JP5676465B2 - 複写システム - Google Patents

複写システム Download PDF

Info

Publication number
JP5676465B2
JP5676465B2 JP2011539030A JP2011539030A JP5676465B2 JP 5676465 B2 JP5676465 B2 JP 5676465B2 JP 2011539030 A JP2011539030 A JP 2011539030A JP 2011539030 A JP2011539030 A JP 2011539030A JP 5676465 B2 JP5676465 B2 JP 5676465B2
Authority
JP
Japan
Prior art keywords
sensor
actuator
printing
temperature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011539030A
Other languages
English (en)
Other versions
JP2012510648A (ja
Inventor
ワールシング,ベーレント・イエー・ベー
フアン・デン・ボス,ペトルス・エフ・アー
ホンメルソム,アールト・イエー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Netherlands BV
Original Assignee
Oce Nederland BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oce Nederland BV filed Critical Oce Nederland BV
Publication of JP2012510648A publication Critical patent/JP2012510648A/ja
Application granted granted Critical
Publication of JP5676465B2 publication Critical patent/JP5676465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5004Power supply control, e.g. power-saving mode, automatic power turn-off
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5075Remote control machines, e.g. by a host
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/55Self-diagnostics; Malfunction or lifetime display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00535Stable handling of copy medium
    • G03G2215/00717Detection of physical properties
    • G03G2215/00772Detection of physical properties of temperature influencing copy sheet handling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2045Variable fixing speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Description

本発明は、センサ信号を提供する少なくとも1つのセンサと、アクチュエータ信号に反応する少なくとも1つのアクチュエータと、少なくとも1つのセンサのセンサ信号に依存して少なくとも1つのアクチュエータのためのアクチュエータ信号を生成する制御ユニットとを備える複写システムに関する。
多くの場合、複写システムなどの複雑なシステムには、起動時間、速度、および消費電力などのシステムの重要な特性の間でトレードオフすることが求められる。ほとんどの場合、「システムの特性」として以下に示されるこれらの特性は、システムが設計されるときに確立される。しかしながら、このようなトレードオフは、複写システムが最終的に使用される環境に大きく依存する。したがって、システムの制御部はシステムを動的に適応させることが望ましい。変化する環境に充分に応答しないことは、故障の発生をもたらす可能性がある。
今日では、流通している複写機械用制御器は、様々な状況に適応する能力がない。ほとんどの場合、他の状況に対処するためには、その状況用の別の制御器が必要とされる。
当技術分野において、適応制御というものが知られている。この観点では、適応性はシステムレベルにおけるシステムの特性間の製品内の動的なドオトレードオフとして定義される。
適応制御を実現するためのいくつかのアプローチが存在する。第1のアプローチによると、モデル規範形適応制御(MRAC)がシステムの所望の動作を反映する規範モデルを使用する。規範モデルと観察の出力に基づいて、制御器が調節される。第2のアプローチは、所謂自己調節(STC)と呼ばれる、あるタイプの適応制御器を検討する。これは、観察に基づいてシステムの正確なパラメータを推測し、それに応じて制御を調節する。ここ数十年で、人工知能(Al)の領域、即ちルールに基づいたシステム、ファジー理論、ニューラルネットワーク、進化アリゴリズムなどの領域からの技術が、正しい制御パラメータを予測するために使用されている。ニューラルネットワークなどのこれらの技法の一部の欠点は、このような技法は、なぜ機械がその動作を変更しないかについて何ら洞察を与えないということである。これは、そのようなモデルは「ブラックボックス」モデルであって、機械の動作についての診断および説明を煩雑なものにするからである。さらに、ルールまたはファジー理論センテンスは獲得し難く、関係する全ての場面を取り扱うために広範な試験を必要とする。
適応可能な複写機械用の制御器を実現できることが望ましい。
従来技術の問題を克服するために、前文による複写システムは、制御ユニットが、確率論的ネットワークを関与させて少なくとも1つのセンサ信号に基づいてアクチュエータ信号を生成する信号処理モジュールを備えるという点で改良される。
印刷の場合、システム全体の品質には、プリンタの様々な部分にわたる電力の分配、印刷の速度、エネルギー効率などが含まれる。本発明者らは、このような問題には2つの特性があることを見出した。第1は、一般的には低い頻度でしか決定が必要とされない。即ち、速度またはエネルギー効率を1秒間に何度も変更することは必要なく、望ましくない。第2に、決定を下す際には、特に環境、機械の状態に関して、またシステムの動力学そのものに関しても、多くの不確定要素が関わっている。したがって、ベイジアンネットワークなどの確率論的推論のアプローチは適切であるように見える。システムの構成要素の動作およびそれらの関係が、同時確率論的分布を簡潔に表わす図式的な確率論的モデルを使用して表現されることが可能である。比較的簡単で理解可能なモデルを用いることによって、構成要素の観察、作用、およびそれらの関係について推論することが可能になる。
本発明は、機械の制御部に対して、特にプリンタ用のエンジン制御部に対して確率論的推定装置を使用することに関する。これは、確率論的モデルを設定し、モデルを現実的データで訓練し、制御のためにモデルを使用することによって行われる。これらの種類のモデルを使用することは、それが制御ルールを確率論的な方法で引き出せるようにすることから、有利である。即ち特定値に可能な限り近づける制御、または制御値が特定の閾値をX%未満でしか超えないような制御である。これは、本質的に様々な状況に適応する能力がある制御を実現する。
次の実施形態では、確率論的ネットワークはベイジアンネットワークである。ベイジアンネットワークはここしばらく広まっており、この10年間で科学コミュニティにおいて著しい人気の上昇を見ている。心理学、生体臨床医学、および金融などの様々な応用分野の研究者がこれらの技法を成功裏に応用している。制御エンジニアリングの分野では、これらの技法を応用するための研究があまりなされていない。これらの技法は、システム全体にわたる決定がランタイム中になされなければならないとき、例えばシステムがそれ自体を環境に動的に適応させなければならないときに有用となることができると考えられる。多くの場合、システム全体の基本的な物理的モデルを明確にモデル化することは実現可能なものではないが、データからモデルが習得される可能性がある。ベイジアンネットワークに基づいた制御器は未だ広範囲に調査されていない。
本発明によって、システムの制御器のパラメータを調節するためにベイジアンネットワークを使用する。これは、印刷システムの一部に対する適応制御に適用される。ベイジアンネットワークの1つの利点は、エキスパートの知識を使用して構築されることが可能な定性的部分を含んでいる、即ち理解可能であるということである。さらに、ベイジアンネットワークの定量的部分がデータから習得されることが可能であり、これによって所望の制御信号を計算することが可能になる。また確率性が利用可能なことによって、真に望ましくない状況が高確率で回避されることが可能であるような方法でシステムを制御することが可能になる。ルールに基づいたシステムと比較して生産性が向上する。最終的に、制御器のロジックを無償で得ることができる。
ここで例証される応用は、制御器の安定性および頑健性の分野に入るが、環境および状態の識別装置にも使用されることが可能である。
過去の推計学的アプローチとの差異は、理解可能な基本的な専門領域モデルが存在するということである。このことは、これらのモデルを例えば診断目的で使用または再使用することを望む場合に、特に重要である。
本発明による複写システムの次の特定の実施形態では、センサは、コピーシートの温度を感知する温度センサであり、アクチュエータは加熱構成要素である。
ここで検討しているタイプの印刷システムでは、印刷工程中の様々な温度が重要な役割を果たす。低レベル制御器は、測定可能な構成要素の温度が設定値に保たれることが可能であることを確実にする。しかしながら、設計上および経済上の判断から、関心対象となる箇所全てにセンサを配置することは可能でない。ここで本発明によると、確率論的ネットワークを使用することによって、この加熱構成要素を通過した媒体(紙)の温度を測定するためにほんの少数のセンサしか利用可能でないときに、加熱構成要素のための正しい制御パラメータを推定することが可能である。明らかに、これは、環境の温度、速度、紙の種類などの不確定さを考慮に入れなければ行われることが可能ではない。この場合、後者の局面に焦点を合わせる。
本発明への応用の一例として、紙の温度の制御がある。モデルが様々な紙の重量および状況で訓練されると、紙が常に(例えば99%の事例で)、例えば80℃よりも熱くなるようなルールを引き出すことが可能である。システムの動作が習得されるので、制御器はそれ自体を適応させる。即ち、紙が極めて軽量であるとき、そのことが、重量のある紙への特定の切り替えに対処することが可能であるように、紙の温度が高くなることを確実にし、一方紙が重いとき、余白を少なく使用する。この特色は、必要な寛容度を最小限に抑えるのに極めて効果的である。
システムが印刷システムであり、印刷速度を有する、本発明の複写システムの他の実施形態では、センサは利用可能電力を判定するセンサであり、アクチュエータは、印刷速度を制御することによって要求電力を制御するアクチュエータである。
プリンタの生産性は、特に脆弱な主電源に依存する環境では、利用可能電力量によって制限される。利用可能電力が充分にない場合、設定値が到達されることが可能でなく、そのことが印刷の悪品質を引き起こす。この問題を克服するために、低速で印刷することも、または利用可能電力に動的に適応することを決定することも可能である。本セクションでは、後者の選択肢を、ベイジアンネットワークを使用した動的な速度調整によって探求する。
本発明が、添付図面を参照して以下に詳しく説明される。
複写システムを示す図である。 複写システムの制御ユニットを示す図である。 温度制御のための第1ベイジアンネットワークのトポロジーを示す図である。 温度制御の動作環境を示す図である。 ベイジアン制御器の結果を示す図である。 改良型ベイジアン制御器の結果を示す図である。 生産性を最適化するための動作環境を示す図である。 生産性を最適化するための第2のベイジアンネットワークのトポロジーを示す図である。 利用可能電力の分配を示すグラフである。 3つのベイジアンネットワークの曲線を示すグラフである。
図1は、本発明が使用されることができる環境の配線略図である。ここで表わされる複写機システム1は、走査ユニット2、印刷ユニット3、および制御ユニット4を備える。
走査ユニット2は、支持材料上に支持される原本カラー文書を走査するために設けられる。走査ユニットにはCCDタイプのカラー画像センサ(即ち光電子変換装置)が設けられる。これは、反射光を、原色の赤(R)、緑(G)、および青(B)に対応する電子信号に変換する。走査およびコピー動作を開始するためのローカルユーザインタフェースパネル5が設けられる。
印刷ユニット3は、画像支持体上のデジタル画像を印刷するために提供される。印刷ユニットは任意の数の印刷技法を使用することができる。それは、例えば感熱式または圧電式インクジェットプリンタ、ペンプロッタ、または有機光伝導体技術に基づくプレシステムなどであってもよい。図1に示された実施例では、印刷は、転写ベルトおよびヒューズロールを用いた電子写真印刷プロセスを使用して達成される。画像が光感受性ドラム上に投影され、それに応じてドラムが荷電され、ドラム上の画像にはトナーがもたらされ、次いで画像が転写ベルトに転写され、続いてヒューズピンチ内で紙シート上に融着される。ローカルユーザインタフェースパネル6には、ユーザの選択、ジョブの選択、および印刷動作の開始等のボタンなどの入力手段が設けられる。
走査ユニット2と印刷ユニット3は共に制御ユニット4に接続される。制御ユニット4は、走査ユニット2から入力データを受け取る、提示されたデータファイルを扱いかつスケジューリングする、走査ユニット2および印刷ユニット3を制御する、画像データを印刷可能なデータに変換するなどの様々なタスクを実行する。制御ユニットには、タスクを実行し設定を行うための広範なメニューのコマンドを操作者に提供するユーザインタフェースパネル7が設けられる。
さらに、制御ユニットはネットワーク8に接続されることにより、これもネットワークに接続されるいくつかのクライアントコンピュータ9が複写システム1を使用できるようにする。
複写システムが、3つの明確に区別できる装置、即ち走査機、プリンタ、および制御ユニットとして図1に表わされる。しかしながら、これらの3つの構成要素を1つの複写装置に組み合わせることも同等に可能である。
制御ユニットが図2でより詳しく提示される。図2で示されるように、複写システム1の制御ユニット4は、中央処理ユニット(CPU)40、ランダムアクセスメモリ(RAM)48、読み取り専用メモリ(ROM)60、ネットワークカード46、インタフェースカード47、ハードディスク(HD)50、画像処理ユニット54(ラスターイメージプロセッサまたはRIPなど)、および信号処理ユニット55を備える。上述のユニットはバスシステム42を通して相互接続される。
CPU40は、制御ユニット4のそれぞれのユニット、即ちローカルユーザインタフェース7、走査ユニット2、および印刷ユニットエンジン3を、ROM60上またはHD50上に記憶された制御プログラムに従って制御する。
ROM60は、起動プログラム、セットアッププログラム、様々なセットアップデータなどのプログラムおよびデータを記憶する。それらはCPU40によって読み出され、実行される。
ハードディスク50は、CPU40に、後で述べられる印刷プロセスを実行させるプログラムおよびデータを記憶および保管する記憶ユニットの一例である。ハードディスク50は、外部で提示された印刷ジョブのデータを保管するための領域も備える。HD50上のプログラムおよびデータは、必要に応じてCPU40によってRAM48上に読み出される。RAM48は、CPU40によってROM60およびHD50から読み出されるプログラムおよびデータを一時的に記憶するための領域と、様々なプロセスを実行するためにCPU40によって使用される作業領域とを有する。
インタフェースカード47は、制御ユニットを走査ユニット2および印刷ユニット3に接続する。ネットワークカード46は制御ユニット4をネットワーク8に接続し、ワークステーション9と、ネットワークを介して到達可能な他の装置との通信を提供するように設計される。
信号処理ユニット55は、制御ユニット52で稼働するオペレーティングシステムのソフトウェアコンポーネントとしても、またはCPU40で実行されるファームウェアプログラムとしても実施されることができる。
信号処理モジュールの内部装置については、実施形態の説明に関連付けながら詳述がなされる。
複写システムの操作の基本モードは走査、コピー、およびプリントである。
走査中に獲得された原色の赤(R)、緑(G)、および青(B)に対応する電子信号によって、デジタル画像がラスター画像ファイルの形態に組み立てられる。ラスター画像ファイルは一般的に、ピクセルとして知られている規則的にサンプリングされた値の矩形アレイであると定義される。各ピクセル(画素)は一般的に、それに関連付けられた、一般的にピクセルが表示される色を指定する1つまたは複数の番号を有する。画像の表示は、各ピクセルを、各ピクセル内のR、G、およびBの量を規定する3つの8ビット(計24ビット)の測色値(0から255の範囲)によって指定させることができる。正しい比率で、R、G、およびBは黒、白、254相の灰色、および無数の色彩(約1600万)を形成するように組み合わされることが可能である。走査ユニット2によって得られたデジタル画像は、制御器6のメモリ上に記憶されることができ、コピー経路に従って取り扱われることができ、画像はプリントエンジン4によって印刷される。
あるいは、デジタル画像が制御器からクライアントコンピュータ9(走査からファイルへの経路)に転送されることができる。
最後に、クライアントコンピュータ9のユーザはデジタル画像を印刷することを決定することができ、これがシステムの動作の印刷モードを反映する。
本発明によると、複写システムのシステム特徴を制御する信号処理ユニットは、ベイジアンネットワークを使用して、入来するセンサ信号に基づいてアクチュエータ信号を判定する。
ベイジアンネットワークB=(X,G,P)は、有向非巡回グラフG=(V,E)から成る。但し、Vは1セットの頂点{v1,...,vn}であり、E⊆V×Vは1セットの有向弧である。セットXは、Gの頂点に一対一で対応する1セットの(不連続の)ランダム変数である。即ち、各頂点Vはきっちりと1つのランダム変数Xvに対応する。Pは、各ランダム変数X2∈Xに対して1つの分布
Figure 0005676465
を含む1セットの条件付き確率論的分布である。但しΠ(v)は、グラフG内のvの1セットのペアレントである。ベイジアンネットワークは1セットのランダム変数Xにわたる同時確率論的分布を符号化する。これは、条件付き確率性を乗じることによって算出されることが可能である。即ち、以下の通りである。
Figure 0005676465
ベイジアンネットワークは様々な確率論的分布を符号化することが可能である。ほとんどの場合、変数は全て不連続であるか、または全て連続であるかのいずれかである。しかしながら、混成型ベイジアンネットワークは不連続型および連続型条件付き確率論的分布の両方を含む。一般に使用されているタイプの混成型ベイジアンネットワークは条件付き線形ガウスモデルである。このようなネットワークから確率性を推定するために効率的、精確、かつ近似的なアリゴリズムが開発されている。ベイジアンネットワークは一人または複数の専門領域のエキスパートの助けを借りて構築されることが可能である。しかしながら、エキスパートの知識を使用してベイジアンネットワークを構築することは、今では一部の専門領域では実現可能であることが知られているものの、極めて面倒であり、時間の掛かるものとなる可能性がある。データからベイジアンネットワークを習得することも可能である。これは以下の2つのサブタスクに分けられることが可能なタスクである。(1)仕組みの習得、即ちネットワークのトポロジーを識別すること。(2)パラメータの習得、即ち所与のネットワークトポロジーのための関連した同時確率論的分布を判定すること。本発明によって、パラメータの習得を使用する。これは典型的には、パラメータの最尤推定値、即ち、ネットワーク構造の所与のデータに関連付けられる条件付き確率論的分布を算出することによって行われる。動的ベイジアンネットワークは、グラフの頂点に(不連続型の)タイムスライスがインデックス付けされるベイジアンネットワークである。各タイムスライスは静的なベイジアンネットワークから成り、時間経過の中の状況間の関係を表わすためにタイムスライスが連係される。
本発明によって、複写装置の設計段階中に、適応性が求められる装置の各特徴についてベイジアンネットワークのトポロジーが先験的に確立される。
本発明によって、次のステップでは、パラメータの習得が行われる。ここで提示される実施形態では、これは装置の設計中にも実施される。従来、ターゲットとされるハードウェアがモデル化され、このモデルが、所与のネットワークトポロジーのための関連する同時確率論的分布を推定するために使用される。しかしながら、この後者のステップは、複写システムが実際に使用される際にランタイム時に実施されることに留意されたい。
得られるトポロジーと確率論的分布データとは制御ユニットのハードディスクに記憶され、信号処理ユニットが本発明に従って作動することを要求された瞬間に呼び出される。
次に、第1の特定の実施形態が提示される。ここでは加熱器の最適な設定値が生成される。
確率論的モデルでは、紙を加熱するための利用可能電力、加熱構成要素の時間的特性、異なる紙の重量、高質印刷のための最低限度の温度要件、および基本的処理速度が関連付けられる。したがって、このモデルが適応されることによって、いくつかの観察可能事項(温度など)と、未知であるが(例えば、紙の光沢度)確率論的に関係付けられる他の特性とに基づいて設定値(例えば、加熱器の構成要素)を調整する制御器を構築する。この簡単なアプローチは、いくつかの驚くべき特徴および特色を備えた制御器をもたらす。
一例として、制御器の目標が、「温度を可能な限り特定値に近い状態に保つこと」、または「温度を特定値に減少するその確率がX%未満であるように調整すること」とされることが可能である。第2の選択肢は、ある種のスマートなバッファー動作をもたらす。即ち、軽量紙に対しては、より重い紙が到着する可能性の原因となるように、温度がより高い設定値に調整される。
このような動作は、設計者がこのことに気付いた後、ルールに基づいた制御器の中に組み込まれることが可能である。確率論的モデルに基づいた制御器では、この動作は、モデル自体に捉えられたシステムの知識から自動的に起こる。
専門領域の質的構造、ネットワークのトポロジーが、専門領域のエキスパートから導き出される。明確にするために、加熱器の正しい設定値を決定するという具体的な問題を扱うネットワーク全体の中の特定の該当部分に焦点を合わせる。2つのタイムスライスから成る専門領域の構造が図3に提示される。図4はこの制御の動作環境を示す。このネットワークの関連付けられるランダムな変数は、シミュレーション中に発見されることが可能な標準値に値を離散化することによって、不連続な変数としてモデル化されている。設定値の変数はドメインサイズ12を有する。媒体(例えば、紙)の温度はドメインサイズ16を有し、3つの紙のタイプ、即ち80グラム、120グラム、または160グラムの紙について考慮する。データを入手し、システムをテストするために、システムの物理的モデルがシムリンク(Simulink)などを使用することによって作り出される。このようにして生成されるデータが使用されて、ベイジアンネットワークの質的構造に関連付けられるパラメータを算出することによってモデルの条件付き分布を習得する。図4で表わされる動作環境では、信号処理ユニットが加熱器用の設定値を制御する。信号処理ユニットは、加熱器のセンサから得られる加熱器の温度と、実際に実施される印刷ジョブのジョブ定義から得られる紙の重量とを入力として使用する。本発明によるベイジアンネットワークを用いた信号処理ユニットが使用されて、この制御器の設定値を制御する。このために、2つのタイムスライス、即ち現在の状況を述べるものと、次の状況を判断するために使用されるものとを検討する。即ち同時確率論的分布を採用する。
Figure 0005676465
目的は、紙の温度を設定値に保つことである。次いで、目指すところは、紙の温度が設定値66℃になるように、温度Tの測定値と現在の設定値SPとに基づいて次の設定値を決定することである。即ち:
Figure 0005676465
を計算する。
簡略化されたベイジアンネットワークを採用するということによって、即ち変数が、それらの履歴が直近であるとするとそれらの履歴とは無関係であるということによって、これが望ましくない影響をもたらす場合がある。例えば、加熱器の制御器の設定値を上昇させると、設定値がより高くなるが、加熱器が有効になるにいくらかの時間を要するために温度は低くなる。結論としては、到達されるべき所望温度を得るためには設定値がさらに上昇される必要がある、即ち状況に対する解釈が誤っているということである。この問題に対してはいくつかの解決法がある。このように、改良された実施形態では、初期状態の追加のエビデンスを組み込むために、確率論的ネットワークが拡大される。別法では、サンプリングを少なくすること、即ちシステムが安定した状態に戻るのを待つことによってそのようにすることが可能である。この状況で極めてうまくいくことが判明した1つの発見的問題解決は、解釈が不確実なときは決定を下すことを避ける、即ち、以下によって避けるということである:
Figure 0005676465
但し、kは何らかの1未満の同調定数である。
ベイジアン制御器の結果が図5に提示される(k=0.9)。紙の温度には若干量のノイズがあることに留意されたい。それは、このノイズが適応制御の設定で制御されないためである。このノイズは、測定誤差などの様々な不確定さの原因となるようにモデルに加えられたものである。明らかにこのようなノイズは実際の紙の温度には影響がない。
ここに示された実施形態はどちらかと言えば単純なものである。本発明は特に、従来の制御理論がより困難になり始める、より複雑な制御器に適していることに留意されたい。一例を次のセクションで論じる。
ここまでに提示された実施形態は、紙を最低限の温度に保とうとする場合、特定の状況、例えば媒体が変化する際に、温度がこの値よりも下に降下する場合があるという点で、尚も限られている。既に述べられているように、高品質の印刷を得るために、常に特定量の熱を有していることが重要である。そうでない場合、システムの故障をもたらす可能性がある。1つの解決法として、設定値を高温度に置くことがある。これは媒体の変更に対する緩衝となる。しかしながら、これが不必要に高い場合、エネルギーが失われ、印刷プロセスの他の部分に問題を引き起こす場合がある。
より改良された実施形態で上記のことを考慮するために、制御信号に対する確率性の制約として最低温度も置かれる。この場合、66℃よりも下に降下することを避けることを保証する最低温度に関心が持たれる。形式上、次の設定値を決定するために、以下のようになるために最小SP’を算出する。
Figure 0005676465
結果が図6に見出されることが可能である。ここで興味深いことは、加熱器の温度は、紙の重量が低いときに比較的高いということである。これは、紙の高重量が温度の大幅な落下を引き起こすことから、システムが、高い紙重量を伴って到来する可能性のある紙を予測することによる。このタイプの理論は、任意のシステムによってモデル化されることが可能である。しかしながら、興味深いことに、データから習得された確率論的的分布ではこれが潜在的事柄である。
その効果は、高品質の印刷を得るためには特定量の熱がいつでも利用可能であるということである。
ここで次の特定の実施形態が提示される。これは、脆弱な主電源しか備えない環境で生産性を最適化することを目的とする。
プリンタの生産性は、特に脆弱な主電源に依存する環境では、利用可能電力の量に制限される。利用可能電力が不充分にしかない場合、設定値が達成されることが可能ではなく、これが印刷の悪品質を引き起こす。この問題を克服するために、ここで提示される実施形態は、ベイジアンネットワークを使用して動的な速度調整を実行する。
この実施形態の動作環境が図7に示される。ここに示されているのは利用可能電力のセンサと速度のセンサとである。モータMが感光性のドラムを速度vで駆動する。この速度が印刷速度である。利用可能電力は、センサによって信号処理ユニットに伝達される。要求電力が知られている。これは結果的に誤りである場合がある。誤りを最小限度に抑えるために速度が制御される。信号処理ユニットは、入力に基づき、ベイジアンネットワークを使用して速度の設定値を生成する。このようにして、印刷速度を制御することによって要求電力が制御される。
この実施形態の各タイムスライスのベイジアンネットワークのトポロジーが図8に示される。要求される利用可能電力は、観測可能な変数であり、これは、優良な印刷品質に到達するために正しい設定値を維持することを目標とする低レベル制御器に依存する。誤差変数は実験室の状況でのみ観察可能であり、実際温度の理想的温度からの逸脱をモデル化する。この誤差変数が特定の閾値を超える場合、印刷の品質は特定基準よりも下になる。速度と利用可能電力との両方が、低レベルの制御器によって要求される、または要求されることが可能な電力に影響を及ぼす。さらに、専門領域のエキスパートによると利用可能電力と要求電力とを組み合わせると誤差をうまく予測することができる。ここに提示される実施形態では、利用可能電力と要求電力とを相互に結合させて2つのタイムスライスが使用される。利用可能電力は、異なるタイムスライスの電力供給は非依存的ではないことをモデル化し、要求電力は、要求電力に影響を及ぼす機械の状態をモデル化する。分布族を選択するために、変数がガウス変数としてモデル化される。これは、利用可能電力を除いてほとんどの変数が正規分布であることから、妥当である(図9参照)。このような分布にガウスランダム変数を当て嵌めると、一般的に不充分な性能を招く。しかしながら、これは、小さな分散を伴った、一方が400W前後、他方が1500W前後の2つのガウス分布の合計として見なされることが可能である。このような分布はハイブリッドネットワークを使用してモデル化されることが可能である。ネットワークの主な推論課題の1つは、特定の速度と特定の観察とから誤差を推定することである。これを分類性能、即ち印刷の品質が悪いか良いかを分類する性能であると考えることも可能である。これは、異なるモデルを比較して、それが、どれほどうまくこれらの2つの可能性を識別するかを見きわめる手段となる。これを可視化および数量化する標準的な方法は、ROC曲線によるものである。これは誤った陽性率と正しい陽性率(感度)との関係を示す。曲線下面積はその分類性能の尺度となる。要求電力の分布を2つのガウスによってモデル化するために、3つのモデル、即ち不連続型モデル、完全連続型モデル、および混成型モデルを比較した。分類性能の概略が図10に示される。予想通り、完全連続型モデルの性能が最も悪く、混成型と不連続型モデルが同様の傾向を示す。不連続型の利点は、確率論的分布が容易に点検されることが可能であり、分布に関して基礎的前提がないことであり、これによって実際の使用が容易になる。しかしながら、混成型は、条件付き分布について述べるために多数の不連続型を必要とする際、より効率的な計算を可能にする。この理由から、実験で後者を使用した。
シミュレーションでは、利用可能電力が、600Wの平均値と200Wの標準偏差を用いてランダム変数としてモデル化される。システムに与えられる利用可能電力は、100秒毎にこの変数からサンプリングされる。利用可能電力と要求電力とについての情報に基づいて、即ち誤差情報はランタイム中には得られないが、次のタイムスライスにおける誤差の周辺確率論的分布が計算される。この誤差は、平均値μと標準偏差σとを備えたガウスランダム変数である。ガウス変数では、誤差実値の99.7%を超えるものが平均値の3つの標準偏差の中に入る。許容する最大誤差T(この場合5℃を選択する)に基づいて、P(Error_1)の周辺確率論的分布が、P(Error_1<T)>99.7%を示唆するμ+3σ<Tのようになるように最大速度vを計算する。
制御器の基本的理論が設計される必要がないことは有利なことである。基本的理論を設計するとなると、適応性が必要とされる際には煩雑な仕事となる。本発明によると、必要とされるものは質的モデルと、データと、推測されることが可能な確率論的基準とである。
本発明について、上述の例示された実施形態を参照して説明がなされたが、本発明はそれに限定されない。当業者には、他の実施形態も請求項の範囲内で可能であることが明らかである。

Claims (4)

  1. センサ信号を提供する少なくとも1つのセンサと、アクチュエータ信号に反応する少なくとも1つのアクチュエータと、少なくとも1つのセンサのセンサ信号に依存して少なくとも1つのアクチュエータ用のアクチュエータ信号を生成する制御ユニットとを備える複写システムであって、制御ユニットが、システムがそれ自体を環境に動的に適応させなければならないときにベイジアンネットワークを関与させて少なくとも1つのセンサ信号に基づいてアクチュエータ信号をランタイム中に生成するための信号処理モジュールを備えることを特徴とする、複写システム。
  2. システムが印刷システムであり、センサが加熱構成要素の温度を感知する温度センサであり、アクチュエータが加熱構成要素である、請求項1に記載のシステム。
  3. システムが、印刷速度を有する印刷システムであり、センサが利用可能電力を判定するセンサであり、アクチュエータが、印刷速度を制御することによって要求電力を制御するアクチュエータである、請求項1に記載のシステム。
  4. 頂上と縁部を備える、ベイジアンネットワークのトポロジーを記憶し、頂上と一対一で結合される確率論的分布を記憶する記憶手段を備える、請求項からのいずれか一項に記載のシステム。
JP2011539030A 2008-12-03 2009-12-03 複写システム Active JP5676465B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11959108P 2008-12-03 2008-12-03
US61/119,591 2008-12-03
PCT/EP2009/066348 WO2010063800A1 (en) 2008-12-03 2009-12-03 Reprographic system

Publications (2)

Publication Number Publication Date
JP2012510648A JP2012510648A (ja) 2012-05-10
JP5676465B2 true JP5676465B2 (ja) 2015-02-25

Family

ID=41508414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011539030A Active JP5676465B2 (ja) 2008-12-03 2009-12-03 複写システム

Country Status (4)

Country Link
US (1) US8437034B2 (ja)
EP (1) EP2374045B1 (ja)
JP (1) JP5676465B2 (ja)
WO (1) WO2010063800A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314973B2 (en) * 2010-06-01 2012-11-20 Konica Minolta Laboratory U.S.A., Inc. Method and apparatus for dynamic printer performance tuning using bayesian analysis
US8870329B2 (en) 2012-01-31 2014-10-28 Hewlett-Packard Indigo B.V. Issue detection in a digital printer
JP6657904B2 (ja) * 2015-12-14 2020-03-04 富士ゼロックス株式会社 機内環境管理装置、電子機器、画像形成装置、及び機内環境管理プログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056661B2 (ja) * 1994-12-27 2000-06-26 シャープ株式会社 ヒータ制御装置
US6535865B1 (en) * 1999-07-14 2003-03-18 Hewlett Packard Company Automated diagnosis of printer systems using Bayesian networks
US6665425B1 (en) * 1999-12-16 2003-12-16 Xerox Corporation Systems and methods for automated image quality based diagnostics and remediation of document processing systems
JP2005309077A (ja) * 2004-04-21 2005-11-04 Fuji Xerox Co Ltd 故障診断方法および故障診断装置、並びに搬送装置および画像形成装置、並びにプログラムおよび記憶媒体
JP2006065383A (ja) * 2004-08-24 2006-03-09 Inter Db:Kk 耐障害型ベイジアンネットワーク演算処理装置
US20060271661A1 (en) * 2005-05-27 2006-11-30 International Business Machines Corporation Method for adaptively modifying the observed collective behavior of individual sensor nodes based on broadcasting of parameters
US7904398B1 (en) * 2005-10-26 2011-03-08 Dominic John Repici Artificial synapse component using multiple distinct learning means with distinct predetermined learning acquisition times
JP2007293340A (ja) * 2006-04-21 2007-11-08 Oce Technologies Bv 電源過負荷防止を有する可変速印刷装置
EP1847887A2 (en) * 2006-04-21 2007-10-24 Océ-Technologies B.V. Variable speed printing device with mains overload prevention
SG136862A1 (en) * 2006-04-21 2007-11-29 Oce Tech Bv Variable speed printing
US8326787B2 (en) * 2009-08-31 2012-12-04 International Business Machines Corporation Recovering the structure of sparse markov networks from high-dimensional data

Also Published As

Publication number Publication date
WO2010063800A1 (en) 2010-06-10
US20110292409A1 (en) 2011-12-01
EP2374045A1 (en) 2011-10-12
JP2012510648A (ja) 2012-05-10
US8437034B2 (en) 2013-05-07
EP2374045B1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
US7903844B2 (en) Failure analysis system, failure analysis method, and program product for failure analysis
US20200393998A1 (en) Multifunction Printer and Printer Engine Defect Detection and Handling Using Machine Learning
JP4646287B2 (ja) 画像形成システム、画像形成方法、画像形成プログラム、及び記録媒体
US10831417B1 (en) Convolutional neural network based copy or print wizard
JP5310613B2 (ja) 画像処理装置および画像処理装置の制御方法
JP5870667B2 (ja) 印刷管理装置及び印刷管理方法
US20220045913A1 (en) Learning system that collects learning data on edge side, electronic apparatus, control method for electronic apparatus, and storage medium
JP5676465B2 (ja) 複写システム
JP2020071271A (ja) 機械学習装置、データ処理システム、機械学習方法及びデータ処理方法
US20210266413A1 (en) Information processing system, information processing apparatus, and method of controlling the same
US12010280B2 (en) Machine learning device, machine learning method, and machine learning program
US20210192598A1 (en) Proposal system, method, and computer-readable storage medium for storing program
JP5918106B2 (ja) マルチデバイスの省電力
JP2021179686A (ja) 画像形成装置、その制御方法、及びプログラム
US20230305613A1 (en) Information processing apparatus, non-transitory computer readable medium storing program, and information processing method
JP4844594B2 (ja) 画像形成装置および画像形成装置における画像安定化方法
JP2006163052A (ja) 画像出力制御装置
US20210149605A1 (en) Print system, server, and print method
US9229383B2 (en) Image forming apparatus, control apparatus, and control methods thereof
US11507034B2 (en) Information processing apparatus, system, method for controlling information processing apparatus, and computer program
JP5381324B2 (ja) 画像形成制御装置、画像形成装置および画像形成制御方法
JP2021064896A (ja) 電力受給装置、サーバ、システム、方法、及びプログラム
JP7529150B2 (ja) 画像形成部の状態を推定する画像形成システム、画像形成方法、及び画像形成プログラム
US20180241887A1 (en) Information processing device and non-transitory computer readable medium
US20240320456A1 (en) Image forming apparatus for creating image forming condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250