JP5673948B2 - 光学材料の非線形吸収測定方法 - Google Patents
光学材料の非線形吸収測定方法 Download PDFInfo
- Publication number
- JP5673948B2 JP5673948B2 JP2011049299A JP2011049299A JP5673948B2 JP 5673948 B2 JP5673948 B2 JP 5673948B2 JP 2011049299 A JP2011049299 A JP 2011049299A JP 2011049299 A JP2011049299 A JP 2011049299A JP 5673948 B2 JP5673948 B2 JP 5673948B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- photon absorption
- optical material
- measurement region
- absorption coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
厚さがLである光学材料内部にある測定領域における2光子吸収係数を測定する方法であって、
[1]光学材料表面からの深さの異なる少なくとも2つの測定領域のそれぞれについて、各測定領域にある各測定箇所に焦点を合わせたパルスレーザー光を照射して、各焦点位置において入射光強度を順次変化させながら2光子吸収を生じさせ、
(i)前記少なくとも2つの測定領域のうちの光学材料表面に近い一方の測定領域において2光子吸収が生じたときの、光学材料表面から該一方の測定領域までの領域で生じる蛍光発光の総発光量を、参照総発光量として各入射光強度についてそれぞれ測定し、
(ii)他方の測定領域において2光子吸収が生じたときの、透過率と光学材料表面から該他方の測定領域までの領域で生じる蛍光発光の総発光量とを各入射光強度についてそれぞれ測定する測定ステップと、
[2]各入射光強度に対して、前記他方の測定領域において測定した透過率をそれぞれ、各入射光強度における前記一方の測定領域で測定した参照総発光量と、前記他方の測定領域において測定した総発光量と、前記参照総発光量に対する前記総発光量の比とに基づいてそれぞれ補正する透過率補正ステップと、
[3]入射光強度の変化に対する前記補正後の透過率の変化と、前記光学材料の厚さLとに基づいて前記他方の測定領域における2光子吸収係数を求める2光子吸収係数演算ステップと、
を含むことを特徴とするものである。
前記少なくとも2つの測定領域を結ぶ直線上にありかつ前記少なくとも2つの測定領域とは異なる深さにある少なくとも1つの第3測定領域に、当該第3測定領域にある測定箇所に焦点を合わせたパルスレーザー光を、前記少なくとも2つの測定領域と同様に入射光強度を順次変化させながら照射して、焦点位置においてそれぞれ2光子吸収を生じさせ、各入射光強度において、光学材料表面から該第3測定領域までの領域で生じる蛍光発光の総発光量を測定することを更に含み、
前記[2]透過率補正ステップにおいて、
前記各入射光強度において、それぞれ前記各測定領域の光学材料表面からの深さと各測定領域で測定した総発光量とに基づいて、一次以上の関数による近似直線または近似曲線を、その近似直線または近似曲線と測定した総発光量との距離が最小になるようにあてはめ、焦点深さがゼロであるときの前記近似直線または近似曲線上の外挿値を前記参照総発光量とし、それぞれの前記他方の測定領域の光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、あらためて光学材料表面から当該各測定領域までの総発光量として用いて、前記他方の測定領域において測定した透過率を補正するものであってもよい。このようにすると、2光子吸収係数をより高い精度で測定することができる。
前記[1]測定ステップにおいて更に、前記一方の測定領域および前記第3測定領域について、透過率を各入射光強度に対してそれぞれ測定し、
前記[2]透過率補正ステップにおいて、前記一方の測定領域および前記第3測定領域の光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、光学材料表面から前記一方の測定領域および前記第3測定領域までの総発光量として、前記一方の測定領域および前記第3測定領域において測定した透過率を補正し、
前記[3]2光子吸収係数演算ステップにおいて、前記一方の測定領域および前記第3測定領域における2光子吸収係数を求めてもよい。このようにすると、前記一方の測定領域および前記第3測定領域においても2光子吸収係数を測定することができる。
前記2光子吸収係数を各測定領域の位置情報に関係づけてそれぞれ記憶し、
前記第1光学材料と同じ種類でかつレーザー損傷耐性が未知である第2光学材料の複数の測定領域について、上述のいずれかの2光子吸収係数測定方法を用いて2光子吸収係数を求め、
前記第2光学材料の各測定領域について求められた2光子吸収係数をそれぞれ前記第1光学材料の対応する測定領域について求められた2光子吸収係数と比較し、
前記比較結果および第1光学材料の各領域における2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースに基づいて、第2光学材料のレーザー損傷耐性を評価することにより、光学材料の各測定領域におけるレーザー損傷耐性を評価することができる。
図2(a)に示すように、蛍光発光を伴う厚さLの光学材料にレーザー光を照射して、光学材料内部のA、BおよびCの各点における2光子吸収係数を測定する系を考える。入射側の光学材料表面(以下、単に光学材料表面とも呼ぶ)からのA、BおよびC点の距離を各々a、bおよびcとする。
A点に焦点を合わせた強度Iinのレーザー光を光学材料表面に照射して、焦点付近の測定領域において2光子吸収を発生させる。このとき、強度IAoutの透過光と、光学材料表面から測定領域までの領域において生じる蛍光発光の総発光量(以下、単に総発光量ともよぶ)PLAとが測定される。ここで、総発光量とは、光学材料にレーザー光を照射する際に生じる蛍光発光の発光強度を、光学材料表面から焦点位置まで積分して得られる値を意味する。このとき、光学材料表面から焦点位置までの距離(以下、この距離を焦点深さとも呼ぶ)はaである。このような系において、光学材料内部で非線形吸収と蛍光発光とに起因して入射光が減衰する様子は、図2(b)に示すモデル図に基づいて説明することができる。
蛍光発光の寄与が排除された場合には、蛍光発光に起因する光強度の減衰は起こらず、2光子吸収に起因する光強度の減衰のみが起こると考えられる。このように、2光子吸収のみに起因して光強度の減衰が生じる場合のA点における透過率の逆数TA −1は、以下のように表すことができる。
まず、B点に関して、TB~−1およびTB −1を入射光強度に対してプロットした概念図を図3に示す。蛍光発光の寄与がある場合、図2からわかるようにIin>IBinであるので、実際に測定される透過率の逆数TB~−1は求めるべき透過率の逆数TB −1より大きな値となる。また、表面での光の反射がないと仮定すると、グラフの切片は本来1となるはずであるが、蛍光発光の寄与がある場合には切片T0 −1>1となる。従って、測定される透過率の逆数TB~−1から蛍光発光の寄与を取り除いて、目的とする透過率の逆数TB −1へと補正する必要があることがわかる。
同様に、A点に対するC点の発光増大比γACは、下記式
(8)式を変形すると、
となり、両辺をIBoutで割ると、求めるべきTB −1は
と表すことができる。C点についても同様に、TC −1は、(9)式を変形して
と表すことができる。
A点が光学材料表面近傍に存在する場合、IAinをIOinで近似して差し支えないと考えられる。即ち、IAin/IinをIOin/Iinで置き換えることが可能である。式(13)を用いて式(11)および式(12)を書き直すと、
となる。更に、TA −1については以下のように表すことができる。
ここで、TA~−1、TB~−1およびTC~−1は透過率測定から直接得られる値であり、γAB、γACおよびT0は、測定可能な値を用いて求めることができる値である。
本発明の方法で測定可能な光学材料は、例えば、主にレンズ、ミラー基板、窓材等に用いられる石英に代表されるガラス材料、主にレーザー発振に用いられるNd:YAG、Yb:YAG等の単結晶材料、主に波長変換に用いられるCLBO(CsLiB6O10)、LBO(Li2B2O4)、KTP(KTiOPO4)等の単結晶材料、主にレンズに用いられるCaF2、MgF2等の単結晶材料、主に窓材として用いられる透光性セラミックス等が挙げられる。
本発明の方法で測定可能な光学材料の厚さは材料の種類によって異なる。蛍光発光が比較的小さい光学材料の場合、30mm程度までの厚さの光学材料を本発明の方法で測定することが可能である。蛍光発光の著しい光学材料であっても、20mm程度までの厚さの光学材料を本発明の方法で測定することが可能である。光学材料の厚さが上述の値より大きいと、蛍光発光による透過率の減衰が極めて大きくなり、僅かな非線形吸収による透過率の減衰の判別が困難になるのであるので好ましくない。
本発明の測定方法において使用可能な測定装置の一例を以下に説明する。この例は発明を限定するものでなく、他の装置を用いて測定を行うことも可能である。
(a)レーザー光を出射するレーザー光源1、
(b)レーザー光源1から出射されたレーザー光を2つに分割して、分割した一方の光をモニター用レーザー光としてパワーモニタ5に入射し、他方の光を測定用レーザー光として集光レンズユニット2に入射するビームスプリッタ6、
(c)入射される測定用レーザー光を集光して光学材料7に入射する集光レンズユニット2、
(d)光学材料7を透過した測定用レーザー光の透過光強度を検出する透過光検出器3、
(e)レーザー光の強度をモニターするパワーモニタ5、および
(f)光学材料7の蛍光発光を検出する発光検出器4
で構成される。
光学測定制御部は、
(1)入射レーザー光が各測定領域において焦点を結ぶように光学系を調整する光学系制御部、
(2)各測定領域において、レーザー光の入射エネルギー強度を順次変化させて試料に入射して、各入射エネルギー強度に対する透過率と総発光量とを測定する測定制御部、および
(3)光学材料の全領域における透過率が測定されるように測定領域の位置を順次移動させる走査制御部
を有する。
本発明の測定方法の測定条件を以下に説明する。
入射レーザー光強度は、最小の光強度から所定の上昇ステップで強度を増大させながら最大の光強度に達するように変化させる。入射レーザー光強度が大きすぎると、また、ビームを絞りすぎると、エネルギー密度の増加により材料が破壊されてしまう。また、光強度が小さすぎると、焦点付近の領域で2光子吸収を生じさせるのに十分なエネルギーを得ることができない。
即ち、図6に示す構成は、2つのレーザー光源と2つの透過光検出器3a、3bを備え、各レーザー光源から出射した2つのレーザー光La、Lbが、それぞれ対応する集光レンズユニット(図示せず)を介して異なる方向から光学材料7に入射する。この構成において、2つのレーザー光源は、光源から出射した光が光学材料中の測定領域に至るまでの光路長を考慮して、2つのレーザーパルスが測定領域において重なるように、パルスの発生タイミングが光学測定制御部によって制御され、各レーザー光La、Lbに対応して設けられた透過光検出器3a、3bが、パルスの発生タイミングに合わせて、各レーザー光La、Lbに対する透過率を検出する。
なお、この図6に示す構成において、測定領域は、照射するパルスレーザーのパルス幅および集光レンズユニットによって集光されるビーム径に基づいて決定される。
この構成においては、パルス周期およびデューティ比を同一に設定して、同一測定領域において複数回レーザーパルスを照射し、それぞれ透過率を測定することが好ましく、これによってより精度の高い透過率測定が可能になる。
以上のように光学測定部が構成された測定装置を用いると、測定領域以外の場所での蛍光発光の影響をかなり低減させて、より高い精度で透過率を測定することができ、それにより、高い精度で2光子吸収係数を求めることができる。
本発明の2光子吸収係数測定方法の第1の態様を以下に説明する。
厚さがLである光学材料において複数の測定領域を設定する。
各測定領域のそれぞれについて、各測定領域にある各測定箇所に焦点を合わせたパルスレーザー光を照射して、各焦点位置において入射光強度を順次変化させながら2光子吸収を生じさせ、各測定領域において2光子吸収が生じたときの、透過率と光学材料表面から各測定領域までの領域で生じる蛍光発光の総発光量とを測定する。測定した透過率と総発光量とを、その測定領域の位置情報に関連付けて出力する。
その後、移動ステージを所定量だけ移動させて、パルスレーザー光の焦点位置を次の測定領域内に合わせる。上述の測定および測定値の出力を繰り返す。
各測定領域について、各入射光強度において測定した透過率T~と総発光量PLとを呼び出す。
各測定領域について、測定した透過率の逆数T~−1を入射光強度に対してプロットし、得られる直線の切片T0 −1をそれぞれ求める。
各入射光強度について、各測定領域のうち表面に最も近い測定領域において測定した総発光量を各入射光強度における参照総発光量PL0として下記の(17)式に代入し、前記表面に最も近い測定領域を除く各測定領域において測定した各総発光量PLを下記の(17)式のPLに代入して、各入射光強度について、前記表面に最も近い測定領域を除く各測定領域における発光強度比γを求める。
前記表面に最も近い測定領域を除く各測定領域において、各入射光強度に対して、測定した透過率の逆数T~−1、前記切片T0 −1の逆数T0および発光増大比γを下記式
に代入して、測定した透過率を補正する。
更に、前記表面に最も近い測定領域において、各入射光強度に対して、測定した透過率の逆数T~−1、前記切片T0 −1の逆数T0を(16)式に代入することにより、前記表面に最も近い測定領域において測定した透過率を補正することができる。
各測定領域において、このようにして補正した透過率の逆数T−1を入射光強度に対してプロットし、得られる直線の傾きから、上述の(4)式を用いて、各測定領域における2光子吸収係数を算出する。
各測定領域について、各入射光強度において測定した透過率T~と総発光量PLとを呼び出す。
各測定領域について、測定した透過率の逆数T~−1を入射光強度に対してプロットし、得られる直線の切片T0 −1をそれぞれ求める。
で表される2次関数である。2光子吸収による入射光の吸収量は入射光強度の2乗に比例するので、2次の項を含む関数を用いると近似曲線を精度良く当てはめることができる。 入射光強度が更に大きくなると、3光子吸収等の多光子吸収が起こる確率が高くなる。従って、そのような場合、3次以上の項を含む関数を用いると、近似曲線をより高い精度で当てはめることができる。
各測定領域において、各入射光強度に対して、測定した透過率の逆数T~−1、前記切片T0 −1の逆数T0および発光増大比γを(18)式に代入して、測定した透過率を補正する。
例えば、更に、均質でかつレーザー損傷耐性が既知である第1光学材料の複数の測定領域について、上述のいずれかの方法を用いて2光子吸収係数を求め、前記2光子吸収係数を各測定領域の位置情報に関係づけてそれぞれ記憶する。前記第1光学材料と同じ種類でかつレーザー損傷耐性が未知である第2光学材料の複数の測定領域について、上述のいずれかの方法を用いて2光子吸収係数を求め、前記第2光学材料の各測定領域について求められた2光子吸収係数をそれぞれ前記第1光学材料の対応する測定領域について求められた2光子吸収係数と比較する。前記比較結果および第1光学材料の各領域における2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースに基づいて、第2光学材料のレーザー損傷耐性を評価することにより、光学材料の各測定領域におけるレーザー損傷耐性を評価することができる。このような方法を利用することにより、光学材料内部におけるレーザー損傷耐性の3次元イメージングを行うことができる。
焦点深さ:A点(5mm)、B点(9mm)、C点(12mm)、D点(18mm)
A〜D点の各測定領域について、図7のプロットを直線で近似して切片を求め、その切片の平均値をT0 −1とした。計算の結果、T0 −1は1.15であった。
一定の入射光強度について、PLA、PLB、PLCおよびPLDを焦点深さに対してプロットし、下記の(20)式
で表される線形関数を当てはめた。焦点深さがゼロであるときの近似直線上の外挿値を参照総発光量PL0とし、さらにA〜D点における近似直線上の値をあらためてA〜D点における総発光量PLA、PLB、PLCおよびPLDとした。PL0と、PLA、PLB、PLCまたはPLDとを(17)式に代入して、A〜Dの各点について発光強度比γを求めた。A〜Dの各点について、測定した透過率、発光強度比およびT0 −1を(18)式に代入して、測定した透過率の値を補正し、補正後の透過率の逆数TA −1、TB −1、TC −1およびTD −1を得た。他の入射光強度についても同様の補正を行った。
(20)式の代わりに下記の(21)式
で表される2次関数を当てはめて、焦点深さがゼロであるときの近似曲線上の外挿値を参照総発光量PL0とし、A〜D点における近似曲線上の値をあらためてA〜D点における総発光量PLA、PLB、PLCおよびPLDとして補正を行う以外は例1と同様の方法で、2光子吸収係数を算出した。
(21)式の代わりに(19)式を用いる以外は例2と同様の方法で、2光子吸収係数を算出した。
2 集光レンズユニット
3 透過光検出器
4 発光検出器
5 パワーモニタ
6 ビームスプリッタ
7 光学材料
Claims (8)
- 厚さがLである光学材料内部にある測定領域における2光子吸収係数を測定する方法であって、
[1]光学材料表面からの深さの異なる少なくとも2つの測定領域のそれぞれについて、各測定領域にある各測定箇所に焦点を合わせたパルスレーザー光を照射して、各焦点位置において入射光強度を順次変化させながら2光子吸収を生じさせ、
(i)前記少なくとも2つの測定領域のうちの光学材料表面に近い一方の測定領域において2光子吸収が生じたときの、光学材料表面から該一方の測定領域までの領域で生じる蛍光発光の総発光量を、参照総発光量として各入射光強度についてそれぞれ測定し、
(ii)他方の測定領域において2光子吸収が生じたときの、透過率と光学材料表面から該他方の測定領域までの領域で生じる蛍光発光の総発光量とを各入射光強度についてそれぞれ測定する測定ステップと、
[2]各入射光強度に対して、前記他方の測定領域において測定した透過率をそれぞれ、各入射光強度における前記一方の測定領域で測定した参照総発光量と、前記他方の測定領域において測定した総発光量と、前記参照総発光量に対する前記総発光量の比とに基づいてそれぞれ補正する透過率補正ステップと、
[3]入射光強度の変化に対する前記補正後の透過率の変化と、前記光学材料の厚さLとに基づいて前記他方の測定領域における2光子吸収係数を求める2光子吸収係数演算ステップと、
を含むことを特徴とする、2光子吸収係数測定方法。 - 前記一方の測定領域を、光学材料表面の近傍に設定する、請求項1に記載の2光子吸収係数測定方法。
- 前記[1]測定ステップにおいて、
前記少なくとも2つの測定領域を結ぶ直線上にありかつ前記少なくとも2つの測定領域とは異なる深さにある少なくとも1つの第3測定領域に、当該第3測定領域にある測定箇所に焦点を合わせたパルスレーザー光を、前記少なくとも2つの測定領域と同様に入射光強度を順次変化させながら照射して、焦点位置においてそれぞれ2光子吸収を生じさせ、各入射光強度において、光学材料表面から該第3測定領域までの領域で生じる蛍光発光の総発光量を測定することを更に含み、
前記[2]透過率補正ステップにおいて、
前記各入射光強度において、それぞれ前記各測定領域の光学材料表面からの深さと各測定領域で測定した総発光量とに基づいて、一次以上の関数による近似直線または近似曲線を、その近似直線または近似曲線と測定した総発光量との距離が最小になるようにあてはめ、焦点深さがゼロであるときの前記近似直線または近似曲線上の外挿値を前記参照総発光量とし、それぞれの前記他方の測定領域光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、あらためて光学材料表面から当該各測定領域までの総発光量として用いて、前記他方の測定領域において測定した透過率を補正する、請求項1または2に記載の2光子吸収係数測定方法。 - 前記[1]測定ステップにおいて、前記一方の測定領域および前記第3測定領域について、透過率を各入射光強度に対してそれぞれ測定することを更に含み、
前記[2]透過率補正ステップにおいて、前記一方の測定領域および前記第3測定領域の光学材料表面からの深さにおける前記近似直線または近似曲線上の値を、光学材料表面から前記一方の測定領域および前記第3測定領域までの総発光量として、前記一方の測定領域および前記第3測定領域において測定した透過率を補正し、
前記[3]2光子吸収係数演算ステップにおいて、前記一方の測定領域および前記第3測定領域における2光子吸収係数を求める、請求項3に記載の2光子吸収係数測定方法。 - 前記関数は、2次以上の関数である、請求項3または4に記載の2光子吸収係数測定方法。
- 請求項3〜5のいずれか1項に記載の2光子吸収係数測定方法を、前記直線と平行でかつ前記直線とは異なる1またはそれ以上の直線について繰り返すことを含む、2光子吸収係数測定方法。
- 請求項3〜6のいずれか1項に記載の方法によって得られた2光子吸収係数の値を、各測定領域の位置情報と関連付けて記憶することと、2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースを参照して、各測定領域におけるレーザー損傷耐性を評価することを含む、レーザー損傷耐性評価方法。
- 均質でかつレーザー損傷耐性が既知である第1光学材料の複数の測定領域について、請求項3〜6のいずれか1項に記載の2光子吸収係数測定方法を用いて2光子吸収係数を求めることと、
前記2光子吸収係数を各測定領域の位置情報に関係づけてそれぞれ記憶することと、
前記第1光学材料と同一組成でかつ同一形状の第2光学材料の、前記複数の測定領域と同一位置の測定領域について、請求項3〜6のいずれか1項に記載の2光子吸収係数測定方法を用いて2光子吸収係数を求めることと、
前記第2光学材料の各測定領域について求められた2光子吸収係数をそれぞれ前記第1光学材料の対応する測定領域について求められた2光子吸収係数と比較することと、
前記比較結果および第1光学材料の各領域における2光子吸収係数とレーザー損傷耐性との相関関係を記憶したデータベースに基づいて、第2光学材料のレーザー損傷耐性を評価することを含むことを特徴とする、レーザー損傷耐性評価方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011049299A JP5673948B2 (ja) | 2011-03-07 | 2011-03-07 | 光学材料の非線形吸収測定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011049299A JP5673948B2 (ja) | 2011-03-07 | 2011-03-07 | 光学材料の非線形吸収測定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012185081A JP2012185081A (ja) | 2012-09-27 |
JP5673948B2 true JP5673948B2 (ja) | 2015-02-18 |
Family
ID=47015282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011049299A Expired - Fee Related JP5673948B2 (ja) | 2011-03-07 | 2011-03-07 | 光学材料の非線形吸収測定方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5673948B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2796527C1 (ru) * | 2023-01-24 | 2023-05-25 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" | Комплекс для неразрушающего измерения насыщения поглощения оптических материалов |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107238486B (zh) * | 2017-05-24 | 2019-05-03 | 西安应用光学研究所 | 一种光吸收系数测量装置及方法 |
CN108519218B (zh) * | 2018-03-19 | 2019-10-18 | 中国科学院上海光学精密机械研究所 | 光学元件多波长激光损伤测试与分析系统 |
CN109406453B (zh) * | 2018-09-11 | 2021-04-20 | 江苏大学 | 一种自动确定最优入射光强的z扫描测量方法 |
JP7567920B2 (ja) | 2020-09-09 | 2024-10-16 | 信越化学工業株式会社 | 常磁性ガーネット型透明セラミックスのレーザー損傷耐力判定方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419547A (ja) * | 1990-04-27 | 1992-01-23 | Toshiba Corp | 非線形光学結晶の損傷測定方法及び損傷回復装置 |
JP3893012B2 (ja) * | 1999-05-22 | 2007-03-14 | 独立行政法人科学技術振興機構 | Clbo単結晶の育成方法 |
JP2007071831A (ja) * | 2005-09-09 | 2007-03-22 | Tokuyama Corp | 光学材料の評価方法および装置 |
JP5026186B2 (ja) * | 2007-08-03 | 2012-09-12 | 学校法人常翔学園 | 光学材料のレーザ損傷耐性推定方法及びレーザ損傷耐性推定装置 |
JP5166905B2 (ja) * | 2008-02-12 | 2013-03-21 | アークレイ株式会社 | 有機光学結晶のレーザー被照射耐性の評価方法および評価された有機光学結晶 |
-
2011
- 2011-03-07 JP JP2011049299A patent/JP5673948B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2796527C1 (ru) * | 2023-01-24 | 2023-05-25 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" | Комплекс для неразрушающего измерения насыщения поглощения оптических материалов |
Also Published As
Publication number | Publication date |
---|---|
JP2012185081A (ja) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4528075B2 (ja) | 光学材料のレーザー損傷評価方法 | |
Laurence et al. | Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm 2) | |
JP5673948B2 (ja) | 光学材料の非線形吸収測定方法 | |
JP6052536B2 (ja) | 光誘起キャリヤライフタイム測定装置及び光誘起キャリヤライフタイム測定方法 | |
EP2952861A1 (en) | Apparatus and method for single shot measurement of the m2 parameter of a laser beam | |
JP4637934B2 (ja) | 光学材料のレーザー損傷評価方法 | |
JP2011003630A (ja) | レーザ照射装置、及びレーザ照射方法 | |
JP2007071831A (ja) | 光学材料の評価方法および装置 | |
CN106248636B (zh) | 一种测量材料非线性吸收曲线的方法 | |
KR20160127461A (ko) | 레이저 가공 장치 및 그 가공방법 | |
US20130209926A1 (en) | Controllable transmission and phase compensation of transparent material | |
Garmatina et al. | Vacuum-free femtosecond fiber laser microplasma X-ray source for radiography | |
Yamada et al. | Simulation of nonlinear propagation of femtosecond laser pulses in air for quantitative prediction of the ablation crater shape | |
JP5026186B2 (ja) | 光学材料のレーザ損傷耐性推定方法及びレーザ損傷耐性推定装置 | |
CN112051248A (zh) | 基于激光激发的闪烁材料光产额非线性测量方法及系统 | |
Cao et al. | Wavelength dependence of nanosecond laser induced surface damage in fused silica from 260 to 1550 nm | |
CN102854134B (zh) | 一种基于能量回收原理的增强光激发波信号的光学系统 | |
Zhang et al. | Elimination of X-rays irradiated defects in fused silica by laser conditioning | |
JP2010019562A (ja) | レーザ光を用いた2次元分布計測装置 | |
Melninkaitis et al. | Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates | |
Vlasova et al. | Measurement of absorption in ultrapure crystalline quartz under conditions of influence of ambient air absorption using time-resolved photothermal common-path interferometry | |
CN112197712B (zh) | 一种基于z扫描的光束束腰半径测量方法及系统 | |
CN105044045A (zh) | 利用光谱分析检测角膜切削阈值的激光系统及检测方法 | |
Mann et al. | Characterization of excimer laser beam parameters | |
Jupé et al. | Scaling law investigations in spot sizes dependence in the ns regime |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5673948 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |