JP5682356B2 - 溶融亜鉛めっき鋼板およびその製造方法 - Google Patents
溶融亜鉛めっき鋼板およびその製造方法 Download PDFInfo
- Publication number
- JP5682356B2 JP5682356B2 JP2011028774A JP2011028774A JP5682356B2 JP 5682356 B2 JP5682356 B2 JP 5682356B2 JP 2011028774 A JP2011028774 A JP 2011028774A JP 2011028774 A JP2011028774 A JP 2011028774A JP 5682356 B2 JP5682356 B2 JP 5682356B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- hot
- dip galvanized
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
したがって、980MPa以上の引張強度を有しながら伸びフランジ性に優れる高強度溶融亜鉛めっき鋼板が求められている。
特許文献1には、特定の化学組成を有する冷延鋼板に対して、最高加熱温度を(Ac1+Ac3)/2℃以上で焼鈍した後、760〜680℃間で10秒以上の保持を行い、680℃〜550℃間を平均冷却速度1℃/秒以上で(亜鉛めっき浴温度−40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、亜鉛めっき浴に浸漬し、室温まで冷却する高強度溶融亜鉛めっき鋼板の製造方法が開示されている。
特許文献4には、鋳造時の溶鋼にArガスを吹き込むことによって、伸びフランジ性を改善しようとする技術が開示されており、980MPa以上の引張強度を有しながら良好な伸びフランジ性を有するとされる溶融亜鉛めっき鋼板の例が開示されている。
HER=(Dh−D0)/D0×100 (1)
c=(dd−dp)/2t×100 (2)
(1)鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板であって、前記鋼板は、質量%で、C:0.070%超0.15%以下、Si:0.001%以上0.40%以下、Mn:2.2%超3.5%以下、P:0.05%以下、S:0.01%以下、sol.Al:0.001%以上0.40%以下、Ti:0.12%以上0.25%以下、B:0.0025%超0.010%以下およびN:0.01%以下を含有する化学組成を有し、前記溶融亜鉛めっき鋼板は、引張強度(TS)が980MPa以上であり、下記式(i)で規定される穴拡げ率(HER)が40%以上である機械特性を有することを特徴とする溶融亜鉛めっき鋼板。
HER=(Dh−D0)/D0×100 (i)
ここで、D0は初期穴径(mm)、Dhは破断後の穴径(mm)であり、12.5%のクリアランスで打抜いた直径10mm(=D0)の円形の打抜き穴を、バリがダイス側となるようにして円筒平底ポンチ(直径:33mmφ、肩R:3mm)で押し拡げ、前記打抜き穴の縁において厚さ方向に貫通する亀裂が発生した際の前記打抜き穴の径(=Dh)である。
(A)上記(1)から上記(4)までのいずれか1項に記載の化学組成を有する鋼材を1100℃以上1300℃以下として熱間圧延を施し、800℃以上1000℃以下の温度域で熱間圧延を完了し、400℃以上750℃以下の温度域で巻き取って熱延鋼板とする熱間圧延工程;
(B)前記熱延鋼板に、酸洗および冷間圧延を施して冷延鋼板とする酸洗・冷間圧延工程;および
(C)前記冷延鋼板を加熱してAc3点以上950℃以下の温度域に保持した後、750℃から580℃までの平均冷却速度を1.0℃/秒以上50℃/秒以下として400℃以上560℃以下の温度域まで冷却し、引き続いて、400℃以上600℃以下の温度域にめっき浴浸漬時を含めて10秒間以上500秒間以下保持して、引張強度(TS)が980MPa以上であり、下記式(1)で規定される穴拡げ率(HER)が40%以上である機械特性を有する溶融亜鉛めっき鋼板とする連続溶融亜鉛めっき工程。
HER=(D h −D 0 )/D 0 ×100 (1)
ここで、D 0 は初期穴径(mm)、D h は破断後の穴径(mm)であり、12.5%のクリアランスで打抜いた直径10mm(=D 0 )の円形の打抜き穴を、バリがダイス側となるようにして円筒平底ポンチ(直径:33mmφ、肩R:3mm)で押し拡げ、前記打抜き穴の縁において厚さ方向に貫通する亀裂が発生した際の前記打抜き穴の径(=D h )である。
1.化学組成
本発明に係る溶融亜鉛めっき鋼板のめっき基材である鋼板の化学組成を上述のように規定した理由を説明する。なお、以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。
Cは、鋼板の強度を高める作用を有する元素である。C含有量が0.070%以下では980MPa以上の引張強度を確保することが困難となる。したがって、C含有量は0.070%超とする。一方、C含有量が0.15%超では伸びフランジ性の劣化が顕著となる。したがって、C含有量は0.15%以下とする。好ましくは0.13%以下である。
Siは、延性をさほど劣化させることなく、あるいは、延性を向上させて、鋼板の強度を高める作用を有する元素である。また、めっき密着性を高める作用を有する元素でもある。Si含有量が0.001%未満では上記作用を得ることが困難である。したがって、Si含有量は0.001%以上とする。Si含有量を0.05%以上にすると、TRIP効果が助長され、延性が一層向上する。したがって、Si含有量は0.05%以上とすることが好ましい。一方、Si含有量が0.40%超では、オーステナイトが過剰に生成してしまい、伸びフランジ性の劣化が著しくなる。したがって、Si含有量は0.40%以下とする。
Mnは、鋼板の強度を高めるとともに材質安定性を高める作用を有する元素である。Mn含有量が2.2%以下では、980MPa以上の引張強度を安定して確保することが困難となる。したがって、Mn含有量は2.2%超とする。Mn含有量を2.4%以上にすると、連続溶融亜鉛めっき設備における製造工程において均熱温度を880℃以下とすることが可能となり、これにより、均熱炉の損傷を抑制するとともに生産性を向上させることが可能となる。このため、Mn含有量は2.4%以上とすることが好ましい。一方、Mn含有量が3.5%超では、バンド組織が発達するとともにMnSが多量に生成してしまい、伸びフランジ性の劣化が著しくなる。したがって、Mn含有量は3.5%以下とする。冷間圧延時の荷重を低減して生産性を向上させる観点からは3.0%以下とすることが好ましく、2.7%以下とすることがさらに好ましい。
Pは、一般には鋼に不可避的に含有される不純物であるが、固溶強化により鋼板の強度を高める作用を有するので、積極的に含有させてもよい。しかし、P含有量が0.05%超では溶接性の劣化が著しくなる。したがって、P含有量は0.05%以下とする。好ましくは、0.012%以下である。上記作用をより確実に得るには、P含有量を0.005%以上とすることが好ましい。
Sは、鋼に不可避的に含有される不純物であり、溶接性の観点からは低いほど好ましい。S含有量が0.01%超では溶接性の低下が著しくなる。したがって、S含有量は0.01%以下とする。好ましくは0.003%以下、さらに好ましくは0.0015%以下である。
Alは、鋼を脱酸して鋼材を健全化する作用を有する元素であり、また、Ti等の炭窒化物形成元素の歩留まりを向上させる作用を有する元素でもある。sol.Al含有量が0.001%未満では上記作用を得ることが困難となる。したがって、sol.Al含有量は0.001%以上とする。好ましくは0.015%以上である。一方、sol.Al含有量が0.40%超では、溶接性の低下が著しくなるとともに、酸化物系介在物が増加して表面性状の劣化が著しくなる。したがって、sol.Al含有量は0.40%以下とする。好ましくは0.080%以下である。
Tiは、本発明において重要な元素であり、鋼中に炭化物、窒化物、または炭窒化物である微細な析出物を形成することにより、鋼板の強度を著しく高める作用を有する元素である。そして、C含有量、Si含有量、Mn含有量およびB含有量とともに厳格に規定し、さらに、後述するような連続溶融亜鉛めっき処理条件を組み合わせることによって、980MPa以上の極めて高い引張強度を有しながら優れた伸びフランジ性を有する高強度溶融亜鉛めっき鋼板を得ることが可能となる。Ti含有量が0.12%未満では上記作用による効果を得ることが困難である。したがって、Ti含有量は0.12%以上とする。好ましくは0.14%以上である。一方、Ti含有量が0.25%超では、上記析出物が粗大化してしまい、鋼板の強度を著しく高める作用を得ることが困難となり、980MPa以上の引張強度を確保することが困難となる。したがって、Ti含有量は0.25%以下とする。好ましくは0.22%以下である。
Bは、本発明において重要な元素であり、鋼板の強度を高める作用を有し、適切な量のBを含有させることによって、980MPa以上の引張強度を確保しつつ、B含有量の変動に伴う引張強度の変動を著しく抑制することが可能となる。すなわち、材質安定性が向上するのである。B含有量が0.0025%以下では、980MPa以上の引張強度を確保することが困難であるとともに、B含有量の変動に伴う引張強度の変動が大きく、十分な材質安定性を確保することが困難となる。したがって、B含有量は0.0025%超とする。一方、B含有量が0.010%超では、Bを含む酸化物が鋼板表面に生成し、表面性状が劣化する。したがって、B含有量は0.010%以下とする。
Nは、鋼に不可避的に含有される不純物であり、伸びフランジ性の観点からは低いほど好ましい。N含有量が0.01%超では伸びフランジ性の低下が著しくなる。したがって、N含有量は0.01%以下とする。好ましくは0.006%以下である。
これらの元素は、いずれも鋼板の強度を高める作用を有する元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかしながら、NbおよびVについては、それぞれ0.5%を超えて含有させると、NbやVを含む介在物に起因する表面性状の劣化が顕在化する場合がある。また、Cr、CuおよびNiは、それぞれ0.5%を超えて含有させても上記作用による効果は飽和して経済的に不利となり、また、熱間圧延や冷間圧延が困難となる。また、Moは0.1%を超えて含有させると、材質安定性が劣化する。したがって、各元素の含有量はそれぞれ上記のとおりとする。なお、上記作用による効果をより確実に得るには、Nb:0.003%以上、V:0.003%以上、Cr:0.005%以上、Mo:0.005%以上、Cu:0.005%以上およびNi:0.005%以上のいずれかを満足させることが好ましい。
これらの元素は、いずれも介在物制御、特に介在物の微細分散化に寄与し、曲げ性を高める作用を有する元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかしながら、いずれも0.01%を超えて含有させると表面性状の劣化が顕在化する場合がある。したがって、各元素の含有量はそれぞれ上記のとおりとする。なお、上記作用による効果をより確実に得るには、いずれかの元素の含有量を0.0005%以上とすることが好ましい。
ここで、REMとは、Sc、Yおよびランタノイドの合計17元素の総称であり、上記REMの含有量はこれらの元素の合計含有量を意味する。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
Biは、曲げ性を高める作用を有する元素である。したがって、含有させてもよい。しかしながら、0.05%を超えて含有させると、熱間加工性が劣化して、熱間圧延が困難になる。したがって、Bi含有量は0.05%以下とする。なお、上記作用による効果をより確実に得るには、Bi含有量を0.0005%以上とすることが好ましい。
本発明に係る溶融亜鉛めっき鋼板のめっき基材である鋼板の鋼組織は特に限定されない。しかし、目的とする引張強度と伸びフランジ性とを得るには以下の条件を満足する鋼組織とすることが好ましい。
引張強度が980MPa以上となる領域で、目的とする伸びフランジ性を達成するには、未再結晶フェライトの面積率を0.5%未満とすることが好ましい(0%の場合も含む)。ここで述べる未再結晶フェライトは、顕微鏡観察によって確認される圧延方向に伸長した相である。
引張強度が980MPa以上となる領域で、目的とする伸びフランジ性を達成するには、残留オーステナイトの面積率を3%以下とすることが好ましい(0%の場合も含む)。
本発明に係る溶融亜鉛めっき鋼板の溶融亜鉛めっき層の化学組成は特に限定されない。溶融亜鉛めっき層が合金化溶融亜鉛めっきである場合には、以下の条件を満足することが好ましい。
溶融亜鉛めっき層中のFe含有量を8質量%以上とすることにより、合金化処理後のめっき層の表層部における軟質部位の形成が抑制され、摺動性が高まってめっき層が基材である鋼板との界面から剥離することによるフレーク状の剥離が抑制される。したがって、Fe含有量は8質量%以上とすることが好ましい。さらに好ましくは9.5質量%以上である。一方、Fe含有量を15質量%以下にすると、鋼板に曲げ加工が施された際に曲げ部の内側で合金化溶融亜鉛めっき層が圧縮変形を受けることによって生じるパウダリング剥離が抑制される。したがって、Fe含有量は15質量%以下とすることが好ましい。さらに好ましくは14質量%以下である。
溶融亜鉛めっき層中のAl含有量を0.15質量%以上とすることにより、溶融亜鉛めっき浴中における合金層の発達をより適正に抑制することができ、めっき付着量の制御が容易となる。したがって、Al含有量は0.15質量%以上とすることが好ましい。さらに好ましくは0.20質量%以上、特に好ましくは0.25質量%以上である。一方、Al含有量を0.50質量%以下とすることにより、適度な合金化速度を確保することができ、通常のライン速度でも540℃以下の合金化処理温度で上記Fe含有量を確保することができ、980MPa以上の引張強度を確保することが容易になる。したがって、Al含有量は0.50質量%以下とすることが好ましい。さらに好ましくは0.45質量%以下、特に好ましくは0.40質量%以下である。
溶融亜鉛めっき層中へは、合金化処理過程において、母材からSi、Mn、P、S、Ti、Nb、V、Cr、Mo、Cu、Ni、B、Ca、REM等がとりこまれるが、通常の条件で溶融めっきおよび合金化処理した際にめっき層中にとりこまれる範囲内であれば、めっき品質に悪影響を及ぼさないので、問題ない。ここでいう通常のめっき条件とは、後述するように、めっき浴温度が400℃以上490℃以下で、鋼板の侵入温度が400℃以上500℃以下、合金化温度が430℃以上600℃以下である。
次に、本発明の溶融亜鉛めっき鋼板の製造方法の限定理由について説明する。
(A)熱間圧延工程
上述した鋼組成を有する溶鋼を転炉、電気炉等の常法の溶製方法で溶製し、連続鋳造法でスラブ等の鋼材とするのが好ましい。なお、連続鋳造法に代えて、造塊法、薄スラブ鋳造法などを採用してもよい。この鋼材に熱間圧延を施し熱延鋼板とする。熱間圧延は、鋳造された鋼材を室温まで冷却せず温片のまま加熱炉に装入して加熱した後に圧延する直送圧延、または、わずかの保熱を行った後に直ちに圧延する直接圧延、または、鋼材を一旦冷却した後に再加熱して圧延する再加熱圧延の何れでもよい。このとき、熱間圧延工程が粗圧延工程と仕上圧延工程とからなる場合には、粗圧延後仕上圧延前の粗バーに対して、誘導加熱等により全長の温度均一化を図ると、特性変動を抑制することができるので好ましい。
熱間圧延に供する鋼材の温度は、1100℃以上1300℃以下とする。
本発明に係る溶融亜鉛めっき鋼板は、Ti等の微細析出物を分散させることによって目的とする引張強度を確保する。したがって、熱間圧延に供する段階においてTi等を固溶状態とする必要がある。熱間圧延に供する鋼材の温度が1100℃未満では、Ti等を固溶状態とすることが困難な場合がある。したがって、熱間圧延に供する鋼材の温度は1100℃以上とする。一方、熱間圧延に供する鋼材の温度を1300℃超としても、Ti等を固溶状態とする効果が飽和するだけでなく、スケールロス増加による歩留まりの低下が著しくなる。したがって、熱延鋼板に供する鋼材の温度は1300℃以下とする。熱間圧延に供する際に1100℃以上1300℃の温度域に保持する時間は特に規定しないが、Ti等をより確実に固溶状態とするために10分間以上とすることが好ましく、30分間以上とすることがさらに好ましい。また、過度のスケールロスを抑制するために10時間以下とすることが好ましく、5時間以下とすることがさらに好ましい。なお、直送圧延または直接圧延を行う場合であって、Ti等が固溶状態にある場合には、加熱処理を施さずにそのまま熱間圧延に供してもよい。
圧延完了温度は800℃以上1000℃以下とする。
圧延完了温度が800℃未満では、圧延時の変形抵抗が大きく、操業が困難となる。したがって、圧延完了温度は800℃以上とする。一方、圧延完了温度が1000℃超では、粒界酸化が顕著となり、溶融亜鉛めっき鋼板の表面性状の劣化が著しくなる。したがって、圧延完了温度は1000℃以下とする。
巻取温度は400℃以上750℃以下とする。
巻取温度が400℃未満では、硬質なベイナイトやマルテンサイトが生成し、その後の冷間圧延が困難となる。したがって、巻取温度は400℃以上とする。好ましくは500℃以上である。一方、巻取温度が750℃超では、粒界酸化が顕著となり、溶融亜鉛めっき鋼板の表面性状の劣化が著しくなる。したがって、巻取温度は750℃以下とする。好ましくは700℃以下である。
熱延鋼板は常法により酸洗を施された後に冷間圧延が行われ、冷延鋼板とされる。
酸洗の前または後に、0〜5%程度の軽度の圧延を行い、形状を修正すると平坦確保の点で有利となるので好ましい。また、酸洗の前に軽度の圧延を行うと、酸洗性が向上し、表面濃化元素の除去が促進され、めっき密着性を向上させる効果がある。
連続溶融亜鉛めっき後の鋼板の組織を微細化する観点からは、冷間圧延の圧下率は30%以上とすることが好ましい。また、冷間圧延中の破断を抑制する観点からは、冷間圧延の圧下率は70%以下とすることが好ましい。
本発明では、Mnを多量に含有させ、さらにTiとBとを含有させているため、加工フェライトの再結晶は著しく抑制される。そのため、均熱に際しての昇温時に加工歪が残存し、未再結晶粒の残存が著しく促進され、引張強度および伸びフランジ性が連続溶融亜鉛めっき条件の影響を受ける。したがって、以下のような条件で連続溶融亜鉛めっき処理を行うことにより、目的とする性能が達成される。
均熱温度はAc3点以上950℃以下とする。
均熱温度がAc3点未満では、未再結晶が残存して均一な組織が得られなくなり、材質安定性と伸びフランジ性とが劣化する。したがって、均熱温度はAc3点以上とする。一方、均熱温度が950℃超では、焼鈍炉の損傷が顕在化するとともに生産性が低下する。したがって、均熱温度は950℃以下とする。好ましくは、880℃以下である。
均熱後の冷却において、750℃から580℃までの平均冷却速度は1.0〜50℃/秒とする。750℃から580℃までの温度域における平均冷却速度を規定するのは、上記温度域の冷却速度を制御することで、材質安定性を確保しつつ、980MPa以上の引張強度を確保するためである。
均熱後の冷却の冷却停止温度は400℃以上560℃以下とする。
上記冷却停止温度が400℃未満では、その後のめっき浴浸入時における抜熱量が大きく、操業が困難となる。したがって、冷却停止温度は400℃以上とする。一方、冷却停止温度が560℃を超えると、操業が困難になるとともに、伸びフランジ性が劣化する。したがって、冷却停止温度は560℃以下とする。なお、溶融亜鉛めっきでは、常法に従って、400℃以上490℃以下の溶融亜鉛めっき浴中に均熱した冷延鋼板を浸漬することにより行う。
上記冷却の後、溶融亜鉛めっき処理、さらには必要に応じて合金化処理を施す。ここで、溶融亜鉛めっき浴の浴温が通常400℃以上490℃以下であることから、溶融亜鉛めっき浴からの抜熱が過大となって操業が困難になるのを避けるため、また、安定しためっき品質を確保するため、溶融亜鉛めっき浴浸漬前の温度は通常400℃以上500℃以下とされる。また、合金化処理温度は後述するように430℃以上600℃以下とすることが好ましい。このため、溶融亜鉛めっき処理、さらには必要に応じて合金化処理を施すために400℃以上600℃以下の温度域に不可避的に滞在させることになる。しかし、当該温度域はベイナイト変態が最も進行する、換言すると、最終製品である溶融亜鉛めっき鋼板の引張強度に影響する温度域であるため、当該温度域における滞在時間の制御は極めて重要である。
めっき浴浸漬後に合金化処理を施す場合には、合金化処理温度は430℃以上600℃以下とする。
表1に示す化学成分を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブとした。
得られた冷延鋼板について、連続溶融亜鉛めっき処理における熱履歴を模擬するように、表3に示す条件の熱処理を施して焼鈍冷延鋼板を作製した。すなわち、表3に示す均熱条件(均熱温度、均熱時間)にて均熱した後に冷却し、冷却停止温度で冷却後から浸漬開始まで所定の時間(浸漬前保持時間)保持し、想定めっき浴温である460℃まで4秒間かけて冷却し、さらに460℃で2秒間保持した。供試材No.18以外については、続いて表3に示す合金化処理温度まで4秒間かけて加熱し、合金化処理を模擬するように、各々の合金化処理温度で10秒間保持し、平均冷却速度20℃/秒で室温まで冷却した。供試材No.18については、460℃で2秒間保持した後に平均冷却速度20℃/秒で室温まで冷却した。このようにして得られた焼鈍冷延鋼板を伸び率0.1%で調質圧延し、各種評価用試験片を準備した。
[試験方法]
(未再結晶フェライトの面積率)
各焼鈍冷延鋼板の圧延方向および圧延方向に対して直角方向から試験片を採取し、圧延方向断面、圧延方向に対して直角方向断面の組織を電子顕微鏡で観察し、8mm2の領域を写真撮影し、画像解析により未再結晶フェライトの面積率を調査した。
各焼鈍冷延鋼板から採取した試験片(幅25mm×長さ25mm×板厚1.2mm)に化学研磨を施して0.3mm減厚し、化学研磨後の試験片表面に対しX線回折を三回実施した。得られたX線回折プロファイルを解析し、残留オーステナイトの面積率を求め、得られた3数値の平均値を、対応する焼鈍冷延板の残留オーステナイトの面積率とした。
各焼鈍冷延鋼板から、圧延方向に直角方向からJIS5号引張試験片を採取し、TS(引張強度)およびEl(全伸び)を測定した。
各焼鈍冷延鋼板から採取した試験片(幅100mm×長さ100mm×板厚1.2mm)の中央に、直径10mm(=D0)の丸穴を、クリアランスが12.5%となる条件で打ち抜き、伸びフランジ試験片を作製した。打ち抜き部のバリがダイス側となるようにして、直径33mm、肩R3mmの円筒平底ポンチで押し拡げ、上記丸穴の縁において亀裂が板厚を貫通した直後の穴の直径Dhを測定し、次式で得られるHER(穴拡げ率)を算出した。
HER=(Dh−D0)/D0×100 (1)
これらの結果を表4に示す。
一方、供試材No.1、11および15は、化学組成が発明で規定する範囲を外れるため、目標とする伸びフランジ性が得られなかった。供試材No.2、6、21および22は、化学組成が発明で規定する範囲を外れるため、目的とする引張強度が得られなかった。供試材No.5、10および20は、製造条件が本発明で規定する範囲を外れるため、目的とする引張強度が得られなかった。供試材No.8および13は、製造条件が本発明で規定する範囲を外れるため、目的とする伸びフランジ性が得られなかった。供試材No.16は、Ti含有量が本発明で規定する範囲を外れるため、目的とする引張強度および伸びフランジ性が得られなかった。
Claims (6)
- 鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板であって、
前記鋼板は、質量%で、C:0.070%超0.15%以下、Si:0.001%以上0.40%以下、Mn:2.2%超3.5%以下、P:0.05%以下、S:0.01%以下、sol.Al:0.001%以上0.40%以下、Ti:0.12%以上0.25%以下、B:0.0025%超0.010%以下およびN:0.01%以下を含有する化学組成を有し、
前記溶融亜鉛めっき鋼板は、引張強度(TS)が980MPa以上であり、下記式(1)で規定される穴拡げ率(HER)が40%以上である機械特性を有することを特徴とする溶融亜鉛めっき鋼板。
HER=(Dh−D0)/D0×100 (1)
ここで、D0は初期穴径(mm)、Dhは破断後の穴径(mm)であり、12.5%のクリアランスで打抜いた直径10mm(=D0)の円形の打抜き穴を、バリがダイス側となるようにして円筒平底ポンチ(直径:33mmφ、肩R:3mm)で押し拡げ、前記打抜き穴の縁において厚さ方向に貫通する亀裂が発生した際の前記打抜き穴の径(=Dh)である。 - 前記化学組成が、質量%で、Nb:0.5%以下、V:0.5%以下、Cr:0.5%以下、Mo:0.1%以下、Cu:0.5%以下およびNi:0.5%以下からなる群から選ばれた1種または2種以上をさらに含有することを特徴とする請求項1に記載の溶融亜鉛めっき鋼板。
- 前記化学組成が、質量%で、Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下およびZr:0.01%以下からなる群から選ばれた1種または2種以上をさらに含有することを特徴とする請求項1または請求項2に記載の溶融亜鉛めっき鋼板。
- 前記化学組成が、質量%で、Bi:0.05%以下をさらに含有することを特徴とする請求項1から請求項3のいずれか1項に記載の溶融亜鉛めっき鋼板。
- 下記工程(A)〜(C)を備えることを特徴とする溶融亜鉛めっき鋼板の製造方法:
(A)請求項1から請求項4までのいずれか1項に記載の化学組成を有する鋼材を1100℃以上1300℃以下として熱間圧延を施し、800℃以上1000℃以下の温度域で熱間圧延を完了し、400℃以上750℃以下の温度域で巻き取って熱延鋼板とする熱間圧延工程;
(B)前記熱延鋼板に、酸洗および冷間圧延を施して冷延鋼板とする酸洗・冷間圧延工程;および
(C)前記冷延鋼板を加熱してAc3点以上950℃以下の温度域に保持した後、750℃から580℃までの平均冷却速度を1.0℃/秒以上50℃/秒以下として400℃以上560℃以下の温度域まで冷却し、引き続いて、400℃以上600℃以下の温度域にめっき浴浸漬時を含めて10秒間以上500秒間以下保持して、引張強度(TS)が980MPa以上であり、下記式(1)で規定される穴拡げ率(HER)が40%以上である機械特性を有する溶融亜鉛めっき鋼板とする連続溶融亜鉛めっき工程。
HER=(D h −D 0 )/D 0 ×100 (1)
ここで、D 0 は初期穴径(mm)、D h は破断後の穴径(mm)であり、12.5%のクリアランスで打抜いた直径10mm(=D 0 )の円形の打抜き穴を、バリがダイス側となるようにして円筒平底ポンチ(直径:33mmφ、肩R:3mm)で押し拡げ、前記打抜き穴の縁において厚さ方向に貫通する亀裂が発生した際の前記打抜き穴の径(=D h )である。 - 前記工程(C)において、めっき浴浸漬後の溶融亜鉛めっき鋼板に430℃以上600℃以下の温度域で合金化処理を施すことを特徴とする請求項5に記載の溶融亜鉛めっき鋼板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011028774A JP5682356B2 (ja) | 2011-02-03 | 2011-02-14 | 溶融亜鉛めっき鋼板およびその製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011021621 | 2011-02-03 | ||
JP2011021621 | 2011-02-03 | ||
JP2011028774A JP5682356B2 (ja) | 2011-02-03 | 2011-02-14 | 溶融亜鉛めっき鋼板およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012177139A JP2012177139A (ja) | 2012-09-13 |
JP5682356B2 true JP5682356B2 (ja) | 2015-03-11 |
Family
ID=46979175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011028774A Active JP5682356B2 (ja) | 2011-02-03 | 2011-02-14 | 溶融亜鉛めっき鋼板およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5682356B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5910396B2 (ja) * | 2012-07-30 | 2016-04-27 | 新日鐵住金株式会社 | 溶融めっき鋼板およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4730056B2 (ja) * | 2005-05-31 | 2011-07-20 | Jfeスチール株式会社 | 伸びフランジ成形性に優れた高強度冷延鋼板の製造方法 |
JP4577100B2 (ja) * | 2005-06-07 | 2010-11-10 | 住友金属工業株式会社 | 高張力溶融亜鉛めっき鋼板と製造方法 |
JP5092507B2 (ja) * | 2007-04-06 | 2012-12-05 | 住友金属工業株式会社 | 高張力合金化溶融亜鉛めっき鋼板とその製造方法 |
JP5167865B2 (ja) * | 2008-02-29 | 2013-03-21 | Jfeスチール株式会社 | 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5412746B2 (ja) * | 2008-04-22 | 2014-02-12 | 新日鐵住金株式会社 | 溶接性と伸びフランジ性の良好な高強度鋼板 |
-
2011
- 2011-02-14 JP JP2011028774A patent/JP5682356B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012177139A (ja) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6443592B1 (ja) | 高強度鋼板 | |
JP6443593B1 (ja) | 高強度鋼板 | |
JP4964494B2 (ja) | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 | |
JP4737319B2 (ja) | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP5636727B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP5949253B2 (ja) | 溶融亜鉛めっき鋼板とその製造方法 | |
JP2017048412A (ja) | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 | |
JP2005126733A (ja) | 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材 | |
JP2021021145A (ja) | オーステナイト微細構造を有するtwip鋼板の製造方法 | |
JP3610883B2 (ja) | 曲げ性に優れる高張力鋼板の製造方法 | |
JP6610749B2 (ja) | 高強度冷延薄鋼板 | |
JP5516057B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP2008308732A (ja) | 焼入れ鋼板部材および焼入れ用鋼板とそれらの製造方法 | |
JP4528184B2 (ja) | 加工性の良好な合金化溶融亜鉛メッキ高強度鋼板の製造方法 | |
JP5440375B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP5835624B2 (ja) | 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法 | |
JP6443555B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5686028B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP3870868B2 (ja) | 伸びフランジ性、強度−延性バランスおよび歪時効硬化特性に優れた複合組織型高張力冷延鋼板およびその製造方法 | |
JP4010132B2 (ja) | 深絞り性に優れた複合組織型高張力溶融亜鉛めっき鋼板およびその製造方法 | |
JP3912181B2 (ja) | 深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板およびその製造方法 | |
KR101736634B1 (ko) | 연성과 구멍가공성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법 | |
JP5682356B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP2005290485A (ja) | 鋼板の歪時効処理方法および高強度構造部材の製造方法 | |
JP5682357B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140326 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20140411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141229 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5682356 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |