JP5656507B2 - 撮影システム - Google Patents

撮影システム Download PDF

Info

Publication number
JP5656507B2
JP5656507B2 JP2010183999A JP2010183999A JP5656507B2 JP 5656507 B2 JP5656507 B2 JP 5656507B2 JP 2010183999 A JP2010183999 A JP 2010183999A JP 2010183999 A JP2010183999 A JP 2010183999A JP 5656507 B2 JP5656507 B2 JP 5656507B2
Authority
JP
Japan
Prior art keywords
unit
tilt
pan
focus
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010183999A
Other languages
English (en)
Other versions
JP2012042728A (ja
Inventor
平井 雄介
雄介 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010183999A priority Critical patent/JP5656507B2/ja
Publication of JP2012042728A publication Critical patent/JP2012042728A/ja
Application granted granted Critical
Publication of JP5656507B2 publication Critical patent/JP5656507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、オートフォーカス機能を有し、パンチルト回動が可能な撮影システムに関し、特に、テレビカメラ等に好適に使用される撮影システムに関するものである。
従来、オートフォーカス手段を備え、パンチルト回動が可能な撮影システムとして、遠隔地から遠隔操作しパンチルトする雲台装置や、手動操作によりパンチルトする三脚を有する撮影システムが知られている。
撮影システムのオートフォーカスは、撮影画面の任意の範囲をオートフォーカスで合焦させる対象となる領域とし、その領域の被写体の距離に応じて、ピントを合わせるように撮影レンズを駆動する。そして、撮影システムをパンチルト操作すると、撮影している被写体との距離が変化することで、合焦状態が変化し、これよりオートフォーカス手段はフォーカス値を設定し直す。
ここで言うオートフォーカスとは、コントラスト方式のAFや位相差検出方式のAFである。コントラスト方式のAFは、撮像素子から得られる出力信号の高周波数成分の大きさをもとに撮影光学系を制御して合焦させる方式である。位相差検出方式のAFは一対のラインセンサを用いて三角測距の原理によって被写体までの距離を測定する方式である。
特許文献1は、カメラレンズを備えた雲台装置において、パンチルト動作させる際のオートフォーカスの制御方法を開示し、パンチルトの回動速度が低速の場合は通常動作のコントラストAFをする。高速の場合はスロー動作のコントラストAFをすることを開示している。これにより、オートフォーカスによる焦点調整が、撮影画面の変化に過敏に反応して撮影画面が見苦しくなってしまうことを防止する。
特開平9−205574号公報
しかしながら、上述の特許文献1に開示された従来技術は、次のような課題を有する。パンチルト回動中は撮影する映像が次々に変化している。パンチルト回動中において、映像信号の高周波成分を検出し、焦点評価値を算出し、撮影レンズが所定の位置に駆動し終わった時には、異なる距離の被写体を撮影して、ボケた映像を提供する可能性が高い。これは、映像信号の取込みからフォーカス指令作成までのオートフォーカス処理時間分の遅延時間が発生し、この遅延時間の間にパンチルト動作し、被写体との距離が変わってしまうためである。この様に、パンチルト動作させながらオートフォーカスを行うと、映像と合焦動作が合わず、被写体に合焦していない不快な映像となってしまう。
そこで、本発明は、遠隔操作装置からの指令値をもとに、パンチルト回動するとき、撮影画面内の所定の合焦領域で撮影される被写体に対し、パンチルトの回動中やパンチルトの回動の停止直後において素早く合焦状態にして鮮明な映像を提供することを可能とする、撮影システムを提供することを目的とする。
上記目的を達成するために、本発明の撮影システムは、フォーカス群を有する撮像光学部と、前記フォーカス群を駆動するフォーカス駆動部と、該フォーカス駆動部を制御する制御部と、撮影画像内の所定の合焦領域の被写体に対する合焦状態を検出する合焦検出部と、前記撮像光学部をパン回動及びチルト回動すパンチルト手段と、前記パンチルト手段パン回動速度、前記パンチルト手段のチルト回動速度、前記パンチルト手段のチルト位置及び前記撮像光学部の焦点距離に基づき、所定時間後に撮影画像内の所定の合焦領域で撮影されることになる方向に対応する現在の撮影画像内での位置である将来合焦位置を求める位置予測手段と、を有し、前記制御部は、パン及びチルト回動がされていない場合は、撮影画像内の前記所定の合焦領域に対する前記合焦検出部からの合焦情報に基づいて前記フォーカス駆動部を制御し、パン又はチルト回動がされている場合は、前記位置予測手段により求められた将来合焦位置にある合焦領域の被写体に対する、前記合焦検出部により検出された合焦状態に基づいて、前記フォーカス群を駆動するように前記フォーカス駆動部を制御する、ことを特徴とする。
本発明によれば、パンチルト回動可能な撮影システムは、遠隔操作装置の指令値に基づき、位置予測手段により将来に撮影する被写体を算出し、測距し、フォーカス群を予め駆動し、予めオートフォーカスする。よって、本発明は、遠隔操作装置からの指令値をもとに、パンチルト回動するとき撮影画面内の所定の合焦領域で撮影される被写体に対し、パンチルトの回動中やパンチルトの回動の停止直後において素早く合焦状態にして鮮明な映像を提供することを可能とする撮影システムを提供することができる。
本発明の撮影システムの概略図。 本発明の実施例1における撮影システムの構成図。 本発明の実施例1における撮影画面上の多点測距点を示す図。 本発明の実施例1における制御部の処理フローを示すフローチャート。 本発明の実施例1における画像表示部の将来光軸位置を示す図。 本発明の実施例1における現在光軸位置と将来光軸位置との関係を示す図。 本発明の実施例1における至近端と無限端とフォーカス群との位置関係を示す図。 撮影画角内におけるパン回動時の光軸位置の移動を示す模式図。 チルト角λの時の光軸方向の距離Lの点(点O)における仮想面と将来光軸位置を示す、チルト回動軸に垂直で原点Oを含む面での断面図。 チルト角λの時の光軸方向の距離Lにおける撮影画角(仮想面)と将来光軸位置を示す、チルト回動軸とパン回動軸に垂直な方向から見た図。 仮想面の光軸方向における距離Lと、画角との関係を示す図。 本発明の実施例1における測距点のテーブルを示す図。 本発明の実施例2における撮影システムの構成図。 本発明の実施例2における制御部の処理フローを示すフローチャート。 本発明の実施例2における撮像光学部のチルト回動角λの時の撮像光学部のパン回動軸と測距部のパン回動軸の関係を示す図。 本発明の実施例3における撮影システムの構成図。 本発明の実施例3における制御部の処理フローを示すフローチャート。 本発明の実施例3におけるコントラストAF枠が変位するイメージ図。 本発明の実施例4における撮影システムの構成図。 本発明の実施例5における撮影システムの構成図。 本発明の実施例6における撮影システムの構成図。
[実施例1]
以下、図1から図12を参照して本発明の第1の実施例について説明する。
最初に、図1及び2を参照しながら雲台装置を有する撮影システムの概略の構成を説明する。
本発明の撮影システムは、撮像光学部5を含む撮像部16、撮像部16をパン駆動するためのパン駆動部10、撮像部16をチルト駆動するためのチルト駆動部11、撮像部16で撮像した画像を表示する画像表示部9、制御部15及び制御部15を遠隔操作するための遠隔操作装置12を有する。図1に例示した構成においては、パン駆動部10は支持部Sをベース部Bに対し鉛直方向を軸として回動できるように設置され、チルト駆動部11は撮像部16を支持部Sに対して水平方向を軸として回動できるように設置されている。したがって、パン駆動部10がパン回動をすると、撮像部16と制御部15とチルト駆動部11とがベース部Bに対して一体的に回動し、チルト駆動部11がチルト回動すると、撮像部16が支持部Sに対して回動する。したがって、本実施例の構成においては、パン回動の回動軸はチルト角度に依らず一定の位置であり、チルト回動の回動軸は、パン回動軸に垂直な平面内でパン回動に伴って回動する。しかし、本発明の構成はこの構成に限定されることはなく、撮像部のパン回動及びチルト回動が互いに独立して制御可能な構成であればよい。
次に、図2を参照しながら、システム構成を説明する。
撮像部16は、ズーム倍率を変化させるためのズーム群1と焦点調整するためのフォーカス群3と図示しないアイリスとフィルタ切替機構を有する撮像光学部5、制御部15からの指令信号を受けズーム群1を駆動するズーム駆動部2、制御部15からの指令信号を受けフォーカス群3を駆動するフォーカス駆動部4を有する。ズーム駆動部2は、エンコーダやポテンショメータを備え、ズーム位置情報を制御部15に送信する。 また、フォーカス駆動部4は、エンコーダやポテンショメータを備え、フォーカス位置情報を制御部15に送信する。
撮像部16は、さらに、撮像光学部5を経由した光束を受光し画像信号に光電変換するCCD等の撮像素子(以下、CCDと呼ぶ)6、CCD6によって光電変換されたアナログ画像信号をデジタル画像信号に変換するA/D変換回路7、A/D変換回路7からのデジタル画像信号の色や階調等を整える画像処理部8を有する。画像処理部8は、CCD6で得られた出力信号の高周波数成分の大きさをもとにコントラストAFで使用する評価値を演算し、制御部15へ送信する。制御部15は画像処理部8の評価値に基づいて、山登り方式のコントラストAFでフォーカス群3を制御する。
画像信号は画像処理部8からTTL液晶画像表示装置等の画像表示部9に送信され、映像として表示される。
パン駆動部10は、制御部15からの指令信号によりパン回動を行う。パン駆動部10は、パン速度情報とパン位置情報とを検出するパン検出部としての機能も有し、検出したパン速度情報とパン位置情報を制御部15に送信する。また、チルト駆動部11は制御部15からの指令信号によりチルト回動を行う。チルト駆動部11は、チルト速度情報とチルト位置情報とを検出するチルト検出部としての機能も有し、検出したチルト速度情報とチルト位置情報を制御部15に送信する。
オペレータは、制御部15に接続された遠隔操作装置12を操作することで、ズーム群1、フォーカス群3、チルト駆動部11、パン駆動部10等を遠隔操作できる。遠隔操作装置12から制御部15に送信される指令信号は、速度指令信号と位置指令信号の2つに分類される。速度指令信号は、遠隔操作装置12に設けられたジョイスティックやズームレバー等の操作によって生成される、パン及びチルト回動とズーム等の指令信号である。位置指令信号は、オペレータが値をセットするプリセット機能によって、ズーム位置情報、フォーカス位置情報、パン位置情報、チルト位置情報等を登録し再生することにより、登録された位置へ駆動する指令信号である。
撮像部16は、撮像部16から位相差検出方式で被写体までの距離を測定してAFを実施するための測距部14を有する。位相差検出方式AFは、撮影用のCCD6とは別に、被写体までの距離を測定するための少なくとも複数の対のラインセンサで構成され、被写体に合焦する位置を算出する。算出結果は制御部15へ送信され、制御部15はその算出結果に基づいてフォーカス群3を駆動することにより、合焦させることができる。
制御部15はシステム全体を制御し、CPU、ROM、RAMの機能を備える。制御部15は、遠隔操作装置12から指令信号が入力されると、ROMに記憶されたプログラム処理を実行することで、フォーカス駆動部4、測距部14等を駆動制御する。
以下の記載において、説明の簡略化のため、撮像部16の画角範囲内を撮影画面内と呼び、撮像部16の画角範囲外を撮影画面外と呼ぶことにする。 遠隔操作装置12から制御部15に、パンチルト回動の指令信号が入力されていない時の、オートフォーカスの動作について説明する。この時、撮像部16はパンチルト回動していない。
合焦の状態を検出する合焦検出部としての測距部14は、一定時間毎に被写体までの距離を測定(測距)し、測定された距離(測距値、合焦情報)をもとにオートフォーカスする。図3は、撮像部16の撮影画面(撮影範囲)内において、測距部14が測距可能な35箇所の位置を35個の破線の円で示したものである。多点測距は、撮影画面上を複数個に分割したそれぞれの範囲において測距する。パンチルト回動の指令信号が入力されていない時は、撮像部16の光軸中心位置近傍(図3においては、No.18の円内)の測距値をもとにオートフォーカスする。
次に、図4を参照して、パンチルト回動の指令信号が入力されている場合における制御部15の処理フローについて説明する。
以降、現時点における、撮影画面上の撮像部16の光軸位置(合焦位置、合焦対象位置)を、現在光軸位置(現在合焦位置、現在合焦対象位置)とよぶ。図3の中での、現在光軸位置はNo.18近傍である。またパン、チルト、ズームなどの各指令信号により、撮像部16を駆動制御している際、光軸位置が移動する。ここで、測距部14あるいは画像処理部8あるいはフォーカス群3の駆動でAF処理に掛る処理時間経過後の撮像部16の予測光軸位置(予測合焦位置)を将来光軸位置(将来合焦位置、将来合焦対象位置)と呼ぶ。将来光軸位置の算出方法に関しては後述する。ここで、光軸位置とは、撮像光学部5の光軸と撮影画面(領域)とが交差する位置、別の言い方をすれば、撮像光学部5の光軸を通って来た光線が撮影画面に入射する位置、或いは撮像光学部5の光軸を通って来た光線が測距部14に入射する位置、とも言える。
ステップS001では、遠隔操作装置12から制御部15に対し、パンチルト回動の速度指令信号が入力される。制御部15は、パン速度情報とチルト速度情報あるいはチルト位置情報とをRAMに記憶する。更に制御部15はフォーカス位置情報とズーム位置情報とを読込み、RAMに記憶し、ステップS002へ移行する。
ステップS001において、制御部15が記憶する情報として必要な情報は、パンチルト操作によって光軸が移動する速度であるので、パン速度情報とチルト速度情報を記憶する。それに加えて、チルト位置情報を記憶するのは、同じパン速度(角速度)で移動しても、光軸方向の画界内での移動速度は、チルト角によって変わるためである。詳細については図8を用いて後述する。
ステップS002では、制御部15内の位置予測手段より将来光軸位置を算出する。将来光軸位置は、RAMに記憶されたパン速度情報、チルト速度情報、あるいはチルト位置情報、フォーカス位置情報、ズーム位置情報からの焦点距離に基づいて算出される。また、将来光軸位置は、撮像部16の既知情報であるROMに記憶されたCCDのイメージサイズと、フォーカス群の至近端から無限端までの最大繰出量と、に基づいて算出される。これより位置予測手段は、AF処理に掛る処理時間を算出し、AF処理に掛る処理時間とパンチルト回動速度を乗算し、現時点の画界における撮像部16の将来光軸位置を算出し、ステップS003へ移行する。
ステップS003では、将来光軸位置が現時点の画界においての多点測距点No.1〜No.35の内、どこに該当するかを特定し、特定された測距点を測距し、ステップS004へ移行する。
ステップS004では、ステップS003で測距された測距値をもとにオートフォーカスし、S005へ移行する。
ステップS005では、将来光軸位置を画像表示部9に表示する。画像表示部9の将来光軸位置は、長方形の枠や点滅する円などと、オペレータが認識しやすい形状にすることができる。図5は、画像表示部9に将来光軸位置を表示した時の映像である。将来光軸位置は長方形の破線で示されている。
図4に示した制御部15の処理フローのサンプリングの時間間隔は、任意の時間を設定してもよいし、又はパン速度情報やチルト速度情報やズーム群1を駆動するズーム駆動部2の駆動速度情報によって変更するようにしてもよい。例えば、速度が速い時はサンプリングの時間間隔を短くし、速度が遅い時はサンプリングの時間間隔を長くしてもよい。
ここで、ステップS002とS003について詳細に説明する。 ステップS002では、制御部15の位置予測手段により、現時点の画界における撮像部16の将来光軸位置P(X1,Y1)を算出する。図6に、現在光軸位置Oと将来光軸位置Pとの関係を示す。点Oはパンチルト回動の回転中心位置、Ya軸はパン回動の回転軸の方向である。Ya軸の正の方向に右ねじが進む時の回転方向を正とする。Xa軸はチルト回動の回転軸の方向であり、Ya軸に対して垂直である。Xa軸の正の方向に右ねじが進む時の回転方向を正とする。Za軸は、Xa軸及びYa軸に対して垂直な方向であり、パン角及びチルト角がともにゼロであるときの撮像部16の光軸方向である。図1で示した本実施例の構成より明らかなように、撮像部の光軸はYa−Za面内に存在する。
点Oから撮像部の光軸方向の任意の距離Lにおける、該光軸方向に垂直な面を、仮想面(前述の画界に対応)として以下の説明を進める。
制御部15内の位置予測手段による将来光軸位置Pの算出方法を説明する。
フォーカス群3が最大駆動速度μ(mm/s)で駆動した時、現在光軸位置Oにあるフォーカス群3がフォーカス端まで移動するために必要な最大繰出時間T1(s)を算出する。現在のフォーカス群のフォーカス繰出量β(図7参照)より、現在のフォーカス群3に対して、至近端または無限端のどちらのフォーカス端が遠いかを判定する。ここでは図7に示したように、フォーカス群3が無限端に近いとすると、現時点のフォーカス群3が、最大駆動速度μで駆動し、至近端まで移動するために必要な最大繰出時間T1は、
1 =β/μ (1)
である。ここで、β(mm)は、至近端におけるフォーカス群3の繰出位置から、現在光軸位置におけるフォーカス群3の繰出位置までのフォーカス繰出量であり、μ(mm/s)は、フォーカス群3が光軸方向に推進した時の最大駆動速度である。すなわち、このように定義した最大繰出時間T1は、現在のフォーカス群の繰出位置からどのような距離にフォーカスする場合でも、フォーカス群の移動が該時間内に完了することを保証できる時間である。
これより測距部14に光束が入射してから合焦するまでの最大の処理時間T(s)は、測距部14に光束が入射してから合焦位置を算出するまでの処理時間Tと、式(1)で算出されるフォーカス端までの移動に必要な最大繰出時間Tより、
T=T1+T2 (2)
で表される。
式(2)で算出した最大の処理時間Tの間は、RAMに記憶されたパン回動速度とチルト回動速度で、パンチルト回動すると仮定し、最大の処理時間T経過後の光軸方向(将来光軸位置の光軸方向)と、現在光軸位置の光軸方向との角度差を算出する。パン方向の角度差θR、とチルト方向の角度差θSは、
パン回動量は、 θR=R×T (3)
チルト回動量は、 θS=S×T (4)
によって求めることができる(図6)。ここで、R(deg/s)はパン回動速度、S(deg/s)はチルト回動速度である。
ここで、パン回動したとき、画角によって制限された仮想面内(撮影画面内)で光軸方向はどのように移動するように見えるのかを図8に模式的に示す。図8中の4本の線A,B,C,Dは、チルト回動がない条件で、同一方向にパン回動した時の、光軸位置の移動をパン回動前の仮想面内に模式的に記載したものである。線Aは、チルト角がゼロである場合、すなわち、光軸方向がYa軸(パン回動軸)に垂直である状態でパン回動したときの、光軸方向の軌跡である。線B,C,Dは、
0度<線Bのチルト角<線Cのチルト角<線Dのチルト角
である一定のチルト角において、パン回動した時の光軸方向の軌跡を示す。このように、所定時間後(時間T後)の将来光軸位置の画角内での直交座標系内での座標P(X1、Y1)は、チルト角の影響を考慮する必要がある。
ここで、パン回動角及びチルト回動角と、将来光軸位置の画角内での座標P(X1、Y1)の関係を考える。パン回動及びチルト回動の中心を原点とし、パン回動の回動軸をY軸とし、Y軸と現在の光軸を含む面内でY軸に垂直な方向をZ軸とし、Y軸及びZ軸に垂直な方向をX軸と定義する。この定義から現在のパン角=0(deg)、パン回動の回動軸に垂直な方向をチルト角=0(deg)、現在のチルト角はλ(deg)と定義する。この現在のパン角0及びチルト角λから、パン回動及びチルト回動した時の、点Oから撮像部の光軸方向の任意の距離Lにおける該光軸方向に垂直な平面である仮想面(画界に対応)上での光軸位置の移動を考える。仮想面は撮影画面に対応するため、パン角変位量及びチルト角変位量と、撮影画面内での直交座標上での変位量の対応を考える。
仮想面(平面)は、該光軸方向に垂直で、点Oから距離Lにある平面であることから、
sinλ×y+cosλ×z=L (5)
で表される。これは、言い換えると、原点を中心とする半径Lの球と点O(0, L×sinλ, L×cosλ)で接する接平面である(図9参照)。上記のパン回動量θR及びチルト回動量θSの後のパン角はθRであり、チルト角はλ+θSとなる。これより、パン回動およびチルト回動後の、光軸の方向を原点からのベクトル表示で表すと、
(cos(λ+θS)sinθR, sin(λ+θS), cos(λ+θS)cosθR
となる。この方向の直線と上記の仮想面(平面)との交点P1が、撮影画面内での将来光軸位置である(図10)。原点を通り、この方向ベクトルを有する直線は、
Figure 0005656507
で表すことができる。この式(6)の直線と式(5)の平面との交点を求めると、Xa-Ya-Za直交座標系において、
Figure 0005656507
と、求めることができる。ここで、
Figure 0005656507
である。
これより、接平面(仮想面)内の光軸位置を原点とする直交座標系における、原点Oから式(10)で求められた交点までの距離を、接平面内での直交成分に分解することで、パン及びチルト回動後の将来光軸位置を撮影画面での位置を特定することができる。
仮想面内の直交座標系は、チルト回動方向をY軸、それに直交する方向をX軸と定義することができる。このX軸は、仮想面と将来光軸位置の交点を求めた際に使用した、Xa軸と平行であるので、仮想面の直交座標系内での将来光軸位置のX座標は、(7)式より、
Figure 0005656507
である。また、仮想面の直交座標系内でのY座標は、(7)式の将来光軸位置のy及びzと、移動前の光軸の座標値(0, L×sinλ, L×cosλ)から、
Figure 0005656507
と、求めることができる。
次にCCDのイメージサイズと焦点距離より、現在光軸位置の水平画角Whと垂直画角W
水平画角は、 Wh=2tan-1(y/2f) (11)
垂直画角は、 W=2tan-1(y/2f) (12)
によって算出する。ここで、f(mm)は焦点距離、y(mm)はCCDのイメージサイズ水平方向の大きさ、y(mm)はCCDのイメージサイズ垂直方向の大きさであり、撮像部16の仕様とCCDの仕様の既知情報を使用する。現在光軸方向(O−O方向)とXa軸を含む平面を図11(a)に、現在光軸方向(O−O方向)とYa軸及びZa軸を含む平面を図11(b)に示す。 式(11)より、水平画角の端と仮想面が交差する点と、現在光軸方向との距離は、L×tan(Wh/2)である。 式(12)より、垂直画角の端と仮想面が交差する点と、現在光軸方向との距離は、L×tan(W/2)である。
これより、撮影画角内の相対座標値として、将来光軸位置の座標P(X1、Y1)は、(9)及び(10)式で表される位置より、
Figure 0005656507

Figure 0005656507
と求めることができる。ここで、
Figure 0005656507
である。ここで算出されるX1及びY1の値は、それぞれ−1〜1を範囲とする画角に対する相対値である。したがって、算出されたX1、Y1が−1〜1の範囲内にない場合は、将来光軸位置は、現在の画角の外に位置することを意味する。
ステップS003では、後述する測距点テーブルをROMから読込み、将来光軸位置と測距点テーブルを関連付ける。測距点テーブルを図12(a)に示す。測距点テーブルは、撮影画角の平面内で定義されるXY面内で、現在の光軸位置を原点として、X軸の値は−1≦x≦1の範囲で、Y軸の値は−1≦y≦1の範囲で定義される。測距点テーブルの座標範囲内を、多点測距点によって割当している。図12(b)は、測距テーブルの座標軸等の内容を補足する意味で示す。
次に、式(13)と式(14)より算出された将来光軸位置の座標P(X1、Y1)の値から、測距点テーブルの該当する範囲を特定する。測距点テーブルの範囲が特定されたら、その範囲を測距する。また将来光軸位置の座標P(X1、Y1)の値が、1.0以上または-1.0未満である時は、測距点テーブルの座標範囲に示す値に、最も近い範囲を特定し、その範囲を測距する。例えば、座標P(X1、Y1)が図12(b)に示す位置(点P)であった場合は、多点測距点No.1を該当する範囲と特定し、多点測距点No.1を測距する。
以上で、ステップS002とS003の詳細な説明を終わる。
なお、測距部14に光束が入射してから合焦するまでの最大の処理時間Tは、T1とT2によって算出したが、他の実施形態においては、最大の処理時間Tを任意の値に設定してもよい。
また、フォーカス群3の最大繰出量は、至近端におけるフォーカス群3の繰出位置から無限端におけるフォーカス群3の繰出位置までの繰出量(αmm、)(図7参照)と設定したが、撮像部16の過焦点領域にあたる繰出範囲は、フォーカス群3の非駆動範囲と設定してもよい。過焦点領域は、撮影画面上全体が合焦している事より、過焦点領域内でフォーカス群3を駆動しても合焦精度の向上は小さい。撮像部16の至近端におけるフォーカス群3の繰出位置から過焦点距離におけるフォーカス群3の繰出位置までの繰出し範囲を、フォーカス群3の駆動範囲と設定すれば、最大の処理時間Tが短くなり、パン方向の角度差θRとチルト方向の角度差θSとは小さくなり、将来光軸位置が現在光軸位置に近くなるため、合焦精度が向上する。
また、1つの測距点の値をもとにオートフォーカスしていたが、焦点距離の値によって、複数の測距点の値を平均化し、平均化された測距値よりオートフォーカスしても良い。例えば、焦点距離の値がワイド側の時は、将来光軸位置の測距点と、将来光軸位置の測距点の周辺にある複数の測距点と、の測距値を平均化し、オートフォーカスする。焦点距離の値がテレ側の時は、前述したように将来光軸位置の測距点の測距値をもとにオートフォーカスする。
また、ステップS004でのオートフォーカス時のフォーカス群の駆動速度について述べていなかった。フォーカス群の駆動速度は、現在光軸位置のフォーカス群3の繰出量βと、将来光軸位置のフォーカス群3の繰出量と、の繰出量の差分値を、式(2)のTで除算した値である。又は、フォーカス群の駆動速度は任意に設定した値でも良い。
なお、遠隔操作装置12に位置予測手段の有効又は無効を選択できる設定部を設け、有効の時は位置予測手段を動作させ、無効の時は位置予測手段を非動作としても良い。
本実施例1に係る、位相差AFを備えた雲台装置を使用することによって、オペレータが意図する被写体までの距離を測定し、パンチルトの回動中や回動の停止直後において鮮明な映像を提供することができるという効果を奏することができる。
[実施例2]
以下、図13と図14を参照して本発明の第2の実施例について説明する。
まず図13における雲台装置を有する撮影システム構成図を説明する。上述した実施例1と同じ部分は説明を省略する。
被写体までの距離を測定する位相差AFの測距部20は、実施例1とは異なり、多点測距を可能とする複数の対のラインセンサは有さず、一対のラインセンサのみが設けられている。
本実施例における雲台装置のシステムは、測距部20をパンチルト回動する測距駆動部21を有する。測距駆動部21は、雲台のパンチルト回動とは独立して測距部20をパンチルト回動することが可能である。測距駆動部21は、エンコーダやポテンショメータを備え、測距部20のパン位置情報とチルト位置情報とを後述する制御部22に送信する。測距駆動部21は、撮像部16に設置されているため、パン駆動部10又はチルト駆動部11が回動するとそれに伴い回動し、測距駆動部21による測距部20のパンチルト回動は、撮像部16に対して行われる。また測距駆動部21をパンチルト回動するための指令信号は、制御部22の位置予測手段の算出結果に基づき、制御部22から測距駆動部21に送信される。
システム全体を制御する制御部22はCPU、ROM、RAMを備える。制御部22は、遠隔操作装置12から指令信号が入力されると、ROMに記憶されたプログラム処理を実行することで、フォーカス駆動部4、測距部20、測距駆動部21等を駆動制御する。
遠隔操作装置12から制御部22に、パン駆動部10あるいはチルト駆動部11へのパンチルト回動の指令信号が入力されていない時について説明する。この時、撮像部16はパンチルト回動していない。パン駆動部10あるいはチルト駆動部11へパンチルト回動の指令信号が入力されていない時、制御部22より測距駆動部21に指令信号をおくり、測距部20の光軸方向が、撮像部16の光軸方向と一致するよう駆動制御する。測距部20は、一定時間毎に被写体までの距離を測定しており、測距値をもとにオートフォーカスする。
次に、図14を参照して、パンチルト回動の指令信号が入力されている場合における制御部22の処理フローについて説明する。
ステップS101では、遠隔操作装置12から制御部22に対し、パン駆動部10あるいはチルト駆動部11へのパンチルト回動の速度指令信号が入力される。
制御部22は、パン速度情報とチルト速度情報と、あるいはチルト位置情報とをRAMに記憶する。更に制御部22はフォーカス位置情報を読込み、RAMに記憶し、ステップS102へ移行する。
ステップS102では、制御部22内の位置予測手段より将来光軸位置(将来光軸方向)を算出する。本実施例においては、パン角及びチルト角で表された撮像光学部の光軸方向を、測距駆動部が固定されている撮像光学部の光軸方向を既定とする極座標に座標変換したパン及びチルト角に基づいて、測距駆動部を駆動することになる。
図15に示すように、測距部は、撮像光学部をパン回動する回動軸Ya、チルト回動する回動軸Xaによる系とは異なり、撮像光学部に固定されたパン回動軸Ybとチルト回動軸Xbを基準にして撮像光学部に対してパン及びチルト回動する。したがって、撮像光学部がチルト回動しても、撮像光学部と測距部のチルト回動軸は一致して変わらないが、パン回動軸は、撮像光学部のチルト回動角λが0の時は、撮像光学部のパン回動軸Yaと測距部のパン回動軸Ybの方向は一致するが、撮像光学部のチルト回動角λが0以外では、互いに異なる。
撮像光学部のパン回動速度をR(deg/s)、チルト回動速度をS(deg/s)としたとき、時間T(s)経過後のパン回動量及びチルト回動量は、それぞれ、R×T(deg)、S×T(deg)である。現在のチルト角をλ(deg)としたとき、時間T経過後の光軸方向は、
チルト角:S×T+λ
パン角::R×T
である。図15に示した直交座標系(Xa-Ya-Za)の座標(xa, ya, za)で表すと、
Figure 0005656507


である。測距駆動部21のパン及びチルト回動は、図15に示す直交座標系(Xb-Yb-Zb)を基準として駆動する。直交座標系(Xb-Yb-Zb)は、直交座標系(Xa-Ya-Za)のXa軸を中心として直交座標系(Xa-Ya-Za)を角度λ(deg)だけ回転した座標系である。従って、直交座標系(Xa-Ya-Za)の座標(xa, ya, za)は、直交座標系(Xb-Yb-Zb)の座標(xb, yb, zb)に以下のように変換することができる。
Figure 0005656507
さらに、直交座標系(Xb-Yb-Zb)の座標(xb, yb, zb)を極座標表示に変換すると、測距駆動部21におけるパン角θ'R、チルト角θ'Sを以下のように表すことができる。
Figure 0005656507
Figure 0005656507
ステップS103では、撮像部16の光軸方向と測距部20の光軸方向との角度差、言い換えると、測距駆動部21のパン角がθ'R且つチルト角がθ'Sとなるよう、制御部22から測距駆動部21に指令信号を送信し、駆動制御する。測距部20の光軸方向が、将来光軸位置と一致した時、測距部20は測距し、ステップS104へ移行する。 ステップS104では、測距された測距値をもとにオートフォーカスする。
なお、測距駆動部21によって回動する測距部20は、雲台装置のパンチルト回動とは独立して回動するため、撮影画面内と撮影画面外とを測距し、オートフォーカスすることができる。別の制御方法として、将来光軸位置が撮影画面外の時は、測距部20によって測距してオートフォーカスを実施し、将来光軸位置が撮影画面内の時は、実施例1に示す測距部14によって測距し、オートフォーカスしてもよい。
なお、本実施例においては、説明の簡略化のために、撮像光学部の光軸と測距部の光軸に生ずる視差を考慮せずに説明したが、さらに高精度で測距位置を特定する場合は、視差の影響を考慮して測距部の光軸方向を設定することが好ましい。
なお、本実施例においては、測距部20
は一対のラインセンサであったが、多点測距を可能とする複数の対のラインセンサでもよい。例えば、複数のラインセンサで被写体を測距し、複数の測距値を平均化し誤差を最小にする。
実施例2の効果として、測距部20が測距駆動部21によってパンチルト回動可能であるので、撮像部16の撮影画面外でも測距可能であり、パンチルトの高速回動中において、鮮明な映像を提供することができる。
[実施例3]
以下、図16〜18を参照して本発明の第3の実施例について説明する。
実施例3の雲台装置を有する撮影システム構成図は、図16に示す。図2に示した実施例1の雲台装置を含む撮影システムの構成とほとんど同じであるが、撮像部16が測距部14を有していないことが異なる。また、本実施例における画像処理部8は、合焦の状態を検出する合焦検出部として機能し、CCD6から得られた画像信号のコントラストの評価は、画像を複数の領域に分割したそれぞれの領域に対して個別に評価することが可能であることが異なる。
遠隔操作装置12から制御部15に、パンチルト回動の指令信号が入力されていない時について説明する。この時、撮像部16はパンチルト回動していない。画像処理部8のコントラストAFは、撮影画面上の光軸中心近傍の映像をもとに、オートフォーカスする。
次に、図17を参照して、パンチルト回動の指令信号が入力されている場合における制御部15の処理フローについて説明する。
ステップS201では、遠隔操作装置12から制御部15に対し、パン駆動部10あるいはチルト駆動部11へのパンチルト回動の速度指令信号が入力される。制御部15は、パン速度情報とチルト速度情報と、あるいはチルト位置情報とをRAMに記憶する。更に制御部15はフォーカス位置情報とズーム位置情報とを読込み、RAMに記憶し、ステップS202へ移行する。
ステップS202では、制御部15内の位置予測手段より将来光軸位置を算出する。実施例3における将来光軸位置は、実施例1と同じ方法で算出される。詳細はステップS002、ステップS003と同じである。続いて、ステップS203へ移行する。
ステップS203では、まず撮影画面上の将来光軸位置近傍をコントラストAF範囲と設定し、コントラストAFを行う。例えば、図18でいうと左上にある長方形の実線枠が、将来光軸位置近傍のコントラストAF範囲である。
また、将来光軸位置が、図18の点Pに示す位置である場合、点P近傍にある撮影画面上の所定の範囲(図18中に破線枠で示した範囲)をコントラストAF範囲と設定し、コントラストAFを行う。または、図18の点Pに示す位置である場合、コントラストAFを行わないことを選択するようにしてもよい。
上記実施例3の効果として、コントラストAF方式の雲台装置において、オペレータが意図する被写体を測距し、パンチルトの回動中や回動の停止直後において鮮明な映像を提供することができる。
[実施例4]
以下、図3から図12と図19を参照して本発明の第4の実施例である撮影装置について説明する。
最初に、図19を参照しながら本実施例における撮影システムの構成図を説明する。上述した実施例1と同じ部分は説明を省略する。
実施例4の撮像装置が実施例1の撮像装置と顕著に異なる点は、実施例4の撮像装置のシステムはパン駆動部10及びチルト駆動部11を有さず、パン回動とチルト回動が可能な三脚装置30を有することである。三脚装置30にはズームデマンドやフォーカスデマンド等が備えられており撮像部16の操作ができる。
三脚装置30は、パン回動したとき、パン速度情報とパン位置情報とを検出するパン検出手段(パン検出部)31と、チルト回動したとき、チルト速度情報とチルト位置情報とを検出するチルト検出手段(チルト検出部)32とを有する。以降、パン検出手段31の値あるいはチルト検出手段の値を検出値と呼ぶ。また、三脚装置30は、パン検出手段31の値あるいはチルト検出手段32の検出値を制御部33に送信する。
撮像装置は、システム全体を制御する制御部33を有する。制御部33は、CPU、ROM、RAMの機能を備え、三脚装置30からの検出値が入力されると、記憶されたROMのプログラム処理を実行することで、フォーカス駆動部4と測距部14等を駆動制御する。
三脚装置30から制御部33に、パン検出手段31及びチルト検出手段32の検出値が入力されていない時について説明する。この時、撮像部16はパンチルト回動していない。測距部14は、一定時間毎に被写体を測距しており、測距値をもとにオートフォーカスする。図3は、撮像部16の撮影画面範囲内において、測距部14が測距可能な35箇所の位置を35個の破線の円で示したものである。多点測距は、撮影画面上を複数個に分割したそれぞれの範囲において測距する。検出値が入力されていない時は、撮像部16の光軸中心位置近傍の測距値をもとにオートフォーカスする。
次に、図4を参照して、パンチルト回動の指令信号が入力されている場合における制御部33の処理フローについて説明する。
以降、現時点における、撮影画面上の撮像部16の光軸位置を、現在光軸位置とよぶ。図3の中での、現在光軸位置はNo.18近傍である。また検出値が制御部33に入力され、撮像部16を駆動制御している際、現在光軸位置に対して、測距部14あるいは画像処理部8あるいはフォーカス群3の駆動でAF処理に掛る処理時間経過後の撮像部16の予測光軸位置を将来光軸位置と呼ぶ。将来光軸位置の算出方法に関しては後述する。
ステップS001では、制御部33で三脚装置30からの、検出値が検出される。制御部33は、パン速度情報とチルト速度情報と、あるいはチルト位置情報とをRAMに記憶する。更に制御部33はフォーカス位置情報とズーム位置情報とを読込み、RAMに記憶し、ステップS002へ移行する。
ステップS002では、制御部33内の位置予測手段より将来光軸位置を算出する。将来光軸位置の算出は以下の値に基づく。それはRAMに記憶されたパン速度情報、チルト速度情報、あるいはチルト位置情報、フォーカス位置情報、ズーム位置情報からの焦点距離に基づいて算出される。また雲台装置の既知情報であるROMに記憶されたCCDのイメージサイズと、フォーカス群の至近端から無限端までの最大繰出量と、に基づいて算出される。これより位置予測手段は、AF処理に掛る処理時間を算出し、AF処理に掛る処理時間とパンチルト回動速度を乗算し、現時点の画界においての撮像部16の将来光軸位置を算出し、ステップS003へ移行する。
ステップS003では、将来光軸位置が現時点の画界においての多点測距点No.1〜No.35の内、どこに該当するかを特定し、特定された多点測距点を測距し、ステップS004へ移行する。
ステップS004では、ステップS003で測距された測距値をもとにオートフォーカスし、ステップS005へ移行する。
ステップS005では、将来光軸位置を画像表示部9に表示する。画像表示部9の将来光軸位置は、長方形の枠や点滅する円などと、オペレータが認識しやすい形状にすることができる。図5は、画像表示部9に将来光軸位置を表示した時の映像である。将来光軸位置は長方形の破線で示されている。
以上、ステップS001〜S005が制御部33の制御の流れである。この制御部33の処理フローのサンプリングの時間間隔は、任意の時間を設定してもよいし、又はパン速度情報やチルト速度情報によって変更するようにしてもよい。例えば、回動速度が速い時はサンプリングの時間間隔を短くし、回動速度が遅い時はサンプリングの時間間隔を長くしてもよい。ステップS002とS003の詳細な説明に関しては、実施例1と同じである。
なお前述の説明では、フォーカス群3の最大繰出量αは、至近端から無限端までと設定したが、本実施例においても実施例1と同様に、撮像部16の過焦点領域にあたる繰出範囲は、フォーカス群3の非駆動範囲と設定すれば、Tが短くなり、パン方向の角度差θRとチルト方向の角度差θSとは小さくなり、将来光軸位置が現在光軸位置に近くなるため、合焦精度が向上する。
なお前述の説明では、1つの測距点の値をもとにオートフォーカスしていたが、焦点距離の値によって、複数の測距点の値を平均化し、平均化された測距値よりオートフォーカスしても良い。例えば、焦点距離の値がワイド側の時は、将来光軸位置の測距点と、将来光軸位置の測距点の周辺にある複数の測距点と、の測距値を平均化し、オートフォーカスする。焦点距離の値がテレ側の時は、前述したように将来光軸位置の測距点の測距値をもとにオートフォーカスする。
なお、ステップS004でのオートフォーカス時のフォーカス群の駆動速度について述べていなかった。フォーカス群の駆動速度は、現在光軸位置のフォーカス群3の繰出量βと、将来光軸位置のフォーカス群3の繰出量と、の繰出量の差分値を、式(2)のTで除算した値である。又は、フォーカス群の駆動速度は任意に設定した値でも良い。
なお、三脚装置30に位置予測手段の有効又は無効を選択できる設定部を設け、有効の時は位置予測手段を動作させ、無効の時は位置予測手段を非動作としても良い。
上記実施例4の効果として、位相差AFを備えた撮影装置において、オペレータが意図する被写体を測距し、パンチルトの回動中や回動の停止直後において鮮明な映像を提供することができる。
[実施例5]
以下、図14と図20を参照して本発明の第5の実施例について説明する。
まず図20における撮影システムの構成図を説明する。上述した実施例4と同じ部分は説明を省略する。
本実施例における撮像装置のシステムは、図19に示した実施例4の撮影装置の構成に対し、撮像部16に固定され撮像部16に対してパンチルト回動する測距駆動部34を有することと、測距部20は該測距駆動部34に固定されていることが異なる。測距駆動部34は、三脚のパンチルト回動とは独立して回動する。測距駆動部34は、エンコーダやポテンショメータを備え、測距部20のパン位置情報とチルト位置情報とを後述する制御部35に送信する。測距駆動部34は、撮像部16に連結されているため、三脚装置30がパンチルト回動すると、それに伴い回動する。また測距駆動部34のパンチルト回動の指令信号は、制御部35の位置予測手段の算出結果に基づき、制御部35から送信される。
撮像装置は、システム全体を制御する制御部35を有する。制御部35は、CPU、ROM、RAMの機能を備え、三脚装置30からの検出値(パン検出手段31の値あるいはチルト検出手段の値)が入力されると、記憶されたROMのプログラム処理を実行することで、フォーカス駆動部4と測距部20と測距駆動部21等を駆動制御する。
三脚装置30から制御部35に、パン検出手段31及びチルト検出手段32の検出値が入力されていない時について説明する。この時、撮像部16はパンチルト回動していない。検出値が入力されていない時、制御部35より測距駆動部34に指令信号を送り、測距部20の光軸方向が、撮像部16の光軸方向と一致するよう駆動制御する。測距部20は、一定時間毎に被写体を測距しており、測距値をもとにオートフォーカスする。
次に、図14を参照して、パンチルト回動の指令信号が入力されている場合における制御部35の処理フローについて説明する。
ステップS101では、制御部35は三脚装置30からの検出値を読み込む。制御部35は、パン速度情報とチルト速度情報と、あるいはチルト位置情報とをRAMに記憶する。更に制御部35はフォーカス位置情報を読込み、RAMに記憶し、ステップS102へ移行する。
ステップS102では、制御部35内の位置予測手段より将来光軸位置を算出する。実施例5における将来光軸位置の定義は、実施例2と同様に、実施例2の式(18)、式(19)で求められるパン角θ'R、チルト角θ'Sを、将来光軸位置とする。すなわち、実施例5における将来光軸位置は、撮像部16を基準座標とする、式(18)、(19) で求められるパン角θ'R、チルト角θ'Sの位置とする。
ステップS103では、撮像部16の光軸方向と測距部20の光軸方向との角度差が、パン方向の角度差θ'R、チルト方向の角度差θ'Sとなるよう、制御部35から指令信号を測距駆動部34に送信し、駆動制御する。測距部20の光軸方向が、将来光軸位置と一致した時、測距部20は測距する。続いて、ステップS104へ移行する。
ステップS104では、測距された測距値をもとにオートフォーカスする。
なお前述の説明では、測距駆動部21によって回動する測距部20は、雲台装置のパンチルト回動とは独立して回動するため、撮影画面内と撮影画面外とを測距し、オートフォーカスすることができる。別の制御方法として、将来光軸位置が撮影画面外の時は、測距部20によって測距し、オートフォーカスをし、将来光軸位置が撮影画面内の時は、実施例1に示す測距部14によって測距し、オートフォーカスしてもよい。
なお、本実施例においても実施例2と同様に、説明の簡略化のために、撮像光学部の光軸と測距部の光軸に生ずる視差を考慮せずに説明したが、さらに高精度で測距位置を特定する場合は、視差の影響を考慮して測距部の光軸方向を設定することが好ましい。
なお、本実施例においては、測距部20は一対のラインセンサであったが、多点測距を可能とする複数の対のラインセンサでもよい。例えば、複数のラインセンサで被写体を測距し、複数の測距値を平均化し誤差を最小にする。
上記実施例5の効果として、測距部20が測距駆動部34によって、パンチルト回動可能なことより、撮像部16の撮影画面外を測距できる。よって、三脚30の高速回動中において、鮮明な映像を提供することができる。
[実施例6]
以下、図17、18、及び21を参照して本発明の第6の実施例について説明する。
実施例6の撮影システムの構成を、図21に示す。図19で示した実施例4の雲台装置のシステム構成と類似する構成を有するが、本実施例の撮像部撮像部16は測距部14を持たず、本実施例における画像処理部8は合焦の状態を検出する合焦検出部として機能し、CCD6から得られた画像信号のコントラストの評価は、画像を複数の領域に分割したそれぞれの領域に対して個別に評価することが可能であることが異なる。
三脚装置30から制御部33に、パン検出手段31及びチルト検出手段32の検出値が入力されていない時について説明する。この時、撮像部16はパンチルト回動していない。画像処理部8のコントラストAFは、撮影画面上の光軸中心近傍の映像をもとに、オートフォーカスする。
次に、図13を参照して、パンチルト回動の指令信号が入力されている場合における制御部33の処理フローについて説明する。 ステップS201では、制御部33で三脚装置30からの、検出値が検出される。制御部33は、パン速度情報とチルト速度情報と、あるいはチルト位置情報とをRAMに記憶する。更に制御部33はフォーカス位置情報とズーム位置情報とを読込み、RAMに記憶し、ステップS202へ移行する。
ステップS202では、制御部33内の位置予測手段より将来光軸位置を算出する。実施例6における将来光軸位置は、実施例4と同じ算出方法、算出結果である。詳細はステップS002、S003と同じである。続いて、ステップS203へ移行する。
ステップS203では、まず撮影画面上の将来光軸位置近傍をコントラストAF範囲と設定し、コントラストAFを行う。例えば、図18でいうと左上にある長方形の実線枠が、将来光軸位置近傍のコントラストAF範囲である。
また、将来光軸位置が、図18の点Pに示す位置である場合、点P近傍にある撮影画面上の所定の範囲(図14中に破線枠で示した範囲)をコントラストAF範囲と設定し、コントラストAFを行う。または、図18の点Pに示す位置である場合、コントラストAFを行わないことを選択するようにしてもよい。
上記実施例6の効果として、コントラストAF方式の撮影装置において、オペレータが意図する被写体を測距し、パンチルトの回動中や回動の停止直後において鮮明な映像を提供することができる。
上記した実施例1乃至6において、合焦のターゲットとなる被写体は撮影画面上の中心位置(光軸位置)にある場合を例として記載した。しかし、合焦のターゲットとなる被写体が存在する「光軸位置」と記載している位置は、光学系(撮像光学部)の光軸上の位置である必要は無く、撮影画面内の特定の合焦を行う対象位置(合焦対象領域、合焦領域、合焦位置)であれば良い。つまり、上記実施例は、合焦領域(合焦対象領域)が光軸上に存在している場合の実施例であり、上記実施例における光軸位置は、全て撮影画面内の特定の合焦領域(合焦対象領域)と書き換えても良い。従って、本実施例において合焦対象となる領域(合焦領域)は、上記実施例と同様に光軸上であっても良いし、軸外(光軸とは異なる位置)の特定の位置であっても良い。
さらに、上記した実施例1乃至6においては、パンチルト回動中のズーム操作はないことを前提として説明した。しかし、本発明はパンチルト回動中にズームが固定された撮影に限定されることはなく、パンチルト回動中にズーム操作が伴う場合であっても、ズーム操作による画角変化速度を考慮することにより、本発明の作用効果を享受できることに留意されたい。つまり、図4に示した制御部15の処理フローにおいて、サンプリングタイム毎にズーム情報(焦点距離)を読込むため、このズーム情報(焦点距離)に基づいて式(11)、(12)から、画角の変動(速度)を考慮した本発明の適用が可能である。
3 フォーカス群
4 フォーカス駆動部
5 撮像光学部
10 パン駆動部
11 チルト駆動部
14 測距部
15 制御部
16 撮像部

Claims (12)

  1. ォーカス群を有する撮像光学部と、
    前記フォーカス群を駆動するフォーカス駆動部と、
    該フォーカス駆動部を制御する制御部と、
    撮影画像内の所定の合焦領域の被写体に対する合焦状態を検出する合焦検出部と、
    前記撮像光学部をパン回動及びチルト回動すパンチルト手段と、
    前記パンチルト手段パン回動速度、前記パンチルト手段のチルト回動速度、前記パンチルト手段のチルト位置及び前記撮像光学部の焦点距離に基づき、所定時間後に撮影画像内の所定の合焦領域で撮影されることになる方向に対応する現在の撮影画像内での位置である将来合焦位置を求める位置予測手段と、
    を有する撮影システムであって、
    前記制御部は、パン及びチルト回動がされていない場合は、撮影画像内の前記所定の合焦領域に対する前記合焦検出部からの合焦情報に基づいて前記フォーカス駆動部を制御し、パン又はチルト回動がされている場合は、前記位置予測手段により求められた将来合焦位置にある合焦領域の被写体に対する、前記合焦検出部により検出された合焦状態に基づいて、前記フォーカス群を駆動するように前記フォーカス駆動部を制御する、
    ことを特徴とする撮影システム。
  2. 前記合焦検出部は、位相差検出方式の焦点調整手段である複数の対のラインセンサを含む測距部であり、
    前記制御部は、前記将来合焦位置に最も近い位置に対応する前記位相差検出手段により検出された測距値に基づき、前記フォーカス群を駆動するように前記フォーカス駆動部を制御する
    ことを特徴とする請求項1に記載の撮影システム。
  3. 前記撮影システムは、前記撮像光学部を経由した光束を受光し、光電変換して画像信号を生成する撮像素子を有し、
    前記合焦検出部は、該画像信号に基づき画像の複数の領域についてコントラストを評価する画像処理部であり、
    前記制御部は、前記将来合焦位置に最も近い位置のコントラストの評価に基づき、前記フォーカス群を駆動するように前記フォーカス駆動部を制御する
    ことを特徴とする、請求項1に記載の撮影システム。
  4. 前記将来合焦位置は、前記所定時間後に光軸位置で撮影されることになる方向に対応する現在の撮影画像内での位置である将来光軸位置であって、
    前記撮像光学部の焦点距離をf(mm)、前記パンチルト手段のパン回動速度をR(deg/s)、前記パンチルト手段のチルト回動速度をS(deg/s)、前記撮像素子の水平方向のイメージサイズをy(mm)該撮像素子の垂直方向のイメージサイズをy(mm)、チルト角度をλ(deg)、任意の時間をT(s)、現在の該撮像光学部の光軸位置を原点としてXY面(−1≦x≦1、−1≦y≦1)で画角を定義したとき、将来光軸位置の座標(X1、Y1)は、
    Figure 0005656507
    Figure 0005656507
    ここで、
    Figure 0005656507
    であることを特徴とする請求項2又は3に記載の撮影システム。
  5. 前記合焦検出部は、位相差検出方式の焦点調整手段で少なくとも一対以上のラインセンサを含む測距部であり、
    該測距部は、前記パンチルト手段とは独立して、前記撮像光学部の光軸に対してパン回動及びチルト回動をすることが可能な測距駆動部に設置され、
    前記将来合焦位置は、記所定時間後の前記撮像光学部の光軸方向の角度差であり、
    前記制御部は、前記測距部の光軸方向が、前記所定時間後の前記撮像光学部の光軸方向となるように、前記角度差に基づいて前記測距駆動部を駆動した後、前記測距部により検出された測距値に基づき、前記フォーカス群を駆動する、
    ことを特徴とする請求項1に記載の撮影システム。
  6. 前記測距駆動部のチルト回動軸は前記パンチルト手段のチルト回動軸と同じ方向であり、前記測距駆動部の前記チルト回動軸と前記撮像光学部の光軸方向に垂直な方向を前記測距駆動部のパン回動軸と定義し、前記撮像光学部の光軸方向のチルト角を0及びパン角を0と定義し、前記パンチルト手段のパン回動速度をR(deg/s)、前記パンチルト手段のチルト回動速度をS(deg/s)、任意の時間をT(s)、前記パンチルト手段のチルト角度をλ(deg)とするとき、前記制御部は、前記測距駆動部のパン角θ'R、チルト角θ'Sが、
    Figure 0005656507
    Figure 0005656507
    となるように前記測距駆動部を駆動した後、前記測距部により検出された測距値に基づき、前記フォーカス群を駆動する、
    ことを特徴とする請求項5に記載の撮影システム。
  7. 現在の前記フォーカス群の位置から至近端または無限端まで最大駆動速度で駆動したときに必要な時間のうちの長い方の時間をT1(s)、前記測距部に光束が入射してから合焦位置を算出するまでの処理時間をT2(s)、としたとき、前記任意の時間Tは、
    T=T1+T2
    であることを特徴とする請求項4又は6に記載の撮影システム。
  8. 前記時間T1(s)は、現在の前記フォーカス群の位置から至近端または過焦点距離の位置まで最大駆動速度で駆動したときに必要な時間のうちの長い方の時間である、ことを特徴とする請求項7に記載の撮影システム。
  9. 前記パンチルト手段は、チルト駆動するチルト駆動部、パン駆動するパン駆動部、チルト回動速度及びチルト位置を検出するチルト検出部、パン回動速度を検出するパン検出部を有する雲台装置であり、
    該雲台装置は、前記撮像光学部の駆動及び該雲台装置のパン回動及びチルト回動の駆動を遠隔操作する遠隔操作装置を有する、
    ことを特徴とする、請求項1乃至8のいずれか1項に記載の撮影システム。
  10. 前記パンチルト手段は、チルト回動速度及びチルト位置を検出するチルト検出部と、パン回動速度を検出するパン検出部と、を有する三脚装置であることを特徴とする、請求項1乃至8のいずれか1項に記載の撮影システム。
  11. 映像を表示する画像表示部を備え、前記位置予測手段で予測した前記将来合焦位置を該画像表示部に表示することを特徴とする請求項1乃至10のいずれか1項に記載の撮影システム。
  12. 前記位置予測手段の有効又は無効を選択する選択手段を有することを特徴とする請求項1乃至11のいずれか1項に記載の撮影システム。
JP2010183999A 2010-08-19 2010-08-19 撮影システム Active JP5656507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183999A JP5656507B2 (ja) 2010-08-19 2010-08-19 撮影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183999A JP5656507B2 (ja) 2010-08-19 2010-08-19 撮影システム

Publications (2)

Publication Number Publication Date
JP2012042728A JP2012042728A (ja) 2012-03-01
JP5656507B2 true JP5656507B2 (ja) 2015-01-21

Family

ID=45899118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183999A Active JP5656507B2 (ja) 2010-08-19 2010-08-19 撮影システム

Country Status (1)

Country Link
JP (1) JP5656507B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326631B2 (ja) * 2014-03-28 2018-05-23 パナソニックIpマネジメント株式会社 撮像装置
EP3542218B1 (en) * 2016-11-21 2021-03-17 Nokia Technologies Oy Method and apparatus for calibration of a camera unit
JP6858059B2 (ja) * 2017-04-04 2021-04-14 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP6891071B2 (ja) 2017-08-07 2021-06-18 キヤノン株式会社 情報処理装置、撮像システム、撮像方法及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147804A (ja) * 2005-11-25 2007-06-14 Seiko Epson Corp 動画撮影装置、制御方法および制御プログラム
JP4887828B2 (ja) * 2006-02-21 2012-02-29 カシオ計算機株式会社 デジタルカメラ

Also Published As

Publication number Publication date
JP2012042728A (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP4846004B2 (ja) 撮影システムおよびレンズ装置
US8754979B2 (en) Focus adjustment device and imaging device
JP6788348B2 (ja) 光学制御装置、光学機器、コンピュータープログラムおよび制御方法
JP4589261B2 (ja) 監視カメラ装置
JP5178678B2 (ja) 撮影システム及びレンズ装置
US8861948B2 (en) Image pickup apparatus
US20070071429A1 (en) Digital camera with tiltable image sensor
JP6027308B2 (ja) 撮影装置およびその制御方法
JP5216137B2 (ja) カメラおよびカメラの制御方法
JP5656507B2 (ja) 撮影システム
JP2015045676A (ja) 撮影装置およびカメラシステム
JP2020134904A (ja) 撮像装置、撮像装置の制御方法、プログラム、および、記憶媒体
US8773576B2 (en) Image pickup system, including measuring unit
US20070058962A1 (en) Lens apparatus
JP2020144158A (ja) 撮像装置及びその制御装置
US11320725B2 (en) Projection type display apparatus, projection type display system, control method of projection type display apparatus, and storage medium
JP4363070B2 (ja) カメラシステム
US9083955B2 (en) Three-dimensional image pickup system
JP7057200B2 (ja) 撮像装置
JP2017223767A (ja) 撮像装置
JP2010085699A (ja) オートフォーカスシステム
KR102072496B1 (ko) 테이블 탑 디스플레이 장치의 해상도 측정 장치, 이를 이용한 해상도 측정 방법
JP2011247988A (ja) 撮像装置
JP2007240566A (ja) 焦点検出装置、光学装置、カメラ。
JP2981481B2 (ja) 自動合焦手段を有するビデオカメラ

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120730

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120831

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R151 Written notification of patent or utility model registration

Ref document number: 5656507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151