算該高爐之該目前鐵水溫度。A method for estimating the temperature of a blast furnace molten iron, comprising: performing a modeling stage to establish a molten iron temperature model, wherein the modeling stage comprises: providing a historical blast condition data; providing a plurality of historical carbon heat loss values, The historical carbon heat loss values correspond to a plurality of historical hot metal production time points, and the historical carbon heat loss values are heat energy required for the blast furnace carbon dissolution reaction in a unit time; providing a plurality of historical dispersions a heat loss value, wherein the historical heat loss values correspond to the historical molten iron production time points, and the historical heat loss heat loss values are heat energy taken by a blast furnace cooling system in the unit time and the blast furnace The sum of the thermal energy carried by the top gas; providing a plurality of historical molten iron leakages, wherein the historical molten iron leakage corresponds to the historical hot metal production time points, and the historical iron water seepage The leakage amount is the weight of the molten iron dripped from one of the blast chambers of the blast furnace; the plurality of historical molten iron temperature values are provided, wherein the historical molten iron temperature values are a plurality of temperature detecting devices. temperature Measuring the temperature measured by the molten iron in a temperature detecting zone at a time point, and each of the temperature measuring time points is added a delay time to each of the historical molten iron production time points, the delay time being iron The time required for water to flow from the hearth zone of the blast furnace to the temperature detection zone; repeating a historical furnace heat index calculation step to calculate a plurality of historical furnace heat indexes using the plurality of historical blast furnace data, wherein the The historical furnace heat index corresponds to the historical hot metal production time points, and the historical blast furnace data includes the historical blast condition data, the historical carbon heat loss values, the historical heat loss values, and the history. The amount of molten iron leakage; and performing a regression analysis step to perform regression analysis on the historical furnace heat index and the historical hot metal temperature values by using a regression analysis algorithm to obtain a regression equation; and performing a temperature Estimating the stage to determine the current molten iron temperature of the blast furnace by using the regression equation, wherein the temperature estimating stage comprises: providing a current blast condition parameter, wherein the The blast condition parameter corresponds to a current molten iron production time point; providing a current carbon heat loss value, wherein the current carbon heat loss value corresponds to the current molten iron production time point, and the current carbon heat loss is The value is the heat energy required for the blast furnace carbon dissolution reaction in the unit time; providing a current heat loss value, wherein the current heat loss value corresponds to the current molten iron production time point, and the current heat loss value is The sum of the thermal energy carried by the blast furnace cooling system and the thermal energy carried by the top gas of the blast furnace; providing a current amount of molten iron leakage, wherein the current molten iron leakage corresponds to the At present, the molten iron production time point, and the current molten iron leakage amount is the weight of the molten iron dropped from the blast nozzle area of the blast furnace in the unit time; performing a current furnace heat index calculation step to utilize the plurality of pens Current blast furnace data to calculate a current furnace heat index, wherein the current blast furnace data includes the current blast condition parameter, the current carbon heat loss value, the current heat loss value, and the current molten iron leakage amount; A current furnace heat calculation step to calculate the current molten iron temperature of the blast furnace using the current furnace heat index and the regression equation. 如申請專利範圍第1項所述之高爐鐵水溫度之估測方法,其中該歷史鼓風條件資料包含複數個歷史鼓風條件參數,而該些歷史鼓風條件參數係對應至該些歷史鐵水生產時間點。The method for estimating the temperature of the blast furnace molten iron according to claim 1, wherein the historical blast condition data includes a plurality of historical blast condition parameters, and the historical blast condition parameters correspond to the historical irons. Water production time point. 如申請專利範圍第2項所述之高爐鐵水溫度之估測方法,其中該歷史爐熱指標計算步驟包含:根據該些歷史鐵水生產時間點之一者來從該些歷史鼓風條件參數中選取一目標鼓風條件參數;根據該些歷史鐵水生產時間點之該者來從該些歷史碳溶熱損值中選取一目標碳溶熱損值;根據該些歷史鐵水生產時間點之該者來從該些歷史散逸熱損值中選取一目標散逸熱損值;根據該些歷史鐵水生產時間點之該者來從該些歷史鐵水滲漏量中選取一目標鐵水滲漏量;以及根據一爐熱指標方程式來利用該目標鼓風條件參數、該目標碳溶熱損值、該目標散逸熱損值以及該目標鐵水滲漏量來計算出該些歷史爐熱指標之一者;以及該目前爐熱指標計算步驟包含根據該爐熱指標方程式來計算該目前爐熱指標,其中該爐熱指標方程式表示如下:EH=(Ht -SLCt -HLt )/P其中EH為爐熱指標,Ht 為鼓風條件參數,SLCt 為碳溶熱損值,HLt 為散逸熱損值,P為鐵水滲漏量。The method for estimating the temperature of the blast furnace hot metal as described in claim 2, wherein the historical furnace heat index calculation step comprises: according to one of the historical hot metal production time points, from the historical blast condition parameters Selecting a target blast condition parameter; selecting a target carbon heat loss value from the historical carbon heat loss values according to the historical hot metal production time point; according to the historical hot metal production time points The person selects a target heat loss value from the historical heat loss values; and selects a target iron water seepage from the historical iron water leaks according to the historical hot metal production time point. Leakage; and calculating the historical furnace heat index by using the target blast condition parameter, the target carbon heat loss value, the target heat loss value, and the target molten iron leakage amount according to a furnace heat index equation And the current furnace heat index calculation step comprises calculating the current furnace heat index according to the furnace heat index equation, wherein the furnace heat index equation is expressed as follows: EH=(H t -SLC t -HL t )/P Where EH is the furnace heat index H t is the air blowing condition parameters, SLC t carbons melting heat loss value, HL t of dissipating heat loss value, P is the amount of hot metal leakage. 如申請專利範圍第1項所述之高爐鐵水溫度之估測方法,其中該建模階段更包含提供複數個歷史化學反應熱損值,該些歷史化學反應熱損值係對應至該些歷史鐵水生產時間點,且該些歷史化學反應熱損為該單位時間內一高爐化學反應所需之熱能;該歷史爐熱指標計算步驟所利用之該些歷史高爐資料更包含該些歷史化學反應熱損,以計算出該些歷史爐熱指標;該溫度估測階段更包含提供一目前化學反應熱損值,該目前化學反應熱損值係對應至該目前鐵水生產時間點,該目前化學反應熱損值為該單位時間內該高爐化學反應所需之熱能;以及該目前爐熱指標計算步驟所利用之該些目前高爐資料更包含該目前化學反應熱損值,以計算出該目前爐熱指標。The method for estimating the temperature of the blast furnace molten iron according to the first aspect of the patent application, wherein the modeling stage further comprises providing a plurality of historical chemical reaction heat loss values, wherein the historical chemical reaction heat loss values correspond to the history The time of hot metal production, and the historical chemical reaction heat loss is the heat energy required for a blast furnace chemical reaction in the unit time; the historical blast furnace data utilized in the historical furnace heat index calculation step further includes the historical chemical reactions Heat loss to calculate the historical furnace heat index; the temperature estimation stage further comprises providing a current chemical reaction heat loss value, the current chemical reaction heat loss value corresponding to the current molten iron production time point, the current chemical The heat loss value of the reaction is the heat energy required for the chemical reaction of the blast furnace in the unit time; and the current blast furnace data utilized by the current furnace heat index calculation step further includes the current heat loss value of the chemical reaction to calculate the current furnace Thermal indicator. 如申請專利範圍第4項所述之高爐鐵水溫度之估測方法,其中該歷史爐熱指標計算步驟包含:根據該些歷史鐵水生產時間點之一者來從該些歷史鼓風條件參數中選取一目標鼓風條件參數;根據該些歷史鐵水生產時間點之該者來從該些歷史碳溶熱損值中選取一目標碳溶熱損值;根據該些歷史鐵水生產時間點之該者來從該些歷史散逸熱損值中選取一目標散逸熱損值;根據該些歷史鐵水生產時間點之該者來從該些歷史鐵水滲漏量中選取一目標鐵水滲漏量;根據該些歷史鐵水生產時間點之該者來從該些歷史化學反應熱損值中選取一目標化學反應熱損值;以及根據一爐熱指標方程式來利用該目標鼓風條件參數、該目標碳溶熱損值、該目標散逸熱損值以及該目標鐵水滲漏量來計算出該些歷史爐熱指標之一者;以及該目前爐熱指標計算步驟包含根據該爐熱指標方程式來計算該目前爐熱指標,其中該爐熱指標方程式表示如下:EH=(Ht -SLCt -Hrt -HLt )/P其中EH為爐熱指標,Ht 為鼓風條件參數,SLCt 為碳溶熱損值,HLt 為散逸熱損值,Hrt 為化學反應熱損值,P為鐵水滲漏量。The method for estimating the temperature of the blast furnace molten iron according to claim 4, wherein the historical furnace heat index calculation step comprises: according to one of the historical hot metal production time points, the historical blast condition parameters Selecting a target blast condition parameter; selecting a target carbon heat loss value from the historical carbon heat loss values according to the historical hot metal production time point; according to the historical hot metal production time points The person selects a target heat loss value from the historical heat loss values; and selects a target iron water seepage from the historical iron water leaks according to the historical hot metal production time point. Leakage; according to the historical hot metal production time point, the target chemical reaction heat loss value is selected from the historical chemical reaction heat loss values; and the target blast condition parameter is utilized according to a furnace heat index equation And the target carbon heat loss value, the target heat loss value, and the target molten iron leakage amount to calculate one of the historical furnace heat indexes; and the current furnace heat index calculation step includes the heat index according to the heat of the furnace equation Calculate the current furnace heat index, wherein the furnace heat index equation is expressed as follows: EH=(H t -SLC t -H rt -HL t )/P where EH is the furnace heat index and H t is the blast condition parameter. SLC t is the carbon heat loss value, HL t is the heat loss value, H rt is the chemical heat loss value, and P is the molten iron leakage. 如申請專利範圍第4項所述之高爐鐵水溫度之估測方法,其中該高爐化學反應包含該高爐之冶煉原料之氧化反映和還原反應。The method for estimating the temperature of a blast furnace molten iron according to claim 4, wherein the blast furnace chemical reaction comprises an oxidation reaction and a reduction reaction of the smelting raw material of the blast furnace. 如申請專利範圍第1項所述之高爐鐵水溫度之估測方法,其中該歷史鼓風條件資料為一歷史鼓風條件參數,該歷史鼓風條件參數為定值。The method for estimating the temperature of the blast furnace molten iron according to claim 1, wherein the historical blast condition data is a historical blast condition parameter, and the historical blast condition parameter is a fixed value. 如申請專利範圍第7項所述之高爐管道流現象之預測方法,其中該歷史爐熱指標計算步驟包含:根據該些歷史鐵水生產時間點之一者來從該些歷史碳溶熱損值中選取一目標碳溶熱損值;根據該些歷史鐵水生產時間點之該者來從該些歷史散逸熱損值中選取一目標散逸熱損值;根據該些歷史鐵水生產時間點之該者來從該些歷史鐵水滲漏量中選取一目標鐵水滲漏量;以及根據一爐熱指標方程式來利用該鼓風條件參數、該目標碳溶熱損值、該目標散逸熱損值以及該目標鐵水滲漏量來計算出該些歷史爐熱指標之一者;其中,該目前爐熱指標計算步驟包含根據該爐熱指標方程式來計算該目前爐熱指標,其中該爐熱指標方程式表示如下:EH=(Ht -SLCt -HLt )/P其中EH為爐熱指標,Ht 為鼓風條件參數,SLCt 為碳溶熱損值,HLt 為散逸熱損值,P為鐵水滲漏量。The method for predicting a blast furnace pipeline flow phenomenon as described in claim 7 wherein the historical furnace heat index calculation step comprises: extracting from the historical carbon heat loss values according to one of the historical hot metal production time points. Selecting a target carbon heat loss value; selecting a target heat loss value from the historical heat loss values according to the historical hot metal production time point; according to the historical hot metal production time points The person selects a target molten iron leakage amount from the historical molten iron leakage amount; and utilizes the blast condition parameter, the target carbon heat loss value, and the target dissipation heat loss according to a furnace heat index equation The value and the target molten iron leakage amount are used to calculate one of the historical furnace heat indexes; wherein the current furnace heat index calculation step comprises calculating the current furnace heat index according to the furnace heat index equation, wherein the furnace heat is calculated index equation as follows: EH = (H t -SLC t -HL t) / P where EH is the furnace heat index, H t is the air blowing condition parameters, SLC t carbons melting heat loss value, HL t value for the dissipation of heat loss , P is the amount of molten iron leakage. 如申請專利範圍第1項所述之高爐鐵水溫度之估測方法,其中該迴歸分析步驟包含:進行一分群步驟,以將該些歷史爐熱指標和該些歷史鐵水溫度值分為複數個資料群組,其中每一該些資料群組包含該些歷史爐熱指標之一者以及該些歷史鐵水溫度值之一者,該些歷史爐熱指標之該者係對應至該些歷史鐵水生產時間點之一者,該些歷史鐵水溫度值之一者係對應至該些溫度測量時間點之一者,該些溫度測量時間點之該者為該些歷史鐵水生產時間點之該者加上該延遲時間;以及利用該迴歸分析演算法來對該些資料群組進行迴歸分析,以獲得該迴歸方程式。The method for estimating the temperature of the blast furnace molten iron according to claim 1, wherein the regression analysis step comprises: performing a grouping step to divide the historical furnace heat index and the historical hot metal temperature values into plural numbers. a data group, wherein each of the data groups includes one of the historical furnace heat indicators and one of the historical hot metal temperature values, and the historical heat index of the historical furnace corresponds to the history At one of the hot metal production time points, one of the historical hot metal temperature values corresponds to one of the temperature measurement time points, and the one of the temperature measurement time points is the historical hot metal production time point. The latter is added to the delay time; and the regression analysis algorithm is used to perform regression analysis on the data groups to obtain the regression equation. 如申請專利範圍第1項所述之高爐鐵水溫度之估測方法,其中該歷史鼓風條件資料為該高爐之一鼓風嘴風徑區在該單位時間內之輸入熱能。The method for estimating the temperature of the blast furnace molten iron according to claim 1, wherein the historical blast condition data is input heat energy of the blast chamber wind diameter region of the blast furnace in the unit time.
TW101102204A 2012-01-19 2012-01-19 Method for estimating termperature of iron water of a blast furnace TWI450969B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101102204A TWI450969B (en) 2012-01-19 2012-01-19 Method for estimating termperature of iron water of a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101102204A TWI450969B (en) 2012-01-19 2012-01-19 Method for estimating termperature of iron water of a blast furnace

Publications (2)

Publication Number Publication Date
TW201331373A TW201331373A (en) 2013-08-01
TWI450969B true TWI450969B (en) 2014-09-01

Family

ID=49478894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102204A TWI450969B (en) 2012-01-19 2012-01-19 Method for estimating termperature of iron water of a blast furnace

Country Status (1)

Country Link
TW (1) TWI450969B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781626B (en) * 2021-05-18 2022-10-21 中國鋼鐵股份有限公司 Method and system for predicting temperature of metal from furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230251036A1 (en) * 2020-07-06 2023-08-10 Jfe Steel Corporation Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483087A (en) * 2000-12-28 2004-03-17 新日本制铁株式会社 Method, device and program for monitoring operating condition of blast furnace
CN1995401A (en) * 2006-12-18 2007-07-11 冶金自动化研究设计院 Intelligent diagnosis and determination support system for blast furnace
CN101845531A (en) * 2010-05-07 2010-09-29 北京首钢自动化信息技术有限公司 Converter smelting endpoint molten steel carbon and temperature control system and method thereof
CN101886152A (en) * 2010-06-02 2010-11-17 河北省首钢迁安钢铁有限责任公司 Three-dimensional unstable state monitoring and abnormity diagnosis and maintenance system of blast furnace hearth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483087A (en) * 2000-12-28 2004-03-17 新日本制铁株式会社 Method, device and program for monitoring operating condition of blast furnace
CN1995401A (en) * 2006-12-18 2007-07-11 冶金自动化研究设计院 Intelligent diagnosis and determination support system for blast furnace
CN101845531A (en) * 2010-05-07 2010-09-29 北京首钢自动化信息技术有限公司 Converter smelting endpoint molten steel carbon and temperature control system and method thereof
CN101886152A (en) * 2010-06-02 2010-11-17 河北省首钢迁安钢铁有限责任公司 Three-dimensional unstable state monitoring and abnormity diagnosis and maintenance system of blast furnace hearth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781626B (en) * 2021-05-18 2022-10-21 中國鋼鐵股份有限公司 Method and system for predicting temperature of metal from furnace

Also Published As

Publication number Publication date
TW201331373A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
CN111705174B (en) Method for detecting blast furnace wall junction thickness
CN104404187A (en) Blast furnace brickwork slag shell thickness monitoring system and method
CA2896916A1 (en) Method for determining the state of the tap of a metallurgical vessel in particular
TWI450969B (en) Method for estimating termperature of iron water of a blast furnace
CN106679602A (en) Method and device for determining thickness change of slag crust of copper cooling wall of blast furnace
CN110527769B (en) Method for judging residual thickness of carbon brick in blast furnace hearth
JP2008145141A (en) Method of estimating state in blast furnace
CN110765623A (en) Two-dimensional rapid calculation method for erosion boundary of longitudinal section of blast furnace hearth
Su-sen et al. Monitoring method for blast furnace wall with copper staves
CN104525926A (en) Method for determining moving steel ladle from production line
KR101185300B1 (en) Method for estimating position bordered to furnace wall of softening zone
CN103981330B (en) A kind of method and device measuring molten steel carbon content
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
JP2013244515A (en) Method for preventing leakage of steel from ladle
KR101412403B1 (en) Dropping judgment method of charging material into blast furnace
TWI435936B (en) Method for predicting channeling phenomenon of blast furnace
WO2022004119A1 (en) Converter blowing control method and converter blowing control system
TWI778576B (en) Variation detection method of solidified layer and blast furnace operation method
JP7067413B2 (en) How to inspect refractories in atmospheric furnaces and how to manufacture reduced iron
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
TWI417757B (en) System and method for evaluating coke quality
CN104313224A (en) Method for alarming leaching and thickening of hearth of vanadium titano-magnetite blast furnace without ceramic cup
RU2613834C1 (en) Method for control of air tuyere of blast furnace with thermal insulation from blasting channel
JP2003155507A (en) Method for estimating pig iron slag height in blast furnace and its estimating instrument
Móger et al. The effect of blast furnace shaft accretion on CO utilization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees