JP5629034B1 - 固液分離装置及び固液分離方法 - Google Patents

固液分離装置及び固液分離方法 Download PDF

Info

Publication number
JP5629034B1
JP5629034B1 JP2014147960A JP2014147960A JP5629034B1 JP 5629034 B1 JP5629034 B1 JP 5629034B1 JP 2014147960 A JP2014147960 A JP 2014147960A JP 2014147960 A JP2014147960 A JP 2014147960A JP 5629034 B1 JP5629034 B1 JP 5629034B1
Authority
JP
Japan
Prior art keywords
tank
treatment liquid
filter
liquid
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014147960A
Other languages
English (en)
Other versions
JP2016022422A (ja
Inventor
壽一 吉元
壽一 吉元
Original Assignee
三協技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三協技研工業株式会社 filed Critical 三協技研工業株式会社
Priority to JP2014147960A priority Critical patent/JP5629034B1/ja
Application granted granted Critical
Publication of JP5629034B1 publication Critical patent/JP5629034B1/ja
Publication of JP2016022422A publication Critical patent/JP2016022422A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Filtering Materials (AREA)

Abstract

【課題】ジルコニウム系化成処理にて発生する処理液から粒子固形物を分離する処理において、簡素な構造で処理量を増やす。【解決手段】ジルコニウム系化成処理にて発生する処理液23を分離槽14に供給して分離槽14内の処理液23に不織布25を表裏方向に移動させることで粒子固形物を付着させ、離脱させた粒子固形物を底部47に濃縮スラリー57として沈殿させるとともに、粒子固形物の減った処理液をオーバーフローさせる分離部13と、分離部13より流出した処理液23を廃液槽15へ戻す還流部17と、分離槽13に配管接続され濃縮スラリー57を溜めるスラリー貯留槽19と、槽下部105にフィルター71を備えて撹拌板59を上下動させて濃縮スラリー57を撹拌し、ろ過室61内から吸引ろ過にてフィルター71を通過するろ過水を槽外部91へ排出し、徐々に残渣をフィルター71上に溜めて脱水ケーキ99を得るろ過分離機21と、を設けた。【選択図】 図1

Description

本発明は、固液分離装置及び固液分離方法に関する。
自動車車体等の塗装前処理として、金属表面にリン酸亜鉛皮膜を形成する化成処理(リン酸亜鉛処理)が行われる(例えば特許文献1参照)。リン酸亜鉛処理は亜鉛系めっき材やアルミニウム合金材のみならず、鉄鋼材料にも有効であり、各種塗装、特にカチオン電着塗装を施す場合の下地処理として好適である。リン酸亜鉛処理では、化成処理槽の底部にはリン酸亜鉛化合物を主体とする多量の化成スラッジが堆積する。リン酸亜鉛化合物は富栄養化元素のリンを成分として含むことから、環境上の観点より敬遠されつつある。
これに対してジルコニウム系化成処理は、各種材料に必要量の皮膜を形成することができ、耐食性及び塗膜密着性等を向上させることができ、さらに環境に対する負荷も少なくすることができる。
特開2002−52399号公報
従来、リン酸亜鉛処理で堆積する粒子径20μm程度の化成スラッジの除去には、加圧ろ過処理装置が好適に用いられていた。
しかしながら、ジルコニウム系化成処理で発生する化成スラッジには、0.1〜5μmの粒子が61.26%、5〜10μmの粒子が30.98%と非常に微細な水酸化鉄等の粒子固形物が含まれている。この化成スラッジを含んだ処理液は沈降が遅く、ろ過性が悪く、従来の加圧ろ過処理装置では多量に処理ができない問題がある。すなわち、それらの粒子固形物を含む処理液を、従来の加圧ろ過機においてろ過分離すると、加圧ろ過中に直ちにろ過面が目詰まり状態となり、ろ過量が急激に減少する。その状態で加圧エアーによる脱水工程に移ると、ろ過量が減少していることから、ろ過室内の液を処理するために、非常に長時間を必要とする。
本発明は上記状況に鑑みてなされたもので、その目的は、ジルコニウム系化成処理にて発生する微細な水酸化鉄等の粒子固形物が含まれる処理液から粒子固形物を分離する処理において、簡素な構造で処理量を増やすことのできる固液分離装置及び固液分離方法を提供することにある。
次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
本発明の請求項1記載の固液分離装置11は、ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液23が溜められる廃液槽15と、
前記廃液槽15から前記処理液23が供給される分離槽14を備え、上辺部41のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布25を、鉛直方向に沿う方向で前記分離槽14内の処理液23に浸漬し、表裏面に前記処理液23をぶつける方向に前記不織布25を表裏方向に移動させることで前記処理液23に含まれる前記粒子固形物を前記不織布25を構成する繊維に付着させた後、前記分離槽14の処理液23内で発生させた気泡53を前記不織布25に衝突させ、且つ前記不織布25を前記処理液23に対して昇降動作させて前記処理液23から離脱させた前記粒子固形物を前記分離槽14の底部47に濃縮スラリー57として沈殿させるとともに、前記粒子固形物が減らされた前記処理液23を前記分離槽14からオーバーフローさせる分離部13と、
前記分離部13の前記オーバーフローによって流出した前記処理液23を一時的に溜めながら前記廃液槽15へ戻す還流部17と、
前記分離槽14底部47に配管接続され、前記還流部17にて前記廃液槽15に前記処理液23を戻すことを所定時間繰り返した後に、前記底部47から前記処理液23の一部とともに排出される前記濃縮スラリー57を溜めるスラリー貯留槽19と、
槽下部105にシート状のフィルター71を水平に備えて前記スラリー貯留槽19からの前記濃縮スラリー57が供給されるろ過室61を有し、前記フィルター71の上方においてろ過室内周壁107に対して近接する縁部84を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、前記ろ過室内における前記フィルター71より上方の空間64の高さ方向の略中間位置で、該空間64における高さの約半分の距離をストローク長Sとして1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリー57を撹拌し、前記フィルター71上に堆積している前記粒子固形物を舞い上がらせずに、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルター71を通過するろ過水を槽外部91へ排出し、徐々に残渣をフィルター71上に溜めて脱水ケーキ99を得るろ過分離機21と、
を含むことを特徴とする。
この固液分離装置11では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められる。廃液槽15に溜められた処理液23は、分離部13の分離槽14に送られる。分離部13は、供給された処理液23が所定量になると、処理液23をオーバーフローさせる。オーバーフローした処理液23は、還流槽17に一旦、溜められる。還流槽17に溜まった処理液23は、廃液槽15へと再び戻される。
この処理液23の循環系において、分離部13では、処理液23中に鉛直に吊り下げられ浸漬した不織布25が表裏方向に移動される。不織布25が移動されると、処理液23が不織布25に当たり、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着する(捕捉される)。この透過と付着が繰り返され、不織布25に粒子固形物が堆積して、処理液23から粒子固形物が分離される。
不織布25に付着する粒子固形物が所定量、或いは不織布25の動作時間が所定時間経過となると、処理液23中に下部から気泡53が発生され、この気泡53が不織布25に当たることで、不織布25に付着した粒子固形物が分離槽14の底部47に落下する。また、この際、不織布25は、処理液23に対して昇降動作されることで、より効率的に粒子固形物の離脱が促進される。落下した粒子固形物は、分離槽14の底部47に沈殿する。この気泡53の衝突と、昇降動作が所定の間隔で繰り返されることにより、分離槽14の底部47に離脱した粒子固形物が堆積して行く。また、この粒子固形物が減らされた処理液23が分離槽14からオーバーフローすることとなる。オーバーフローした処理液23は、還流部17にて廃液槽15に戻され、これが繰り返される。
底部47に堆積する粒子固形物が所定量となったなら、例えば、上記昇降動作の繰り返し回数や、その動作時間、或いは、粒子固形物の堆積量(高さ)、分離槽14内の処理液の濁度などが所定の数値に達したなら、分離槽14の底部47から処理液23がスラリー貯留槽19へ排出される。処理液23が分離槽14の底部47から排出されることに伴って、分離槽14の底部47に堆積した粒子固形物が処理液23とともに濃縮スラリー57となって優先的に排出され、スラリー貯留槽19へ送られる。
濃縮スラリー57は、スラリー貯留槽19に溜められた後、ろ過分離機21のろ過室61に送られる。濃縮スラリー57が供給されたろ過室61では、フィルター71の上方で、撹拌板59が上下運動される。これと同時に、ろ過室61に供給された濃縮スラリー57は、底部47のフィルター71を通過して、槽外部91へろ過水が排出される。このろ過水は、フィルター上流側(撹拌板59を配置した側)のろ過室内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行うことでフィルター71を通過して排出される。
ろ過室61では、撹拌板59が、フィルター71上に堆積している粒子固形物を舞い上がらせずにろ過室61内の中間位置を上下運動されることにより、濃縮スラリー中の粒子固形物がろ過面に即座に沈降して堆積しにくくなる。撹拌板59は、ろ過室61内での撹拌速度で、粒子固形物を壊さずに、ゆっくりとフィルター71上に沈降させる。つまり、フィルター71は、目詰まりが抑制される。これにより、フィルター71を通過する処理液23は、濃縮スラリー57の状態であっても、濃縮スラリー57の粒子固形物同士の僅かな隙間も通過することで、ろ過量の急激な減少が改善される。
また、濃縮スラリー57は、フィルター71を挟み、ろ過水流出側から吸引される。そのため、フィルター71を挟み、撹拌板側の濃縮スラリー57を加圧してフィルター71を通過させる加圧ろ過に比べ、フィルター71のろ過面の目詰まりが遅くなる。つまり、濃縮スラリー57を上から(フィルター71とは逆の位置から)圧縮させて柔らかく不定形状の粒子固形物を圧潰させ粒子固形物同士を密着させるようなことがなく、ろ過面のろ過可能時間が長くなる。
フィルター上に捕捉された粒子固形物の厚みが所定厚となったなら、乾燥圧縮空気119がろ過室61内に送られることで、ろ過室61内の残液が処理される通気脱水が行われる。通気脱水は、ろ過室61が設定圧力以下及び/または設定時間に達すると終了する。ろ過室61は、残圧が逃がしバルブを開けることで大気開放される。脱水ケーキ99は、ろ過室61が開放され、フィルター71とともにろ過室外部へ排出され、固液分離の処理が終わる。
この固液分離装置11では、ろ過分離機21で処理する前の処理液23が、予め分離部13によって濃縮され、濃縮スラリー57となる。この濃縮スラリー57が、ろ過分離機21へ送られる。濃縮スラリー57がろ過分離機21へ送られることで、ろ過分離機21は、廃液槽15に貯留された通常の濃度の処理液23から脱水ケーキ99を得る場合に比べ、粒子固形物の分離効率が高くなる。単位時間当たりの処理液23の処理量が増加する。従って、固液分離装置11では、分離部13やろ過分離機21が単独で用いられる場合に比べ、処理量に対する処理時間の短縮が可能となる。また、複数台のろ過分離機21を並設する場合に比べ、装置構成が簡素となる。
また、特に、この固液分離装置11の構成のように、濃縮スラリー57をフィルター71に通過させる場合には、撹拌板59が併用されることで、フィルター71の急速な目詰まりが抑制される。これによって、処理量が増加される。固液分離装置11では、高濃度の濃縮スラリー57に撹拌板59が用いられることで、低濃度の処理液23に撹拌板59が用いられる場合に比べ、撹拌板59による撹拌動作がろ過面の目詰まりの抑制に、より効果的に作用するためである。
本発明の請求項2記載の固液分離方法は、ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液23を廃液槽15に溜める処理液貯留工程と、
前記廃液槽15から前記処理液23が分離槽14に供給され、上辺部41のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布25を、鉛直方向に沿う方向で前記分離槽14内の処理液23に浸漬し、表裏面に前記処理液23をぶつける方向に前記不織布25を表裏方向に移動させることで前記処理液23に含まれる前記粒子固形物を前記不織布25を構成する繊維に付着させた後、前記分離槽14の処理液内で発生させた気泡53を前記不織布25に衝突させ、且つ前記不織布25を前記処理液23に対して昇降動作させて前記処理液23から離脱させた前記粒子固形物を前記分離槽14の底部47に濃縮スラリー57として沈殿させるとともに、前記粒子固形物を減らされた前記処理液23を前記分離槽14からオーバーフローさせる前段分離工程と、
前記分離槽14の前記オーバーフローによって流出した前記処理液23を一時的に還流槽18に溜めながら前記廃液槽15へ戻す処理液還流工程と、
前記分離槽14の底部47に配管接続され、前記処理液還流工程にて前記廃液槽15に前記処理液23を戻すことを所定時間繰り返した後に、前記底部47から前記処理液23とともに排出される前記濃縮スラリー57をスラリー貯留槽19に溜めるスラリー貯留工程と、
槽下部105にシート状のフィルター71を水平に備えて前記スラリー貯留槽19からの前記濃縮スラリー57が供給されるろ過室61を用いて、前記フィルター71の上方においてろ過室内周壁107に対して近接する縁部84を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、前記ろ過室61内における前記フィルター71より上方の空間64の高さ方向の略中間位置で、該空間64における高さの約半分の距離をストローク長Sとして1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリー57を撹拌し、前記フィルター71上に堆積している前記粒子固形物を舞い上がらせず、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルター71を通過するろ過水を槽外部91へ排出し、徐々に残渣を前記フィルター71上に溜めて脱水ケーキ99を得るろ過分離工程と、
を具備することを特徴とする。
この固液分離方法では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められ、分離部13の分離槽14に送られる。分離槽14の処理液23は、オーバーフローされ、還流槽18に一旦、溜められた後、廃液槽15へと再び戻される。
分離槽14では、処理液23中に鉛直に吊り下げられ浸漬した不織布25が表裏方向に移動され、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着する(捕捉される)。この透過と付着が繰り返され、処理液23から粒子固形物が分離される。また、この粒子固形物が減らされた処理液23が分離槽14からオーバーフローすることとなる。オーバーフローした処理液23は、還流部17にて廃液槽15に戻され、これが繰り返される。
不織布25に付着した粒子固形物は、処理液中に気泡53が下部から発生され、且つ不織布25が処理液23に対して昇降動作されることで、効率的に離脱が促進され、分離槽14の底部47に沈殿する。
底部47に堆積した粒子固形物は、処理液23が分離槽14の底部47から排出されることに伴って、処理液23とともに濃縮スラリー57となって優先的に排出され、スラリー貯留槽19へ送られる。
スラリー貯留槽19に溜められた濃縮スラリー57は、ろ過分離機21のろ過室61に送られる。ろ過室61では、フィルター71の上方で、撹拌板59が上下運動される。これと同時に、底部47のフィルター71を通過して、槽外部91へろ過水が排出される。ろ過水は、フィルター71上流側のろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行うことでフィルター71を通過して排出される。ろ過室61内では、撹拌板59の上下運動で濃縮スラリーを撹拌し、フィルター71上に堆積している粒子固形物を舞い上がらせることなく、且つ即座に沈降して堆積しないように、粒子固形物を損壊させることなく分散させながらゆっくりと沈降させる。
これにより、フィルター71を通過する処理液23は、濃縮スラリー57の状態であっても、ろ過量の急激な減少が改善される。
濃縮スラリー57は、フィルター71を挟み、ろ過水流出側から吸引され、ろ過面のろ過可能時間が長くなる。
この固液分離方法では、ろ過分離機21で処理する前の処理液23が、予め分離槽14によって濃縮され、濃縮スラリー57となる。この濃縮スラリー57が、ろ過分離機21へ送られる。濃縮スラリー57がろ過分離機21へ送られることで、ろ過分離機21は、粒子固形物の分離効率が高くなる。単位時間当たりの処理液23の処理量が増加する。
また、特に、濃縮スラリー57をフィルター71に通過させる場合には、撹拌板59が併用されることで、フィルター71の急速な目詰まりが抑制される。これによって、処理量が増加される。固液分離方法では、高濃度の濃縮スラリー57に撹拌板59が用いられることで、低濃度の処理液23に撹拌板59が用いられる場合に比べ、撹拌板59による撹拌動作がろ過面の目詰まりの抑制に、より効果的に作用するためである。
本発明に係る請求項1記載の固液分離装置によれば、ジルコニウム系化成処理にて発生する微細な水酸化鉄等の粒子固形物が含まれる処理液から粒子固形物を分離する処理において、簡素な構造で処理量を増やすことができる。
本発明に係る請求項2記載の固液分離方法によれば、ろ過面の急激な目詰まりを抑え、処理量を増やすことができる。
本発明の実施形態に係る固液分離装置の全体を概略的に表した構成図である。 図1に示した分離部の斜視図である。 (a)は揺動フィルターの表裏移動時の動作説明図、(b)は分離槽のオーバーフロー状況の動作説明図、(c)は気泡発生時の動作説明図、(d)は揺動フィルター上昇時の動作説明図である。 図1に示したろ過分離機の正面断面図である。 図4に示したろ過室の平断面図及び撹拌板の平面図である。 (a)は撹拌板下降時の動作説明図、(b)は撹拌板上昇時の動作説明図である。 (a)は乾燥空気供給時の動作説明図、(b)はろ過室開放時の動作説明図である。 粒子固形物の粒度分布を表すグラフである。 比較例と実施例における処理量とろ過時間との相関を表すグラフである。
以下、本発明に係る実施形態を図面を参照して説明する。
図1は本発明の実施形態に係る固液分離装置11の全体を概略的に表した構成図、図2は図1に示した分離部13の斜視図である。
本実施形態に係る固液分離装置11は、廃液槽15と、分離槽14と、還流槽18と、スラリー貯留槽19と、ろ過分離機21とを有する。
廃液槽15は、処理液23が溜められる。この処理液23は、自動車車体等の塗装前処理として行われるジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物(溶質)を液体(溶媒)に含んでいる。
分離部13は、処理液23が供給される分離槽14と、分離槽14内の処理液23に浸漬され処理液23に含まれる粒子固形物を付着させる不織布25を有した面状の揺動フィルター27と、不織布25の表裏面に処理液23をぶつける方向に揺動フィルター27を移動させる不織布揺動機構29と、を主要な構成として有している。分離槽14には、不織布25への付着により粒子固形物が減量された処理液23(ろ液)を分離槽14から排出するオーバーフロー排出口31が設けられる。
分離槽14には、廃液槽15から処理液23が供給される。分離槽14のオーバーフロー排出口31から排出された処理液23は、還流部17の還流槽18に一旦貯留される。廃液槽15の処理液23は、廃液槽15と分離槽14とを接続する供給管33に設けられた移送ポンプ35によって分離槽14に供給される。固液分離装置11では、粒子固形物を分離した後の処理液23は、還流槽18から再び廃液槽15へ戻されて(図1中矢線20)再利用される。従って、珪藻土などを使わず、ろ材(揺動フィルター27)のみでの粒子固形物の除去を可能とする。
図3(a)は揺動フィルター27の表裏移動時の動作説明図、(b)は分離槽14のオーバーフロー状況の動作説明図、(c)は気泡発生時の動作説明図、(d)は揺動フィルター上昇時の動作説明図である。
不織布25はろ材ユニットとして分離槽14の上方で吊り持ちされている。本実施の形態では、処理液23の流出方向に所定間隔を開けて、複数、例えば図示のような7つの揺動フィルター27が設けられている。揺動フィルター27は支持桟37を有し、この支持桟37がカム機構部39を介して不織布揺動機構29に接続される。カム機構部39は、支持桟37を、支持桟37の延在方向に直交する水平方向(図3の矢印a方向)に往復移動させる。
なお、ろ材ユニットを同方向に移動させる機構はこれに限定されるものではなく、同方向への移動を可能とするものであれば、この他、シリンダー機構、リンク機構、ピニオンラック機構等であってもよい。また、ろ材ユニットの移動は、揺動軸を中心としたスイング(揺動)、スライド(表裏面に垂直方向への平行移動)などであってもよい。
不織布25は、上辺部41のみが支持桟37に固定される。不織布25の上辺部41のみが支持桟37によって支持され、浸漬された不織布25は処理液中に吊り下げ状態となる。この状態で支持桟37が不織布25の表裏方向に移動されると、不織布25の上辺部41に伝わった移動が、不織布25を可撓させながら波状に下辺部43へ伝播し、不織布25の上辺部41から下辺部43までの表裏全面を処理液23に均一に当てることが可能となる。不織布25を、波状に揺らす(揺らぐ)ことにより、少ない駆動力で不織布25の全面に処理液23を当て、不織布25に粒子固形物を均一に付着させることができる。
本実施形態のろ材ユニットでは、不織布25を挟み表裏側には略同形状で且つ不織布25よりも高剛性のネット材45が平行に一体固定される。本実施の形態では、三枚のネット材45と、二枚の不織布25とが交互に配置されている。処理液中に吊り下げられた不織布25が表裏に配置されたネット材同士の間でガイドされ、浮力や水流によって不織布25が捲れなくなる。また、上辺部41に伝達された移動力が下辺部43まで効率良く伝播されるようになっている。これにより、不織布25の移動時、剛性の高いネット材45に不織布25が挟まれることで、ろ過面積に寄与しなくなる捲れの発生を防止することができる。
なお、ろ材ユニットは、カム機構部39に対して着脱自在となっている。つまり、交換可能となっている。また、不織布25及びネット材45のそれぞれも支持桟37に対して着脱自在としてもよく、個々に交換可能となっている。
より具体的には、後述するように、不織布25は、素材としてレーヨンを単独で用いる他、レーヨンとポリエステルの多重重ねとすることが好ましい。また、レーヨン製不織布の厚さは0.7mm、目付は150g/m2 程度が好適となる。処理液23の通過率の目安となるバブルポイントは、30〜33μm程度が好適となる。
なお、不織布25などのろ材は、処理液23が適宜な量、通過する材質であることが必要となる。また、ネット材45と不織布25は、密着した状態ではなく、図3に示すように、不織布25に対して処理液23が通過可能な空間があるほうがよい。
分離槽14の底部47は、中央部が低いV字形状のドレンパン49となる。なお、図例ではV字形状は省略して描いている。この底部47には、処理液供給口(図示略)と、残渣ドレン口51とが設けられている。不織布25から離脱させた粒子固形物を排除する際、所定時間をかけて粒子固形物を沈降させ、残渣ドレン口51を開くことで、底部47に堆積した粒子固形物を不織布25に再付着させずに効率良く排出できるように構成されている。底部47に排出残りが生じた場合には、処理液供給口からの処理液23の供給によって洗浄が可能となる。これにより、分離槽14の底部47に溜まった化成スラッジを、処理液供給口から供給した処理液23によって容易且つ迅速に残渣ドレン口51から排出除去することができる。
また、分離槽14の底部47には、気泡供給管(図示略)が設けられている。気泡供給管には複数の気泡生成孔が設けられている。気泡供給管にはエアージェネレーター(図示略)が接続され、エアージェネレーターは送気した圧縮を気泡生成孔から放出することで処理液23中に図3(c)に示す気泡53を処理液23の下部から発生させる。この気泡53を不織布25に当てることで、不織布25に付着した粒子固形物を底部47に落下させる。
なお、固液分離装置11は、ろ材ユニットを処理液23から図3(d)に示すように、引き上げ、下降を繰り返すユニット昇降機構55を備えることが好ましい。これにより、上記したエアーバブリングとともに、素早い昇降動作で、より効率的にろ材ユニットからの粒子固形物の離脱が行えるようになる。また、このユニット昇降機構55は、ろ材ユニットの交換時に、揺動フィルター27を処理液23から持ち上げるための手段としても利用することができる。
固液分離装置11には図示しない制御手段が設けられる。制御手段には入出力インターフェースを備えたコンピュータや、プログラマブルシーケンサー等を用いることができる。制御手段は移送ポンプ35の駆動、駆動モータの駆動、エアージェネレーターの駆動を制御する。また、制御手段は、内蔵タイマーにより、移送ポンプ35、駆動モータ、エアージェネレーターの駆動を制御する。これにより、付着と落下を繰り返して連続運転を可能としている。また、タイマーにより不織布25の交換時期を知らせるようにしてもよい。このような繰り返し処理を行うことで、除去効率を上げることができる。
さらに、制御手段には濁度計が接続されてもよい。粒子固形物を落とすタイミングを濁度計で検出するようにする。濁度計で、分離槽14の状態を監視し、不織布25の付着状況を把握して、エアーバブリングのタイミングや、ろ材ユニットの昇降のタイミング、交換のタイミングを得るようにしてもよい。
このように、分離部13では、廃液槽15から処理液23が供給されてオーバーフローされ、上辺部41のみ支持し吊り下げ状態とされる面状の不織布25を鉛直方向に沿う方向で処理液23に浸漬する。この不織布25は、短繊維不織布よりなり、透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmとされ、レーヨンとポリエステルの多重重ねのものである。分離槽14は、表裏面に処理液23をぶつける方向に不織布25を表裏方向に移動させることで、処理液23に含まれる粒子固形物を不織布25を構成する繊維に付着させる。そして、分離槽14は、処理液内で発生させた気泡53を不織布25に衝突させるとともに、不織布25を処理液23に対して昇降動作させて処理液23から離脱させた粒子固形物を、底部47に図3(d)に示す濃縮スラリー57として沈殿させ、さらに粒子固形物が減らされた処理液を分離槽14からオーバーフローさせる。
還流部17は、分離槽14のオーバーフローによって流出した処理液23を一時的に還流槽18に溜めながら廃液槽15へ戻す。この還流により、分離槽14内での分離処理をより確実に行え、処理液23中の粒子固形物の濃縮スラリー57の濃度を大きくする。
スラリー貯留槽19は、分離槽14の底部47に配管接続され底部47から処理液23とともに優先的に排出される濃縮スラリー57を溜める。
図4は図1に示したろ過分離機21の正面断面図、図5は図4に示したろ過室61の平断面図及び撹拌板59の平面図である。
ろ過分離機21は、ろ過室61がトレイ状の上蓋63と下蓋65とからなり、下蓋65が油圧シリンダー67の駆動シャフト69に固定される。ろ過室61は、油圧シリンダー67によって下蓋65が昇降することで、上下方向に閉鎖及び開放自在に構成され、ろ材である例えばペーパー状のフィルター71が、閉鎖されたろ過室61の上蓋63と下蓋65とによって表裏方向から挟まれる。ろ過室61に送られた粒子固形物を含む濃縮スラリー57は、内方のフィルター上に送られてろ過される。
ろ過室61の上蓋63には、濃縮スラリー57の供給される濃縮スラリー供給管73が接続される。濃縮スラリー供給管73には、流路開閉用の第1バルブ75が介装される。また、上蓋63には圧力計77が接続される。
撹拌板59は、駆動部により上下運動して粒子固形物がフィルター71のろ過面にすぐに積層しないように濃縮スラリー57を撹拌する。撹拌板59の駆動部としては、シリンダー機構79を採用することができる。撹拌板59には軸81が固定され、この軸81がシリンダー機構79によって上下駆動される。
撹拌板59は、ろ過室61における上蓋63側であるフィルター71よりも上方の空間64内を上下に駆動する。この空間64内においては、撹拌板59は、高さ方向の略中間位置に配置され、その高さの約半分の距離をストローク長Sとして上下動し、すなわち上蓋63内の天井面やフィルター71には接触しない範囲で撹拌が行われる。
撹拌板59は、ろ過室61の内部水平断面形状と略同形状とされ、ろ過室内面と撹拌板59の縁部84との間に僅かな隙間83(図5参照)を有した形状、例えばろ過室61の内部水平断面形状に対して隙間83を5mm程度とした外形状に形成される。従って、撹拌板59は、フィルター71のろ過面と略同一面積の相似形状に撹拌面85が形成される。
撹拌板59には、図5に示す複数の貫通孔87が撹拌面85を貫通して穿設されている。撹拌板59は、複数の貫通孔87が形成されることで、ろ過室61の内部水平断面積に対して開口率が10〜15%とされる。なお、隙間83は、撹拌板59の縁部84に沿って略均一とされ、すなわち撹拌板59は、ろ過室61内の中心に沿って位置し、また、複数の貫通孔87は、それぞれ同形状で等間隔に配置されることが好ましい。
撹拌板59は、貫通孔87に濃縮スラリー57を通過させて、撹拌板59に対する濃縮スラリー57の過大な抵抗を減らす。同時に、撹拌板59は、粒子固形物を貫通孔87に通過させて、粒子固形物を濃縮スラリー57の全体へ効率よく分散させる。これにより、撹拌効率を高める。なお、貫通孔87の内径は、濃縮スラリー57がスムースに通過され粒子固形物を崩さず通過が可能なことが好ましい。
ろ過室61の下蓋65には廃液管89が接続され、廃液管89はろ過室61のろ過水を槽外部91へ排出する。
ろ過室61は、下蓋65が油圧シリンダー67によって昇降自在となる。上蓋63及び下蓋65は、開口形状が例えば略四角形で形成される。上蓋63の平行な二辺部には、上側保持部材93が設けられている。また、下蓋65の平行な二辺部にも上側保持部材93に対向する下側保持部材95が設けられている。これら上側保持部材93及び下側保持部材95は、上蓋63と下蓋65が閉鎖されることで、フィルター71を挟む。
なお、フィルター71は、下蓋内の金属製メッシュと、パンチングメタルからなるろ材支え(図示略)によって支えられている。
ろ過室61の近傍にはフィルター移動手段97が設けられている。フィルター移動手段97は、開放した際のろ過室61からフィルター71を移動して、フィルター71ごと、濃縮スラリー57からろ過水が除かれた脱水ケーキ99(図7参照)を槽外部91へ排出する。フィルター移動手段97は、長尺な帯状に形成されるフィルター71を巻装するフィルター繰出しロール101と、ろ過室61を挟んでフィルター繰出しロール101と反対側に設けられフィルター71を巻き取るフィルター巻取りロール103と、を備える。フィルター移動手段97は、手動、モータ駆動のいずれで駆動されてもよい。フィルター移動手段97は、フィルター巻取りロール103とフィルター繰出しロール101とが同期して回転されることにより、フィルター71の新たな部分をろ過室61に供給可能としている。
このように、ろ過分離機21では、槽下部105にシート状のフィルター71を水平に備えてスラリー貯留槽19からの濃縮スラリー57が供給されるろ過室61を有する。ろ過分離機21は、フィルター71の上方において、ろ過室内周壁107(図5参照)に対して近接する縁部84を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、ろ過室61内におけるフィルター71より上方の空間64を1.8〜2.1m/分の速度で上下運動させて濃縮スラリー57をゆっくり撹拌する。これにより、粒子固形物がろ過面に即座に沈降して堆積しないように粒子固形物を濃縮スラリー57中に分散させる。これと同時に、ろ過分離機21は、ろ過室内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行ってフィルター71を通過するろ過水を槽外部91へ排出する。ろ過分離機21は、徐々に残渣(粒子固形物)をフィルター71上に溜めることによって、脱水ケーキ99を得る。
なお、濃縮スラリー供給管73には、流路開閉用の第1バルブ75の他、第1電磁バルブ111が介装される。また、上蓋63には加圧管113が接続され、加圧管113は乾燥圧縮空気供給手段115と接続される。加圧管113には、流路開閉用の第2バルブ117が介装される。乾燥圧縮空気供給手段115は、濃縮スラリー57の供給が停止された状態、すなわち第1バルブ75,第1電磁バルブ111が閉じた状態で、乾燥圧縮空気119をろ過室61へ送ってフィルター71上の残渣を、乾燥した空気での加圧により、フィルター71に残渣を押圧し絞るように脱水して脱水ケーキ99とする。
このように、ろ過分離機21では、ろ過室61の内方にシート状のフィルター71を備え、粒子固形物を含む濃縮スラリー57が送られるとともに、出口側に設けたダイヤフラムポンプ109にて低圧吸引ろ過が行われる。
フィルター71は、下側保持部材95及び上側保持部材93によって挟まれて張架される。フィルター71のフィルター巻取りロール103側の走行路の近傍にはスクレーパー121が設けられ、スクレーパー121はフィルター上の脱水ケーキ99を掻き取る。掻き取られた脱水ケーキ99は、下方に設置される廃棄トレイ123に投下される。
次に、上記固液分離装置11を用いた固液分離方法を説明する。
本実施形態に係る固液分離方法は、処理液貯留工程と、前段分離工程と、処理液還流工程と、スラリー貯留工程と、ろ過分離工程とを含む。
処理液貯留工程は、ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液23を廃液槽15に溜める。
前段分離工程の概略は、廃液槽15から処理液23が分離槽14に供給されてオーバーフローされ、上辺部41のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布25を、鉛直方向に沿う方向で処理液23に浸漬する。表裏面に処理液23をぶつける方向に不織布25を表裏方向に移動させることで、処理液23に含まれる粒子固形物を不織布25を構成する繊維に付着させる。処理液内下部で発生させた気泡53を不織布25に衝突させるとともに、不織布25を処理液23に対して昇降動作させる。これにより、繊維に付着状態の粒子固形物は容易に落下し、処理液23から離脱される粒子固形物を、底部47に濃縮スラリー57として沈殿させる。また、粒子固形物の減らされた処理液23が分離槽14からオーバーフローされる。このオーバーフローされる処理液は、所謂上澄みである。
なお、処理液23中に浸漬した不織布25が移動されると、処理液23が不織布25に当たり、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着する。この透過と付着が繰り返され、不織布25に粒子固形物が堆積するように次々に付着して分離される。粒子固形物が減らされた処理液23は、不織布25の動きにより、分離槽14で液面がさざ波のように動き、オーバーフロー排出口31から排出されることとなる。
粒子固形物が離脱された不織布25は、再び粒子固形物が付着可能となる。このように、分離槽14では、不織布25に付着した粒子固形物を気泡53により簡単な構造で離脱させることができ、不織布25の交換サイクルを長くすることができる。
また、気泡53を供給する際、不織布25は、処理液23から引き上げ降下される。気泡53の衝突に加え、不織布25が液面に対して昇降されることによる衝撃で、不織布25からの粒子固形物の離脱性がより高められる。これにより、粒子固形物の離脱性をさらに向上させている。
従って、分離部13では、単純な孔が貫通成形されるようなフィルターではなく繊維が複雑に絡み合って構成される不織布25によって、従来粒径よりも細かい5μm以下の粒径の化成スラッジを含む処理液23から簡素な構造で粒子固形物を分離することができ、またバブルポイント平均孔径が30〜33μmの不織布25としたことで、処理液23が容易に繊維間を通りながら粒径0.1〜10μmの粒子固形物を繊維に引っ掛かるように付着させることで処理液23から分離できる。
分離部13は、濁度計の結果、或いは所定時間の経過によって、後述の還流部17を止めるとともに、処理液23の供給を止め、分離槽14内に残っている濃縮スラリー57を残渣ドレン口51より全て排出する。その後、槽内の洗浄を行う。洗浄の後、新たに処理液23の供給を始めて、繰り返し処理を行う。また、残渣ドレン口51から排出された洗浄時の処理液23は、再び廃液槽15に戻され繰り返し処理を行う。
固液分離装置11において、分離部13は、ろ過分離機21の前処理装置として用いられる。これにより、分離部13が有する固有の粒子固形物の除去能力を有効にして、後段のろ過分離機21の負荷を大幅に軽減できる。
処理液還流工程は、還流部17にて、分離部13のオーバーフローによって流出した処理液23を一時的に還流槽18に溜めながら廃液槽15へ戻す。これにより、処理液23の連続処理による濃縮スラリー57の連続生成を可能にしており、この還流を繰り返すことで分離槽14内での分離処理をより確実に行え、処理液23中の粒子固形物の濃縮スラリー57の濃度を大きくし、処理液23からの粒子固形物の分離をより高めることとなる。
スラリー貯留工程は、分離槽14の底部47に配管接続されたスラリー貯留槽19に対し、分離槽14の底部47から処理液23とともに優先的に排出される濃縮スラリー57を溜める。
図6(a)は撹拌板下降時の動作説明図、(b)は撹拌板上昇時の動作説明図、図7(a)は乾燥空気供給時の動作説明図、(b)はろ過室開放時の動作説明図である。
ろ過分離工程の概略は、槽下部105にシート状のフィルター71を水平に備えてスラリー貯留槽19からの濃縮スラリー57が供給されるろ過室61を用いる。ろ過分離機21のろ過室61では、フィルター71の上方においてろ過室内周壁107に対して近接する縁部を備えて配置した開口率10〜15%とする複数の貫通孔87を備える水平な撹拌板59を、上下運動させて濃縮スラリー57をゆっくり撹拌する。この撹拌板59による撹拌は、ろ過室61内におけるフィルター71より上方の空間64の高さ方向の略中間位置で、この空間64における高さの略半分の距離をストローク長Sとして1.8〜2.1m/分の速度での上下動とされる。そして、フィルター71上に堆積している粒子固形物を舞い上がらせずに、且つ撹拌板59にて粒子固形物を損壊させずに、粒子固形物がろ過面に即座に沈降して堆積しないように、粒子固形物を濃縮スラリー中に分散させる。同時に、ろ過分離機21では、ろ過室61内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの圧力で吸引ろ過を行ってフィルター71を通過するろ過水を槽外部91へ排出する。これにより、ろ過分離機21は、徐々に残渣をフィルター71上に溜めて脱水ケーキ99を得る。
ろ過分離機21を用いたろ過方法では、まず、粒子固形物を含む濃縮スラリー57を供給ポンプにてろ過室61のシート状のフィルター71へ送る。同時に、ろ過室61の出口側に設けたダイヤフラムポンプ109にて低圧吸引ろ過を行う。ろ過室61を減圧、すなわちダイヤフラムポンプ109で吸引してろ過する際は、ろ過室61に圧縮空気を送りこまなくてよい。ろ過室61に、連続して濃縮スラリー57を送り込み、同時にダイヤフラムポンプ109でフィルター71を介して減圧ろ過する。送り込み時には低いが濃縮スラリー57の送液の圧力は存在する。ろ過室空間内に連続して濃縮スラリー57を送り込むことから、徐々にフィルター71に残渣が溜まる。この際、ろ過室61の入口側に設けた撹拌板59を図6に示すように、ストロークSにて上下運動させ、粒子固形物がろ過面に堆積しないようにゆっくり撹拌しながらろ過を行う。なお、撹拌板59の上下ストロークでは、ストローク下端で撹拌板59が、フィルター71上に溜まる残渣に触れない高さとされ、すなわちろ過室61内で濃縮スラリー57の撹拌のみ行われる。
所定時間、或いは所定流量に達した時点、またはダイヤフラムポンプ109の吸引圧の変化を見て、送液を止め、吸引(減圧)を止める。この停止タイミングは、時間の場合はタイマー、流量の場合は例えば廃液管89に設けられる流量計、圧力の場合は廃液管89に設けられる圧力計90の数値によって決める他、各種センサによって決められてもよい。このろ過分離工程では、粒子固形物が圧縮により潰れて次々に変形し、フィルターとは逆側である表面側(上流側)の粒子固形物同士が密着状態となって目詰まりして液が流れにくくなる加圧ろ過に比べ、粒子固形物があまり潰されないので、粒子間の隙間83から液が槽下部105へ抵抗なく流れる。
脱水工程では、図7(a)に示すように、濃縮スラリー供給管73側の供給ポンプを停止してから、ろ過室61内に乾燥圧縮空気119が送られ、フィルター上側表面に圧縮空気圧力が加えられ、さらに水分が絞り出される。この脱水工程では、脱水ケーキ99の含水率が小さくなり、それによって粘着性が小さくなることで、脱水ケーキ99がフィルター71から剥がれ易くなる。水分の絞り出しが完了したなら、図7(b)に示すように、油圧シリンダー67により下蓋65を下降させてろ過室61を開放する。ろ過室61が開放された後、フィルター移動手段97によってフィルター71を移動して、フィルター71ごと、脱水ケーキ99を槽外部91へ排出する。
ろ過室61の槽外部91へ排出された脱水ケーキ99は、スクレーパー121によって掻き取られ、フィルター71と分離されて廃棄トレイ123へ投下される。脱水ケーキ99の除去されたフィルター71は、フィルター巻取りロール103によって巻き取られ、再利用可能な状態となる。
次に、上記の構成を有する固液分離装置11の作用を説明する。
本実施形態に係る固液分離装置11では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められる。廃液槽15に溜められた処理液23は、分離部13の分離槽14に送られる。分離部13は、供給された処理液23が所定量になると、処理液23をオーバーフローさせる。オーバーフローした処理液23は、還流槽18に一旦、溜められる。還流槽18に溜まった処理液23は、廃液槽15へと再び戻される。
この処理液23の循環系において、分離槽14では、処理液23中に鉛直方向に沿って浸漬した不織布25が表裏方向に移動される。不織布25が移動されると、処理液23が不織布25に当たり、処理液23の一部分が不織布25を透過するとともに処理液23に含まれる粒子固形物が不織布25の繊維に付着することとなる。これは粒子固形物が不定形状であり不織布25を構成する繊維が絡み合った状態であることから、この繊維間を処理液23が通過すると同時に浮遊する粒子固形物が捕捉されるように付着するものである。すなわち、不織布25の構成として、バブルポイント平均孔径を上記したように30〜33μmとしているが、この孔とされるものは不織布を真っ直ぐに貫通した管状の孔ではなく、不織布25を構成する不定形の繊維が絡み合った状態でのバブルポイントの孔径数値であり、この繊維により形成される不定形状の間隙部分に粒子固形物が引っ掛かるように捕捉されて付着することとなるものである。この透過と付着が繰り返され、不織布25に粒子固形物が堆積して、処理液23から粒子固形物が分離されて行く。また、粒子固形物が減らされた処理液23を分離槽14からオーバーフローさせる。
不織布25に付着し堆積する粒子固形物が所定量になると、或いは所定時間、不織布25が移動されると、処理液内下部から気泡53が発生され、この気泡53が不織布25に当たることで、不織布25に付着した粒子固形物が分離槽14の底部47に落下する。この際、不織布25は、処理液23に対して昇降動作されることで、より効率的に粒子固形物の離脱が促進される。落下した粒子固形物は、分離槽14の底部47に沈殿する。不織布25に捕捉された粒子固形物は、ある程度凝集されていることから、比重が増し、底部47へ沈降しやすくなっている。粒子固形物は、不織布25に対して付着しているのみであって、気泡や昇降動作の衝撃で容易に落下する。また、この際、分離槽14への処理液23の供給は、継続されていても、停止されていてもよい。この気泡53の衝突と、昇降動作が所定の間隔で繰り返されることにより、分離槽14の底部47に離脱した粒子固形物が堆積して行く。
還流部17によるオーバーフローした処理液の廃液槽15への還流を所定時間繰り返した後、底部47に堆積する粒子固形物が所定量となったなら、分離槽14の底部47から処理液23がスラリー貯留槽19へ排出される。処理液23が分離槽14の底部47から排出されることに伴って、分離槽14の底部47に堆積した粒子固形物が処理液23とともに濃縮スラリー57となって優先的に排出(排出流の抵抗を受けて下流側へ移動)され、スラリー貯留槽19へ送られる。
濃縮スラリー57は、スラリー貯留槽19に溜められた後、ろ過分離機21のろ過室61に送られる。濃縮スラリー57が供給されたろ過室61では、フィルター71の上方で、撹拌板59が上下運動される。これと同時に、ろ過室61に供給された濃縮スラリー57は、底部47のフィルター71を通過して、槽外部91へろ過水が排出される。このろ過水は、フィルター上流側(撹拌板59を配置した側)のろ過室内を加圧せず、ダイヤフラムポンプ109を使用して−500〜−600mmHgの負圧力で吸引ろ過を行うことにより、フィルター71を通過して排出される。
ろ過室61では、撹拌板59が上下運動されることで、濃縮スラリー中の粒子固形物がろ過面に沈降して堆積しにくくなる。つまり、フィルター71は、目詰まりが抑制される。別言すると、撹拌板59のゆっくりした上下動により、ろ過室61内では、フィルター71に粒子固形物が即座に沈殿せず、貫通孔87を有する撹拌板59によって粒子固形物が浮遊した状態を保ち、フィルター71による吸引ろ過を継続できることとなり、粒子固形物の沈殿を遅延させフィルター71上に次々に堆積してしまうことがなくなる。これにより、フィルター71を通過する処理液23は、濃縮スラリー57の状態であっても、ろ過量の急激な減少が改善される。この作用は、特に濃縮スラリー57をろ過する本構成において、顕著な効果を発揮する。
また、濃縮スラリー57は、フィルター71を挟み、ろ過水流出側から吸引される。そのため、フィルター71を挟み、撹拌板側の濃縮スラリー57を加圧してフィルター71を通過させる加圧ろ過に比べ、フィルター71のろ過面の目詰まりが遅くなる。つまり、加圧ろ過では、フィルター71上の濃縮スラリー57を、フィルター71とは反対側である表面側を圧縮させることとなり、粒子固形物同士を密着させてしまうこととなって、フィルター71のろ過面の目詰まりと、堆積する濃縮スラリー57自体の密着度でろ過水の通路がなくなってしまうが、フィルター71越しの吸引ろ過では、そのようなことが起こらず、ろ過面のろ過可能時間が長くなる(フィルター71が長持ちする)。
フィルター上に捕捉された粒子固形物の厚みが所定厚となったなら、或いはフィルター71を濃縮スラリー57が殆ど通過しなくなり吸引の圧力に変化が見られたら、乾燥圧縮空気119が送られることで、ろ過室61内の残液が処理される通気脱水が行われる。通気脱水は、ろ過室61が設定圧力以下及び/または設定時間に達すると終了する。ろ過室61は、残圧が逃がしバルブ(図示略)を開けることで大気開放される。脱水ケーキ99は、ろ過室61が開放され、フィルター71と共に槽外部91へ排出され、固液分離の処理が終わる。
このように固液分離装置11では、ろ過分離機21で処理する前の処理液23が、予め分離部13によって濃縮され、濃縮スラリー57となる。この濃縮スラリー57が、ろ過分離機21へ送られることで、ろ過分離機21は、廃液槽15に貯留された通常の低濃度の処理液23から脱水ケーキ99を得る場合に比べ、粒子固形物の分離効率が格段に高まる。従って、固液分離装置11は、分離部13やろ過分離機21が単独で用いられる場合に比べ、処理時間の短縮が可能となる。また、複数台のろ過分離機21を並設する場合に比べ、装置構成が簡素となる。
特に、この固液分離装置11の構成のように、濃縮スラリー57をフィルター71に通過させる場合には、ろ過室61内で撹拌板59が併用されることで、フィルター71の急速な目詰まりが抑制される。高濃度の濃縮スラリー57に撹拌板59が用いられることで、低濃度の処理液23に撹拌板59が用いられる場合に比べ、撹拌板59による撹拌動作がろ過面の目詰まりの抑制に、より効果的に作用するためである。
本実施形態に係る固液分離方法では、ジルコニウム系化成処理にて発生した処理液23が廃液槽15に溜められ、分離部13に送られる。他の処理液に対しては、上記した作用、効果は低い。つまり、固液分離装置11は、ジルコニウム系化成処理に用いられることで、大きな効果が得られる。これは、水酸化鉄が不織布25に付着して捕捉されやすい点、これによって得られた濃縮スラリー57が撹拌板59で撹拌されることによりフィルター71の通過が改善できる点、に起因すると考えられる。
従って、本実施形態に係る固液分離装置11によれば、ジルコニウム系化成処理にて発生する微細な水酸化鉄等の粒子固形物が含まれる処理液23から粒子固形物を分離する処理において、簡素な構造で処理量を増やすことができる。
また、本実施形態に係る固液分離方法によれば、ろ過面の急激な目詰まりを抑え、処理量を増やすことができる。
上記の実施形態に開示した同一の構成を有する固液分離装置11の実機によって、洗浄スラリー液の処理テストを行った。
[テスト目的]
ジルコニウム系化成処理ラインの化成液を、上記同様の構成を有する分離部13で粒子固形物の捕捉処理した後の処理液23を想定して、サンプル液を調整して得た。実機(EFC−10S:三協技研工業株式会社製)を構成するろ過分離機21を使用して、撹拌しながら吸引ろ過する方法(実施例)と、撹拌を行わないで吸引ろ過する従来の方法(比較例1)と、撹拌しながら加圧ろ過する方法(比較例2)と、の処理時間の違いを検証した。
[テストサンプル]
テストサンプル名:ジルコニウム系化成処理液
テストサンプル採取日:2012年11月19日
テストサンプル採取場所:化成スラッジ濃縮槽の下部より採取。
固形分粒子径:1〜5μm(61.25%)、5〜10μm(30.98%)
図8は粒子固形物の粒度分布を表すグラフである。
なお、図8のグラフにおいて白抜き棒は粒子径の大きなものからの累計で全体を100%とした。ハッチング棒はその粒子間の度数を表す。例えば、粒子構成比は0〜5μmの粒子が約61.25%、5〜10μmの粒子が約30.98%であることになる。
[タンク容量]
500リットルとした。
[洗浄液濃度]
441.35g÷500リットル=0.882g/リットル、ただし≒1g/リットルとして計算した。
[採取液濃度]
17.4g/リットルであった。
[テストサンプル]
採取液を清水で17.4倍に希釈した液をテストサンプルとした。
[テスト実施日]
2012年12月26〜27日
[ろ過分離機のテスト方法]
吸引ろ過法(ダイヤフラムポンプ使用)
なお、ろ過室61の形状は上述した図5に示す通りであり、上蓋63の内寸法を、縦260mm、横幅320mmとし、四隅を半径60mmでR形成し、また撹拌板59の寸法を、縦250mm、横幅310mmとし、四隅を半径55mmでR形成して、円形の貫通孔87を等間隔に配置してそれぞれ直径20mmとし18か所穿設しており、上蓋63の面積を0.0801m2 、撹拌板59の面積を0.0692453mm2 、開口部の面積を0.0108547m2 として開口率を13.55%としている。
また、ろ過室61の空間64の大きさは、フィルター71上面から上蓋63の天井面までの距離を70mm、空間64内における撹拌板59のストローク長Sを30mm、撹拌板59のストローク下限位置からフィルター71までの距離を15mmとし、容積としては0.00637m3 としている。
・フィルターペーパー(フィルター71):05TH−100H(平均粒子径13.9μm)
・ろ過面積:0.091m2
・上下シリンダースピード:2.1m/分(70回/分)
比較例1:ダイヤフラムポンプにて吸引ろ過(−500〜−600mmHg)を行い、撹拌なしとした。
比較例2:ダイヤフラムポンプにて吸引ろ過(−500〜−600mmHg)を行うに加え、加圧ろ過(0.04Mpa)を行い、ろ過室内撹拌を行った。
実施例:ダイヤフラムポンプにて吸引ろ過(−500〜−600mmHg)を行い、ろ過室内は加圧せずに、ろ過室内撹拌を行った。
以上の条件によってテストを行って得られた結果を表1に示す。
Figure 0005629034
表1に示すように、実施例は、単位時間当たりの処理量が679.9リットル/m2 ・Hrで最大となった。また、実施例は、脱水ケーキ厚が、比較例と同じ4.0mmに達するまでのろ過・脱水時間が、160minと長くなった。すなわち、吸引ろ過によって目詰まりの抑制されていることが知見できた。
[考察]
図9は比較例と実施例における処理量とろ過時間との相関を表すグラフである。
比較例1の従来のろ過方法に比べ、実施例のろ過室内を撹拌しながら吸引ろ過した方が、処理時間が1.49倍短縮することが判明した。
この結果では、比較例2の結果から、ろ過室内は極力加圧しないようにした方が処理量はアップすることが知見できた。
11…固液分離装置
13…分離部
14…分離槽
15…廃液槽
17…還流部
19…スラリー貯留槽
21…ろ過分離機
23…処理液
25…不織布
41…上辺部
47…底部
53…気泡
57…濃縮スラリー
59…撹拌板
61…ろ過室
64…空間
71…フィルター
84…縁部
87…貫通孔
91…槽外部
99…脱水ケーキ
105…槽下部
107…ろ過室内周壁
109…ダイヤフラムポンプ
S…ストローク

Claims (2)

  1. ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液が溜められる廃液槽と、
    前記廃液槽から前記処理液が供給される分離槽を備え、上辺部のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布を、鉛直方向に沿う方向で前記分離槽内の処理液に浸漬し、表裏面に前記処理液をぶつける方向に前記不織布を表裏方向に移動させることで前記処理液に含まれる前記粒子固形物を前記不織布を構成する繊維に付着させた後、前記分離槽の処理液内で発生させた気泡を前記不織布に衝突させ、且つ前記不織布を前記処理液に対して昇降動作させて前記処理液から離脱させた前記粒子固形物を前記分離槽の底部に濃縮スラリーとして沈殿させるとともに、前記粒子固形物が減らされた前記処理液を前記分離槽からオーバーフローさせる分離部と、
    前記分離部の前記オーバーフローによって流出した前記処理液を一時的に溜めながら前記廃液槽へ戻す還流部と、
    前記分離槽の底部に配管接続され、前記還流部にて前記廃液槽に前記処理液を戻すことを所定時間繰り返した後に、前記底部から前記処理液の一部とともに排出される前記濃縮スラリーを溜めるスラリー貯留槽と、
    槽下部にシート状のフィルターを水平に備えて前記スラリー貯留槽からの前記濃縮スラリーが供給されるろ過室を有し、前記フィルターの上方においてろ過室内周壁に対して近接する縁部を備えて配置した開口率10〜15%とする複数の貫通孔を備える水平な撹拌板を、前記ろ過室内における前記フィルターより上方の空間の高さ方向の略中間位置で、該空間における高さの約半分の距離をストローク長として1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリーを撹拌し、前記フィルター上に堆積している前記粒子固形物を舞い上がらせず、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室内を加圧せず、ダイヤフラムポンプを使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルターを通過するろ過水を槽外部へ排出し、徐々に残渣をフィルター上に溜めて脱水ケーキを得るろ過分離機と、
    を含むことを特徴とする固液分離装置。
  2. ジルコニウム系化成処理にて発生する水酸化鉄を成分とする粒径0.1〜10μmの粒子固形物を液体に含む処理液を廃液槽に溜める処理液貯留工程と、
    前記廃液槽から前記処理液が分離槽に供給され、上辺部のみ支持し吊り下げ状態とされる透過性能として水頭圧50mmでのバブルポイント平均孔径が30〜33μmの面状の短繊維不織布よりなる不織布を、鉛直方向に沿う方向で前記分離槽内の処理液に浸漬し、表裏面に前記処理液をぶつける方向に前記不織布を表裏方向に移動させることで前記処理液に含まれる前記粒子固形物を前記不織布を構成する繊維に付着させた後、前記分離槽の処理液内で発生させた気泡を前記不織布に衝突させ、且つ前記不織布を前記処理液に対して昇降動作させて前記処理液から離脱させた前記粒子固形物を前記分離槽の底部に濃縮スラリーとして沈殿させるとともに、前記粒子固形物を減らされた前記処理液を前記分離槽からオーバーフローさせる前段分離工程と、
    前記分離槽の前記オーバーフローによって流出した前記処理液を一時的に還流槽に溜めながら前記廃液槽へ戻す処理液還流工程と、
    前記分離槽の底部に配管接続され、前記処理液還流工程にて前記廃液槽に前記処理液を戻すことを所定時間繰り返した後に、前記底部から前記処理液の一部とともに排出される前記濃縮スラリーをスラリー貯留槽に溜めるスラリー貯留工程と、
    槽下部にシート状のフィルターを水平に備えて前記スラリー貯留槽からの前記濃縮スラリーが供給されるろ過室を用いて、前記フィルターの上方においてろ過室内周壁に対して近接する縁部を備えて配置した開口率10〜15%とする複数の貫通孔を備える水平な撹拌板を、前記ろ過室内における前記フィルターより上方の空間の高さ方向の略中間位置で、該空間における高さの約半分の距離をストローク長として1.8〜2.1m/分の速度で上下運動させて前記濃縮スラリーを撹拌し、前記フィルター上に堆積している前記粒子固形物を舞い上がらせず、前記粒子固形物がろ過面に即座に沈降して堆積しないように前記粒子固形物を濃縮スラリー中に分散させながら、且つろ過室内を加圧せず、ダイヤフラムポンプを使用して−500〜−600mmHgの圧力で吸引ろ過を行って前記フィルターを通過するろ過水を槽外部へ排出し、徐々に残渣をフィルター上に溜めて脱水ケーキを得るろ過分離工程と、
    を具備することを特徴とする固液分離方法。
JP2014147960A 2014-07-18 2014-07-18 固液分離装置及び固液分離方法 Active JP5629034B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147960A JP5629034B1 (ja) 2014-07-18 2014-07-18 固液分離装置及び固液分離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147960A JP5629034B1 (ja) 2014-07-18 2014-07-18 固液分離装置及び固液分離方法

Publications (2)

Publication Number Publication Date
JP5629034B1 true JP5629034B1 (ja) 2014-11-19
JP2016022422A JP2016022422A (ja) 2016-02-08

Family

ID=52136384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147960A Active JP5629034B1 (ja) 2014-07-18 2014-07-18 固液分離装置及び固液分離方法

Country Status (1)

Country Link
JP (1) JP5629034B1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164117A (zh) * 2017-12-28 2018-06-15 禹涵(上海)环保科技有限公司 一种高效污油泥处理装置
CN109432869A (zh) * 2018-12-14 2019-03-08 广东百维生物科技有限公司 用于过滤胶原蛋白的硅藻土过滤机组及其控制方法
CN109498657A (zh) * 2018-11-20 2019-03-22 安徽东盛友邦制药有限公司 一种解热镇痛作用的氨咖黄敏胶囊及其制备方法
CN109856320A (zh) * 2017-11-30 2019-06-07 中国辐射防护研究院 用于水体-放射性悬浮物振荡压滤的实验箱及其操作方法
CN111744255A (zh) * 2020-07-21 2020-10-09 西安西热锅炉环保工程有限公司 一种浸入式圆盘浆液净化装置
CN113332776A (zh) * 2021-05-21 2021-09-03 罗宇 一种污水过滤处理装置
CN114307309A (zh) * 2021-12-21 2022-04-12 西安航天华威化工生物工程有限公司 一种密闭净化压滤装置
CN115253405A (zh) * 2022-06-27 2022-11-01 广东邦普循环科技有限公司 一种废电池回收用避免物料结块的自清洁压滤机
CN115337692A (zh) * 2022-08-23 2022-11-15 山东信科环化有限责任公司 一种氢氧化钡制取用过滤装置
CN116770104A (zh) * 2023-08-21 2023-09-19 赣州综保华瑞新材料有限公司 一种钕铁硼废料提取除杂装置
CN116920485A (zh) * 2023-07-05 2023-10-24 德州学院 环境工程实验室废液多级处理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265402B1 (ja) * 2017-06-07 2018-01-24 三協技研工業株式会社 固液分離装置及び固液分離方法
CN112007408B (zh) * 2020-08-17 2021-11-16 杭州博裕环境建设有限公司 一种市政工程用污水处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052399A (ja) * 2000-08-10 2002-02-19 Parker Engineering Kk 化成スラッジ脱水乾燥装置
JP2006219691A (ja) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd 金属表面処理方法
JP2012035238A (ja) * 2010-08-11 2012-02-23 Sankyo Giken Kogyo Kk 固液分離方法及び固液分離装置
JP2014014786A (ja) * 2012-07-10 2014-01-30 Sankyo Giken Kogyo Kk ろ過方法及びろ過装置
JP2014018767A (ja) * 2012-07-20 2014-02-03 Sankyo Giken Kogyo Kk ろ過方法及びろ過装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052399A (ja) * 2000-08-10 2002-02-19 Parker Engineering Kk 化成スラッジ脱水乾燥装置
JP2006219691A (ja) * 2005-02-08 2006-08-24 Nippon Parkerizing Co Ltd 金属表面処理方法
JP2012035238A (ja) * 2010-08-11 2012-02-23 Sankyo Giken Kogyo Kk 固液分離方法及び固液分離装置
JP2014014786A (ja) * 2012-07-10 2014-01-30 Sankyo Giken Kogyo Kk ろ過方法及びろ過装置
JP2014018767A (ja) * 2012-07-20 2014-02-03 Sankyo Giken Kogyo Kk ろ過方法及びろ過装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856320A (zh) * 2017-11-30 2019-06-07 中国辐射防护研究院 用于水体-放射性悬浮物振荡压滤的实验箱及其操作方法
CN108164117A (zh) * 2017-12-28 2018-06-15 禹涵(上海)环保科技有限公司 一种高效污油泥处理装置
CN109498657A (zh) * 2018-11-20 2019-03-22 安徽东盛友邦制药有限公司 一种解热镇痛作用的氨咖黄敏胶囊及其制备方法
CN109432869A (zh) * 2018-12-14 2019-03-08 广东百维生物科技有限公司 用于过滤胶原蛋白的硅藻土过滤机组及其控制方法
CN111744255A (zh) * 2020-07-21 2020-10-09 西安西热锅炉环保工程有限公司 一种浸入式圆盘浆液净化装置
CN113332776B (zh) * 2021-05-21 2022-12-20 山西锦信腾环保科技有限公司 一种污水过滤处理装置
CN113332776A (zh) * 2021-05-21 2021-09-03 罗宇 一种污水过滤处理装置
CN114307309A (zh) * 2021-12-21 2022-04-12 西安航天华威化工生物工程有限公司 一种密闭净化压滤装置
CN115253405A (zh) * 2022-06-27 2022-11-01 广东邦普循环科技有限公司 一种废电池回收用避免物料结块的自清洁压滤机
CN115253405B (zh) * 2022-06-27 2024-04-09 广东邦普循环科技有限公司 一种废电池回收用避免物料结块的自清洁压滤机
CN115337692A (zh) * 2022-08-23 2022-11-15 山东信科环化有限责任公司 一种氢氧化钡制取用过滤装置
CN116920485A (zh) * 2023-07-05 2023-10-24 德州学院 环境工程实验室废液多级处理系统
CN116770104A (zh) * 2023-08-21 2023-09-19 赣州综保华瑞新材料有限公司 一种钕铁硼废料提取除杂装置
CN116770104B (zh) * 2023-08-21 2023-10-27 赣州综保华瑞新材料有限公司 一种钕铁硼废料提取除杂装置

Also Published As

Publication number Publication date
JP2016022422A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5629034B1 (ja) 固液分離装置及び固液分離方法
CN1301776C (zh) 制备金属或非金属细颗粒粉体的过滤与洗涤工艺
JP2014018767A (ja) ろ過方法及びろ過装置
CN106178636B (zh) 用于过滤和滤饼层形成的方法和系统
JP2000189958A (ja) 浸漬型膜ろ過装置
JP4620147B2 (ja) 固液分離装置
CN117482596A (zh) 具有改进的反洗的多层介质床过滤器
AT511926A2 (de) Verfahren zur mechanischen Feststoffabscheidung aus Abwasser
JP5108163B1 (ja) ろ過方法及びろ過装置
JP4181440B2 (ja) 濾過装置およびそれを用いた濾過方法
CN2936380Y (zh) 气浮冲洗式活性砂连续自动过滤器
JPH07303882A (ja) スカム除去・処理設備
JP4937389B2 (ja) 固液分離方法及び固液分離装置
JP6088360B2 (ja) 濾過装置
JP5334155B2 (ja) 処理液循環利用システム
CN208426718U (zh) 一种具有自动卸料功能的过滤罐
CN208440374U (zh) 厨房垃圾废水处理装置
JP2006281031A (ja) 膜ろ過装置に用いられる平膜エレメントの洗浄方法及び膜ろ過装置
JP3792108B2 (ja) 汚泥の濃縮脱水処理装置
JP6265402B1 (ja) 固液分離装置及び固液分離方法
JP4171248B2 (ja) 浮上濾材を用いた濾過装置
JP7222684B2 (ja) ろ過膜の再生方法及び再生装置、並びに含油排水のろ過方法及びろ過装置
DE202004009347U1 (de) Komprimierungs-/Expansions-Filtrationsvorrichtung zur Flüssigkeits-Feinfiltration
JP2003220305A (ja) 移動ろ床式ろ過装置
CN108275797A (zh) 厨房垃圾废水处理装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5629034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250