JP5644033B2 - マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法 - Google Patents

マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法 Download PDF

Info

Publication number
JP5644033B2
JP5644033B2 JP2011024386A JP2011024386A JP5644033B2 JP 5644033 B2 JP5644033 B2 JP 5644033B2 JP 2011024386 A JP2011024386 A JP 2011024386A JP 2011024386 A JP2011024386 A JP 2011024386A JP 5644033 B2 JP5644033 B2 JP 5644033B2
Authority
JP
Japan
Prior art keywords
substrate
microlens array
microlens
laser light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011024386A
Other languages
English (en)
Other versions
JP2012164829A (ja
Inventor
梶山 康一
康一 梶山
水村 通伸
通伸 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2011024386A priority Critical patent/JP5644033B2/ja
Publication of JP2012164829A publication Critical patent/JP2012164829A/ja
Application granted granted Critical
Publication of JP5644033B2 publication Critical patent/JP5644033B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Laser Beam Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、マイクロレンズアレイを使用してレーザアニール又はレーザ露光するレーザ処理装置及びレーザ処理方法に関し、特に、加熱時に蒸散する汚染物質によるマイクロレンズアレイの耐久性を向上させたマイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法に関する。
マイクロレンズアレイを使用したレーザアニール装置は、レーザ光源から出射されたレーザ光を、光軸に垂直方向の強度分布を均一化するホモジナイザを介して、コンデンサレンズに入射させ、このコンデンサレンズによりレーザ光を平行光にした後、マスクパターンを介してマイクロレンズアレイに入射させる。そして、このマイクロレンズアレイの各マイクロレンズにより、レーザ光を、例えば、TFT基板上に設定されたTFT形成領域に集光させる(例えば、特許文献1,2)。このTFT形成領域に形成されたアモルファスシリコン(a−Si)膜を、マイクロレンズアレイにより集光されたレーザ光で、パルス状に照射することにより、a−Si膜が一旦溶融し、その後、この溶融したa−Siが急冷されることにより、多結晶シリコン膜が形成される。これにより、TFT形成領域のレーザアニールによる改質が行われる。
このとき、マイクロレンズアレイと、アニール対象の基板との間は、通常、0.2mm(200μm)である。このため、a−Si膜の溶融により生じた汚染物質(シリコン)がマイクロレンズに付着し、マイクロレンズの表面を汚染してしまう。そうすると、マイクロレンズを透過するレーザ光の透過率が低下すると共に、レーザ光の光軸に垂直方向の照度の均一性が劣化し、a−Si膜に与えるエネルギの均一性が劣化し、アニール状態にムラが発生する。
一方、レーザアニール装置ではないが、レーザ加工装置において、レーザ加工時に発生する飛散粉により集光レンズが汚染されることを防止する技術が提案されている(特許文献3及び4)。特許文献3においては、被加工物を遮蔽体で仕切り、遮蔽体の外部に設けた集光レンズから、レーザ光を前記遮蔽体に設けたレーザ光透孔を通過させて被加工物に照射する。そして、レーザ光を透過するフィルムを、送給ロールから巻き解いて巻き取りロールに巻き取るまでの間に、レーザ光透孔において、レーザ光の光軸に垂直方向に走行させる。これにより、レーザ光透孔を飛散粉が通過しないようにして、このフィルムと遮蔽体により、飛散粉が集光レンズに付着することを防止している。特許文献4においても、同様にして、レーザ加工時に発生する飛散粉が集光レンズに付着することを防止しているが、更に、フィルムの下方に、飛散粉を吹き飛ばすガスノズルを設けたり、又はレーザ光透過位置よりもフィルムの送給方向の上流側にて、フィルムの下方にマスク(遮蔽体)を設けて、フィルムに飛散粉が付着することを防止し、フィルムの必要送給量の低減を図っている。
特開2010−283073号公報 特開2004−311906号公報 特開昭55−112194号公報 特開平7−100670号公報
しかしながら、マイクロレンズアレイを使用したレーザアニール装置においては、集光レンズとしてのマイクロレンズアレイと、アニール対象の半導体基板との間に、フィルムを送給させるだけの空間が存在せず、上記特許文献3及び4に記載の手段を採用することができない。レーザ露光装置も同様である。
本発明はかかる問題点に鑑みてなされたものであって、汚染物質がマイクロレンズに付着することを防止することができると共に、マイクロレンズアレイの下面に配置する保護膜の寿命を延長することができるマイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法を提供することを目的とする。
本発明に係るマイクロレンズアレイを使用したレーザ処理装置は、レーザ光源と、アニール又は露光を受ける対象物に対峙して配置されるマイクロレンズアレイと、前記マイクロレンズアレイの前記基板側の面を覆うように設けられた保護膜と、前記レーザ光源からのレーザ光を前記マイクロレンズアレイに向けて導く光学系と、前記レーザ光の光軸に垂直方向に前記マイクロレンズアレイと前記基板とを相対的に往復移動させる駆動部材と、この駆動部材による前記往復移動を制御する制御装置と、を有し、前記マイクロレンズアレイは、前記マイクロレンズアレイと前記基板との相対的移動方向に複数個に分かれた各領域について複数個設けられたマイクロレンズを有し、前記駆動部材は、前記マイクロレンズアレイと前記基板とを第1方向及びその反対方向の第2方向に往復移動させるものであり、前記制御装置は、先ず、前記基板を第1方向に相対移動させつつ、前記第1方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射し、次に、前記基板を第2方向に相対移動させつつ、前記第2方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射する処理を繰り返し、次に、前記基板を第1方向に相対移動させつつ、前記第1方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射し、次に、前記基板を第2方向に相対移動させつつ、前記第2方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射する処理を繰り返すというようにして、前記マイクロレンズアレイにおける第1方向及び第2方向の端部側の2領域のマイクロレンズから、順次中心側に向けて2領域のマイクロレンズを使用して、レーザ光を前記基板に照射するように、前記マイクロレンズアレイと前記基板との相対的移動を制御することを特徴とする。
この場合に、前記制御装置は、前記第1方向の移動と前記第2方向の移動との間に、前記マイクロレンズアレイと前記基板との相対的位置関係を、前記第1及び第2方向に垂直の第3方向に、前記マイクロレンズアレイの前記第3方向の長さに対応させて移動させるように、前記マイクロレンズアレイと前記基板との相対的移動を制御することもできる。
本発明に係るマイクロレンズアレイを使用したレーザ処理方法は、レーザ光をマイクロレンズアレイにより基板の表面に照射して、基板の表面をレーザアニール又は露光するマイクロレンズアレイを使用したレーザ処理方法において、前記マイクロレンズアレイは、前記マイクロレンズアレイと前記基板との相対的移動方向に複数個に分かれた各領域について複数個設けられたマイクロレンズ有し、前記マイクロレンズアレイの前記基板側の面を覆うように保護膜が設けられていて、
前記基板を前記相対的移動方向の第1方向に相対移動させつつ、前記第1方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第1工程と、
次に、前記基板を前記第1方向の反対方向の第2方向に相対移動させつつ、前記第2方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第2工程と、
前記第1工程と前記第2工程とを複数回繰り返す工程と、
次に、前記基板を第1方向に相対移動させつつ、前記第1方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第3工程と、
次に、前記基板を第2方向に相対移動させつつ、前記第2方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第4工程と、
前記第3工程と前記第4工程とを複数回繰り返す工程と、
同様にして、順次、前記マイクロレンズアレイの第1方向及び第2方向に関し中央寄りに位置する2個の領域のマイクロレンズを使用し、この2個の領域のマイクロレンズを、前記基板の第1方向及び第2方向の移動に交互に対応させて、レーザ光を照射する工程を複数回繰り返す工程と、
を有することを特徴とする
この場合に、前記第1方向の移動と前記第2方向の移動との間に、前記マイクロレンズアレイと前記基板との相対的位置関係を、前記第1及び第2方向に垂直の第3方向に、前記マイクロレンズアレイの前記第3方向の長さに対応させて移動させる工程を設けることができる。
本発明によれば、マイクロレンズアレイを複数個の領域に設定して、各領域のマイクロレンズを交互に使用してレーザ光を基板上に集光してアニール又はマスクパターンを露光する(以下、アニールを例にして説明する)。この際、制御装置は、駆動部材を以下のように制御する。先ず、第1工程として、基板が第1方向に移動(往路)する際、第1方向の端部の領域のマイクロレンズを使用してレーザ光を基板に照射してアニールする。このとき、基板が第1方向に相対移動することにより、マイクロレンズアレイと基板との間の隙間に第1方向に流れる空気流が生じ、マイクロレンズとアニールされる基板表面との間に発生する蒸散物質は、この空気流により、第1方向に送られてマイクロレンズの近傍から排出される。このため、マイクロレンズアレイを覆う保護膜に付着する蒸散物質は、従来よりも著しく低減される。次に、第2工程として、基板が第2方向に移動(復路)する際、第2方向の端部の領域のマイクロレンズを使用してレーザ光を基板に照射してアニールする。このとき、基板が第2方向に相対移動することにより、マイクロレンズアレイと基板との間の隙間に第2方向に流れる空気流が生じ、マイクロレンズとアニールされる基板表面との間に発生する蒸散物質は、この空気流により、第2方向に送られてマイクロレンズの近傍から排出される。但し、基板とマイクロレンズアレイとの相対的移動方向(第1方向及び第2方向)に垂直の第3方向に関し、基板の長さがマイクロレンズアレイの長さよりも長い場合は、第1方向への移動が終了した後、基板とマイクロレンズアレイとの相対的な位置関係を第3方向にずらし、その後、第2方向に移動させることができる。この場合は、マスクを交換しないで、同一のマスクパターン(アニール用の開口パターン)で基板上の全ての領域をスキャンすることになる。一方、露光処理の場合は、基板とマイクロレンズアレイとの相対的な位置関係を第3方向にずらさないで、第1方向への移動及び第2方向への移動を繰り返し、その間に、マスクを交換して、複数のレイヤーのマスクパターンを基板上に一気に形成することもできる。また、露光処理の場合にも、第1方向への移動と第2方向への移動との間に、マスクパターンを代えないで、第3方向にマイクロレンズアレイ又は基板を相対的に移動させることにより、全ての基板上の領域にマスクパターンを露光することもできる。
いずれにしても、第1方向の端部のマイクロレンズアレイと第2方向の端部のマイクロレンズアレイとを使用する処理を繰り返して、この処理に使用した2個の領域のマイクロレンズを覆う保護膜に透明性の限界になるまで蒸散物質が付着した場合に、制御装置は、第3工程として、基板を第1方向に移動(往路)させつつ第1方向の端部の一つ手前の領域のマイクロレンズを使用してレーザアニールをする。このとき発生する蒸散物質は、空気流により第1方向に送られ、第1方向の端部の領域のマイクロレンズを覆う保護膜にも一部が付着するが、この部分の保護膜は、前述のごとく、使用限界を超えていて、以後、保護膜の交換まで使用することはないので、レーザ処理には支障がない。また、この第3工程においては、第1工程と同様にマイクロレンズアレイと基板との間から一部が排出されるので、保護膜に付着する蒸散物質の量は低減される。そして、第3工程の後、第4工程として、基板を第2方向に移動(復路)させつつ第2方向の端部の一つ手前の領域のマイクロレンズを使用してレーザアニールをする。このとき、基板の第2方向への移動による空気流により、蒸散物質は第2方向に送られて排出されると共に、第2方向の端部の領域のマイクロレンズを覆う保護膜に付着するが、この保護膜は前述の如く、使用限界を超えていて、以後、保護膜の交換まで使用することはないので、レーザ処理に支承はない。このようにして、第3工程と第4工程とを繰り返し、更に、順次中心側の領域のマイクロレンズを使用して、上述と同様の処理を、必要に応じて繰り返す。その結果、保護膜の使用可能回数(寿命)が従来よりも延長される。
本発明によれば、マイクロレンズアレイの基板との対向面に保護膜を設けて、蒸散物質がマイクロレンズに付着することを防止すると共に、マイクロレンズアレイを複数個の領域に分けて、各領域を交互にレーザアニールに使用し、その使用する領域の順番も、基板とマイクロレンズアレイとの相対的移動に伴う空気流を利用して、可及的に蒸散物質を外部に排出できるものにするので、全ての領域のマイクロレンズを一度に使用してレーザアニールする場合(基板とマイクロレンズアレイとの相対的移動なしにレーザアニールする場合)に比して、保護膜に付着する蒸散物質の量を低減することができ、保護膜の交換までのアニール回数、即ち、保護膜の寿命を、延長させることができる。
本発明実施形態に係るレーザアニール装置で使用されるマイクロレンズアレイの下面図である。 同じく本実施形態の動作を示すマイクロレンズアレイの下面図である。 同じく本実施形態の動作を示すマイクロレンズアレイの下面図である。 同じく本実施形態の動作を示すマイクロレンズアレイの下面図である。 同じく本実施形態の動作を示すマイクロレンズアレイの下面図である。
以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1乃至図5は本発明の実施形態のレーザアニール装置に使用するマイクロレンズアレイ2を示す下面図である。レーザ光源(図示せず)から出射したレーザ光は、光軸に垂直方向の強度分布を均一化するホモジナイザを介して、強度分布が均一化される。そして、このホモジナイザから出射したレーザ光は、コンデンサレンズに入射し、平行光に整形される。その後、マイクロレンズアレイ2に入射し、このマイクロレンズアレイ2により集光されて、a−Si膜が形成されたTFT基板等のアニール対象の基板(図示せず)の表面に入射する。
基板の表面に平行に、マスク1が設置されており、マイクロレンズアレイ2はマスク1に設けた矩形の孔に嵌合されて支持されている。そして、コンデンサレンズの光軸が鉛直になり、基板がその表面が水平になるように、配置され、コンデンサレンズから出射したレーザ光が、基板に対しその表面に垂直に入射するようになっている。マスク1に支持されたマイクロレンズアレイ2は、基板の表面に平行に配置され、基板に対峙するように設置されている。このマイクロレンズアレイ2とアニール対象の基板との間の距離は、例えば、200μmである。
駆動部材(図示せず)は、マイクロレンズアレイ2(即ち、マスク1)と、アニール対象の基板とを、図2乃至図5に白抜き矢印にて示す方向に、相対的に往復駆動する。なお、図2及び図4に往路と記載された方向を第1方向、図3及び図5に復路と記載された方向を第2方向とする。また、マイクロレンズアレイ2と基板とは相対的に移動するものであり、マイクロレンズアレイ2を移動させてもよいし、基板を移動させてもよいが、本実施形態では、基板を第1方向及び第2方向に往復移動させることにする。
マイクロレンズアレイ2は、この相対的移動方向に、4個の領域に分かれて、各領域に夫々複数個のマイクロレンズ4a,4b、4c、4dがマトリクス状に配置されている。マイクロレンズ4aが設けられた領域は、第1方向(往路)の端部の領域であり、マイクロレンズ4dが設けられた領域は、第2方向(復路)の端部の領域であり、マイクロレンズ4bが設けられた領域は、第1方向の端部から一つ手前の領域であり、マイクロレンズ4cが設けられた領域は、第2方向の端部から一つ手前の領域である。本実施形態は、マイクロレンズアレイ2に4個の領域が設定されているが、本発明はこれに限らず、2以上の複数個の領域にマイクロレンズアレイを分割することができる。
マイクロレンズ4aが設けられた領域と、マイクロレンズ4bが設けられた領域との間に、マイクロレンズが設けられていない領域5aが設けられており、同様に、マイクロレンズ4bが設けられた領域と、マイクロレンズ4cが設けられた領域との間に、マイクロレンズが設けられていない領域5bが設けられ、マイクロレンズ4cが設けられた領域と、マイクロレンズ4dが設けられた領域との間に、マイクロレンズが設けられていない領域5cが設けられている。そして、この領域5a、5b、5cには、夫々、マイクロレンズアレイ2と基板との位置合わせ用の追従マーク6a、6b、6cが設けられている。この追従マーク6a、6b、6cは、基板との位置合わせに使用されるマークであり、適宜のカメラによりこれを検出することにより、基板を往路の第1方向及び復路の第2方向に移動させる際の移動方向に垂直方向の基板のずれを防止するように、駆動装置により基板の移動を制御するために使用される。
この図1乃至図5はマイクロレンズアレイ2(即ち、マスク1)の下面を示すものであり、このマイクロレンズアレイ2には、その下面の全域を覆うように透明な保護膜3が配置されている。この保護膜3は、例えば、透明な石英ガラスであり、厚さが例えば75μmで自重は殆どない。この保護膜3は、蒸散した汚染物質が付着することにより、その透明性が損なわれてきたときには、これをマイクロレンズアレイ2から離脱させて、新しい保護膜3と交換するが、汚染物質が付着した保護膜3は、弱アルカリ性の洗浄液で洗浄することにより、汚染物質としてのSiを除去することができ、再利用することができる。但し、この洗浄により、保護膜3の構成材料であるガラスも若干溶けてしまう。
マイクロレンズアレイ2は、その大きさの一例として、図1中に示したように、マイクロレンズ配置領域の幅が50mm、一つのマイクロレンズ配置領域の長さが12mm、マーク配置領域の長さが3mmである。そして、保護膜3の幅は60mm、長さが80mmである。マイクロレンズアレイ2の往路及び復路の移動距離は、アニール対象の基板の長さに依存する。一方、マイクロレンズアレイ2の幅は60mmで、マイクロレンズ4a〜4dが形成された領域の幅は50mmであるが、基板が矩形をなし、その幅が200mmである場合は、往路から復路に折り返すときに、マイクロレンズアレイ2と基板との相対的位置関係を、第1方向及び第2方向(往復方向)に垂直の方向に50mmずらすことにより、基板を2往復させれば、基板の全域をアニールすることができる。
次に、本発明の実施形態の動作について説明する。レーザ光源からのレーザ光は、光学系により、その光軸に垂直方向の強度分布が均一化され、更に平行光に整形された後、マイクロレンズアレイ2に入射する。制御装置は、先ず、図2に示すように、第1工程として、レーザ光源からのレーザ光をマイクロレンズ4aに入射させ、駆動部材を介して、基板を第1方向(往路方向)に走査する(移動させる)。基板は、第1工程の当初、そのアニールすべき領域の第1方向の端縁が、マイクロレンズ4aの第1方向の端縁に一致しており、基板は、第1方向に移動しつつ、マイクロレンズ4aにより集光されたレーザ光の照射を受けて、基板表面のa−Si膜が溶融凝固して、ポリシリコン膜に改質される。この最初の往路により、基板表面の幅50mmの帯状の領域が、レーザアニールを受けてポリシリコン膜になる。このとき、レーザアニールにより、a−Si膜から主にSiが蒸散し、この蒸散物質が、保護膜3におけるマイクロレンズ4aの位置を覆う部分7aに付着する。しかし、この往路において、基板を第1方向に移動させつつ、マイクロレンズアレイ2の一部である第1方向の端部に設けられたマイクロレンズ4aからレーザ光を基板表面のa−Si膜に照射するので、このa−Si膜の溶融により蒸散物質が発生するが、基板の移動により第1方向に向かう空気流が発生しているので、この蒸散物質はその一部が、空気流によりマイクロレンズアレイ2と基板との間の間隙から排出され、残部が保護膜3の部分7aに付着して、汚れとなる。
次に、制御装置は、駆動部材を駆動して、基板をマイクロレンズアレイ2に対して第1及び第2方向(往路方向及び復路方向)に垂直の第3方向に50mmだけ移動させ、その位置関係をずらす。そして、制御装置は、駆動部材を制御して、第2工程として、図3に示すように、基板に対し、復路の移動をさせる。即ち、図2の往路方向(第1方向)の移動により、基板は、その全体が第1方向(往路方向)の端縁側に位置しているが、第2工程では、この基板を第2方向(復路方向)に移動させ、この移動の過程で、レーザ光を第2方向の端部のマイクロレンズ4dに入射させ、レーザ光をこのマイクロレンズ4dにより基板表面に集光させる。これにより、第1工程で基板表面がレーザ光により走査されてアニール処理された帯状の領域(幅50mm)の隣にて、帯状の領域がレーザアニール処理される。これにより、基板上の100mmの幅の領域がアニール処理されたことになる。このとき、基板が第2方向(復路方向)に移動することにより、空気流が第2方向に流れ、マイクロレンズアレイ2と基板との間で発生した蒸散物質は、一部が外部に排出され、残部が図3に示すように第2方向の端部のマイクロレンズ4dを被覆する部分7dにて保護膜3に付着する。
次に、制御装置は、駆動部材を駆動して、基板をマイクロレンズアレイ2に対して第1及び第2方向(往路方向及び復路方向)に垂直の第3方向に更に50mmだけ移動させ、その位置関係をずらす。そして、制御装置は、駆動部材を制御して、前述の第1工程を実施する。その後、制御装置は、基板をマイクロレンズアレイ2に対して第3の方向に更に50mmだけ移動させ、その位置関係をずらし、更に、前述の第2工程を実施する。
このようにして、順次、第3方向に50mmの幅の領域ずつ基板がレーザアニール処理され、最終的に1枚の基板の全体がレーザアニール処理される。次に、基板をレーザアニール処理前のものに交換し、再度、第1工程、第3方向への移動、第2工程、第3方向への移動を繰り返し、基板をレーザアニール処理する。このようにして、第3方向への基板の移動を挟んで、第1工程と第2工程とを所定回数繰り返して多数の基板をレーザアニール処理するが、この繰り返しの所定回数は、蒸散物質の付着及び堆積により、保護膜3の部分7a、7dの透過率が低下して、レーザ光の基板への照射が阻害されるようになるまでである。即ち、部分7a、7dにおける保護膜3は、これ以上、レーザ光の照射に使用できなくなるまでの耐用回数を予め設定しておき、レーザアニールの回数が、この耐用回数に達したときに、制御装置は、次の第3工程に移る。なお、マイクロレンズ4a、4dに対応する保護膜3の部分7a、7bの透過率を測定するセンサを設置し、このセンサによる測定結果が予め設定された透過率を下回ったときに、保護膜の部分7a,7dが耐用回数を経過したと判断して、制御装置が次の第3工程に移るようにしてもよい。なお、耐用回数は、通常、1万回程度である。
次に、制御装置は、第2駆動部材を駆動して、基板をマイクロレンズアレイ2に対して第1及び第2方向(往路方向及び復路方向)に垂直の第3方向に更に50mmだけ移動させ、その位置関係をずらす。そして、制御装置は、駆動部材を制御して、第3工程として、図4に示すように、基板に対し、2順目の往路の移動をさせる。即ち、図3の復路方向(第2方向)の移動によって、基板は、その全体が第2方向(復路方向)の端縁側に位置しているが、上記第3工程では、この基板を第1方向(往路方向)に移動させ、この移動の過程で、レーザ光を第1方向の端部のマイクロレンズ4aの一つ手前の領域のマイクロレンズ4bに入射させ、このマイクロレンズ4bにより基板表面に集光させる。これにより、第2工程で基板表面がレーザ光により走査されてアニール処理された帯状の領域(幅50mm)の隣にて、帯状の領域がレーザアニール処理される。これにより、基板上の150mmの幅の領域がアニール処理されたことになる。このとき、基板が第1方向(往路方向)に移動することにより、空気流が第1方向に流れ、マイクロレンズアレイ2と基板との間で発生した蒸散物質は、一部が第1方向に押し出されて外部に排出され、残部が図4に示すように第1方向の端部の領域のマイクロレンズ4aを被覆する部分7a(既に、レーザアニールに使用されて使用不可の部分8a)と、第1方向の端部の一つ手前の領域のマイクロレンズ4bを被覆する部分7bにて保護膜3に付着する。
次に、制御装置は、駆動部材を駆動して、基板をマイクロレンズアレイ2に対して第1及び第2方向(往路方向及び復路方向)に垂直の第3方向に50mmだけ移動させ、その位置関係をずらす。そして、制御装置は、駆動部材を制御して、第4工程として、図5に示すように、基板に対し、2順目の復路の移動をさせる。即ち、図4の往路方向(第1方向)の移動により、基板は、その全体が第1方向(往路方向)の端縁側に位置しているが、第4工程では、この基板を第2方向(復路方向)に移動させ、この移動の過程で、レーザ光を第2方向の端部のマイクロレンズ4dの一つ手前の領域のマイクロレンズ4cに入射させ、このマイクロレンズ4cにより基板表面に集光させる。これにより、第3工程で基板表面がレーザ光により走査されてアニール処理された帯状の領域(幅50mm)の隣にて、帯状の領域がレーザアニール処理される。これにより、基板上の200mmの幅の領域がアニール処理されたことになる。このとき、基板が第2方向(復路方向)に移動することにより、空気流が第2方向に流れ、マイクロレンズアレイ2と基板との間で発生した蒸散物質は、一部が第2方向に押し出されて外部に排出され、残部が図5に示すように第2方向の端部の領域のマイクロレンズ4dを被覆する部分7d(既に、レーザアニールに使用されて使用不可の部分8d)と、第2方向の端部の一つ手前の領域のマイクロレンズ4cを被覆する部分7cにて保護膜3に付着する。
次に、制御装置は、駆動部材を駆動して、基板をマイクロレンズアレイ2に対して第1及び第2方向(往路方向及び復路方向)に垂直の第3方向に更に50mmだけ移動させ、その位置関係をずらす。そして、制御装置は、駆動部材を制御して、前述の第3工程を実施する。その後、制御装置は、基板をマイクロレンズアレイ2に対して第3の方向に更に50mmだけ移動させ、その位置関係をずらし、更に、前述の第4工程を実施する。
このようにして、順次、第3方向に50mmの幅の領域ずつ基板がレーザアニール処理され、最終的に1枚の基板の全体がレーザアニール処理される。次に、基板をレーザアニール処理前のものに交換し、再度、第3工程、第3方向への移動、第4工程、第3方向への移動を繰り返し、基板をレーザアニール処理する。このようにして、第3方向への基板の移動を挟んで、第3工程と第4工程とを所定回数繰り返して、多数の基板をレーザアニール処理するが、この繰り返しの所定回数は、蒸散物質の付着及び堆積により、保護膜3の部分7b、7cの透過率が低下して、レーザ光の基板への照射が阻害されるようになるまでである。即ち、保護膜3の部分7b、7cを使用したレーザアニールの回数が、所定の耐用回数に達したとき又はセンサによる透過率の測定結果が予め設定された透過率を下回ったときに、制御装置は、このマイクロレンズアレイ2を使用したレーザアニールを終了させる。
このようにして、基板の往復移動の間に、1個のマイクロレンズアレイ2の先ず外側の2個の領域に設けられたマイクロレンズ4a,4dを交互に使用して、レーザ光を基板上の例えばa−Si膜に集光し、a−Si膜を溶融凝固させてポリシリコン膜に改質する。例えば、1万回の露光の後、この保護膜の部分8a、8dは耐用回数に達したので、この部分は使用せず、マイクロレンズアレイ2の内側の2個の領域に設けられたマイクロレンズ4b、4cを交互に使用して、基板の往復移動の間に、レーザ光を基板上の例えばa−Si膜に集光し、a−Si膜を溶融凝固させてポリシリコン膜に改質する。その後、例えば、1万回の露光の後、マイクロレンズ4b、4cに対応する保護膜の部分7b、7cも耐用回数に達し、使用できない部分8b、8cになるので、保護膜3の全ての部分8a〜8dが使用できなくなる。このため、マイクロレンズアレイ2をマスク1と共にレーザ光照射装置から取り出し、マイクロレンズアレイ2から保護膜3を除去し、新しい保護膜をマイクロレンズアレイ2に配置してこのマイクロレンズアレイ2を再度レーザ光の照射装置に設置する。使用後の保護膜3は、付着している蒸散物質を除去して、できれば再利用する。
基板の大きさが、マイクロレンズアレイ2の大きさと対応する場合は、基板が1往復する都度、基板を交換する。基板の大きさがマイクロレンズアレイ2より大きい場合は、その大きさに応じて、基板の1往復後に、基板を往復方向(第1及び第2方向)に垂直の第3方向に、マイクロレンズアレイ2の幅だけ移動させて、往復移動を繰り返せばよい。
而して、本実施形態においては、基板の移動に伴い発生する空気流により、マイクロレンズアレイ2と基板との間に発生する蒸散物質は、その空気流の流れる方に押し出されて、マイクロレンズアレイ2と基板との間の領域から排出されるので、マイクロレンズアレイ2の下面に貼り付けられた保護膜3に付着する蒸散物質の量は少ない。
即ち、マイクロレンズアレイ2に蒸散物質が付着することを防止するだけであれば、マイクロレンズアレイ2の基板側の面(下面)に、保護膜3を貼り付けて、a−Si膜からの蒸散物質をこの保護膜3でマイクロレンズアレイ2から遮蔽するだけでよく、これによっても、高価なマイクロレンズアレイの交換回数を一応は低減できる。
しかしながら、保護膜3により、蒸散物質が直接マイクロレンズアレイに付着することは防止できるものの、保護膜3を一旦貼り付けた後に、これを交換せずにアニールできる回数がそれほど多くなく、このため、頻繁に保護膜を交換する必要が生じる。よって、保護膜3の材料コスト及び保護膜の交換コストが高くなってしまう。
これに対し、本発明のように、マイクロレンズアレイ2を4個の領域に分割し、各領域のマイクロレンズ4a〜4dを交互に使用して、基板を移動させつつ、レーザアニールし、使用するマイクロレンズ4a〜4dの順番を、往復移動方向(第1及び第2の方向)の外側のものから順次使用することとすることにより、蒸散物質を基板移動時の空気流により外部に排出することができ、保護膜に付着する蒸散物質の量を可及的に低減することができる。また、往復移動方向の外側の領域のマイクロレンズから順次その耐用回数を経るまで使用していくので、内側のマイクロレンズを使用したときに発生する蒸散物質が、基板の移動により外側に送られて、外側のマイクロレンズに対応する保護膜部分に付着しても、この外側のマイクロレンズは、それに対応する保護膜の部分が耐用回数を経てそれ以上使用できない状態にあり、保護膜交換まで使用しないので、この部分に蒸散物質が付着しても、保護膜の寿命に何ら影響を与えない。
従って、本発明によれば、単に保護膜をマイクロレンズアレイに貼り付けた場合に比して、保護膜の透明性が劣化して使用できなくなるまでの保護膜の寿命(耐用回数)を著しく延長することができる。このため、例えば、交換せずに2万回のアニール処理が可能になる等、保護膜の交換頻度を、著しく低減することができる。
本発明は上記実施形態に限らないことは勿論である。例えば、上記実施形態は、レーザアニールについてのものであるが、本発明は、レーザ露光にも使用できる。露光処理の場合は、基板とマイクロレンズアレイとの相対的な位置関係を第3方向にずらさないで、第1方向への移動及び第2方向への移動を繰り返し、その間に、マスクを交換して、複数のレイヤーのマスクパターンを基板上に一気に形成することもできる。また、露光処理の場合にも、第1方向への移動と第2方向への移動との間に、マスクパターンを代えないで、第3方向にマイクロレンズアレイ又は基板を相対的に移動させることにより、全ての基板上の領域にマスクパターンを露光し、その後、マスクパターンを代えて、同様に基板の全域を露光することにより、複数のレイヤーを露光することとしてもよい。
1:マスク
2:マイクロレンズアレイ
3:保護膜
4a、4b、4c、4d:マイクロレンズ
6a、6b、6c、6d:追従マーク
7a、7b、7c、7d:(保護膜における汚染)部分
8a、8d:(保護膜における既に汚染されて使用不可の)部分

Claims (4)

  1. レーザ光源と、アニール又は露光を受ける対象物に対峙して配置されるマイクロレンズアレイと、前記マイクロレンズアレイの前記基板側の面を覆うように設けられた保護膜と、前記レーザ光源からのレーザ光を前記マイクロレンズアレイに向けて導く光学系と、前記レーザ光の光軸に垂直方向に前記マイクロレンズアレイと前記基板とを相対的に往復移動させる駆動部材と、この駆動部材による前記往復移動を制御する制御装置と、を有し、前記マイクロレンズアレイは、前記マイクロレンズアレイと前記基板との相対的移動方向に複数個に分かれた各領域について複数個設けられたマイクロレンズを有し、前記駆動部材は、前記マイクロレンズアレイと前記基板とを第1方向及びその反対方向の第2方向に往復移動させるものであり、前記制御装置は、先ず、前記基板を第1方向に相対移動させつつ、前記第1方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射し、次に、前記基板を第2方向に相対移動させつつ、前記第2方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射する処理を繰り返し、次に、前記基板を第1方向に相対移動させつつ、前記第1方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射し、次に、前記基板を第2方向に相対移動させつつ、前記第2方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射する処理を繰り返すというようにして、前記マイクロレンズアレイにおける第1方向及び第2方向の端部側の2領域のマイクロレンズから、順次中心側に向けて2領域のマイクロレンズを使用して、レーザ光を前記基板に照射するように、前記マイクロレンズアレイと前記基板との相対的移動を制御することを特徴とするマイクロレンズアレイを使用したレーザ処理装置。
  2. 前記制御装置は、前記第1方向の移動と前記第2方向の移動との間に、前記マイクロレンズアレイと前記基板との相対的位置関係を、前記第1及び第2方向に垂直の第3方向に、前記マイクロレンズアレイの前記第3方向の長さに対応させて移動させることを特徴とする請求項1に記載のマイクロレンズアレイを使用したレーザ処理装置。
  3. レーザ光をマイクロレンズアレイにより基板の表面に照射して、基板の表面をレーザアニール又は露光するマイクロレンズアレイを使用したレーザ処理方法において、前記マイクロレンズアレイは、前記マイクロレンズアレイと前記基板との相対的移動方向に複数個に分かれた各領域について複数個設けられたマイクロレンズを有し、前記マイクロレンズアレイの前記基板側の面を覆うように保護膜が設けられていて、
    前記基板を前記相対的移動方向の第1方向に相対移動させつつ、前記第1方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第1工程と、
    次に、前記基板を前記第1方向の反対方向の第2方向に相対移動させつつ、前記第2方向の端部の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第2工程と、
    前記第1工程と前記第2工程とを複数回繰り返す工程と、
    次に、前記基板を第1方向に相対移動させつつ、前記第1方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第3工程と、
    次に、前記基板を第2方向に相対移動させつつ、前記第2方向の端部の一つ手前の領域のマイクロレンズを使用してレーザ光を前記基板に照射する第4工程と、
    前記第3工程と前記第4工程とを複数回繰り返す工程と、
    同様にして、順次、前記マイクロレンズアレイの第1方向及び第2方向に関し中央寄りに位置する2個の領域のマイクロレンズを使用し、この2個の領域のマイクロレンズを、前記基板の第1方向及び第2方向の移動に交互に対応させて、レーザ光を照射する工程を複数回繰り返す工程と、
    を有することを特徴とするマイクロレンズアレイを使用したレーザ処理方法。
  4. 前記第1方向の移動と前記第2方向の移動との間に、前記マイクロレンズアレイと前記基板との相対的位置関係を、前記第1及び第2方向に垂直の第3方向に、前記マイクロレンズアレイの前記第3方向の長さに対応させて移動させる工程を有することを特徴とする請求項3に記載のマイクロレンズアレイを使用したレーザ処理方法。
JP2011024386A 2011-02-07 2011-02-07 マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法 Expired - Fee Related JP5644033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024386A JP5644033B2 (ja) 2011-02-07 2011-02-07 マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024386A JP5644033B2 (ja) 2011-02-07 2011-02-07 マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法

Publications (2)

Publication Number Publication Date
JP2012164829A JP2012164829A (ja) 2012-08-30
JP5644033B2 true JP5644033B2 (ja) 2014-12-24

Family

ID=46843924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024386A Expired - Fee Related JP5644033B2 (ja) 2011-02-07 2011-02-07 マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法

Country Status (1)

Country Link
JP (1) JP5644033B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326290A (ja) * 1986-07-18 1988-02-03 Toshiba Corp ガスレ−ザ装置
JP3908153B2 (ja) * 2001-11-16 2007-04-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2004311906A (ja) * 2003-04-10 2004-11-04 Phoeton Corp レーザ処理装置及びレーザ処理方法
KR100514996B1 (ko) * 2004-04-19 2005-09-15 주식회사 이오테크닉스 레이저 가공 장치
JP5224341B2 (ja) * 2008-05-15 2013-07-03 株式会社ブイ・テクノロジー 露光装置及びフォトマスク
JP5224343B2 (ja) * 2008-06-13 2013-07-03 株式会社ブイ・テクノロジー レーザ加工装置

Also Published As

Publication number Publication date
JP2012164829A (ja) 2012-08-30

Similar Documents

Publication Publication Date Title
KR101872469B1 (ko) 레이저 어닐링 장치 및 레이저 어닐링 방법
KR101582175B1 (ko) 레이저 패터닝을 이용한 섀도우 마스크의 제조 장치 및 레이저 패터닝을 이용한 섀도우 마스크의 제조 방법
CN1550283A (zh) 去除涂覆至基板层边缘且涂布基板的方法与装置及一基板
WO2017094770A1 (ja) 露光装置、露光システム、基板処理方法、および、デバイス製造装置
US9304391B2 (en) Exposure apparatus using microlens array and optical member
TWI690242B (zh) 包含具有洩孔之聚光鏡的極紫外光產生器
JP5800292B2 (ja) レーザ処理装置
JP5644033B2 (ja) マイクロレンズアレイを使用したレーザ処理装置及びレーザ処理方法
US9755190B2 (en) Laser-induced thermal imaging apparatus, method of laser-induced thermal imaging, and manufacturing method of organic light-emitting display apparatus using the method
KR20060050528A (ko) 레이저광의 단면상의 촬상방법
CN110945627A (zh) 激光退火装置及激光退火方法
JP2019042749A (ja) レーザー加工装置
US10612845B2 (en) Liquid removal apparatus and liquid removal method
JP2009006339A (ja) レーザ加工装置、及び、レーザ加工方法
JP5435590B2 (ja) アモルファス膜結晶化装置およびその方法
US20100141911A1 (en) Exposure apparatus and device manufacturing method
US9007564B2 (en) Exposure apparatus including light blocking member with light condensing part
JP2013091069A (ja) レーザ加工装置及びレーザ加工方法
KR101671418B1 (ko) 리소그래피 장치, 디바이스 제조 방법, 및 감쇠기를 제조하는 방법
JP7474579B2 (ja) レーザ処理装置及びレーザビームのプロファイル測定方法
JP2012191065A (ja) レーザアニール装置及び方法
JP5704535B2 (ja) マイクロレンズアレイを使用した露光装置
CN116060797A (zh) 照明光学系统和激光加工装置
JP2008258432A (ja) マスク、ビーム照射装置、及び、ビーム照射方法
KR20060085328A (ko) 레이저 장치와 그 검사방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5644033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees