JP5654474B2 - サテライト傾斜コイルを持つ磁気共鳴撮像システム - Google Patents

サテライト傾斜コイルを持つ磁気共鳴撮像システム Download PDF

Info

Publication number
JP5654474B2
JP5654474B2 JP2011539154A JP2011539154A JP5654474B2 JP 5654474 B2 JP5654474 B2 JP 5654474B2 JP 2011539154 A JP2011539154 A JP 2011539154A JP 2011539154 A JP2011539154 A JP 2011539154A JP 5654474 B2 JP5654474 B2 JP 5654474B2
Authority
JP
Japan
Prior art keywords
coil
satellite
coils
saddle
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011539154A
Other languages
English (en)
Other versions
JP2012510846A (ja
Inventor
ヤン コニン
ヤン コニン
ヒェラルドゥス ビー ジェイ ムルデル
ヒェラルドゥス ビー ジェイ ムルデル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2012510846A publication Critical patent/JP2012510846A/ja
Application granted granted Critical
Publication of JP5654474B2 publication Critical patent/JP5654474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56572Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、磁気共鳴撮像システムに関する。
磁気共鳴映像法(MRI)は、先例のない組織コントラストを用いて人体といった対象物の断面表示を可能にする従来の撮像技術である。MRIは、核磁気共鳴(NMR)の原理に基づかれる。これは、分子に関する顕微鏡的な化学及び物理情報を得るために科学者により使用される分光技術である。NMR及びMRIの基礎は、非ゼロスピンの原子核が、磁気モーメントを持つという事実によるものである。医学画像において、通常核水素原子が調査される。なぜなら、これらが、体において高濃度で存在するからである。例えば、水として存在する。強いDC磁場(B場)が印加される場合、素粒子の核回転は共鳴周波数で共振することができる。磁気共鳴(MR)周波数は、磁束のレベルにより決定される。MRIスキャナにおいて、磁場は、空間における特定の位置でのみ選択された共鳴周波数と整合する。これらの共振位置をステップ毎に変化させることにより、測定されたMR信号が、画像へと再構成されることができる。
必要とされる強いDC磁場は通常、超電導磁石により生成される。1つの位置でのみ所与の無線周波数と整合するようこれらの磁場を変化させるため、傾斜磁場コイルを用いて傾斜磁場が生成される。これにより、傾斜磁場は、スキャンを実現するために、時間にわたり変化することができる。傾斜磁場コイルにおける周波数範囲は、低く、最高10kHzに達する。
円筒状MRIシステムに関するシールド傾斜コイルはほとんど、円筒状内側コイルと、より大きい半径にある円筒状シールドコイルとから成り、x、y及びzコイルは通常、別々の層において構成される。更に、RF(無線周波数)体コイルは通常、有効なRF場生成を可能にする特定の放射厚みを持つ傾斜コイルの内部に配置される。従って、MRIスキャナにおいてスキャンされる対象物、例えば患者にとって利用可能な正味の空間は、カバーを含むRFコイルの内側半径により決定される。傾斜コイルの内側半径を増加させることは、傾斜磁場当たりの必要な入力電力、及び従って、これを駆動する傾斜アンプのコストを大幅に上昇させる。従って、コストと利用可能な患者空間との間でトレードオフがなされなければならない。
例えば、国際公開第WO2008/053451A1号は、患者の快適さを有しない傾斜コイルを有するMRシステムを開示する。この傾斜コイルは、ボアタイプシステムにおける中央軸から異なる距離に配置される第1のコイル部と第2のコイル部とを有する。
本発明の目的は、改良された傾斜コイルを有する改良されたMRシステムを与えることである。
本発明は、主磁石を有する磁気共鳴撮像システムに関し、上記主磁石が磁石ボアを有し、上記ボアは、上記主磁石の主磁場に平行な長手軸を持ち、上記磁石ボアが、傾斜コイルシステム有し、上記傾斜コイルシステムは、第1のサテライトコイル及び内側コイルを有し、上記第1のサテライトコイルが、上記磁石ボアにわたり対向して構成されるサドルコイルの少なくとも1つのペアを有し、上記内側コイルは、上記磁石ボアにわたり対向して構成されるサドルコイルの少なくとも2つのペアを有し、上記内側コイルが、上記中央軸から、上記第1のサテライトコイルより大きい半径距離に配置され、上記第1のサテライトコイル及び上記内側コイルは、段階状のコイル構造体を形成する。
本発明は、第1のサテライトコイル及びRF体コイル用の内側コイルにより形成されるステップにおいて充分な空間を残しつつ、これが可能であればどこででも、傾斜コイル導体が小さな半径に保たれるという利点を持つ。こうして、効率が最適化され、傾斜アンプのコストが低減される。RFコイルが配置されることができる中心付近において、内側半径はより大きくなり、一方、1つのコイル端部において、この半径は好ましくは、RFコイル半径にほぼ等しくされる。更に、第1のサテライトコイル上にサドルコイルのペアを空間的に分割及び分散させることにより、非常に効率的なx及び/又はy傾斜コイルシステムが提供されることができる。即ち、MRボアにおける傾斜磁場分布が最適な態様で維持される。なぜなら、内側コイルが追加的に存在する一方、傾斜コイルシステムの自己インダクタンスは低下されるからである。更に、第1のサテライトコイル及び内側コイルが段階状の構造体を形成するので、第1のサテライトコイルより大きいその直径を持つ内側コイルにより形成される凹部に傾斜コイルシステムの「開放端」からRF体コイルが容易に挿入されることができる。ここで、「開放端」は、第1のサテライトコイルが配置される側に対向する傾斜コイルシステムの端として理解される。第1のサテライトコイル及び内側コイルが必ずしも重なる必要があるわけではない点に留意されたい。しかしながら、第1のサテライトコイル及び内側コイルは、部分的に重なることができる。
本発明の実施形態によれば、このシステムは、第2のサテライトコイルを更に有し、上記第1のサテライトコイルが、上記第2のサテライトコイルから空間的に分離され、上記第2のサテライトコイルは、上記磁石ボアにわたり対向して構成されるサドルコイルの少なくとも1つの追加的なペアを有し、上記内側コイルが、上記中央軸から、上記第2のサテライトコイルより大きい直径に配置され、上記空間的に分離された第1及び第2のサテライトコイル及び上記内側コイルは、凹部を形成する。
好ましくは(しかし必ずしもその必要はない)、内側コイルだけでなく、第1及び第2のサテライトコイルが対称的な構成をとることにより、非常に効率的な傾斜コイルシステムが与えられることができる。更に、好ましくは、傾斜コイルシステムのX及びY軸はそれぞれ、第1及び第2の空間的に分離されたサテライトコイル及び内側コイルを有する。
本発明の実施形態によれば、上記システムが、シールドコイルを更に有し、上記シールドコイルは、上記内側コイル及び上記主磁石の間に空間的に構成され、上記シールドコイルが、上記長手軸の方向において上記第1及び/又は上記第2のサテライトコイルに重なる。
第1及び/又は第2のサテライトコイルが、対象物が撮像されることになる磁石ボアの均一な磁場領域において所定の傾斜磁場を生成するように主に機能する一方、シールドコイルは、サテライトコイルにより生成される磁場をキャンセルする磁場を生成して、シールドコイルを囲む超電導磁石の方へ傾斜コイル磁場が漏れることを防止するものとして機能する。シールドコイルは、これも通常、サドルコイルの2つのセットを有するが、第1及び/又は第2のサテライトコイルと重なるので、即ち、互いからそむけられるサテライトコイルエッジが互いに間隔を置かれる距離より、主磁石の長手軸の方向のシールドコイルの「長さ」が大きい又は等しいので、まるで2つの従来技術の傾斜及びシールドコイルが適用される場合のように、サテライトコイル及びシールドコイルにより共通にカバーされる完全なボリュームにわたり同じか又は更に改善された効果を持つ傾斜コイルシステムが与えられる。
既に上述した様に、本発明の実施形態によれば、空間的に分離されたサテライトコイル及び内側コイルが凹部を形成する。この場合、無線周波数コイルは凹部に配置される。
本発明の実施形態によれば、内側コイルは、空間的に分離された第1及び第2のサテライトコイルにより形成されるすきまにわたり延在する。この拡張により、撮像ボリュームにおいてMRボア内に生成される正味の傾斜磁場は、従来において既知の2つの連続して構成されるサドルコイルセットを使用することにより生成される傾斜磁場に類似することになる。結果として、傾斜磁場効率は維持されつつ、すでに前述した様に例えばRF体コイルを収容するのに使用されることができる凹部が、MRボアの中心に与えられる。
本発明の実施形態によれば、内側コイルは、第1及び/又は第2のサテライトコイルにわたり延在する。例えば、互いからそむけられるサテライトコイルエッジが互いに間隔を置かれる距離より、主磁石の長手軸の方向の内側コイルの「長さ」が大きいか等しい。これは、サテライトコイル構成の可能性としての効率性の減少が、サテライトコイルにわたり延在する内側コイルの追加的な存在により補償されることを更に確実にする。
本発明の追加的な実施形態によれば、上記第1及び/又は第2のサテライトコイルが、好ましくは傾斜した又は他の態様で垂直な構造フランジにわたり上記内側コイル及び/又は上記シールドコイルに電気的に直列に接続され、上記サテライトコイルの上記サドルコイルを形成する上記電気導体は、上記電気的接続部を形成する上記フランジにわたり巻かれる。
以下において、「構造フランジ」は、MR傾斜コイルシステムそのものの空間構造の一部として理解される。例えば、MR傾斜コイルシステムの電気導体が樹脂タイプのプラスチック支持部に埋め込まれる場合、構造フランジは、上記プラスチック支持部の傾斜した又は垂直な表面として理解される。
好ましくは傾斜した構造フランジを介して、第1及び/又は第2のサテライトコイルと、内側コイル及び/又はシールドコイルとを直列接続することは、傾斜コイル効率における損失を生じさせることなく、z方向、即ち主磁石の長手軸方向においてサテライトコイルの拡張部が更に減らされることができるという利点を持つ。結果として、傾斜コイルシステムの総空間寸法が減らされ、これは、患者の快適さを更に強化する。なぜなら、患者(又は一般に、撮像される対象物)を収容するMRボアにより多くの空間が与えられるからである。好ましくは、傾斜コイル効率を改善するために、上記フランジが、互いに向かって及び上記磁石ボアの上記中心に向かって傾斜され、上記フランジは、上記サテライトコイルの上記対向されるエッジ上に構成される。
本発明の実施形態によれば、上記フランジが、互いに向かって及び上記磁石ボアの上記中心から離れて傾けられ、上記フランジは、互いを指す上記第1及び第2のサテライトコイルの上記エッジ上に構成される。
本発明の実施形態によれば、上記第1及び/又は第2のサテライトコイルは、対になった電気接続にわたり上記内側コイル及び/又は上記シールドコイルに電気的に直列に接続され、上記電気接続が、上記サドルコイルにより形成される上記表面から垂直に延在し、一対の電気接続の上記2つの電気接続は、反対向きの電流を搬送する。これは、電気接続を通る電流が相互に補償する磁場を生成し、その結果、傾斜コイルにより生成され傾斜磁場が不必要な態様で妨げられないという利点を持つ。
主磁石及び傾斜コイルシステムを有するMRシステムの横断面の概略図である。 傾斜コイルシステムを与えるために様々な種類のコイルを結合するステップを示す更なる概略図である。 傾斜コイルシステムにおける様々なサドルコイルの相互接続を説明する概略図である。 MR傾斜コイル構成を示す更なる概略図である。 様々な種類の傾斜コイルセットアップの構成を示す図である。 様々な種類の傾斜コイルセットアップの構成を更に示す図である。
以下、本発明の好ましい実施形態が、図面を参照して、例示にすぎないものを介してより詳細に説明される。
以下、類似する要素は、同一の参照番号により示される。更に、以下において、一般性を失うことなしに、2つのサテライトコイルが対称的な態様において使用されると仮定される。しかしながら、本発明の基礎をなしている基本的な原理は、ただ1つのサテライトコイルと内側コイルと用いても使用されることができる。
図1は、主磁石102及び傾斜コイルシステムを有するMRシステム100の横断面の概略図である。以下において、アンプ、フィルタ、受信コイル112といったオプションの様々な種類の電子機器だけでなく、その磁石ボアと共に主磁石102を搬送し、傾斜コイルを搬送する支持部を有する構造的構成として、MRシステムが理解される。
図1から分かるように、MRシステム100は主磁石102を有する。この磁石は、磁石ボアにおける撮像ボリューム120内に均一な主磁場Bを生成するよう構成される。ここで、撮像される対象物が、少なくとも撮像ボリューム120内に配置されることになる。主磁場は、z方向118、即ち主磁石102の長手軸方向における磁石ボア内に延在する。
MRシステム100は更に、x、y及びz傾斜コイルシステムを有する。ここで、図1では、x傾斜コイルシステムだけが示される。y傾斜コイルシステムは、x傾斜コイルシステムに対して90°回転される。x傾斜コイルシステムは、これは以下「傾斜コイルシステム」と表されるが、互いに空間的に切り離される2つのサテライトコイル108及び110を有する。図1では図示省略されるが、各々のサテライトコイル108及び110により搬送されるサドルコイルのペアが存在する。
空間的に分離されたサテライトコイル108及び110は、凹部を形成する。この凹部に、例えば体コイル112といった無線周波数受信コイルが配置される。体コイル112の目的は通常、撮像される対象物へのRF励起パルスの送信と、撮像される対象物から生じるRF信号の受信とである。
凹部の存在が原因で、体コイル112がMRボア内に配置されることができる中央軸118からの半径方向距離は、より大きくなる。なぜなら、これは、連続的な傾斜コイル面が与えられる傾斜コイル構成が提供される場合に当てはまるからである。このコイル面の上には、体コイルが配置されなければならない。この場合、撮像ボリューム120の周りの利用可能な半径方向の空間を増加させるため、傾斜コイルは、中央軸118からより大きい半径方向距離のところに配置されることを必要とする。しかしながらこれは、斯かる傾斜コイルの自己インダクタンスが増加し、従って、個別の傾斜磁場が切り替えられることができる最大周波数に関して傾斜システムの品質に直接影響を与えるという不利な点を持つ。このスイッチング周波数は、コイルに格納されるエネルギー及び従ってシステムの自己インダクタンスに反比例する。
サテライトコイル108及び110が撮像ボリューム120を完全にカバーするわけではないので、撮像ボリューム120内でMR撮像目的で必要とされる傾斜磁場が、必要とされるようには適合可能ではない場合があるという問題が生じる。このため、中央軸118からサテライトコイル108及び110より大きい半径方向の距離に配置される追加的な「内側コイル」114が与えられる。この内側コイル114は、空間的に分離されたサテライトコイル108及び110により形成されるすきまにわたり延在する。サテライトコイル108及び110と組み合わされる内側コイル114は、完全な撮像ボリューム120にわたりMR撮像目的に必要な傾斜磁場の品質要件を満たす正味の傾斜場を与える。図1における撮像ボリューム120のサイズが概略的に図示されているに過ぎない点に留意されたい。実際は、撮像ボリュームのサイズは、内側コイル114の外側エッジを越えて長手軸118の方向に延在することができる。
図1には更に、シールドコイル106が示される。この目的は、既に詳細に上述した通りである。シールドコイル106は、内側コイル114と主磁石102の内側表面との間に空間的に配置される。この内側表面は、撮像ボリューム120の方へ向けられる。シールドコイル106は、サテライトコイル108及び110と重なり、長手軸の方向118において見られる。結果として、互いに向かって傾斜した態様で、又は撮像ボリューム120に向かって垂直な方を示す構造フランジ116が形成される。図1には示されないが、表面上に延在する電気接続、又は、サテライトコイル108及び110からシールドコイル106への傾斜した凹部116に含まれる電気接続が存在する。これは、後で更に詳細に説明されることになる。
図2は、傾斜コイルシステムを与えるために様々な種類のコイルを結合するステップを示す更なる概略図である。まず図2aには、2つのサテライトコイル108及び110が与えられ、X軸だけが示される。これらのサテライトコイル108及び110はそれぞれ、サドルコイルのセットを有する。例えば、サテライトコイル108は、サドルコイル200及びサドルコイル202を有する。この場合、これらの2つのサドルコイル200及び202は、図示省略された磁石ボアにわたり反対の位置に構成される。ある実施形態において、これらは、z方向における主磁石のアイソセンターを通り延在する長手軸118に対して鏡像対称的に構成される。この図は、サドルコイルの個別のターンを別々の短くされたターンとして示す点に留意されたい。これは、「理想的な電流分布」を算出する設計プロセスの結果である。実際には、サドルコイルのターンは、理想的な電流分布と密接に整合する態様で直列に接続される。基本的に、各サドルは、単一の電気リードイン及びリードアウトを持つ螺旋トポロジを得る。
同様に、サテライトコイル110は、サドルコイル204及びサドルコイル206を有する。この場合、これらの2つのサドルコイル204及び206も、磁石にわたり反対の位置に構成される。すべてのサドルコイルは、導体パターンのような指紋を持つ。サテライトコイル108及び110は、互いに離れて配置され、従って、各々の間に凹部を形成する。ここで、凹部は方向118において幅dを持つ。
第2に、内側コイル114が、図2bに与えられる。(方向118における)内側コイル114の幅は、サテライトコイル108及び110の対向するエッジが、z方向において互いに離れて間隔を置かれる距離と同じである。従って、内側コイル114は、サテライトコイル108及び110により形成される凹部と重なる。管のような内側コイル114も、上記サテライトコイルのパターン200〜206のような指紋と重なる。内側コイルは、サテライトコイルの直径より大きい直径を持つ。図2bから更に分かるように、内側コイル114もサドルコイル208のような指紋を有する。
サテライトコイル108及び110と内側コイル114とを組み合わせるか又ははめ込むことで、図2cに示される傾斜コイル構成210が生じる。
この構成210は更に、シールドコイル106を具備する。これは、図2dに詳細に示される。シールドコイルの目的は、サテライトコイル108及び110により生成される磁場をキャンセルする磁場を生成し、シールドコイル106を囲む超電導磁石102の方へ傾斜コイル場の漏れを防ぐことである。シールドコイル106も、サドルコイル212のような2つのセットの指紋を有する。
図2cの構成210及び図2dのシールドコイル106の組合せといったはめ込みが、構成214として図2eに示される。
図3は、傾斜コイルシステムにおける様々なサドルコイル302及び304の相互接続を説明する概略図である。傾斜コイルシステムはここでも、傾斜コイル構成300及びシールドコイル106を有する。この場合、傾斜コイル構成300は、MRシステムのz方向におけるアイソセンターを通りにこれに沿って延在する軸118からより小さな半径方向の距離に配置される。コイル構成300は、90°回転した位置に、互いに電気的に直列に相互接続される2つのサドルコイル302を有する。更に、コイル構成300は、270°回転した位置に、互いに電気的に直列に相互接続される2つの追加的なサドルコイル302を有する。これらの4つのサドルコイルは、MRシステムのy傾斜コイルを形成する。
同様に、シールドコイル106は、90°回転した位置に、互いに電気的に直列に相互接続される2つのサドルコイル304を有し、270°回転した位置に、互いに電気的に直列に相互接続される2つの追加的なサドルコイル304を有する。これらの4つのサドルコイル304は、MRシステムのy傾斜シールドコイルを形成する。
図3から更に分かるように、ある実施形態において、サドルコイル302及びサドルコイル304は、電気コネクタ306により互いに相互接続される。
図3は、合計8つのサドルを持つ従来の傾斜コイルのy傾斜コイルだけを示す点に留意されたい。この図は好ましくは合計12の相互接続されるサドルを持つべきである本発明とは互換性を持たないが、図3は、傾斜コイル構成の従来のサドルコイルの電気的相互接続に関する基本を記述的に示すものである。
図4は、斯かる電気コネクタ306がより詳細に示されるMR傾斜コイル構成を示す追加的な概略図である。図4におけるコイル構成は2つのサテライトコイル108及び110から構成され、これらのサテライトコイルにより、凹部が形成される。管状の内側コイル114は、サテライトコイル及び凹部を囲み、方向118(図4では見えない)において、凹部にわたり延在する。内側コイル114は、軸118からサテライトコイル108及び110より大きい半径方向の距離に空間的に配置される。
内側コイル114とサテライトコイル108及び110とは、図2dに示されるものと同様な4つのサドルコイル212を有する管状シールドコイル106により更に囲まれる。シールドコイルは、内側コイル114の直径より大きい直径を持つ。更に、z方向、即ち方向118におけるシールドコイルの幅は、サテライトコイル108及び110の外側エッジが互いに離れて配置される距離より大きい。シールドコイル106は、サテライトコイル108及び110に対して方向118において対称的に延在する。
電気導体306によりサテライトコイル110及びシールドコイル106を電気的に相互接続するため、図に示される構成の構造フランジが使用される。サテライトコイル110の各サドルコイルは、傾斜した構造フランジ116にわたりシールドコイル106のサドルコイル212に電気的に直列に接続される。ここで、サテライトコイル110のサドルコイルを形成する電気導体は、フランジ116にわたり巻かれ、こうして電気的接続部306が形成される。これらのフランジ116は、互いの方へ、及び、磁石ボアの中心の方へ傾斜される。
図5は、様々な種類の傾斜コイルセットアップの構成を示す図である。図5aに表される傾斜コイルセットアップは、図4に示されるセットアップと同一である。図5aの左の図は、MRシステムにおいて使用される異なる要素のいくつかの断面を示す。これらの要素は、主磁石102、シールドコイル106、内側コイル114及びサテライトコイル108及び110を有する。シールドコイル106の外側エッジを、それぞれサテライトコイル108及び110の外側エッジに接続する構造フランジ116が更に示される。
図5aの右側は、サテライトコイル108及び110、内側コイル114及びシールドコイル106を有する傾斜コイルセットアップにおいて使用される電気導体の概略的な表示である。図4と比較して図5aによりはっきり示されることができるように、サテライトコイル110のサドルコイルが、電気導体306を用いてフランジ116にわたり巻かれる。従って、サテライトコイル110及びシールドコイル106の間の単純な直列の電気的相互接続だけが与えられるのではなく、傾斜コイルシステムの自己インダクタンスを更に低下させることを可能にする拡張されたシールドコイルデザインが与えられる。
サテライトコイル108及び110が内側コイル114に電気的に直列に接続される電気接続は、図5aでは見えない。本発明の実施形態において、サテライトコイル108及び110は、対になった電気接続を介して内側コイル114に電気的に直列に接続され、この電気接続は、サテライトコイルのサドルコイルにより形成される表面から垂直に延在する。即ちこの延在は例えば、図5aにおける方向502におけるものである。一対の電気接続の2つの電気接続は、上記電流により生成される磁場に対してお互いを補償するため、反対向きの電流を搬送する。
図5aの実施形態と比較して、図5bに示される実施形態における違いは、サテライトコイルが、フランジにわたりシールドコイル106に電気的に相互接続されるのではなく、内側コイル114が、フランジ500にわたりシールドコイル106に電気的に相互接続される点にある。このため、方向118において見られる内側コイルの幅は、サテライトコイル108及び110が上記方向118において延在する領域より大きい。図5bの右側には、フランジ500がはっきり見られることができる。フランジの上では、内側コイル114のサドルコイルの電気導体がシールドコイル106のサドルコイルに巻かれて、接続される。
図6は、様々な追加的な種類の傾斜コイルセットアップの構成を更に示す。図6a、図6b及び図6cのダイヤグラムはここでも、MRシステムにおいて使用される異なる要素のいくつかの断面を示す。これらの要素は、主磁石102、シールドコイル106、内側コイル114及びサテライトコイル108及び110を有する。
図6aにおいて、サテライトコイル108及び110、内側コイル114及びシールドコイル106の間のすべての電気的相互接続は対になった電気接続により実現される。この電気接続は、個別のコイル106、108、110及び114のサドルコイルにより形成される表面から垂直に延在する。更に、図5bに表されるシナリオと同様に、方向118において見られる内側コイルの幅は、サテライトコイル108及び110が上記方向118において延在する領域より大きい。従って、内側コイルは、サテライトコイル108及び110にわたり延在する。
対照的に、図6bにおいて、内側コイル114は、空間的に分離されたサテライトコイル108及び110により形成されるすきまにわたり、方向118においてのみ、即ちz方向においてのみ延在する。にもかかわらず、サテライトコイル108及び110、内側コイル114及びシールドコイル106の間のすべての電気的相互接続は、対になった電気接続により実現される。この電気接続は、個別のコイル106、108、110及び114のサドルコイルにより形成される表面から垂直に延在する。
図6cにおいて、図6bに表される実施形態に追加的に、構造フランジ600が使用される。このフランジは、内側コイル114の外側エッジを、別の方を指すサテライトコイル108及び110の内側エッジにそれぞれ接続する。これらのフランジ600は、互いに向かって傾斜され、磁石ボアの中心から離れて傾斜される。ここで、サテライトコイル108及び110は、上記傾斜した構造フランジ600にわたり、内側コイル114に電気的に直列に接続され、ここで、サテライトコイルのサドルコイルを形成する電気導体は、電気的接続部を形成するフランジにわたり巻かれる。サテライトコイルとシールドコイルとの間、及び/又はシールドコイルと内側コイルとの間の電気的接続部は、対になった電気接続を用いて実現され、この電気接続は、個別のサドルコイルにより形成される表面から垂直に延在し、この場合、一対の電気接続の2つの電気接続は、反対向きの電流を搬送する。

Claims (8)

  1. 主磁石を有する磁気共鳴撮像システムであって、前記主磁石が、磁石ボアを有し、前記ボアは、前記主磁石の主磁場の方向に長手軸を持ち、前記磁気共鳴撮像システムが、前記磁石ボアに配置される傾斜コイルシステム有し、
    前記傾斜コイルシステムは、第1のサテライトコイル、第2のサテライトコイル、内側コイル、及びシールドコイルを有し、
    前記第1のサテライトコイルが、前記磁石ボアにおける前記長手軸に対して対向して構成されるサドルコイルの第1のペアを有し、
    前記第2のサテライトコイルは、前記磁石ボアにおける前記長手軸に対して対向して構成されるサドルコイルの第2のペアを有し、前記第2のサテライトコイルが、前記長手軸の方向において前記第1のサテライトコイルから空間的に分離され、
    前記内側コイルは、サドルコイルの2つのペアを有し、前記サドルコイルの2つのペアの各々が、前記磁石ボアにおける前記長手軸に対して対向して構成され、前記内側コイルは、前記長手軸の方向において空間的に分離された第1及び第2のサテライトコイルの間に位置し、
    前記シールドコイルが、前記内側コイルと前記主磁石との間に配置され、前記長手軸の方向において前記第1及び/又は第2のサテライトコイルと重なり、
    前記内側コイルが、前記空間的に分離された第1及び第2のサテライトコイルの間で凹部を形成するよう、前記長手軸から、前記空間的に分離された第1及び第2のサテライトコイルより大きい半径距離に配置され、
    前記第1のサテライトコイル及び/若しくは前記第2のサテライトコイル、又は前記内側コイルは、傾斜した構造フランジにわたり前記シールドコイルと電気的に相互接続され、前記第1のサテライトコイル及び/若しくは前記第2のサテライトコイルの前記サドルコイルを形成する電気導体、又は前記内側コイルの前記サドルコイルを形成する電気導体が、前記電気的接続部を形成する前記フランジにわたり巻かれる、磁気共鳴撮像システム。
  2. 無線周波数コイルが、前記凹部に配置される、請求項に記載の磁気共鳴撮像システム。
  3. 前記内側コイルが、前記空間的に分離された第1及び第2のサテライトコイルにより形成されるすきまにわたり延在する、請求項1又は2に記載の磁気共鳴撮像システム。
  4. 前記内側コイルが、前記長手軸の方向において、前記第1及び/又は第2のサテライトコイルにわたり延在する、請求項1乃至のいずれかに記載の磁気共鳴撮像システム。
  5. 前記第1及び/又は第2のサテライトコイルが、傾斜した構造フランジにわたり前記内側コイルに電気的に直列に接続され、前記第1及び/又は第2のサテライトコイルの前記サドルコイルを形成する電気導体は、前記電気的接続部を形成する前記フランジにわたり巻かれる、請求項1乃至のいずれかに記載の磁気共鳴撮像システム。
  6. 前記フランジが、互いに向かって及び前記磁石ボアの前記中心に向かって傾斜され、前記フランジは、前記第1及び第2のサテライトコイルの前記対向されるエッジ上に構成される、請求項に記載の磁気共鳴撮像システム。
  7. 前記フランジが、互いに向かって及び前記磁石ボアの前記中心から離れて傾けられ、前記フランジは、互いを指す前記サテライトコイルの前記エッジ上に構成される、請求項5又は6に記載の磁気共鳴撮像システム。
  8. 前記第1及び/又は第2のサテライトコイルが、対になった電気接続にわたり前記内側コイル及び/又は前記シールドコイルに電気的に直列に接続され、前記電気接続は、前記サドルコイルにより形成される表面から垂直に延在し、一対の電気接続の前記2つの電気接続が、反対向きの電流を搬送する、請求項1乃至のいずれかに記載の磁気共鳴撮像システム。
JP2011539154A 2008-12-04 2009-12-02 サテライト傾斜コイルを持つ磁気共鳴撮像システム Expired - Fee Related JP5654474B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08170660 2008-12-04
EP08170660.8 2008-12-04
PCT/IB2009/055452 WO2010064197A1 (en) 2008-12-04 2009-12-02 Magnetic resonance imaging system with satellite gradient coils

Publications (2)

Publication Number Publication Date
JP2012510846A JP2012510846A (ja) 2012-05-17
JP5654474B2 true JP5654474B2 (ja) 2015-01-14

Family

ID=41694656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011539154A Expired - Fee Related JP5654474B2 (ja) 2008-12-04 2009-12-02 サテライト傾斜コイルを持つ磁気共鳴撮像システム

Country Status (5)

Country Link
US (1) US9435869B2 (ja)
EP (1) EP2376933A1 (ja)
JP (1) JP5654474B2 (ja)
CN (1) CN102232193B (ja)
WO (1) WO2010064197A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435869B2 (en) * 2008-12-04 2016-09-06 Koninklijke Philips N.V. Magnetic resonance imaging system with satellite gradient coils
CN103383437A (zh) * 2012-05-02 2013-11-06 鸿富锦精密工业(武汉)有限公司 电源测试装置
US9355774B2 (en) * 2012-12-28 2016-05-31 General Electric Company System and method for manufacturing magnetic resonance imaging coils using ultrasonic consolidation
JP6366940B2 (ja) * 2014-01-09 2018-08-01 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
JP6341535B2 (ja) * 2014-04-30 2018-06-13 株式会社エム・アール・テクノロジー 画像撮像ユニット
WO2018033548A1 (en) 2016-08-15 2018-02-22 Koninklijke Philips N.V. Actively shielded gradient coil assembly for a magnetic resonance examination system
CN106610479B (zh) * 2017-01-03 2023-12-19 中国科学院苏州生物医学工程技术研究所 一种磁共振成像设备的梯度装置及系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022A (en) * 1854-06-06 Printing-
JPS5873850A (ja) 1981-10-28 1983-05-04 Shimadzu Corp 磁界発生用装置およびその製造方法
US5349318A (en) * 1990-10-04 1994-09-20 Ge Yokogawa Medical Systems, Limited Double type coil for generating slant magnetic field for MRI
US5365173A (en) 1992-07-24 1994-11-15 Picker International, Inc. Technique for driving quadrature dual frequency RF resonators for magnetic resonance spectroscopy/imaging by four-inductive loop over coupling
DE4230145C2 (de) * 1992-09-09 1996-09-05 Bruker Analytische Messtechnik NMR-Meßeinrichtung
DE4324021C2 (de) * 1993-07-17 1996-05-30 Bruker Analytische Messtechnik Therapietomograph
DE4422782C2 (de) * 1994-06-29 1998-02-19 Siemens Ag Aktiv geschirmte transversale Gradientenspule für Kernspintomographiegeräte
JPH0884716A (ja) * 1994-09-16 1996-04-02 Toshiba Corp 勾配磁場コイル
GB2295020B (en) * 1994-11-03 1999-05-19 Elscint Ltd Modular whole - body gradient coil
DE19527020C1 (de) * 1995-07-24 1997-02-20 Siemens Ag Tesserale Gradientenspule für Kernspintomographiegeräte
JP3654463B2 (ja) * 1996-03-29 2005-06-02 株式会社日立メディコ 磁気共鳴イメージング装置
JP3670452B2 (ja) * 1996-07-31 2005-07-13 株式会社東芝 磁場発生用コイルユニットおよびコイル巻装方法
AU2001287741A1 (en) 2000-09-26 2002-04-08 Koninklijke Philips Electronics N.V. Vertical field type mri apparatus with a conical cavity situated in the main magnet
DE10202986A1 (de) * 2002-01-26 2003-07-31 Philips Intellectual Property Spulensystem für eine MR-Apparatur sowie MR-Apparatur mit einem solchen Spulensystem
GB0204023D0 (en) * 2002-02-20 2002-04-03 Tesla Engineering Ltd Gradient coil structure for magnetic resonance imaging
DE10246310A1 (de) * 2002-10-04 2004-04-22 Siemens Ag Gradientenspulensystem und Magnetresonanzgerät mit dem Gradientenspulensystem
DE10246308B4 (de) * 2002-10-04 2006-07-06 Siemens Ag Magnetresonanzgerät mit einem Gradientenspulensystem
GB0223684D0 (en) * 2002-10-10 2002-11-20 Tesla Engineering Ltd Gradient coil structure for magnetic resonace imaging
CN100507593C (zh) * 2003-03-25 2009-07-01 西门子公司 磁场发生器及带有该磁场发生器的磁共振设备
DE102004005278B4 (de) * 2004-02-03 2008-09-11 Siemens Ag Verfahren zur Herstellung transversaler nichtzylindrischer Gradientenspulen mit zumindest einem divergenten Abschnitt
US7605587B2 (en) * 2004-11-29 2009-10-20 Hitachi Medical Corporation Magnetic resonance imaging apparatus
JP5278903B2 (ja) 2006-04-14 2013-09-04 株式会社日立メディコ 磁気共鳴イメージング装置及び傾斜磁場コイル
JP4857061B2 (ja) * 2006-09-26 2012-01-18 株式会社日立メディコ 傾斜磁場コイル及びそれを用いた核磁気共鳴断層写真装置
WO2008053451A1 (en) 2006-11-03 2008-05-08 Koninklijke Philips Electronics N.V. Split gradient coil for mri
US9435869B2 (en) * 2008-12-04 2016-09-06 Koninklijke Philips N.V. Magnetic resonance imaging system with satellite gradient coils

Also Published As

Publication number Publication date
EP2376933A1 (en) 2011-10-19
JP2012510846A (ja) 2012-05-17
CN102232193A (zh) 2011-11-02
CN102232193B (zh) 2014-05-14
US9435869B2 (en) 2016-09-06
WO2010064197A1 (en) 2010-06-10
US20110227573A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5715116B2 (ja) 磁気共鳴システム用モザイク式シム・コイル
JP5654474B2 (ja) サテライト傾斜コイルを持つ磁気共鳴撮像システム
JP5675921B2 (ja) 高周波コイルおよびそれを用いた磁気共鳴撮像装置
JP5685476B2 (ja) 磁気共鳴イメージング装置
JP5260629B2 (ja) 分割勾配コイル及びこれを用いるpet/mriハイブリッドシステム
US9759788B2 (en) Magnetic resonance coil, device and system
KR101424976B1 (ko) 위상 배열형 고주파 코일 및 이를 채용한 자기공명영상 장치
US6930482B2 (en) Time-variable magnetic fields generator for a magnetic resonance apparatus
JP5225472B2 (ja) 高周波コイルユニット及び磁気共鳴撮像装置
US20100060282A1 (en) Three-dimensional asymmetric transverse gradient coils
US20050258832A1 (en) Time-variable magnetic fields generator and magnetic resonance apparatus embodying same
US7230427B2 (en) Magnetic resonance apparatus with an RF antenna unit and a gradient coil unit
US6351123B1 (en) Gradient coil system for a magnetic resonance tomography apparatus
JPH10179552A (ja) 核スピントモグラフィ装置用の勾配コイル装置
US8258903B2 (en) Superconducting, actively shielded magnet
JP6255012B2 (ja) Mriシステムで使用されるtem共振器システム
JP2005512646A (ja) 傾斜磁場コイル配置構造
JP4852053B2 (ja) 磁気共鳴イメージング装置
JP2002224082A (ja) 磁気共鳴イメージング装置
JP6912321B2 (ja) 磁気共鳴イメージング装置
JP5128369B2 (ja) 磁気共鳴イメージング装置
WO2012131635A1 (en) Open magnetic assembly with three active sides, in particular for magnetic resonance imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees