JP5658372B2 - 監視装置、監視システム及び監視方法 - Google Patents

監視装置、監視システム及び監視方法 Download PDF

Info

Publication number
JP5658372B2
JP5658372B2 JP2013530912A JP2013530912A JP5658372B2 JP 5658372 B2 JP5658372 B2 JP 5658372B2 JP 2013530912 A JP2013530912 A JP 2013530912A JP 2013530912 A JP2013530912 A JP 2013530912A JP 5658372 B2 JP5658372 B2 JP 5658372B2
Authority
JP
Japan
Prior art keywords
equipment
self
shape
facility
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013530912A
Other languages
English (en)
Other versions
JPWO2013030929A1 (ja
Inventor
昌史 古賀
昌史 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5658372B2 publication Critical patent/JP5658372B2/ja
Publication of JPWO2013030929A1 publication Critical patent/JPWO2013030929A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Description

本発明は、建物内の設備要素を監視する技術に関する。
監視装置を用いて建物内の設備要素を監視するにあたっては、建物内における監視装置の自己位置を推定する必要がある。
建物内では、GPS(全地球測位システム)を利用することができないので、これに代わる自己位置推定方法が必要であり、そのような方法の一つとして、非特許文献1に開示される自立走行ロボットのための自己位置推定方法を利用することができる。
この方法によれば、特許文献1に開示されるようなレーザレンジファインダを用いて周囲の物体の形状や配置を計測し、計測結果と予め用意された地図とを照合(マッチング)することによって、自己位置を推定することができる。このような自己位置推定方法はスキャンマッチングと呼ばれる。
特開2009−236774号公報
Sebastian Thrun, Wolfram Burgard, Dieter Fox, "Probabilistic Robotics", The MIT Press, 2005
しかしながら、非特許文献1が開示する方法では自己位置を推定することができるが、監視中の設備要素が何であるかを特定することができない。有用な監視のためには、自己位置の推定に加え、監視中の設備要素が何であるかを特定することが望ましい。
本発明の目的は、建物内の設備要素を監視する監視装置において、監視中の設備要素が何であるかを特定できるようにすることである。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、建物内の設備要素を監視する監視装置であって、前記監視装置の周囲の三次元形状を計測する三次元計測部と、計測された前記三次元形状を、前記設備要素以外の前記建物内の構造物の形状及び位置を含む自己位置推定用地図と照合することによって、前記監視装置の自己位置を推定する自己位置推定部と、推定された前記自己位置の周辺の設備要素を、前記建物内の設備要素の形状及び位置を含む設備要素照合用地図から抽出する周辺設備要素抽出部と、計測された前記三次元形状から設備要素候補の形状及び位置を抽出する設備要素候補抽出部と、前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素の形状及び位置と計測された前記三次元形状から抽出された前記設備要素の候補の形状及び位置との一致度を、前記自己位置の周辺の設備要素の形状及び位置の誤差分布及び計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布に基づき算出する一致度評価部と、算出された前記一致度に基づき、計測された前記三次元形状から抽出された前記設備要素候補の形状が前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素のいずれであるかを特定する設備要素特定部と、を備えたことを特徴とする監視装置が提供される。
本発明の代表的な実施形態によれば、自己位置を推定することができることに加え、監視中の設備要素が何であるかまで特定することができる。
第1実施形態における監視装置の外観構成図である。 図1のA矢視図である。 第1実施形態における監視装置及びサーバによって構成される監視システムのハードウェア構成を示すブロック図である。 第1実施形態における監視装置の論理的な構成を示す機能ブロック図である。 第1実施形態における設備要素特定部の詳細を示す機能ブロック図である。 第1実施形態における構造物CADに格納されるデータの例である。 構造物CADに格納されるデータから生成される自己位置推定用地図の例である。 第1実施形態における設備要素照合用地図の構成を説明する図である。 第1実施形態における設置誤差統計モデルの構成を説明する図である。 第1実施形態における標準温度データの構成を説明する図である。 第1実施形態における系統図データの構成を説明する図である。 第1実施形態における自己位置推定処理のフローチャートである。 第1実施形態における監視装置によって監視される設備要素の例である。 第1実施形態における自己位置推定処理を説明する図である。 第1実施形態における自己位置推定処理を説明する図である。 第1実施形態における自己位置推定処理を説明する図である。 第1実施形態における自己位置推定処理を説明する図である。 第1実施形態における設備要素特定処理のフローチャートである。 第1実施形態における設備要素特定処理を説明する図である。 第1実施形態における設備要素特定処理を説明する図である。 第1実施形態における設備要素特定処理を説明する図である。 第1実施形態における設備要素特定処理を説明する図である。 第1実施形態におけるディスプレイの画面表示例を示す図である。 第2実施形態における監視装置の論理的な構成を示す機能ブロック図である。 第3実施形態における監視装置の論理的な構成を示す機能ブロック図である。
以下、本発明の実施形態を図面を用いて説明する。
<第1実施形態>
本発明の第1実施形態では、本発明の典型的な例を説明する。
電力・配電設備、化学プラント等の設備要素の動作状況はSCADA(Supervisory Control And Data Acquisition)等の監視システムで監視されることが多く、監視作業においては、監視中の設備要素と監視システムで管理されている設備要素との対応関係を高い信頼度でとることが要求される。
これは、計測された監視中の設備要素のある物理量に基づき当該設備要素の異常を判定するためには、当該設備要素が何であるかを特定し、正常か異常かを判定するための当該物理量の正常範囲をデータベースから取得する必要があるからである。また、異常が検知された場合には、当該設備要素に応じた適切な措置(現場における調査、修理等)をとる必要があるからである。
そこで、本発明の第1実施形態における監視装置は、監視装置の自己位置を推定するだけでなく、監視中の設備要素が何であるかまで特定する。さらに、計測された監視中の設備要素の物理量に基づき、当該設備要素の異常を判定する。
図1は、本発明の第1実施形態における監視装置100の外観構成を示している。
監視装置100は、本体101、センサ102〜105及び無線通信装置106を有する。監視作業中は、作業者が本体101を把持してセンサ102〜105を前方に向け、センサ102〜105によって監視装置100の周囲を計測する。ここで、「建物」とは電力・配電設備、化学プラント等の建屋であり、「設備要素」とは、建物内部に設置される配管、ポンプ、バルブ等の要素である。
センサ102〜105は、本体101の正面に取り付けられている。センサ102〜105は、レーザレンジファインダ(「スキャナ式レンジセンサ」ともいう。)102、熱赤外線カメラ103、可視光カメラ104及び加速度センサ105を含む。
レーザレンジファインダ102は、レーザ照射部と受光部を有する。レーザレンジファインダ102は、回転式の反射鏡等を用いてレーザ照射部からのレーザビームを放射状に放射し、レーザビームが直近の物体の表面で反射して受光部まで戻ってくるまでの時間を計測することで、直近の物体までの距離を計測する。様々な方向について計測を行うことによって、レーザレンジファインダ102は監視装置100の周囲の三次元形状を計測する。ここで「周囲」とは、監視装置100を中心とした所定半径の領域(例えば、レーザレンジファインダ102によって距離を計測可能な範囲)を意味する。
熱赤外線カメラ103は、赤外線領域に感度分布を持つCCD(Charge Coupled Device)イメージセンサで構成される。熱赤外線カメラ103は、監視中の設備要素からの放射熱の強度(又は波長)、すなわち、監視中の設備要素の温度を計測する。
可視光カメラ104は、可視光領域に感度分布を持つCCDイメージセンサで構成される。可視光カメラ104は、監視中の設備要素の可視光画像を取得する。なお、熱赤外線カメラ103と可視光カメラ104とは一つのCCDイメージセンサで構成することも可能である。
加速度センサ105は、半導体式の加速度計とジャイロスコープとで構成され、監視装置100の3軸方向の加速度と3軸周りの回転加速度とを計測する。
無線通信装置106は、監視装置100を外部のサーバ120と接続し、サーバ120とデータ(例えば、監視中の設備要素の設備ID、位置、温度、異常検知結果等)を交換するための装置である。無線通信装置106は、例えば、無線LANの送受信モジュールである。
監視装置100とサーバ120とは有線で接続されていてもよく、その場合、監視装置100とサーバ120とは、有線LANインターフェース、USB等のシリアルインターフェース等で接続される。また、監視装置100とサーバ120とは、リアルタイムに通信してもよいし、必要に応じて通信してもよい。
本体101は、データ処理用のプロセッサ、データ記憶用のメモリ等を内部に有する。また、本体101は、図2に示すように、ディスプレイ201及びボタン類からなる操作部202を例えばその背面に有する。
サーバ120は、監視装置100とデータを交換するための無線通信装置121を有する。無線通信装置121は、例えば、無線LANモジュールである。
図3は、監視装置100及びサーバ120によって構成される監視システム1のハードウェア構成を示すブロック図である。
監視装置100は、プロセッサ301、メモリ302、記憶装置303、入力インターフェース304、出力インターフェース305及び無線通信装置106を有する計算機である。これらの構成301〜305及び106はバス306によって相互に接続される。プロセッサ301は、メモリ302に格納されたプログラムを実行する。
メモリ302は、DRAM等の揮発性の記憶装置で、プロセッサ301が実行するプログラムを格納する。具体的には、メモリ302は、図4に示す自己位置推定部401、設備要素特定部402、座標系補正部403、3Dマッピング部404、405、異常検知部406及び画像重畳部407を実装するためのプログラムを格納する。また、メモリ302は、オペレーティングシステム(OS)を格納する。プロセッサ301が、オペレーティングシステムを実行することによって、計算機の基本機能が実現される。
記憶装置303は、磁気ディスクドライブ、フラッシュメモリ等の不揮発性の記憶装置で、プロセッサ301がプログラムを実行する時に使用するデータを格納する。具体的には、記憶装置303は、図4に示す自己位置推定用地図411、設備要素照合用地図412、設置誤差統計モデル413、設備CAD座標系414、標準温度データ415及び系統図データ416を格納する。
なお、ここでは、メモリ302が、監視装置100の機能部401〜407を実装するためのプログラムを格納し、記憶装置303が、機能部401〜407で使用されるデータ411〜416を格納するとして説明したが、機能部401〜407に対応するプログラムは記憶装置303に格納されており、プログラムを実行する時に記憶装置303から読み出されメモリ302にロードされる。また、データ411〜416も、プログラムが必要とする際に、記憶装置303から読み出され、メモリ302にロードされる。
入力インターフェース304には、センサ102〜105が接続される。出力インターフェース305にはディスプレイ201が接続される。
サーバ120は、プロセッサ311、メモリ312、記憶装置313、入力インターフェース314、出力インターフェース315及び無線通信装置121を有する計算機である。これらの構成311〜315及び121はバス316によって相互に接続される。プロセッサ311は、メモリ312に格納されたプログラム(設備要素及び監視装置100を管理するためのソフトウェア等)を実行する。
メモリ312は、DRAM等の揮発性の記憶装置で、プロセッサ311が実行するプログラムを格納する。また、メモリ312は、オペレーティングシステム(OS)を格納する。プロセッサ311が、オペレーティングシステムを実行することによって、計算機の基本機能が実現される。
記憶装置313は、磁気ディスクドライブ、フラッシュメモリ等の不揮発性の記憶装置で、プロセッサ311がプログラムを実行する時に使用するデータを格納する。
なお、プログラムは、記憶装置313に格納されており、プログラムの実行時に記憶装置313から読み出されメモリ312にロードされる。また、データも、プログラムが必要とする際に、記憶装置313から読み出されメモリ312にロードされる。
入力インターフェース314には、キーボード、マウス等の入力装置317が接続される。出力インターフェース315には、ディスプレイ318が接続される。
図4は、監視装置100の論理的な構成を示す機能ブロック図である。
監視装置100は、図中破線で囲まれた部分に対応し、センサ102〜105、ディスプレイ201、機能部401〜407及びデータ411〜416を含む。
まず、機能部401〜407が利用するデータ411〜416の構造について説明する。データ411〜416は監視作業に先立って予め作成され、監視装置100の記憶装置313に格納される。なお、以下に説明するデータの構成は一例であり、その他の形式で構成されてもよい。
自己位置推定用地図411は、壁、柱等の建物内の構造物(設置誤差が少なく、位置及び向きが不変の固定物)の形状及び位置を含む地図である。自己位置推定用地図411は、建物の設計データである構造物CAD(Computer Aided Design)421で管理されている壁、柱等のデータを変換処理422によって自己位置推定に適した形式に変換して作成される。
自己位置推定に適した形式とは、レーザレンジファインダ102によって計測される三次元形状との照合に適した形式である。例えば、自己位置推定用地図411は、建物内の構造物の表面形状に関するデータのみを含む。
図6A及び図6Bは構造物CAD421及び自己位置推定用地図411の具体例である。構造物CAD421は、図6Aに示されるように、壁601、柱602等の構造物のデータを有し、自己位置推定用地図401は、図6Bに示されるように、構造物の表面603のデータのみを有する。
なお、自己位置推定用地図411は構造物CAD421から生成される地図なので、自己位置推定用地図411には配管、ポンプ、バルブ等の設備要素についてのデータは含まれない。
設備要素照合用地図412は、設備CAD423で管理される配管、ポンプ、バルブ等の設備要素の形状、位置等を変換処理424によって変換して作成される。
変換処理424は、設備CAD座標系414に格納されている数値(自己位置推定用地図411と設備要素照合用地図412との位置合わせに必要な位置ずれ、方向ずれ、スケールずれ等)に基づき、自己位置推定用地図411と設備要素照合用地図412との位置合わせをするための座標変換を含む。
図7は、設備要素照合用地図412の構成を説明する図である。
設備要素照合用地図412は、設備ID701、形状タイプ702及び位置・大きさ703を含むテーブルである。
設備ID701は、配管、ポンプなどの各設備要素に固有に付与された識別子を格納する。設備ID701は、後述する、設備誤差統計モデル413、標準温度データ415及び系統図データ416と共通である。
形状タイプ702は、設備要素の形状タイプに応じて付与された識別子を格納する。例えば、円柱なら1が付与され、直方体なら2が付与される。
位置・大きさ703は、設備要素の形状タイプに応じて、位置、大きさ等を定義するための数値群を格納する。位置・大きさ703は、例えば、円柱の場合は中心座標x、yと半径rである。
図8は、設置誤差統計モデル413の構成を説明する図である。
設置誤差統計モデル413は、設備ID801、分散802及び補正係数803を含むテーブルである。
設備ID801は、配管、ポンプなどの各設備要素に固有に付与された識別子を格納する。設備ID801は、設備要素照合用地図412等と共通である。
分散802は、設備要素の設置位置の誤差分布を表すパラメータを格納する。ここでは、誤差分布を二次元の確率密度分布で表現するとし、例えば、設備要素が鉛直に配置される配管(円柱)の場合、分散802は、配管の中心軸に直交する平面での分散値σ 、σ を格納する。
補正係数803は、設備要素の設置場所、設置工法等の影響で、誤差分布の形状が変わる場合の補正係数を格納する。補正係数803は、例えば、壁に沿って配管を設置する場合であって、壁から配管までの距離は厳密に守られるが壁に沿った方向の設置誤差は許容される場合は、誤差分布が壁に沿って長い楕円となるように誤差分布を補正するための補正係数を格納する。
分散802及び補正係数803は、過去の実績を元に、設備要素の種類、設置場所、設置工法等に応じて設定されるが、設備要素毎に作成してもよい。
設備CAD座標系414は、図示を省略するが、自己位置推定用地図411と設備要素照合用地図412との位置合わせに必要な、位置ずれ、方向ずれ、スケール等の数値を含む。
図9は、標準温度データ415の構成を説明する図である。
標準温度データ415は、設備ID901、下限温度902及び上限温度903を含むテーブルである。
設備ID901は、配管、ポンプなどの各設備要素に固有に付与された識別子を格納する。設備ID901は、設備要素照合用地図412等と共通である。
下限温度902は、各設備要素の下限温度を格納し、上限温度903は、各設備要素の上限温度を格納する。下限温度902及び上限温度903によって、各設備要素について正常運転と判定できる温度範囲が規定される。
図10は、系統図データ416の構成を説明する図である。
系統図データ416は、設備ID1001、接続元1002、接続先1003を含むテーブルである。
設備ID1001は、配管、ポンプなどの各設備要素に固有に付与された識別子を格納する。設備ID1001は、設備要素照合用地図412等と共通である。
接続元1002は、設備要素の上流側に接続する設備要素の識別子を格納する。当該設備要素の上流側に複数の設備要素が接続されている場合は、接続元1002は、複数の識別子を格納する。
接続先1003は、設備要素の下流側に接続する設備要素の識別子を格納する。当該設備要素の下流側に複数の設備要素が接続されている場合は、接続先1003は、複数の識別子を格納する。
次に、図4に戻り、監視装置100の機能部401〜407の機能について説明する。
自己位置推定部401は、監視装置100の自己位置(「位置」には監視装置100の「向き」が含まれる、以下同じ。)を複数の計測結果に基づき推定する。具体的には、加速度センサ105によって計測される加速度を2回積分して第1の予測自己位置を算出するとともに、レーザレンジファインダ102によって計測される周囲の三次元形状を自己位置推定要地図401と照合して第2の予測自己位置を算出する。そして、自己位置推定部401は、統計的な誤差に基づくばらつきを含んだこれら二つの予測自己位置をカルマンフィルタを用いて統合し、最も確からしい自己位置を推定する。
なお、自己位置推定処理の詳細については具体例を挙げながら後で説明する。
設備要素特定部402は、自己位置推定部401によって推定された自己位置とレーザレンジファインダ102による三次元計測の結果とを用いて、監視中の設備要素の設備ID及び位置を特定する。
図5は、設備要素特定部402の詳細を示す機能ブロック図である。
設備要素特定部402は、周辺設備要素抽出部501、設置誤差分布算出部502、差分抽出部503、設備要素候補抽出部504、一致度評価部505及び設備要素特定部506を含む。
周辺設備要素抽出部501は、自己位置推定部401によって推定された自己位置に基づき、設備要素照合用地図413から自己位置の周辺の設備要素の形状タイプ及び位置・大きさ、すなわち形状及び位置を検索し、周辺設備要素として抽出する。
設置誤差分布算出部502は、周辺設備要素抽出部501によって抽出された周辺設備要素それぞれについて、設置誤差統計モデル413を参照して対応する設備IDの分散及び補正係数を検索し、検索された分散及び補正係数に基づき設置誤差分布を算出する。
差分抽出部503は、レーザレンジファインダ102による三次元計測結果と自己位置推定要地図411との差分を算出する。これにより、三次元計測結果から、壁、柱等の建物の構造物についての計測点群が除かれ、建物の構造物以外の物体、すなわち、設備要素についての計測点群のみが差分として抽出される。
設備要素候補抽出部504は、差分抽出部503で抽出された差分から、平面、円柱等の設備要素に対応する形状及びその位置を最小二乗法、ハフ変換等によって検出し、これを設備要素候補として抽出する。
最小二乗法を用いる場合は、周辺設備要素抽出部501によって抽出された周辺設備要素の形状及び位置等に基づき自己位置周辺に存在する形状をある程度予測し、予測される形状及び位置を変化させながら二乗誤差を最小とする形状及び位置を検索し、二乗誤差を最小とする形状及び位置を設備要素候補として抽出する。
ハフ変換を用いる場合は、検索する形状に応じたパラメータを用いた投票を行い、その結果に基づいて形状を検索する。例えば、円柱の場合は、任意の半径rと中心座標x、yとの三つのパラメータで計測点毎に投票を行い、最も投票が集中したパラメータを持つ円柱が存在すると推測し、当該円柱の形状及び位置を設備要素候補として抽出する。
なお、設備要素候補抽出部504は、抽出された設備要素候補に含まれる統計的な誤差である予測誤差分布も併せて算出する。例えば、最小二乗法を用いて設備要素候補を抽出する場合は、二乗誤差の和に、既知である自己位置推定の誤差を加味することによって予測誤差分布を算出する。
一致度評価部505は、設置誤差分布算出部502で得られた周辺設備要素の設置誤差分布と、設備要素候補抽出部504で抽出された設備要素候補の予測誤差分布との間で、全ての組み合わせについて一致度を算出する。一致度は、設置誤差分布と予測誤差分布とを統合し、統合された誤差分布の最大値である。
設備要素特定部506では、全ての組み合わせの中から、一致度が最大になる組み合わせを抽出する。一致度が最大になる組み合わせが最も確からしいことから、設備要素候補抽出部504で抽出された設備要素候補が周辺設備要素のどれに対応するかを特定することができる。すなわち、監視中の設備要素の設備IDを特定することができる。また、統合された誤差分布において最大値をとる位置が、監視中の設備要素の位置として最も確からしいことから、監視中の設備要素の位置も特定することができる。
なお、設備要素特定処理の詳細については具体例を挙げながら後で説明する。
図4に戻り、監視装置100の機能部401〜407の機能についての説明を続けると、座標系補正部403は、設備要素特定部402によって特定された設備要素の位置に基づき、自己位置推定用地図411と設備要素照合用地図412とのずれを算出し、設備CAD座標系414に格納されている数値(自己位置推定用地図411と設備要素照合用地図412との位置合わせに必要な位置ずれ、方向ずれ、スケールずれ等)を修正する。これにより、変換処理424によって設備要素照合用地図412が次回生成される際の自己位置推定用地図411と設備要素照合用地図412とのずれを減少させる。
3Dマッピング部404は、熱赤外線カメラ103で計測された監視中の設備要素の温度とレーザレンジファインダ102で計測された監視中の設備要素までの距離・方向とを統合し、三次元的な温度分布を算出する。
3Dマッピング部405は、可視光カメラ104で取得された監視中の設備要素の可視光画像とレーザレンジファインダ102で計測された監視中の設備要素までの距離・方向とを統合し、可視光画像を三次元画像に変換する。
異常検知部406は、標準温度データ415を参照して、監視中の設備要素の設備IDに対応する下限温度及び上限温度を検索して取得するとともに、監視中の設備要素の温度を3Dマッピング部404から取得する。そして、異常検知部406は、両者を比較し、監視中の設備要素の温度が下限温度よりも低い、又は、上限温度よりも高い場合は、当該設備要素が異常であると判定する。
画像重畳部407は、3Dマッピング部405によって三次元画像に変換された可視光画像の上に、3Dマッピング部404によって算出された三次元的な温度分布を重畳した重畳画像を生成する。そして、画像重畳部407は、生成した重畳画像を平面に投影して二次元に変換し、ディスプレイ201に出力する。
重畳する温度分布は、上限温度よりも温度が高い部位が赤色、その他の部位が無色となるように、温度によって色分けされる。温度に応じて連続的に色が変化するように色分けをしてもよい。また、可視光画像の上に温度分布を重ね合わせた状態であっても可視光画像を作業者が確認できるように、温度分布には適度な透過率が設定される。
また、画像重畳部407は、系統図データ416に格納されている設備要素間の接続情報に基づき、各設備要素の接続関係を視覚的に表した系統図を生成する。そして、異常検知部406で異常が検知された設備要素に対応する部位に印(例えば、色付きの丸)を付け、ディスプレイ201に出力する。
ディスプレイ201は、画像重畳部407から入力される重畳画像及び系統図を表示する。表示の具体例を図22に示すが、これについては後で説明する。
続いて、自己位置推定処理及び設備要素特定処理の詳細について具体例を挙げながら説明する。
具体例では、図12に示すように、監視装置100の周辺に、壁1201及び1202によって形成されるコーナ、壁1202の脇に立設された配管1203及び配管1203の側面に取り付けられたバルブ1204が存在する状況を想定する。
図11は、自己位置推定処理のフローチャートである。この自己位置推定処理は、監視装置100の自己位置推定部401によって、すなわち、プロセッサ301がメモリ302に格納されたプログラムを実行することによって行われる。
まず、プロセッサ301は、加速度センサ105で検出された加速度を2回積分し、これを自己位置の前回値に加えることで、現在の自己位置を推定する(1101)。以下、処理1101によって推定された自己位置を「第1の推定自己位置」と称する。
次に、プロセッサ301は、様々な自己位置を仮定した際の壁、柱等の建物の配置を想定し、想定した壁、柱等の建物の構造物とレーザレンジファインダ102による三次元計測結果とを照合(スキャンマッチング)する。そして、一致度が最も高くなる位置を自己位置と推定する(1102)。処理1102によって推定された自己位置を「第2の推定自己位置」と称する。また、一致度が最も高くなる位置から推定された自己位置がずれた場合の一致度に基づき、第2の推定自己位置の統計的な誤差分布を算出する。
例えば、図12に示した状況では、自己位置推定用地図411は、図13に示すような壁1201及び1202に対応する壁データ1201a及び1202aを含む。
図14は、レーザレンジファインダ102による三次元計測の結果1401を太線で示している。三次元計測の結果1401は、レーザが照射される壁1201及び1202の一部と配管1203の一部に対応する多数の計測点の集合である。図中1402はレーザレンジファインダ102の位置、すなわち自己位置である。
プロセッサ301は、図15に示すように、自己位置推定用地図411から読み出した壁データ1201a及び1202aを、アフィン変換によって平行移動及び回転し、図中破線で示すように様々な配置を想定する。
プロセッサ301は、想定した壁データ1201a及び1202aの配置それぞれを三次元計測の結果1401と照合し、一致度を算出する。そして、プロセッサ301は、最も一致度が高くなる配置1501を求める。図14に示すように、三次元計測の結果1401と自己位置1402との関係が既知なので、三次元計測の結果1401とこれと最も一致度の高い配置1501とから、自己位置1402を推定することができる。
また、プロセッサ301は、最も一致度が高くなる配置1501から位置がずれた場合の一致度の分布から、推定された自己位置(第2の推定自己位置)の誤差分布を算出する。
次に、プロセッサ301は、カルマンフィルタによって、第1の推定自己位置と第2の推定自己位置とを統合し、最も確からしい位置を自己位置として推定する(1103)。
図16は、上記自己位置推定処理の例を説明する図である。なお、この図は二次元であるが、実際の処理は三次元で行われる。
第1の推定自己位置は、前回推定された自己位置1601に加速度センサ105によって計測された加速度の値を2回積分した値を加算することで得られる。加速度センサ105によって計測される値は統計的な誤差を含んでおり、このため、第1の推定自己位置もばらつきがある。楕円1602は、第1の推定自己位置の誤差分布を示している。
第2の推定自己位置は、レーザレンジファインダ102による三次元計測の結果を自己位置推定用地図411と照合(スキャンマッチング)することによって推定され、第2の推定自己位置も第1の推定自己位置と同様に統計的な誤差に基づくばらつきがある。楕円1603は、第2の推定自己位置の誤差分布を示している。
上記自己位置推定処理では、それぞればらつきを有する第1の推定自己位置及び第2の推定自己位置をカルマンフィルタによって統合し、最も確からしい位置、すなわち、統合後の誤差分布において最も大きな値をとる位置を自己位置として推定する。この例では、統合後の誤差分布において最も大きな値をとる位置1604が自己位置と推定される。
上記自己位置推定処理は、上記処理を繰り返すことで、自己位置を刻々と推定する。
図17は、設備要素特定処理のフローチャートである。この設備要素特定処理は、監視装置100の設備要素特定部402によって、すなわち、プロセッサ301がメモリ302に格納されたプログラムを実行することによって行われる。
まず、プロセッサ301は、自己位置推定処理によって推定された自己位置に基づき、設備要素照合用地図412を参照して周辺設備要素の設備ID、形状タイプ及び位置・大きさを抽出する(1701)。図12に示した状況では、配管1203及びバルブ1204が周辺設備要素として抽出される。
次に、プロセッサ301は、レーザレンジファインダ102による三次元計測の結果(計測点群)と自己位置推定用地図411との差分を抽出する(1702)。これによって、三次元計測によって得られた計測点群から壁、柱等の建物の構造物に対応する計測点群が除かれ、設備要素に対応する計測点群のみが抽出される。
図18は、図12に示した例において、処理1702によって抽出された差分を示している。差分は、配管1203の一部に対応する曲面1801のみを含む。なお、バルブ1204に対応する部分が本来差分には含まれるが、ここでは簡単のため省略している。
また、図18に示した例は、レーザレンジファインダ102が1回スキャンすることで得られる三次元計測結果から抽出された差分であるが、図19に示すように複数の位置においてスキャンした結果を重畳し、重畳した結果から差分1901を抽出するようにしてもよい。重畳した結果を用いることで次の処理1702における設備要素候補の抽出精度が向上する。
次に、プロセッサ301は、処理1702で抽出された差分から、平面、円柱等の設備要素候補の形状及び位置を最小二乗法、ハフ変換等によって検出し抽出する。また、抽出された設備要素候補に含まれる統計的な誤差である予測誤差分布も算出する(1703)。例えば、最小二乗法を用いて設備要素候補を抽出する場合は、プロセッサ301は、二乗誤差の和に、既知である自己位置推定の誤差を加味することによって予測誤差分布を算出する。
図20は、図18に示した差分から設備要素候補の形状及び位置を検出し抽出した結果を示している。この例では、差分から配管1203に対応する円柱2001及びその位置が検出され、抽出されている。
次に、プロセッサ301は、処理1701で抽出された周辺設備要素それぞれについて、設置誤差統計モデル413を参照して設置誤差に関するパラメータ(分散及び補正係数)を取得し、予測される設置誤差分布を算出する(1706)。そして、プロセッサ301は、処理1701で抽出された周辺設備要素と処理1703で抽出された設備要素候補との全ての組み合わせについて、設置誤差分布と予測誤差分布とを統合し、両者の一致度を算出する(1709)。一致度は、統合された誤差分布の最大値である。
実際の処理では、プロセッサ301は、カウンタi、jを用い、処理1701で抽出された周辺設備要素と処理1703で抽出された設備要素候補との全ての組み合わせについて一致度を算出する(処理1704〜1711)。
そして、プロセッサ301は、一致度が最も大きくなる周辺設備要素と設備要素候補との組み合わせを算出し、処理1703で抽出された設備要素候補が、処理1701で抽出された周辺設備要素のどれに対応するかを特定する。すなわち、監視中の設備要素の設備IDを特定する。また、当該組み合わせにおける誤差分布において最大値をとる位置を、監視中の設備要素の位置として特定する(1712)。
図21は、上記設備要素特定処理によって、図12に示す状況において、設備要素の設備ID及び位置が特定される様子を示している。
図12に示す状況では、三次元計測の結果から配管1203に対応する部分が設備要素候補(円柱)として抽出され、その予測誤差分布は、円柱の中心軸を中心とした同心円状の等高線2101となる。
一方、周辺設備要素として設備要素照合用地図412から配管1203が抽出され、その設置誤差分布は、設置誤差統計モデル413から取得される設置誤差に関するパラメータに基づき、配管1203の中心軸を中心とした楕円の等高線2102で表される。設置誤差分布の形状が楕円になっているのは、例えば、配管1203の設置時の工法上の制約で、壁からの距離は厳密に守られるが、壁に平行な方向の位置の設置誤差は許容されているからである。
プロセッサ301は、二つの誤差分布を各位置について乗じることで統合し、統合後の誤差分布の最大値を設備要素候補と配管1203との一致度として算出する。そして、その組み合わせの一致度が他の組み合わせにおける一致度よりも高い場合は、監視中の設備要素が配管1203であると特定し、かつ、誤差分布が最大値となる位置2103を配管1203の位置であると特定する。
図22は、図12に示す状況でのディスプレイ201への表示例である。
ディスプレイ201の左側領域には、画像重畳部407で生成された可視光画像と温度分布との重畳画像が表示される。各設備要素の上限温度を超える部分2201は色付きで表示される。この例では、バルブ1204がその上限温度を超えており、バルブ1204が赤色で表示される。
また、ディスプレイ201の右側領域には、画像重畳部407で生成された系統図2202が表示される。この例では、バルブ1204がその上限温度を超え、異常であると判定されるので、系統図2202においてバルブ1204に対応する部分が赤丸2203で囲まれている。
ディスプレイ201に表示されるこれら画像に基づき、作業者は、監視中の設備要素が配管1203及びバルブ1204であることを確認することができ、また、バルブ1204に異常が生じていることを確認することができる。
以上に説明したように、本発明の第1実施形態によれば、監視装置100は、自己位置置を推定することができるだけでなく、監視中の設備要素が何であるか、及び、その位置まで特定することができる。すなわち、監視中の設備要素と監視システム1で管理されている設備要素との対応関係を高い信頼度でとることができる。
自己位置の推定においては、複数のセンサ(レーザレンジファインダ102及び加速度センサ105)による計測結果から推定される複数の自己位置を統計的に統合し、最終的な自己位置を推定するようにし、また、自己位置推定のために用いられる自己位置推定用地図が、設置誤差の少ない建物内の構造物のみを含むようにした。これにより、自己位置を高い精度で推定することができ、ひいては、自己位置の推定結果を利用する設備要素の特定の精度も高めることができる。
また、設備要素が実際に配置されている位置は、設置誤差により、設備CADに格納されている位置とずれている可能性があり、三次元計測結果と設備CADとを照合するだけでは、設備要素を特定することは難しい。しかしながら、本発明の第1実施形態によれば、設備要素の設置誤差分布を考慮に入れて設備要素が特定されるので、設置誤差があっても、設備要素の特定を行うことができる。
また、監視中の設備要素候補の何であるかを特定できるので、計測された温度とその設備要素について予め設定されている正常な温度範囲とを比較し、当該設備要素の異常を判定することができ、作業者は、当該設備装置に応じた適切な措置をとることができる。
<第2実施形態>
続いて、本発明の第2実施形態について説明する。
図23は、本発明の第2実施形態における監視装置100の論理的な構成を示す機能ブロック図である。破線で囲まれた部分が監視装置100に実装される部分である。
第1実施形態では、データ411〜415が監視装置100の記憶装置303に格納されていたが、第2実施形態では、データ411〜415がサーバ120の記憶装置313に格納されている。
監視装置100は、データ411〜415うち、機能部401〜407での処理に必要な部分を送信するようサーバ120に要求し、サーバ120は要求されたデータを監視装置100に送信する。監視装置100は受信したデータを用いて機能部401〜407での処理を実行する。
その他の構成(ハードウェア構成、機能部401〜407における処理内容)については第1実施形態と同じなので、それらの説明を省略する。
なお、第2実施形態では、データ411〜415の全てをサーバ120側で持つようにしているが、データ411〜415の一部を監視装置100が持つようにしてもよい。また、系統図データ416をサーバ120側で持つようにしてもよい。
<第3実施形態>
続いて、本発明の第3実施形態について説明する。
図24は、本発明の第3実施形態における監視装置100の論理的な構成を示す機能ブロック図である。破線で囲まれた部分が監視装置100に実装される部分である。
第3実施形態では、データ411〜416の全てと、自己位置推定部401、設備要素特定部402、座標系補正部403及び異常検知部406を実装するためのプログラムがサーバ120の記憶装置313に格納されている。これらプログラムがサーバ120のメモリ312に読み出されてプロセッサ311によって実行されることによって、これら機能部401〜403及び406がサーバ120に実装される。
設備要素の監視作業中、監視装置100は、センサ102〜105の計測結果をサーバ120に送信し、サーバ120は、監視装置100から受信した計測結果に基づき自己位置推定処理、設備要素特定処理等の各種処理を実行する。そして、サーバ120は、処理の結果(自己位置推定の結果、設備要素の特定結果及び異常検知結果等)を、監視装置100に送信する。監視装置100は、サーバ120から受信した処理の結果を画像重畳部407において加工し、ディスプレイ201に表示する。
その他の構成(ハードウェア構成、機能部401〜407における処理内容)については第1実施形態と同じなので、それらの説明を省略する。
なお、第3実施形態では、自己位置推定部401、設備要素特定部402、座標系補正部403及び異常検知部406をサーバ120に実装しているが、これらの一部を監視装置100に実装してもよい。
また、3Dマッピング部404、3Dマッピング部405及び画像重畳部407を監視装置100に実装しているが、これらの一部又は全部をサーバ120に実装してもよい。
以上、本発明を添付の図面を参照して詳細に説明したが、本発明はこのような具体的構成に限定されるものではなく、添付した請求の範囲の趣旨内における様々な変更及び同等の構成を含むものである。
例えば、上記実施形態では、周囲の三次元形状を計測するのにレーザレンジファインダ102を用いているが、その他のセンサを用いて周囲の三次元形状を計測するようにしてもよい。例えば、2台のカメラによって取得した画像から生成される視差画像を用いる方法、1台のカメラを移動しながら取得した複数の画像に基づき特徴点の変化を解析する方法等を用いてもよい。
また、自己位置推定用地図401は、監視に先立ち、作業者が建物内を移動することでレーザレンジファインダ102によって建物内を三次元計測し、この計測結果から壁、柱等の構造物に対応する部分のみを抽出することで生成するようにしてもよい。
また、上記実施形態では、監視装置100は、設備要素の温度を計測し、計測された温度と下限温度及び上限温度とを比較して設備要素の異常を判定するが、その他の物理量(音、振動、色等)を計測し、計測されたその他の物理量に基づき設備要素の異常を判定するようにしてもよい。

Claims (15)

  1. 建物内の設備要素を監視する監視装置であって、
    前記監視装置の周囲の三次元形状を計測する三次元計測部と、
    計測された前記三次元形状を、前記設備要素以外の前記建物内の構造物の形状及び位置を含む自己位置推定用地図と照合することによって、前記監視装置の自己位置を推定する自己位置推定部と、
    推定された前記自己位置の周辺の設備要素を、前記建物内の設備要素の形状及び位置を含む設備要素照合用地図から抽出する周辺設備要素抽出部と、
    計測された前記三次元形状から設備要素候補の形状及び位置を抽出する設備要素候補抽出部と、
    前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素の形状及び位置と計測された前記三次元形状から抽出された前記設備要素の候補の形状及び位置との一致度を、前記自己位置の周辺の設備要素の形状及び位置の誤差分布及び計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布に基づき算出する一致度評価部と、
    算出された前記一致度に基づき、計測された前記三次元形状から抽出された前記設備要素候補の形状が前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素のいずれであるかを特定する設備要素特定部と、
    を備えたことを特徴とする監視装置。
  2. 請求項1に記載の監視装置であって、
    可視光画像を取得する可視光カメラと、
    特定された前記設備要素の物理量を測定する物理量測定部と、
    測定された前記物理量と特定された前記設備要素の標準物理量とを比較することによって特定された前記設備要素の異常を検知する異常検知部と、
    検知された前記異常を、特定された前記設備要素の位置に基づき、前記可視光カメラによって取得された前記可視光画像に重畳して表示する画像表示部と、
    をさらに備えたことを特徴とする監視装置。
  3. 請求項1に記載の監視装置であって、
    前記一致度評価部は、
    前記自己位置の周辺の設備要素の形状及び位置の誤差分布と、計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布とを乗じて統合し、
    統合後の誤差分布の最大値を前記一致度として算出する、
    ことを特徴とする監視装置。
  4. 請求項1に記載の監視装置であって、
    前記設備要素特定部は、特定された前記設備要素の位置を前記一致度に基づき特定し、
    前記監視装置が、
    前記設備要素特定部によって特定された前記設備要素の位置に基づき、前記自己位置推定用地図と前記設備要素照合用地図とのずれを算出し、当該ずれが減少するように前記設備要素照合用地図を修正する座標系補正部をさらに備えた、
    ことを特徴とする監視装置。
  5. 請求項1に記載の監視装置であって、
    前記自己位置推定用地図及び前記設備要素照合用地図の少なくとも一つは、サーバによって保持され、
    前記監視装置は、前記自己位置推定用地図及び前記設備要素照合用地図の少なくとも一つを前記サーバから取得する、
    ことを特徴とする監視装置。
  6. 建物内の設備要素を監視する監視装置と、前記監視装置と接続されるサーバとを備える監視システムであって、
    前記監視装置の周囲の三次元形状を計測する三次元計測部と、
    計測された前記三次元形状を、前記設備要素以外の前記建物内の構造物の形状及び位置を含む自己位置推定用地図と照合することによって、前記監視装置の自己位置を推定する自己位置推定部と、
    推定された前記自己位置の周辺の設備要素を、前記建物内の設備要素の形状及び位置を含む設備要素照合用地図から抽出する周辺設備要素抽出部と、
    計測された前記三次元形状から設備要素候補の形状及び位置を抽出する設備要素候補抽出部と、
    前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素の形状及び位置と計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置との一致度を、前記自己位置の周辺の設備要素の形状及び位置の誤差分布及び計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布に基づき算出する一致度評価部と、
    算出された前記一致度に基づき、計測された前記三次元形状から抽出された前記設備要素候補の形状が前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素のいずれであるかを特定する設備要素特定部と、
    を備えたことを特徴とする監視システム。
  7. 請求項6に記載の監視システムであって、
    前記監視装置は、
    可視光画像を取得する可視光カメラと、
    特定された前記設備要素の物理量を測定する物理量測定部と、
    を有し、
    前記監視システムは、
    測定された前記物理量と特定された前記設備要素の標準物理量とを比較することによって特定された前記設備要素の異常を検知する異常検知部と、
    検知された前記異常を、特定された前記設備要素の位置に基づき、前記可視光カメラによって取得された前記可視光画像に重畳して表示する画像表示部と、
    をさらに備えたことを特徴とする監視システム。
  8. 請求項6に記載の監視システムであって、
    前記一致度評価部は、
    前記自己位置の周辺の設備要素の形状及び位置の誤差分布と、計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布とを乗じて統合し、
    統合後の誤差分布の最大値を前記一致度として算出する、
    ことを特徴とする監視システム。
  9. 請求項6に記載の監視システムであって、
    前記設備要素特定部は、特定された前記設備要素の位置を前記一致度に基づき特定し、
    前記監視システムが、
    前記設備要素特定部によって特定された前記設備要素の位置に基づき、前記自己位置推定用地図と前記設備要素照合用地図とのずれを算出し、当該ずれが減少するように前記設備要素照合用地図を修正する座標系補正部をさらに備えた、
    ことを特徴とする監視システム。
  10. 請求項6に記載の監視システムであって、
    前記監視装置は、前記三次元計測部、前記自己位置推定部、前記周辺設備要素抽出部、前記一致度評価部及び前記設備要素特定部を含み、
    前記サーバは、前記自己位置推定用地図及び前記設備要素照合用地図の少なくとも一つを保持する、
    ことを特徴とする監視システム。
  11. 請求項6に記載の監視システムであって、
    前記サーバは、
    前記三次元計測部、前記自己位置推定部、前記周辺設備要素抽出部、前記一致度評価部及び前記設備要素特定部の少なくとも一つを含み、
    前記自己位置推定用地図及び前記設備要素照合用地図の少なくとも一つを保持する、
    ことを特徴とする監視システム。
  12. 監視装置によって建物内の設備要素を監視する監視方法であって、
    前記監視装置の周囲の三次元形状を計測する三次元計測ステップと、
    計測された前記三次元形状を、前記設備要素以外の前記建物内の構造物の形状及び位置を含む自己位置推定用地図と照合することによって、前記監視装置の自己位置を推定する自己位置推定ステップと、
    推定された前記自己位置の周辺の設備要素を、前記建物内の設備要素の形状及び位置を含む設備要素照合用地図から抽出する周辺設備要素抽出ステップと、
    計測された前記三次元形状から設備要素候補の形状及び位置を抽出する設備要素候補抽出ステップと、
    前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素の形状及び位置と計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置との一致度を、前記自己位置の周辺の設備要素の形状及び位置の誤差分布及び計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布に基づき算出する一致度評価ステップと、
    算出された前記一致度に基づき、計測された前記三次元形状から抽出された前記設備要素候補の形状が前記設備要素照合用地図から抽出された前記自己位置の周辺の設備要素のいずれであるかを特定する設備要素特定ステップと、
    を含むことを特徴とする監視方法。
  13. 請求項12に記載の監視方法であって、
    可視光画像を取得する可視光画像取得ステップと、
    特定された前記設備要素の物理量を測定する物理量測定ステップと、
    測定された前記物理量と特定された前記設備要素の標準物理量とを比較することによって特定された前記設備要素の異常を検知する異常検知ステップと、
    検知された前記異常を、特定された前記設備要素の位置に基づき、前記可視光カメラによって取得された前記可視光画像に重畳して表示する画像表示ステップと、
    をさらに含むことを特徴とする監視方法。
  14. 請求項12に記載の監視方法であって、
    前記一致度評価ステップでは、
    前記自己位置の周辺の設備要素の形状及び位置の誤差分布と、計測された前記三次元形状から抽出された前記設備要素候補の形状及び位置の誤差分布とを乗じて統合し、
    統合後の誤差分布の最大値を前記一致度として算出する、
    ことを特徴とする監視方法。
  15. 請求項12に記載の監視方法であって、
    前記設備要素特定ステップでは、特定された前記設備要素の位置を前記一致度に基づき特定し、
    前記監視方法は、
    前記設備要素特定ステップによって特定された前記設備要素の位置に基づき、前記自己位置推定用地図と前記設備要素照合用地図とのずれを算出し、当該ずれが減少するように前記設備要素照合用地図を修正する座標系補正ステップをさらに含む、
    ことを特徴とする監視方法。
JP2013530912A 2011-08-29 2011-08-29 監視装置、監視システム及び監視方法 Expired - Fee Related JP5658372B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069462 WO2013030929A1 (ja) 2011-08-29 2011-08-29 監視装置、監視システム及び監視方法

Publications (2)

Publication Number Publication Date
JP5658372B2 true JP5658372B2 (ja) 2015-01-21
JPWO2013030929A1 JPWO2013030929A1 (ja) 2015-03-23

Family

ID=47755483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530912A Expired - Fee Related JP5658372B2 (ja) 2011-08-29 2011-08-29 監視装置、監視システム及び監視方法

Country Status (5)

Country Link
US (1) US9911041B2 (ja)
EP (1) EP2765386A4 (ja)
JP (1) JP5658372B2 (ja)
CN (1) CN103717995B (ja)
WO (1) WO2013030929A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505444A (ja) * 2013-10-30 2017-02-16 テクタス・ドリームラブ・プライベート・リミテッドTectus Dreamlab Pte Ltd 対象物、特に建造物を検査するための構成および方法
PL3241219T3 (pl) 2014-12-31 2021-03-08 Nuscale Power, Llc Zdalne monitorowanie krytycznych parametrów reaktora
JP6432494B2 (ja) 2015-11-30 2018-12-05 オムロン株式会社 監視装置、監視システム、監視プログラムおよび記録媒体
JP6984997B2 (ja) * 2016-03-31 2021-12-22 倉敷紡績株式会社 画像配置方法及び画像配置用コンピュータプログラム
US10222215B2 (en) * 2017-04-21 2019-03-05 X Development Llc Methods and systems for map generation and alignment
CN108008409B (zh) * 2017-11-28 2019-12-10 深圳市杉川机器人有限公司 区域轮廓绘制方法及装置
JP7144991B2 (ja) * 2018-06-29 2022-09-30 大和ハウス工業株式会社 自律移動装置、自律移動プログラム及び位置推定システム
JP7312864B2 (ja) * 2019-06-11 2023-07-21 スクリーニング・イーグル・ドリームラボ・プライベート・リミテッド 対象物、特に建造物を検査するための構成および方法
JP7042238B2 (ja) * 2019-06-11 2022-03-25 スクリーニング・イーグル・ドリームラボ・プライベート・リミテッド 対象物、特に建造物を検査するための構成および方法
CN111009036B (zh) * 2019-12-10 2023-11-21 北京歌尔泰克科技有限公司 同步定位与地图构建中栅格地图的修正方法、装置
JP7318522B2 (ja) * 2019-12-25 2023-08-01 株式会社デンソー 推定装置、推定方法、推定プログラム
JP7318521B2 (ja) * 2019-12-25 2023-08-01 株式会社デンソー 推定装置、推定方法、推定プログラム
US11335072B2 (en) * 2020-06-03 2022-05-17 UrsaLeo Inc. System for three dimensional visualization of a monitored item, sensors, and reciprocal rendering for a monitored item incorporating extended reality
WO2022014443A1 (ja) * 2020-07-16 2022-01-20 コニカミノルタ株式会社 プラント管理方法、プラント管理装置およびプラント管理プログラム
CN112729181A (zh) * 2020-12-25 2021-04-30 上海广川科技有限公司 一种进行晶圆定位检测的装置及方法
JP7361992B2 (ja) 2021-04-15 2023-10-16 三菱電機株式会社 点検支援装置、点検支援システム、点検支援方法、及び点検支援プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281753A (ja) * 1994-04-15 1995-10-27 Toshiba Corp 移動ロボット
JPH08304581A (ja) * 1995-04-28 1996-11-22 Toshiba Corp プラント点検支援装置および方法
JP2004347488A (ja) * 2003-05-23 2004-12-09 Mitsubishi Electric Corp 現場作業支援装置
JP2007322138A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 移動装置及び移動装置の自己位置推定方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815045B2 (ja) * 1996-12-16 1998-10-27 日本電気株式会社 画像特徴抽出装置,画像特徴解析装置,および画像照合システム
TW518882B (en) * 2000-03-27 2003-01-21 Hitachi Ltd Liquid crystal display device for displaying video data
JP2002132341A (ja) * 2000-10-26 2002-05-10 Toshiba Corp 現場点検装置
KR100493159B1 (ko) * 2002-10-01 2005-06-02 삼성전자주식회사 이동체의 효율적 자기 위치 인식을 위한 랜드마크 및 이를이용한 자기 위치 인식 장치 및 방법
US20050285941A1 (en) * 2004-06-28 2005-12-29 Haigh Karen Z Monitoring devices
DE112006003363B4 (de) * 2005-12-16 2016-05-04 Ihi Corporation Verfahren und Vorrichtung zur Identifizierung der Eigenposition, und Verfahren und Vorrichtung zur Messung einer dreidimensionalen Gestalt
CN101331380B (zh) * 2005-12-16 2011-08-03 株式会社Ihi 三维形状数据的存储/显示方法和装置以及三维形状的计测方法和装置
JP4974217B2 (ja) * 2006-11-27 2012-07-11 アルパイン株式会社 ナビゲーション装置
US8050458B2 (en) * 2007-06-18 2011-11-01 Honda Elesys Co., Ltd. Frontal view imaging and control device installed on movable object
JP5120926B2 (ja) * 2007-07-27 2013-01-16 有限会社テクノドリーム二十一 画像処理装置、画像処理方法およびプログラム
US8515257B2 (en) * 2007-10-17 2013-08-20 International Business Machines Corporation Automatic announcer voice attenuation in a presentation of a televised sporting event
KR100926783B1 (ko) * 2008-02-15 2009-11-13 한국과학기술연구원 물체인식 및 인식된 물체를 포함하는 주변 환경 정보를바탕으로 한 로봇의 자기 위치 추정 방법
JP2009236774A (ja) 2008-03-27 2009-10-15 Hokuyo Automatic Co 三次元測距装置
US8867816B2 (en) * 2008-09-05 2014-10-21 Optosecurity Inc. Method and system for performing X-ray inspection of a liquid product at a security checkpoint
DE102009016230B4 (de) * 2008-09-12 2013-12-19 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur merkmalsbasierten Ortung eines mobilen Objekts mittels einer Referenzkarte oder zum unüberwachten Lernen einer Referenzkarte zur merkmalsbasierten Ortung
KR101503903B1 (ko) * 2008-09-16 2015-03-19 삼성전자 주식회사 이동 로봇의 지도 구성 장치 및 방법
WO2010061545A1 (ja) * 2008-11-26 2010-06-03 三菱電機株式会社 施設検索装置
JP4866951B2 (ja) * 2009-09-16 2012-02-01 株式会社日立製作所 測位組み合わせ決定システム
TWI403690B (zh) * 2009-10-26 2013-08-01 Ind Tech Res Inst 自我定位裝置及其方法
US8635015B2 (en) * 2009-12-17 2014-01-21 Deere & Company Enhanced visual landmark for localization
US8908923B2 (en) * 2011-05-13 2014-12-09 International Business Machines Corporation Interior location identification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281753A (ja) * 1994-04-15 1995-10-27 Toshiba Corp 移動ロボット
JPH08304581A (ja) * 1995-04-28 1996-11-22 Toshiba Corp プラント点検支援装置および方法
JP2004347488A (ja) * 2003-05-23 2004-12-09 Mitsubishi Electric Corp 現場作業支援装置
JP2007322138A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 移動装置及び移動装置の自己位置推定方法

Also Published As

Publication number Publication date
EP2765386A1 (en) 2014-08-13
US9911041B2 (en) 2018-03-06
EP2765386A4 (en) 2015-04-08
CN103717995B (zh) 2016-05-11
WO2013030929A1 (ja) 2013-03-07
JPWO2013030929A1 (ja) 2015-03-23
US20140168423A1 (en) 2014-06-19
CN103717995A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5658372B2 (ja) 監視装置、監視システム及び監視方法
US9250073B2 (en) Method and system for position rail trolley using RFID devices
US10324172B2 (en) Calibration apparatus, calibration method and calibration program
US7627447B2 (en) Method and apparatus for localizing and mapping the position of a set of points on a digital model
EP4060288A2 (en) Apparatus and method for providing vehicular positioning
JP6545279B2 (ja) 衝突は発生しないかについて、車両が辿るべき目標軌跡を監視するための方法及び装置
US8510039B1 (en) Methods and apparatus for three-dimensional localization and mapping
JP6532412B2 (ja) 自己位置推定システム、自己位置推定方法、モバイル端末、サーバおよび自己位置推定プログラム
US9727978B2 (en) Method for extracting outer space feature information from spatial geometric data
JP7113611B2 (ja) 位置特定装置、位置特定プログラム及び位置特定方法、並びに、撮影画像登録装置、撮影画像登録プログラム及び撮影画像登録方法
Yu et al. Displacement measurement of large structures using nonoverlapping field of view multi‐camera systems under six degrees of freedom ego‐motion
RU139571U1 (ru) Устройство ориентации и навигации тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении
US11288554B2 (en) Determination method and determination device
KR102050995B1 (ko) 공간좌표의 신뢰성 평가 장치 및 방법
CN105741260A (zh) 行动定位装置及其定位方法
JP2008008684A (ja) 位置特定装置
CN114661049A (zh) 一种巡检方法、装置及计算机可读介质
AU2021369844A1 (en) Wear member monitoring system
KR101502071B1 (ko) 랜드마크 기반 비전항법시스템을 위한 카메라 데이터 생성기와 그것을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체
CN112344966A (zh) 一种定位失效检测方法、装置、存储介质及电子设备
CN112990151B (zh) 障碍物检测模块的精度检测方法和电子设备
Barczyk et al. Observability, covariance and uncertainty of ICP scan matching
JP7441579B1 (ja) 情報処理システム及び情報処理方法
JP2019168226A (ja) プラント設備ナビゲーションシステムおよびプラント設備ナビゲーション方法
US20230050389A1 (en) System representation and method of use

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees