JP5679064B2 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
JP5679064B2
JP5679064B2 JP2013530874A JP2013530874A JP5679064B2 JP 5679064 B2 JP5679064 B2 JP 5679064B2 JP 2013530874 A JP2013530874 A JP 2013530874A JP 2013530874 A JP2013530874 A JP 2013530874A JP 5679064 B2 JP5679064 B2 JP 5679064B2
Authority
JP
Japan
Prior art keywords
assembled battery
capacity
battery
power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013530874A
Other languages
English (en)
Other versions
JPWO2013030883A1 (ja
Inventor
林 強
強 林
木村 健治
健治 木村
琢朗 中山
琢朗 中山
伸得 藤原
伸得 藤原
佐藤 彰洋
彰洋 佐藤
広隆 渡辺
広隆 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5679064B2 publication Critical patent/JP5679064B2/ja
Publication of JPWO2013030883A1 publication Critical patent/JPWO2013030883A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、特性が異なる複数の組電池を備えた車両に関するものである。
特許文献1に記載の電池システムでは、高容量型電池および高出力型電池が負荷に対して並列に接続されている。高容量型電池は、高出力型電池よりも大きなエネルギ容量を有している。高出力型電池は、高容量型電池よりも大きな電流で充放電を行うことができる。
特開2006−079987号公報
特許文献1では、高容量型電池および高出力型電池を備えた車両を開示しているが、高容量型電池および高出力型電池をどのように配置するかについては、何ら開示されていない。高容量型電池および高出力型電池は、互いに異なる特性を有していたり、互いに異なる使われ方をされたりすることがある。したがって、高容量型電池および高出力型電池の特性などを考慮して、高容量型電池および高出力型電池を車両に搭載しないと、車両の商品性が低下するおそれがある。
本発明である車両は、車両を走行させる駆動源であるモータと、モータに電力を供給可能な組電池とを有する。組電池は、車両のラゲッジスペースに配置されており、二次電池でそれぞれ構成された高出力型組電池および高容量型組電池を含む。高出力型組電池は、高容量型組電池より相対的に大きな電流で充放電を行うことができる。高容量型組電池は、高出力型組電池より相対的に大きなエネルギ容量を有するとともに、温度に対する電池特性の依存度が高出力型組電池よりも高い。高容量型組電池は、高出力型組電池に対して車両の上方に重ねて配置されている。
高容量型組電池を高出力型組電池よりも上方に配置することにより、高容量型組電池で発生した熱を大気中に放出しやすくなる。高容量型組電池は、高出力型組電池よりも、温度に対する電池特性の依存度が高いため、高容量型組電池を放熱させやすくすることにより、高容量型組電池の電池特性を確保することができる。電池特性としては、電池の入出力電力や、電池の容量などがある。
車両を走行させる駆動源であるエンジンを備えた車両において、エンジンを停止させた状態で、モータの出力を用いて車両を走行させるとき、高容量型組電池は、高出力型組電池よりもモータに電力を供給することができる。高容量型組電池を積極的に用いることにより、電気エネルギを用いた車両の走行距離を確保することができ、燃費を向上させることができる。
エンジンを停止させた状態で、モータの出力を用いて車両を走行させるとき、高容量型組電池の使用頻度は、高出力型組電池の使用頻度よりも高くなっている。また、エンジンを停止させた状態で、モータの出力を用いて車両を走行させるとき、モータに供給される電力のうち、高容量型組電池からモータに供給される電力の割合は、高出力型組電池からモータに供給される電力の割合よりも高くなっている。
高容量型組電池は、外部電源を用いて充電することができる。エンジンを停止させた状態で、モータの出力を用いて車両を走行させるとき、例えば、高容量型組電池の充電状態(SOC:State of Charge)が0%に近づくまで、高容量型組電池を放電させることができる。高容量型組電池を放電させた後は、外部電源を用いて高容量型組電池を充電することにより、エンジンを停止させた状態で、モータの出力を用いて車両を走行させるとき、高容量型組電池を再び使用することができる。
高容量型組電池のサイズは、高出力型組電池のサイズよりも大きくすることにより、高容量型組電池の容量を増やすことができ、電気エネルギを用いた車両の走行距離を増やすことができる。ラゲッジスペースでは、車両の上方ほど、組電池を配置するためのスペースを確保しやすくなる。高容量型組電池は、高出力型組電池よりも上方に配置されているため、高出力型組電池よりもサイズが大きい高容量型組電池をラゲッジスペースに配置しやすくなる。
高容量型組電池は、高出力型組電池よりも交換頻度が高い。高容量型組電池は、高出力型組電池よりも温度に対する依存度が高いため、温度変化に応じて、高容量型組電池は、高出力型組電池よりも劣化しやすいことがある。また、高容量型組電池の使用頻度が、高出力型組電池の使用頻度よりも高い状態で、高容量型組電池を使用し続けることにより、高容量型組電池は、高出力型組電池よりも劣化しやすいことがある。高容量型組電池が劣化すれば、高容量型組電池を交換する必要がある。また、高容量型組電池は、上述した車両の走行距離を確保するために用いられ、高容量型組電池の容量は、ユーザの要求によって変更することもできる。この場合にも、高容量型組電池を交換する必要がある。このように、高容量型組電池は、高出力型組電池よりも交換頻度が高くなっている。
高容量型組電池は、高出力型組電池よりも上方に配置されているため、作業者は、高容量型組電池にアクセスしやすい。したがって、作業者は、高容量型組電池を容易に交換することができる。
高出力型組電池は、直列に接続された複数の単電池で構成することができる。また、高容量型組電池は、並列に接続された複数の単電池で構成することができる。高出力型組電池の単電池としては、角型電池を用い、高容量型組電池の単電池としては、円筒型電池を用いることができる。
具体的には、高出力型組電池を含む電池パックは、所定方向に並んで配置された複数の角型単電池と、複数の角型単電池を収容するケースとで構成することができる。高容量型組電池を含む電池パックは、複数の円筒型単電池と、複数の円筒型単電池を支持するホルダと、複数の円筒型単電池およびホルダを収容するケースとで構成することができる。ホルダには、各円筒型単電池が挿入される貫通孔を設けることができる。ホルダの端面は、ケースと接触している。円筒型単電池は、所定平面(ホルダが配置される平面)と直交する方向に延びており、複数の円筒型単電池は、所定平面内で並んで配置されている。
高出力型組電池を含む電池パックと、高容量型組電池を含む電池パックとを、上述したように構成することにより、高容量型組電池を含む電池パックの剛性を、高出力型組電池を含む電池パックの剛性よりも高くすることができる。高容量型組電池を含む電池パックでは、ケースに外力が加わっても、ケースと接触するホルダによって外力を受けることができる。高容量型組電池は、高出力型組電池よりも上方に配置されているため、外力を受けやすい位置にある。高容量型組電池を含む電池パックの剛性を、高出力型組電池を含む電池パックの剛性よりも高くしておくことにより、外力に耐えることもできる。
高出力型組電池の温度調節に用いられる熱交換媒体は、所定方向で隣り合う2つの単電池の間に形成されたスペースに進入させて、高出力型組電池との間で熱交換を行わせることができる。高容量型組電池の温度調節に用いられる熱交換媒体は、所定平面に沿って移動させて、高容量型組電池との間で熱交換を行わせることができる。
このような熱交換媒体の流路では、高出力型組電池での圧力損失は、高容量型組電池での圧力損失よりも高くなりやすい。圧力損失が高くなるほど、雑音が発生しやすい。高容量型組電池は、高出力型組電池よりも上方に配置されているため、高出力型組電池で発生した雑音を高容量型組電池によって阻止することができる。これにより、高出力型組電池で発生した雑音が外部(特に、乗員が乗車するスペース)に向かうのを抑制することができる。
電池システムの構成を示す図である。 高出力型組電池で用いられる単電池の外観図である。 高出力型組電池の外観図である。 高容量型組電池で用いられる単電池の外観図である。 高容量型組電池で用いられる電池ブロックの外観図である。 高出力型組電池の単電池で用いられる発電要素の構成を示す図である。 高容量型組電池の単電池で用いられる発電要素の構成を示す図である。 単電池の出力および温度の関係を示す図である。 単電池の容量維持率および温度の関係を示す図である。 高出力型組電池および高容量型組電池が搭載された車両の概略図である。 2つの電池パックの配置を説明する図である。 2つの電池パックの配置を説明する図である。 高容量型組電池の温度調節に用いられる空気の流れを説明する図である。 高出力型組電池の温度調節に用いられる空気の流れを説明する図である。 高容量型組電池の電池パックの構成を示す概略図である。 高出力型組電池の電池パックの構成を示す概略図である。
以下、本発明の実施例について説明する。
本実施例における電池システムについて、図1を用いて説明する。図1は、電池システムの構成を示す概略図である。本実施例の電池システムは、車両に搭載されている。図1において、実線で示す接続は、電気的な接続を表し、点線で示す接続は、機械的な接続を表す。
電池システムは、並列に接続された高出力型組電池10および高容量型組電池20を有する。高出力型組電池10は、システムメインリレーSMR−B1,SMR−G1を介してインバータ31に接続されている。また、高容量型組電池20は、システムメインリレーSMR−B2,SMR−G2を介してインバータ31に接続されている。インバータ31は、組電池10,20から供給された直流電力を交流電力に変換する。
インバータ31には、モータ・ジェネレータ32(交流モータ)が接続されており、モータ・ジェネレータ32は、インバータ31から供給された交流電力を受けて、車両を走行させるための運動エネルギを発生する。モータ・ジェネレータ32は、車輪33と接続されている。また、車輪33には、エンジン34が接続されており、エンジン34で生成された運動エネルギが車輪33に伝達される。
車両を減速させたり、停止させたりするとき、モータ・ジェネレータ32は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。インバータ31は、モータ・ジェネレータ32が生成した交流電力を直流電力に変換して、組電池10,20に供給する。これにより、組電池10,20は、回生電力を蓄えることができる。
コントローラ35は、インバータ31およびモータ・ジェネレータ32のそれぞれに制御信号を出力して、これらの駆動を制御する。また、コントローラ35は、システムメインリレーSMR−B1,B2,SMR−G1,G2に制御信号を出力することにより、オンおよびオフの間での切り替えを行う。
システムメインリレーSMR−B1,SMR−G1がオンであるとき、高出力型組電池10の充放電が許容され、システムメインリレーSMR−B1,SMR−G1がオフであるとき、高出力型組電池10の充放電が禁止される。システムメインリレーSMR−B2,SMR−G2がオンであるとき、高容量型組電池20の充放電が許容され、システムメインリレーSMR−B2,SMR−G2がオフであるとき、高容量型組電池20の充放電が禁止される。
本実施例では、組電池10,20をインバータ31に接続しているが、これに限るものではない。具体的には、組電池10,20およびインバータ31の間の電流経路に、昇圧回路を配置することができる。これにより、昇圧回路は、組電池10,20の出力電圧を昇圧することができる。
本実施例の車両では、車両を走行させるための動力源として、組電池10,20だけでなく、エンジン34も備えている。エンジン34としては、ガソリン、ディーゼル燃料又はバイオ燃料を用いるものがある。
本実施例の車両では、高出力型組電池10の出力や高容量型組電池20の出力だけを用いて、車両を走行させることができる。この走行モードを、EV(Electric Vehicle)走行モードという。例えば、充電状態(SOC:State of Charge)が100%付近から0%付近に到達するまで、高容量型組電池20を放電させて、車両を走行させることができる。高容量型組電池20のSOCが0%付近に到達した後は、外部電源を用いて、高容量型組電池20を充電することができる。外部電源とは、車両の外部に配置され、車両とは別体として設けられた電源である。外部電源としては、例えば、商用電源を用いることができる。商用電源を用いるときには、交流電力を直流電力に変換する充電器が必要となる。
EV走行モードにおいて、運転者がアクセルペダルを操作して、車両の要求出力が上昇したときには、高容量型組電池20の出力だけでなく、高出力型組電池10の出力も用いて、車両を走行させることができる。高容量型組電池20および高出力型組電池10を併用することにより、アクセルペダルの操作に応じた電池出力を確保することができ、ドライバビリティを向上させることができる。
また、高容量型組電池20のSOCが0%付近に到達した後では、高出力型組電池10およびエンジン34を併用して、車両を走行させることができる。この走行モードを、HV(Hybrid Vehicle)走行モードという。HV走行モードでは、例えば、高出力型組電池10のSOCが、予め定めた基準SOCに沿って変化するように、高出力型組電池10の充放電を制御することができる。
高出力型組電池10のSOCが基準SOCよりも高いときには、高出力型組電池10を放電して、高出力型組電池10のSOCを基準SOCに近づけることができる。また、高出力型組電池10のSOCが基準SOCよりも低いときには、高出力型組電池10を充電して、高出力型組電池10のSOCを基準SOCに近づけることができる。HV走行モードでは、高出力型組電池10だけではなく、高容量型組電池20も用いることができる。すなわち、高容量型組電池20の容量を残しておき、HV走行モードにおいて、高容量型組電池20を放電させることもできる。また、回生電力を高容量型組電池20に蓄えることもできる。
上述したように、高容量型組電池20は、主にEV走行モードで用いることができ、高出力型組電池10は、主にHV走行モードで用いることができる。高容量型組電池20を主にEV走行モードで用いることとは、以下の2つの場合を意味する。第1として、EV走行モードにおいて、高容量型組電池20の使用頻度が、高出力型組電池10の使用頻度よりも高いことを意味する。第2として、EV走行モードにおいて、高容量型組電池20および高出力型組電池10を併用するときには、車両の走行に用いられた総電力のうち、高容量型組電池20の出力電力が占める割合が、高出力型組電池10の出力電力が占める割合よりも高いことを意味する。ここでの総電力とは、瞬間的な電力ではなく、所定の走行時間又は走行距離における電力である。
高出力型組電池10は、図1に示すように、直列に接続された複数の単電池11を有している。単電池11としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。高出力型組電池10を構成する単電池11の数は、高出力型組電池10の要求出力などを考慮して適宜設定することができる。単電池11は、図2に示すように、いわゆる角型の単電池である。角型の単電池とは、電池の外形が直方体に沿って形成された単電池である。
図2において、単電池11は、直方体に沿って形成された電池ケース11aを有しており、電池ケース11aは、充放電を行う発電要素を収容している。発電要素は、正極素子と、負極素子と、正極素子および負極素子の間に配置されるセパレータとを有する。セパレータには、電解液が含まれている。正極素子は、集電板と、集電板の表面に形成された正極活物質層とを有する。負極素子は、集電板と、集電板の表面に形成された負極活物質層とを有する。
電池ケース11aの上面には、正極端子11bおよび負極端子11cが配置されている。正極端子11bは、発電要素の正極素子と電気的に接続されており、負極端子11cは、発電要素の負極素子と電気的に接続されている。
図3に示すように、高出力型組電池10では、複数の単電池11が一方向に並んで配置されている。隣り合って配置された2つの単電池11の間には、仕切り板12が配置されている。仕切り板12は、樹脂といった絶縁材料で形成することができ、2つの単電池11を絶縁状態とすることができる。
仕切り板12を用いることにより、単電池11の外面にスペースを形成することができる。具体的には、仕切り板12に対して、単電池11に向かって突出する突起部を設けることができる。突起部の先端を単電池11に接触させることにより、仕切り板12および単電池11の間にスペースを形成することができる。このスペースにおいて、単電池11の温度調節に用いられる空気(熱交換媒体に相当する)を移動させることができる。
単電池11が充放電などによって発熱しているときには、仕切り板12および単電池11の間に形成されたスペースに、冷却用の空気を導くことができる。冷却用の空気は、単電池11との間で熱交換を行うことにより、単電池11の温度上昇を抑制することができる。また、単電池11が過度に冷えているときには、仕切り板12および単電池11の間に形成されたスペースに、加温用の空気を導くことができる。加温用の空気は、単電池11との間で熱交換を行うことにより、単電池11の温度低下を抑制することができる。単電池11の温度調節は、空気とは異なる成分の気体を用いることもできる。
複数の単電池11は、2つのバスバーモジュール13によって電気的に直列に接続されている。バスバーモジュール13は、複数のバスバーと、複数のバスバーを保持するホルダとを有する。バスバーは、導電性材料で形成されており、隣り合って配置された2つの単電池11のうち、一方の単電池11の正極端子11bと、他方の単電池11の負極端子11cとに接続される。ホルダは、樹脂といった絶縁材料で形成されている。
複数の単電池11の配列方向における高出力型組電池10の両端には、一対のエンドプレート14が配置されている。一対のエンドプレート14には、複数の単電池11の配列方向に延びる拘束バンド15が接続されている。これにより、複数の単電池11に対して拘束力を与えることができる。拘束力とは、複数の単電池11の配列方向において、各単電池11を挟む力である。単電池11に拘束力を与えることにより、単電池11の膨張などを抑制することができる。
本実施例では、高出力型組電池10の上面に、2つの拘束バンド15が配置され、高出力型組電池10の下面に、2つの拘束バンド15が配置されている。なお、拘束バンド15の数は、適宜設定することができる。すなわち、拘束バンド15およびエンドプレート14を用いて、単電池11に拘束力を与えることができればよい。一方、単電池11に拘束力を与えなくてもよく、エンドプレート14や拘束バンド15を省略することもできる。
本実施例では、複数の単電池11を一方向に並べているが、これに限るものではない。例えば、複数の単電池を用いて、1つの電池モジュールを構成しておき、複数の電池モジュールを一方向に並べることもできる。
一方、高容量型組電池20は、図1に示すように、直列に接続された複数の電池ブロック21を有している。各電池ブロック21は、並列に接続された複数の単電池22を有する。電池ブロック21の数や、各電池ブロック21に含まれる単電池22の数は、高容量型組電池20の要求出力や容量などを考慮して適宜設定することができる。本実施例の電池ブロック21では、複数の単電池22を並列に接続しているが、これに限るものではない。具体的には、複数の単電池22を直列に接続した電池モジュールを複数用意しておき、複数の電池モジュールを並列に接続することによって、電池ブロック21を構成することもできる。
単電池22としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。単電池22は、図4に示すように、いわゆる円筒型の単電池である。円筒型の単電池とは、電池の外形が円柱に沿って形成された単電池である。
円筒型の単電池22では、図4に示すように、円筒形状の電池ケース22aを有する。電池ケース22aの内部には、発電要素が収容されている。単電池22における発電要素の構成部材は、単電池11における発電要素の構成部材と同様である。
単電池22の長手方向における両端には、正極端子22bおよび負極端子22cがそれぞれ設けられている。正極端子22bおよび負極端子22cは、電池ケース22aを構成する。正極端子22bは、発電要素の正極素子と電気的に接続されており、負極端子22cは、発電要素の負極素子と電気的に接続されている。本実施例の単電池22は、直径が18[mm]であり、長さが65.0[mm]であり、いわゆる18650型と呼ばれる電池である。なお、18650型の単電池22とは異なるサイズの単電池22を用いることもできる。
ここで、角型の単電池11のサイズは、円筒型の単電池22のサイズよりも大きい。単電池11,22のサイズとは、最も寸法が大きい部分のサイズをいう。具体的には、図2に示す単電池11の構成では、長さW1を単電池11のサイズとすることができる。図4に示す単電池22の構成では、長さW2を単電池22のサイズとすることができる。長さW1は、長さW2よりも大きい。
電池ブロック21は、図5に示すように、複数の単電池22と、複数の単電池22を保持するホルダ23とを有する。複数の電池ブロック21を並べることによって、高容量型組電池20が構成される。ここで、複数の電池ブロック21は、電気ケーブルなどを介して直列に接続されている。高容量型組電池20は、EV走行モードでの走行距離を確保するために用いられており、多くの単電池22が用いられている。このため、高容量型組電池20のサイズは、高出力型組電池10のサイズよりも大きくなりやすい。
ホルダ23は、各単電池22が挿入される貫通孔23aを有する。貫通孔23aは、単電池22の数だけ設けられている。複数の単電池22は、正極端子22b(又は負極端子22c)がホルダ23に対して同一の側に位置するように配置されている。複数の正極端子22bは、1つのバスバーと接続され、複数の負極端子22cは、1つのバスバーと接続される。これにより、複数の単電池22は、電気的に並列に接続される。
単電池22は、ホルダ23が配置される平面に対して直交する方向に延びている。複数の単電池22は、ホルダ23が配置される平面内において並んで配置されている。ホルダ23が配置される平面内において、複数の単電池22を配置する位置は、適宜設定することができる。
本実施例の電池ブロック21では、1つのホルダ23を用いているが、複数のホルダ23を用いることもできる。例えば、一方のホルダ23を用いて、単電池22の正極端子22bの側を保持し、他方のホルダ23を用いて、単電池22の負極端子22cの側を保持することができる。
次に、高出力型組電池10で用いられる単電池11の特性と、高容量型組電池20で用いられる単電池22の特性について説明する。表1は、単電池11,22の特性を比較したものである。表1に示す「高」および「低」は、2つの単電池11,22を比較したときの関係を示している。すなわち、「高」は、比較対象の単電池と比べて高いことを意味しており、「低」は、比較対象の単電池と比べて低いことを意味している。
Figure 0005679064
単電池11の出力密度は、単電池22の出力密度よりも高い。単電池11,22の出力密度は、例えば、単電池の単位質量当たりの電力(単位[W/kg])や、単電池の単位体積当たりの電力(単位[W/L])として表すことができる。単電池11,22の質量又は体積を等しくしたとき、単電池11の出力[W]は、単電池22の出力[W]よりも高くなる。
また、単電池11,22の電極素子(正極素子又は負極素子)における出力密度は、例えば、電極素子の単位面積当たりの電流値(単位[mA/cm^2])として表すことができる。電極素子の出力密度に関して、単電池11は、単電池22よりも高い。ここで、電極素子の面積が等しいとき、単電池11の電極素子に流すことが可能な電流値は、単電池22の電極素子に流すことが可能な電流値よりも大きくなる。
一方、単電池22の電力容量密度は、単電池11の電力容量密度よりも高い。単電池11,22の電力容量密度は、例えば、単電池の単位質量当たりの容量(単位[Wh/kg])や、単電池の単位体積当たりの容量(単位[Wh/L])として表すことができる。単電池11,22の質量又は体積を等しくしたとき、単電池22の電力容量[Wh]は、単電池11の電力容量[Wh]よりも大きくなる。
また、単電池11,22の電極素子における容量密度は、例えば、電極素子の単位質量当たりの容量(単位[mAh/g])や、電極素子の単位体積当たりの容量(単位[mAh/cc])として表すことができる。電極素子の容量密度に関して、単電池22は、単電池11よりも高い。ここで、電極素子の質量又は体積が等しいとき、単電池22の電極素子の容量は、単電池11の電極素子の容量よりも大きくなる。
図6は、単電池11における発電要素の構成を示す概略図であり、図7は、単電池22における発電要素の構成を示す概略図である。
図6において、単電池11の発電要素を構成する正極素子は、集電板111と、集電板111の両面に形成された活物質層112とを有する。単電池11がリチウムイオン二次電池であるとき、集電板111の材料としては、例えば、アルミニウムを用いることができる。活物質層112は、正極活物質、導電材およびバインダーなどを含んでいる。
単電池11の発電要素を構成する負極素子は、集電板113と、集電板113の両面に形成された活物質層114とを有する。単電池11がリチウムイオン二次電池であるとき、集電板113の材料としては、例えば、銅を用いることができる。活物質層114は、負極活物質、導電材およびバインダーなどを含んでいる。
正極素子および負極素子の間には、セパレータ115が配置されており、セパレータ115は、正極素子の活物質層112と、負極素子の活物質層114とに接触している。正極素子、セパレータ115および負極素子を、この順に積層して積層体を構成し、積層体を巻くことによって、発電要素を構成することができる。
本実施例では、集電板111の両面に活物質層112を形成したり、集電板113の両面に活物質層114を形成したりしているが、これに限るものではない。具体的には、いわゆるバイポーラ電極を用いることができる。バイポーラ電極では、集電板の一方の面に正極活物質層112が形成され、集電板の他方の面に負極活物質層114が形成されている。複数のバイポーラ電極を、セパレータを介して積層することにより、発電要素を構成することができる。
図7において、単電池22の発電要素を構成する正極素子は、集電板221と、集電板221の両面に形成された活物質層222とを有する。単電池22がリチウムイオン二次電池であるとき、集電板221の材料としては、例えば、アルミニウムを用いることができる。活物質層222は、正極活物質、導電材およびバインダーなどを含んでいる。
単電池22の発電要素を構成する負極素子は、集電板223と、集電板223の両面に形成された活物質層224とを有する。単電池22がリチウムイオン二次電池であるとき、集電板223の材料としては、例えば、銅を用いることができる。活物質層224は、負極活物質、導電材およびバインダーなどを含んでいる。正極素子および負極素子の間には、セパレータ225が配置されており、セパレータ225は、正極素子の活物質層222と、負極素子の活物質層224とに接触している。
図6および図7に示すように、単電池11および単電池22における正極素子を比較したとき、活物質層112の厚さD11は、活物質層222の厚さD21よりも薄い。また、単電池11および単電池22における負極素子を比較したとき、活物質層114の厚さD12は、活物質層224の厚さD22よりも薄い。活物質層112,114の厚さD11,D12が活物質層222,224の厚さD21,D22よりも薄いことにより、単電池11では、正極素子および負極素子の間で電流が流れやすくなる。したがって、単電池11の出力密度は、単電池22の出力密度よりも高くなる。
ここで、活物質層における単位容量当たりの体積(単位[cc/mAh])に関して、活物質層112は、活物質層222よりも大きく、活物質層114は、活物質層224よりも大きい。活物質層222,224の厚さD21,D22は、活物質層112,114の厚さD11,D12よりも厚いため、単電池22の容量密度は、単電池11の容量密度よりも高くなる。
次に、電池の温度依存性について説明する。表1に示すように、入出力の温度依存性に関して、単電池22は、単電池11よりも高い。すなわち、単電池22の入出力は、単電池11の入出力と比べて、温度変化に対して変化しやすい。図8は、温度に対する単電池11,22の出力特性を示している。図8において、横軸は温度を示し、縦軸は出力を示している。図8は、単電池11,22の出力特性を示しているが、単電池11,22の入力特性についても、図8と同様の関係がある。
図8に示すように、単電池(高出力型)11および単電池(高容量型)22は、温度が低下するにつれて、出力性能が低下する。ここで、単電池11における出力性能の低下率は、単電池22における出力性能の低下率よりも低い。すなわち、単電池22の出力性能は、単電池11の出力性能に比べて、温度による影響を受けやすく、温度に対する依存度が高い。
図9は、単電池11,22の容量維持率と、温度との関係を示す図である。図9において、横軸は温度を示し、縦軸は容量維持率を示している。容量維持率とは、初期状態にある単電池11,22の容量と、使用状態(劣化状態)にある単電池11,22の容量との比(劣化容量/初期容量)で表される。初期状態とは、単電池11,22を製造した直後の状態であり、単電池11,22を使用し始める前の状態をいう。図9に示すグラフは、各温度において、単電池の充放電を繰り返した後の単電池11,22の容量維持率を示す。
図9に示すように、温度が高いほど、単電池11,22の容量維持率が低下する傾向がある。容量維持率の低下は、単電池11,22の劣化を表している。温度上昇に対する単電池の容量維持率の低下率に関して、単電池22は、単電池11よりも高い。言い換えれば、単電池22は、単電池11と比べて、温度上昇(温度変化)に対して劣化し易くなっている。このように、高容量型組電池20は、高出力型組電池10よりも温度に対する依存度が高くなっている。
次に、高出力型組電池10および高容量型組電池20を車両に搭載するときの配置について、図10を用いて説明する。図10において、矢印FRの方向は、車両100の前進方向を示しており、矢印UPの方向は、車両100の上方を示している。
高出力型組電池10および高容量型組電池20は、ラゲッジスペースLSに配置されており、高容量型組電池20は、高出力型組電池10よりも上方に位置している。ラゲッジスペースLSは、荷物を配置するためのスペースであり、ラゲッジスペースLSの一部を、組電池10,20を配置するためのスペースとして用いている。
ラゲッジスペースLSよりも車両100の前方には、乗車スペースRSが設けられている。乗車スペースRSは、乗員が乗車するスペースであり、シートの配置に応じて規定される。車両100には、乗車スペースRSおよびラゲッジスペースLSが仕切り部材によって仕切られている車両や、乗車スペースRSおよびラゲッジスペースLSがつながっている車両がある。
高出力型組電池10および高容量型組電池20を車両100に搭載するときには、図11に示すように、電池パック10A,20Aとして、車両100に搭載される。電池パック10Aは、高出力型組電池10と、高出力型組電池10を収容するパックケース16とを有する。電池パック20Aは、高容量型組電池20と、高容量型組電池20を収容するパックケース24とを有する。パックケース24は、パックケース16の上面に固定されている。
電池パック10A,20Aは、車体に固定されている。例えば、電池パック10Aは、車両100のフロアパネルに形成された凹部に収容することができる。凹部は、スペアタイヤを収容するためのスペースとして用いることができるものである。電池パック20Aは、電池パック10Aの上方に配置された状態において、フロアパネルやクロスメンバなどの車体に固定することができる。
本実施例では、パックケース24の底面が、パックケース16の上面に接触しているが、これに限るものではない。具体的には、電池パック10A,20Aを、図12に示すように配置することができる。図12において、電池パック10A,20Aは、車体に固定されており、電池パック20Aは、電池パック10Aの上方に位置している。電池パック10A,20Aの間には、仕切り板101が配置されており、電池パック10A,20Aは離れている。図12に示す構成では、電池パック10A,20Aの間に、仕切り板101を配置しているが、仕切り板101を省略することもできる。すなわち、電池パック10A,20Aは、車両100の上下方向において離して配置することができる。
図8および図9を用いて説明したように、高容量型組電池20は、高出力型組電池10よりも温度による影響を受けやすい。本実施例において、高容量型組電池20は、高出力型組電池10よりも上方に配置されており、高容量型組電池20で発生した熱を外部に逃がしやすくなっている。言い換えれば、高容量型組電池20は、高出力型組電池10よりも熱による影響を受けにくい位置に配置されている。
高容量型組電池20を放熱させやすくすることにより、高容量型組電池20の劣化を抑制することができる。図9で説明したように、高容量型組電池20が高温状態となるのを抑制すれば、高容量型組電池20の容量が低下するのを抑制することができる。一方、高出力型組電池10は、高容量型組電池20よりも温度の影響を受けにくいため、高容量型組電池20の下方に位置するスペース(熱のこもりやすいスペース)に高出力型組電池10を配置することができる。高容量型組電池20の下方に位置するスペースは、高容量型組電池20によって覆われているため、熱がこもりやすい。
車両100を走行させるときに、HV走行モードよりもEV走行モードを優先させると、高容量型組電池20は、高出力型組電池10よりも使用頻度が高くなる。HV走行モードよりもEV走行モードを優先させる場合としては、例えば、車両100の始動直後から、EV走行モードでの走行を行うことができる。そして、EV走行モードでの走行を行うことができなくなったときには、EV走行モードからHV走行モードに切り替えることができる。高容量型組電池20の使用頻度が高くなれば、充放電によって、高容量型組電池20が発熱しやすい。上述したように、高容量型組電池20は、高出力型組電池10よりも放熱しやすい環境にあるため、高容量型組電池20の温度上昇を抑制することができる。
外部電源からの電力供給によって、高容量型組電池20を充電することができるが、充電中において、高容量型組電池20は、高出力型組電池10よりも発熱する。高容量型組電池20は、高出力型組電池10よりも放熱しやすい環境にあるため、高容量型組電池20の温度上昇を抑制することができる。
EV走行モードでの走行距離を確保するうえでは、高容量型組電池20は、高出力型組電池10よりも大型化しやすい。単電池22の数を増やせば、高容量型組電池20の容量を増やして、EV走行モードでの走行距離を延ばすことができる。単電池22の数が増えれば、高容量型組電池20は大型化しやすい。ラゲッジスペースLSでは、車両100の下方に位置するスペースよりも、車両100の上方に位置するスペースが広くなりやすい。そこで、本実施例のように、高出力型組電池10の上方に高容量型組電池20を配置することにより、高容量型組電池20を配置するためのスペースを確保し易くなる。
例えば、スペアタイヤを収容するためにも用いられるスペースに高出力型組電池10を配置し、高出力型組電池10の上方に高容量型組電池20を配置することができる。この場合には、高容量型組電池20を配置するスペースは、高出力型組電池10を配置するスペースよりも広くなる。高容量型組電池20の容量(言い換えれば、サイズ)は、ユーザのニーズに応じて変更することができる。高容量型組電池20を高出力型組電池10の上方に配置することにより、容量の変更に伴う高容量型組電池20のサイズ変更に対応することができる。
組電池10,20をラゲッジスペースLSに配置することだけを考慮すると、高容量型組電池20を高出力型組電池10よりも下方に配置することも考えられる。この場合には、高容量型組電池20を平面に沿って配置し難くなり、高容量型組電池20の外形が複雑な形状になってしまうことがある。本実施例では、高容量型組電池20を高出力型組電池10よりも上方に配置することにより、高容量型組電池20を平面に沿って配置しやすくなり、高容量型組電池20の外形が複雑になってしまうこともない。
高容量型組電池20は、高出力型組電池10よりも上方に配置されているため、作業者は、高出力型組電池10よりも高容量型組電池20にアクセスしやすい。高容量型組電池20を高出力型組電池10よりも下方に配置してしまうと、高容量型組電池20にアクセスするために、高出力型組電池10を取り外したりしなければならない。
高容量型組電池20は、高出力型組電池10よりも温度の影響を受けやすく、劣化し易いことがある。特に、HV走行モードよりもEV走行モードを優先するとき、高容量型組電池20は、高出力型組電池10よりも使用頻度が高く、劣化しやすいことがある。高容量型組電池20が劣化したときには、高容量型組電池20の少なくとも一部を交換する必要がある。また、ユーザのニーズに応じて、高容量型組電池20の容量を変更するときにも、高容量型組電池20を交換する必要がある。このように、高容量型組電池20は、高出力型組電池10よりも交換頻度が高くなっている。そこで、本実施例のように、作業者がアクセスしやすい位置に高容量型組電池20を配置することにより、高容量型組電池20の交換を容易に行うことができる。
高容量型組電池20の温度を調節するとき、温度調節用の空気は、図13に示すように、円筒型の単電池22の外周に沿って移動させることができる。温度調節用の空気は、単電池22の長手方向と直交する平面に沿って移動することができる。高出力型組電池10の温度を調節するとき、温度調節用の空気は、図14に示すように、隣り合って配置された2つの単電池11の間を通過する。ここで、温度調節用の空気は、複数の単電池11の配列方向に進んでから、隣り合って配置された2つの単電池11の間に進入する。
高容量型組電池20の温度調節に用いられる空気は、高出力型組電池10の温度調節に用いられる空気よりも移動しやすい。すなわち、円筒型の単電池22における外面は、図4に示すように、曲面で構成されているため、単電池22の外周面に沿って空気が移動しやすい。一方、高出力型組電池10の温度を調節するとき、温度調節用の空気は、複数の単電池11の配列方向に進んでから、隣り合って配置された2つの単電池11の間に進入しなければならない。すなわち、温度調節用の空気は、移動方向を極端に変更しなければならない。
図14に示す流路では、図13に示す流路よりも圧力損失が高くなりやすい。図13に示す流路では、単電池22の外周面に沿って空気がスムーズに移動しやすいため、圧力損失は低くなりやすい。一方、図14に示す流路では、隣り合って配置された2つの単電池11の間に空気が進入しなければならず、2つの単電池11の間に空気が進入する部分において、圧力損失が高くなりやすい。圧力損失が高くなるほど、雑音が発生しやすくなる。
図11又は図12に示す構成において、パックケース16,24のそれぞれに吸気口を設けると、高出力型組電池10で発生した雑音は、吸気口を介して乗車スペースRSに向かうことがある。本実施例では、高容量型組電池20が高出力型組電池10の上面を覆っているため、高容量型組電池20は、高出力型組電池10から乗車スペースRSに向かう雑音を阻止することができる。これにより、乗車スペースRSに存在する乗員に、高出力型組電池10で発生した雑音が到達するのを抑制することができる。
一方、電池パック20Aは、電池パック10Aよりも剛性が高くなりやすい。具体的には、図15に示すように、電池パック20Aでは、高容量型組電池20の単電池22がホルダ23によって保持されており、ホルダ23の端面には、パックケース24が接触している。このため、パックケース24に外力Fが加わったとしても、ホルダ23によって外力を受けることができる。一方、図16に示すように、電池パック10Aでは、高出力型組電池10(単電池11)の上部に電極11b,11cが設けられており、パックケース16は、電極11b,11cから離れている。したがって、パックケース16に外力Fが加わると、パックケース16が撓みやすい。
電池パック20Aの上方は、荷物などが収容されるスペースとなっているため、電池パック20Aは、荷物などを収容するときに外力を受けやすくなっている。上述したように、電池パック20Aは、電池パック10Aよりも剛性が高いため、外力を受け止めやすい。

Claims (10)

  1. 車両を走行させる駆動源であるモータと、
    前記モータに電力を供給可能であり、ラゲッジスペースに配置され、二次電池でそれぞれ構成された高出力型組電池および高容量型組電池と、を備え、
    前記高出力型組電池は、前記高容量型組電池より相対的に大きな電流で充放電が可能であり、
    前記高容量型組電池は、前記高出力型組電池より相対的に大きなエネルギ容量を有し、温度に対する電池特性の依存度が前記高出力型組電池よりも高く、前記高出力型組電池に対して車両の上方に重ねて配置されていることを特徴とする車両。
  2. 車両を走行させる駆動源であるエンジンを有しており、
    前記エンジンを停止した状態で前記モータの出力を用いて走行する場合、前記高容量型組電池は、前記高出力型組電池よりも前記モータに電力を供給することを特徴とする請求項1に記載の車両。
  3. 前記エンジンを停止した状態で前記モータの出力を用いて走行する場合、前記高容量型組電池の使用頻度は、前記高出力型組電池の使用頻度よりも高いことを特徴とする請求項2に記載の車両。
  4. 前記エンジンを停止した状態で前記モータの出力を用いて走行する場合、前記モータに供給される電力のうち、前記高容量型組電池から前記モータに供給される電力の割合は、前記高出力型組電池から前記モータに供給される電力の割合よりも高いことを特徴とする請求項2に記載の車両。
  5. 前記高容量型組電池は、外部電源からの電力供給を受けて充電を行うことを特徴とする請求項1から4のいずれか1つに記載の車両。
  6. 前記高容量型組電池のサイズは、前記高出力型組電池のサイズよりも大きいことを特徴とする請求項1から5のいずれか1つに記載の車両。
  7. 前記高容量型組電池は、前記高出力型組電池よりも交換頻度が高いことを特徴とする請求項1から6のいずれか1つに記載の車両。
  8. 前記高出力型組電池は、直列に接続された複数の単電池を有し、
    前記高容量型組電池は、並列に接続された複数の単電池を有することを特徴とする請求項1から7のいずれか1つに記載の車両。
  9. 前記高出力型組電池を含む電池パックは、所定方向に並んで配置された複数の角型単電池と、前記複数の角型単電池を収容するケースとを有しており、
    前記高容量型組電池を含む電池パックは、所定平面と直交する方向に延び、前記所定平面内で並んで配置された複数の円筒型単電池と、前記複数の円筒型単電池が挿入される貫通孔を備え、前記各円筒型単電池を支持するホルダと、前記複数の円筒型単電池を収容し、前記ホルダの端面と接触するケースとを有することを特徴とする請求項8に記載の車両。
  10. 前記高出力型組電池の温度調節に用いられる熱交換媒体は、前記所定方向で隣り合う2つの前記単電池の間に形成されたスペースに進入して、前記高出力型組電池との間で熱交換を行い、
    前記高容量型組電池の温度調節に用いられる熱交換媒体は、前記所定平面に沿って移動して、前記高容量型組電池との間で熱交換を行うことを特徴とする請求項9に記載の車両。
JP2013530874A 2011-08-30 2011-08-30 車両 Active JP5679064B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004835 WO2013030883A1 (ja) 2011-08-30 2011-08-30 車両

Publications (2)

Publication Number Publication Date
JP5679064B2 true JP5679064B2 (ja) 2015-03-04
JPWO2013030883A1 JPWO2013030883A1 (ja) 2015-03-23

Family

ID=47755444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530874A Active JP5679064B2 (ja) 2011-08-30 2011-08-30 車両

Country Status (5)

Country Link
US (1) US9566853B2 (ja)
EP (1) EP2752934B1 (ja)
JP (1) JP5679064B2 (ja)
CN (1) CN103733421B (ja)
WO (1) WO2013030883A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558797B1 (ko) * 2014-08-12 2015-10-07 현대자동차주식회사 주행거리 연장을 위한 배터리 제어 시스템 및 방법
DE102014019000A1 (de) * 2014-12-18 2016-06-23 Daimler Ag Zellblock für eine Kraftfahrzeugbatterie
JP6567553B2 (ja) * 2014-12-26 2019-08-28 三洋電機株式会社 電池パック
CN108340790B (zh) * 2017-01-24 2020-06-30 北京地平线机器人技术研发有限公司 具有多个车轮的电能驱动的电动车及其动力系统
US10777831B2 (en) 2017-11-28 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based cooling system control strategy/method
US11094950B2 (en) 2017-11-28 2021-08-17 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based state estimator for cooling system controller
US10714773B2 (en) 2017-11-28 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling system dT/dt based control
US10720655B2 (en) 2017-11-28 2020-07-21 Toyota Motor Engineering & Manufacturing North America, Inc. Partial derivative based feedback controls for pid
US10434894B2 (en) * 2018-01-23 2019-10-08 Gm Global Technology Operations Llc. Vehicle battery pack assembly
JP7450523B2 (ja) 2020-12-08 2024-03-15 プライムプラネットエナジー&ソリューションズ株式会社 車両走行システムおよび車両

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079987A (ja) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd ハイブリッド電池システム
JP2006252847A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 車両用冷却装置
JP2007008443A (ja) * 2005-06-02 2007-01-18 Honda Motor Co Ltd 車両用電源装置
JP2007311290A (ja) * 2006-05-22 2007-11-29 Toyota Motor Corp 電源装置
JP2010231923A (ja) * 2009-03-26 2010-10-14 Honda Motor Co Ltd 燃料電池車両
JP2011113702A (ja) * 2009-11-25 2011-06-09 Kojima Press Industry Co Ltd 積層体へのチャンバダクト取付け構造
JP2011229288A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 車両の蓄電装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3020128A1 (de) * 1980-05-27 1981-12-03 Siemens AG, 1000 Berlin und 8000 München Ueberwachungseinrichtung fuer eine kondensatorbatterie an einem wechselspannungsnetz
US7399554B2 (en) * 2005-03-17 2008-07-15 Kejha Joseph B Hybrid rechargeable battery having high power and high energy density lithium cells
CN100508273C (zh) 2005-06-02 2009-07-01 本田技研工业株式会社 车辆用电源装置以及电池的冷却结构
WO2007097522A1 (en) * 2006-02-20 2007-08-30 Lg Chem, Ltd. Hybrid-typed battery pack operated in high efficiency
JP4680124B2 (ja) * 2006-04-28 2011-05-11 本田技研工業株式会社 ハイブリッド車両の駆動制御装置
JP4857896B2 (ja) * 2006-05-11 2012-01-18 トヨタ自動車株式会社 組電池および車両
JP4208016B2 (ja) * 2007-02-13 2009-01-14 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の制御方法、ハイブリッド車両の制御プログラムおよびそのプログラムを記録した記録媒体
JP4962052B2 (ja) * 2007-03-06 2012-06-27 トヨタ自動車株式会社 電動車両
JP4172523B1 (ja) * 2007-04-24 2008-10-29 トヨタ自動車株式会社 車両およびその制御方法
JP4780050B2 (ja) * 2007-07-04 2011-09-28 トヨタ自動車株式会社 バッテリの冷却構造
JP4527138B2 (ja) * 2007-07-12 2010-08-18 本田技研工業株式会社 ハイブリッド車両の制御装置
JP5252171B2 (ja) * 2007-09-19 2013-07-31 アイシン・エィ・ダブリュ株式会社 車両用制御装置
JP5183171B2 (ja) * 2007-11-28 2013-04-17 三洋電機株式会社 バッテリシステム
JP4557065B2 (ja) * 2008-08-07 2010-10-06 トヨタ自動車株式会社 動力伝達装置および動力伝達装置の組付け方法
KR101066256B1 (ko) * 2009-02-05 2011-09-20 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지
CN102239060B (zh) * 2009-04-27 2014-03-12 丰田自动车株式会社 电源装置的搭载构造
JP5354818B2 (ja) * 2009-10-13 2013-11-27 本田技研工業株式会社 ハイブリッド車両
CN101826644A (zh) * 2010-02-11 2010-09-08 中国科学院上海微系统与信息技术研究所 一种长寿命铅酸蓄电池系统和使用方法
US8476863B2 (en) * 2010-05-17 2013-07-02 Mitchell Andrew Paasch Energy storage and charging system for a vehicle
JP5365586B2 (ja) * 2010-06-18 2013-12-11 富士電機株式会社 電力変換装置
CN201766129U (zh) * 2010-07-05 2011-03-16 河南联合新能源有限公司 多电池组电动汽车动力电池系统
CN201877489U (zh) * 2010-12-15 2011-06-22 常承立 长效大容量铅锂电池
US8875828B2 (en) * 2010-12-22 2014-11-04 Tesla Motors, Inc. Vehicle battery pack thermal barrier
EP2657098B1 (en) * 2010-12-24 2018-04-04 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
US8562469B2 (en) * 2011-03-11 2013-10-22 Tai-Her Yang Hybrid power train having epicyclic type clutch device
US8305411B1 (en) * 2011-06-14 2012-11-06 Rohm Semiconductor USA, LLC Thermal printhead with temperature regulation
WO2012178212A2 (en) * 2011-06-24 2012-12-27 L.R.S. Innovations, Inc. Power conditioning system
JP2013123279A (ja) * 2011-12-09 2013-06-20 Honda Motor Co Ltd 電動車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079987A (ja) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd ハイブリッド電池システム
JP2006252847A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 車両用冷却装置
JP2007008443A (ja) * 2005-06-02 2007-01-18 Honda Motor Co Ltd 車両用電源装置
JP2007311290A (ja) * 2006-05-22 2007-11-29 Toyota Motor Corp 電源装置
JP2010231923A (ja) * 2009-03-26 2010-10-14 Honda Motor Co Ltd 燃料電池車両
JP2011113702A (ja) * 2009-11-25 2011-06-09 Kojima Press Industry Co Ltd 積層体へのチャンバダクト取付け構造
JP2011229288A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 車両の蓄電装置

Also Published As

Publication number Publication date
EP2752934B1 (en) 2018-10-17
US20140216842A1 (en) 2014-08-07
JPWO2013030883A1 (ja) 2015-03-23
WO2013030883A1 (ja) 2013-03-07
EP2752934A1 (en) 2014-07-09
CN103733421A (zh) 2014-04-16
US9566853B2 (en) 2017-02-14
CN103733421B (zh) 2016-05-11
EP2752934A4 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5679064B2 (ja) 車両
JP6235529B2 (ja) 電動車両および電池パック
JP5843003B2 (ja) 車両
JP5741695B2 (ja) 車両
JP6240118B2 (ja) 電動車両
JP5846045B2 (ja) 車両
JP5500319B2 (ja) 車両
JP5679063B2 (ja) 車両

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5679064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151