JP5623474B2 - 冷却水制御装置 - Google Patents

冷却水制御装置 Download PDF

Info

Publication number
JP5623474B2
JP5623474B2 JP2012179317A JP2012179317A JP5623474B2 JP 5623474 B2 JP5623474 B2 JP 5623474B2 JP 2012179317 A JP2012179317 A JP 2012179317A JP 2012179317 A JP2012179317 A JP 2012179317A JP 5623474 B2 JP5623474 B2 JP 5623474B2
Authority
JP
Japan
Prior art keywords
cooling water
passage
flow rate
circulating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012179317A
Other languages
English (en)
Other versions
JP2014037785A (ja
Inventor
貴士 天野
貴士 天野
浩二朗 早川
浩二朗 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2012179317A priority Critical patent/JP5623474B2/ja
Priority to CN201380043308.8A priority patent/CN104583555B/zh
Priority to DE112013004036.0T priority patent/DE112013004036T5/de
Priority to US14/420,976 priority patent/US9850802B2/en
Priority to PCT/IB2013/001743 priority patent/WO2014027238A1/en
Publication of JP2014037785A publication Critical patent/JP2014037785A/ja
Application granted granted Critical
Publication of JP5623474B2 publication Critical patent/JP5623474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00314Arrangements permitting a rapid heating of the heating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/18Indicating devices; Other safety devices concerning coolant pressure, coolant flow, or liquid-coolant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、冷却水を循環させることで内燃機関を冷却する又は暖機する冷却装置を制御するための冷却水制御装置の技術分野に関する。
従来から、内燃機関(エンジン)を冷却又は暖機するために、冷却水を循環させる技術が提案されている。例えば、特許文献1には、内燃機関の暖機時に、内燃機関のウォータジャケットにおける冷却水の流量と内燃機関を迂回する迂回通路における冷却水の流量との比率を調整する技術が開示されている。より具体的には、特許文献1には、内燃機関の暖機を促進するために、内燃機関の暖機時に、ウォータジャケットにおける冷却水の循環を停止しながら、迂回通路に冷却水を循環させる技術が開示されている。加えて、特許文献1には、ヒータコアの要求熱量を満たすために、内燃機関の暖機時であって且つヒータコアの要求熱量が排熱回収器の回収熱量よりも大きい場合には、(i)迂回通路における冷却水の循環を停止させ且つウォータジャケットに冷却水を循環させる、又は、(ii)迂回通路を循環する冷却水の流量を減少させ且つウォータジャケットを循環する冷却水の流量を増加させる技術が開示されている。
その他、本願発明に関連する先行技術として、特許文献2があげられる。特許文献2には、車室内の暖房要求がない場合には、リリーフ弁を閉弁することで、内燃機関を通過する冷却水通路における冷却水の循環を停止しながら、内燃機関を迂回する冷却水通路に冷却水を循環させる技術が開示されている。加えて、特許文献2には、暖房要求を満たすために、車室内の暖房要求がある場合には、リリーフ弁を開弁することで、内燃機関を迂回する冷却水通路に冷却水を循環させることに加えて、内燃機関を通過する冷却水通路に冷却水を循環させる技術が開示されている。
特開2009−150266号公報 特開2011−99400号公報
一方で、特許文献1に開示された技術では、ヒータコアの要求熱量が排熱回収器の回収熱量よりも大きい場合には、排熱回収機を通過する迂回通路における冷却水の流量をゼロにする又は減らした上で、内燃機関のウォータジャケットに冷却水が流入する。このため、ウォータジャケットに流入する冷却水の流量が相対的に増加しやすいがゆえに、内燃機関で発生した熱量が冷却水によって相対的に奪われやすくなる。このため、特許文献1に開示された技術では、内燃機関の始動性が悪化してしまうおそれがある。このような内燃機関の始動性の悪化は、燃費の悪化につながってしまう。
同様に、特許文献2に開示された技術によれば、暖房要求がある場合には、リリーフ弁の開弁のために内燃機関を通過する冷却水通路における冷却水の流量が大幅に増加する。このため、内燃機関で発生した熱量が冷却水によって相対的に奪われやすくなるため、内燃機関の始動性が悪化してしまうおそれがある。このような内燃機関の始動性の悪化は、燃費の悪化につながってしまう。
本発明は、例えば上記問題点に鑑みてなされたものであり、燃費の悪化を好適に抑制しながら冷却水を供給することが可能な冷却水制御装置を提案することを課題とする。
<1>
本発明の冷却水制御装置は、上記課題を解決するために、内燃機関を迂回させて排熱回収器とヒータコアとの間で冷却水を循環させる第1通路と、前記内燃機関と前記ヒータコアとの間で前記冷却水を循環させる第2通路とを備える冷却装置を制御するための冷却水制御装置であって、前記内燃機関の暖機時に、(i)第1通路に前記冷却水を循環させ且つ(ii)前記第2通路における前記冷却水の循環を停止する第1制御手段と、前記内燃機関の暖機時であって且つ前記ヒータコアが要求している要求熱量が所定閾値以下となる場合に、(i)前記第1通路を循環する前記冷却水の流量を前記要求熱量に応じて調整しながら、前記第1通路に前記冷却水を循環させ、且つ、(ii)前記第2通路における前記冷却水の循環を停止する第2制御手段と、前記内燃機関の暖機時であって且つ前記要求熱量が前記所定閾値を超える場合に、(i)前記要求熱量が前記所定閾値以下となる場合に前記第1通路を循環する前記冷却水の流量と比較して前記第1通路を循環する前記冷却水の流量を減らすことなく、前記第1通路に前記冷却水を循環させ、且つ、(ii)前記第2通路を循環する前記冷却水の流量を前記要求熱量に応じて調整しながら前記第2通路に前記冷却水を循環させる第3制御手段とを備える。
本発明の冷却水制御装置によれば、冷却水を循環させることで内燃機関を冷却する冷却装置を制御することができる。
冷却装置は、第1通路及び第2通路を備えている。
第1通路は、排熱回収器とヒータコアとの間で冷却水を循環させるための冷却水通路である。特に、第1通路は、内燃機関を迂回する(つまり、内燃機関を通過しない)迂回通路に相当する。尚、排熱回収器は、内燃機関から排出される排気熱(例えば、排気ガスに起因した熱)と、当該排熱回収器内を通過する冷却水との間での熱交換を促す機器である。典型的には、排熱回収器は、内燃機関から排出される排気熱を、当該排熱回収器内を通過する冷却水に伝達する。ヒータコアは、当該ヒータコア内を通過する冷却水と、当該ヒータコアとの間での熱交換を促す機器である。典型的には、ヒータコアは、当該ヒータコア内を通過する冷却水が有する熱を回収する。ヒータコアが回収した熱は、例えば暖房や、デフロスタや、デアイス等に用いられる。
第2通路は、内燃機関とヒータコアとの間で冷却水を循環させるための冷却水通路である。
このような冷却装置に対して、冷却水制御装置が備える第1制御手段は、主として内燃機関の暖機時(つまり、冷機状態にある内燃機関を暖機している最中)に、冷却水の循環の態様を制御する。具体的には、第1制御手段は、第1通路に冷却水を循環させ且つ第2通路における冷却水の循環を停止するように、冷却装置(より具体的には、例えば、冷却装置が備える流量調整弁や電動ウォータポンプ等)を制御する。第1制御手段の制御の結果、第1通路を冷却水が循環すると共に、第2通路で冷却水が滞留する。
第2制御手段は、主として内燃機関の暖機時であって且つヒータコアが要求している要求熱量が所定閾値以下となる場合に、冷却水の循環の態様を制御する。具体的には、第2制御手段は、第1制御手段と同様に、第1通路に冷却水を循環させ且つ第2通路における冷却水の循環を停止するように冷却装置を制御する。但し、第2制御手段は、第1制御手段とは異なり、第1通路を循環する冷却水の流量を、ヒータコアが要求している要求熱量に応じて調整する。典型的には、第2制御手段は、ヒータコアが要求している要求熱量を満たすことができる程度に、第1通路を循環する冷却水の流量(つまり、排熱回収器を経由してヒータコアに流入する冷却水の流量)を調整する。
尚、ここでいう「所定閾値」としては、ヒータコアが回収可能な熱を用いてヒータコアが要求している要求熱量を満たすことができるか否かを好適に判断することが可能な任意の値が設定されることが好ましい。このような所定閾値として、例えば、ヒータコアが回収可能な熱量の最大値が一例としてあげられる。例えば、ヒータコアを通過する冷却水の流量(つまり、第1通路を循環する冷却水の流量)及びヒータコアを通過する時点での冷却水の温度から、ヒータコアが回収可能な熱量が定まる。このため、ヒータコアが回収可能な熱量の最大値は、ヒータコアを通過する冷却水の流量の最大値及びヒータコアを通過する時点での冷却水の温度に基づいて設定されてもよい。
第3制御手段は、主として内燃機関の暖機時であって且つヒータコアが要求している要求熱量が所定閾値を超える場合に、冷却水の循環の態様を制御する。具体的には、第3制御手段は、第1及び第2制御手段とは異なり、第1通路に冷却水を循環させることに加えて、第2通路にも冷却水を循環させるように冷却装置を制御する。このとき、第3制御手段は、ヒータコアが要求している要求熱量が所定閾値以下となる場合に第1通路を循環する冷却水の流量と比較して、第1通路を循環する冷却水の流量を減らさない(典型的には、維持する)。特に、第3制御手段は、ヒータコアが要求している要求熱量が所定閾値以下となる場合に第1通路を循環する冷却水の流量の最大値と比較して、第1通路を循環する冷却水の流量を減らさない(つまり、第1通路を循環する冷却水の流量を最大値に維持する)ことが好ましい。加えて、第3制御手段は、第2通路を循環する冷却水の流量を、ヒータコアが要求している要求熱量に応じて調整する。典型的には、第3制御手段は、ヒータコアが要求している要求熱量(特に、当該要求熱量のうち、第1通路を循環する冷却水が有する熱ではまかないきれない熱量分)を満たすことができる程度に、第2通路を循環する冷却水の流量(つまり、内燃機関を経由してヒータコアに流入する冷却水の流量)を調整する。
このような冷却水制御装置によれば、以下に示す技術的効果が得られる。
まず、第1制御手段の動作により、内燃機関の暖機時には、第1通路を冷却水が循環すると共に、第2通路で冷却水が滞留する。従って、第2通路を冷却水が循環する態様と比較して、内燃機関を通過する第2通路で滞留する冷却水の加熱が促進される(言い換えれば、冷却水の冷却が抑制される)。その結果、内燃機関の暖機が促進される。従って、燃費の悪化が好適に抑制される。
また、第2制御手段の動作により、内燃機関の暖機時であって且つヒータコアの要求熱量が所定閾値以下である(つまり、要求熱量が相対的に少ない)場合にも、第1通路を冷却水が循環すると共に、第2通路で冷却水が滞留する。このため、内燃機関の暖機が促進される。従って、燃費の悪化が好適に抑制される。
加えて、第2制御手段の動作により、ヒータコアの要求熱量は、第1通路を循環する冷却水の流量の調整によって満たされる。このため、ヒータコアが回収した熱を利用する動作(例えば、暖房や、デフロスタや、デアイス等)に影響が生ずることは殆ど又は全くない。
また、第3制御手段の動作により、内燃機関の暖機時であって且つヒータコアの要求熱量が所定閾値を超える(つまり、要求熱量が相対的に多い)場合には、第1及び第2通路の双方を冷却水が循環する。従って、第1通路を循環する冷却水の流量の調整のみではヒータコアの要求熱量が満たされない場合であっても、第1通路を循環する冷却水が有する熱量及び第2通路を循環する冷却水が有する熱量の双方によってヒータコアの要求熱量が好適に満たされる。
加えて、第3制御手段の動作により、ヒータコアの要求熱量を満たすために第2通路を冷却水が循環する場合であっても、第1通路を循環する冷却水の流量が減らされることはない(典型的には、最大値に維持される)。このため、第1通路を循環する冷却水の流量が減少する比較例の冷却水制御装置と比較して、第2通路を循環する冷却水の流量の増加を最小限に抑えることができる。従って、本発明では、比較例の冷却水制御装置と比較して、内燃機関を通過する冷却水の流量が相対的に増加しにくい。このため、本発明では、比較例の冷却水制御装置と比較して、内燃機関で発生した熱量が冷却水によって相対的に奪われにくくなる。このため、本発明では、比較例の冷却水制御装置と比較して、内燃機関の暖機が促進されやすくなる。従って、燃費の悪化が好適に抑制される。
尚、上述した特許文献1に開示された技術では、ヒータコアの要求熱量が排熱回収器の回収熱量よりも大きい場合には、排熱回収機を通る迂回通路における冷却水の流量をゼロにする又は減らした上で、内燃機関のウォータジャケットに冷却水が流入する。より具体的には、上述した特許文献1に開示された技術は、迂回通路を循環する冷却水の流量及びウォータジャケットを循環する冷却水の流量の総和を一定に維持した上で、ウォータジャケットに冷却水が流入する。つまり、上述した特許文献1に開示された技術は、第1通路を循環する冷却水の流量が減少する比較例の冷却水制御装置に相当する。従って、上述した特許文献1に開示された技術は、本発明の冷却水制御装置とは明らかに異なる。更には、上述した特許文献1に開示された技術では、本発明の冷却水制御装置が享受することができる各種効果(特に、第3制御手段の動作によって実現される効果)を享受することはできない。
加えて、上述した特許文献2に開示された技術では、暖房要求がある場合には、リリーフ弁の開弁のために内燃機関を通る通路における冷却水の流量が大幅に増加してしまう。というのも、リリーフ弁は、リリーフ弁の上流側の圧力(つまり、内燃機関を通過する冷却水通路における冷却水の水圧)とリリーフ弁の下流側の圧力(つまり、内燃機関を迂回する冷却水通路における冷却水の水圧)との圧力差によって開弁するからである。つまり、上述した特許文献2に開示された技術では、内燃機関を通過する冷却水通路を循環する冷却水の流量の増加を最小限に抑えることができない。従って、上述した特許文献2に開示された技術では、本発明の冷却水制御装置と比較して、燃費の悪化(特に、内燃機関を通過するように循環する冷却水に起因する燃費の悪化)を抑制することができない。更には、上述した特許文献2に開示された技術では、リリーフ弁の開弁のために内燃機関を通過する冷却水通路における冷却水の流量を大幅に増加させる必要があるがゆえに、冷却水を供給する電動ポンプを相対的に高負荷で駆動する必要がある。従って、上述した特許文献2に開示された技術では、本発明の冷却水制御装置と比較して、電動ポンプの消費電力量が大幅に増加してしまう。その結果、上述した特許文献2に開示された技術では、燃費の悪化(特に、電動ポンプの駆動に起因する燃費の悪化)を抑制することができない。従って、上述した特許文献2に開示された技術は、本発明の冷却水制御装置とは明らかに異なる。更には、上述した特許文献2に開示された技術では、本発明の冷却水制御装置が享受することができる各種効果(特に、第3制御手段の動作によって実現される効果)を享受することはできない。
尚、本発明の冷却水制御装置は、第2制御手段を備えていなくともよい。この場合、第3制御手段は、内燃機関の暖機時であって且つヒータコアが熱量を要求している場合に、(i)ヒータコアが熱量を要求していない場合に第1通路を循環する冷却水の流量と比較して第1通路を循環する冷却水の流量を減らすことなく、第1通路に冷却水を循環させ且つ(ii)第2通路を循環する冷却水の流量をヒータコアが要求している熱量に応じて調整しながら、第2通路に冷却水を循環させてもよい。
或いは、冷却水制御装置が第2制御手段を備えていない場合には、第3制御手段は、内燃機関の暖機時であって且つヒータコアが熱量を要求している場合に、第1通路を循環する冷却水の流量の調整及び第2通路を循環する冷却水の流量の調整に起因する燃費の悪化が小さくなるように、第1及び第2通路を循環する冷却水の流量を調整しながら(例えば、増加させながら、減少させながら、ゼロに設定しながら)、第1通路及び第2通路の少なくとも一方に冷却水を循環させてもよい。というのも、ヒータコアの要求熱量を満たすために第2通路に冷却水を循環させると、第2通路を循環する冷却水によって内燃機関の暖機が妨げられるがゆえに、燃費が悪化してしまうおそれがある。そこで、第2通路に冷却水を循環させることに代えて第1通路を循環する冷却水の流量を調整することでヒータコアの要求熱量を満たせば、内燃機関を通過する冷却水に起因した燃費の悪化を抑制できる。しかしながら、第1通路を循環する冷却水の流量を調整するために、第1通路に冷却水を供給する電動ポンプを高負荷で駆動する必要がある場合がある。このため、第1通路を循環する冷却水の流量を調整する場合には、当該電動ポンプの駆動に伴う電力消費量に起因して燃費が悪化するおそれがある。従って、第3制御手段は、第1通路を循環する冷却水の流量の調整に起因する燃費の悪化(例えば、電動ポンプの駆動に起因する燃費の悪化)及び第2通路を循環する冷却水の流量の調整に起因する燃費の悪化(例えば、内燃機関を通過するように循環する冷却水に起因する燃費の悪化)の双方を考慮した全体としての燃費の悪化が極力小さくなる(或いは、最も小さくなる)ように、第1及び第2通路の夫々を循環する冷却水の流量を調整することが好ましい。
<2>
本発明の冷却水制御装置の他の態様では、前記第2制御手段は、前記要求熱量がゼロとなる場合における前記第1通路を循環する前記冷却水の流量と比較して前記第1通路を循環する前記冷却水の流量を前記要求熱量に応じて増加させながら、前記第1通路に前記冷却水を循環させる。
この態様によれば、内燃機関の暖機時であって且つヒータコアの要求熱量が所定閾値以下である場合には、要求熱量がゼロとなる場合における第1通路を循環する冷却水の流量(典型的には、最小値)と比較して、第1通路を循環する冷却水の流量が増加する。従って、ヒータコアの要求熱量は、第1通路を循環する冷却水の流量の増加によって満たされる。このため、ヒータコアが回収した熱を利用する動作(例えば、暖房や、デフロスタや、デアイス等)に影響が生ずることは殆ど又は全くない。
<3>
本発明の冷却水制御装置の他の態様では、前記第3制御手段は、前記第1通路を循環する前記冷却水の流量を最大値に維持しながら、前記第1通路に前記冷却水を循環させる。
この態様によれば、内燃機関の暖機時であって且つヒータコアの要求熱量が所定閾値を超える場合には、第1通路を循環する冷却水の流量が最大値に維持される。従って、第2通路を循環する冷却水の流量を最小限に抑えることができる。
<4>
本発明の冷却水制御装置の他の態様では、前記第3制御手段は、前記要求熱量が前記所定閾値以下となる場合に前記第2通路を循環する前記冷却水の流量と比較して前記第2通路を循環する前記冷却水の流量を前記要求熱量に応じて増加させながら、前記第2通路に前記冷却水を循環させる。
この態様によれば、内燃機関の暖機時であって且つヒータコアの要求熱量が所定閾値を超える場合には、要求熱量が所定閾値以下となる場合における第2通路を循環する冷却水の流量(つまり、ゼロ)と比較して、第2通路を循環する冷却水の流量が増加する。従って、ヒータコアの要求熱量は、第1通路を循環する冷却水に加えて、第2通路を循環する冷却水の流量の増加によって満たされる。このため、ヒータコアが回収した熱を利用する動作(例えば、暖房や、デフロスタや、デアイス等)の動作に影響が生ずることは殆ど又は全くない。
<5>
本発明の冷却水制御装置の他の態様では、前記第3制御手段は、前記第2通路を循環する前記冷却水の流量を所定の上限値を超えないように前記要求熱量に応じて増加させながら、前記第2通路に前記冷却水を循環させる。
この態様によれば、第2通路を循環する冷却水の流量に上限値が設定される。従って、第2通路を循環する冷却水の流量を最小限に抑えやすくなる。
尚、冷却水の流量の上限値としては、第2通路における冷却水の循環に起因する燃費の悪化(例えば、第2通路を循環する冷却水に起因する燃費の悪化)を好適に抑制することができるという観点から、適切な値が設定されることが好ましい。
本発明の作用及び他の利得は次に説明する、発明を実施するための形態から更に明らかにされる。
本実施形態の車両の構成(特に、冷却装置に関連する構成)を示すブロック図である。 本実施形態のECUによって実現される冷却装置の制御の流れを示すフローチャートである。 流量調整弁が閉弁されている場合の冷却水の循環の態様を示すブロック図である。 排熱回収器を通過する冷却水(つまり、バイパス通路を循環する冷却水)から回収可能な熱量及びエンジンを通過する冷却水(つまり、メイン通路を循環する冷却水)から回収可能な熱量の夫々と冷却水の流量との関係、排熱回収器を通過する冷却水の流量と燃費の悪化との関係、並びにエンジンを通過する冷却水の流量と燃費の悪化との関係を示すグラフである。 ヒータ要求熱量と、当該ヒータ要求熱量を充足するために電動WPが吐出するべき冷却水の流量(言い換えれば、バイパス通路を循環するべき冷却水の流量)との間の関係を示すグラフである。 流量調整弁が開弁されている場合の冷却水の循環の態様を示すブロック図である。
以下、本発明を車両1の冷却装置10に適用した実施形態について、図面に基づいて説明する。
(1)車両の構成
はじめに、図1を参照して、本実施形態の車両1の構成(特に、冷却装置10に関連する構成)について説明する。図1は、本実施形態の車両1の構成(特に、冷却装置10に関連する構成)を示すブロック図である。
図1に示すように、本実施形態の車両1は、冷却装置10と、エンジン20と、ECU30とを備えている。
冷却装置10は、排熱回収器11と、ヒータコア12と、流量調整弁13と、ラジエータ14と、サーモスタット15と、電動WP(Water Pump:ウォータポンプ)16と、水温センサ17aと、水温センサ17bとを備えている。また、冷却装置10は、冷却水通路18a及び冷却水通路18b、冷却水通路181a、冷却水通路181b及び冷却水通路181c、冷却水通路182a、冷却水通路182b及び冷却水通路182c、並びに冷却水通路183a及び冷却水通路183bから構成される冷却水通路18を備えている。
電動WP16は、所望の流量の冷却水を吐出するポンプである。電動WP16が吐出した冷却水は、冷却水通路18aに流入する。冷却水通路18aは、冷却水通路181aと冷却水通路182aとに分岐する。
冷却水通路181aは、排熱回収器11に接続されている。排熱回収器11からは、ヒータコア12に接続される冷却水通路181bが延びている。ヒータコア12からは、サーモスタット15に接続される冷却水通路181cが延びている。サーモスタット15からは、電動WP16に接続される冷却水通路18bが延びている。つまり、電動WP17から吐出された冷却水は、冷却水通路18a、冷却水通路181a、冷却水通路181b、冷却水通路181c及び冷却水通路18bをこの順に通過することで、電動WP17へと戻る。つまり、冷却水通路18a、冷却水通路181a、冷却水通路181b、冷却水通路181c及び冷却水通路18bから、エンジン20を通過しない(つまり、迂回する)バイパス通路が形成されている。尚、バイパス通路は、上述した「第1通路」の一具体例である。
一方で、冷却水通路182aは、エンジン20に接続されている。エンジン20からは、流量調整弁13に接続される冷却水通路182bが延びている。流量調整弁13からは、ヒータコア12に接続される冷却水通路182cが延びている。つまり、電動WP17から吐出された冷却水は、冷却水通路18a、冷却水通路182a、冷却水通路182b、冷却水通路182c、冷却水通路181c及び冷却水通路18bをこの順に通過することで、電動WP17へと戻る。つまり、冷却水通路18a、冷却水通路182a、冷却水通路182b、冷却水通路182c、冷却水通路181c及び冷却水通路18bから、エンジン20を通過する(つまり、迂回しない)一方でラジエータ14を通過しない(つまり、迂回する)メイン通路が形成されている。尚、メイン通路は、上述した「第2通路」の一具体例である。
他方で、流量調整弁13からは、ラジエータ14に接続される冷却水通路183aが延びている。ラジエータ14からは、サーモスタット15に接続される冷却水通路183bが延びている。つまり、電動WP17から吐出された冷却水は、冷却水通路18a、冷却水通路182a、冷却水通路182b、冷却水通路183a、冷却水通路183b及び冷却水通路18bをこの順に通過することで、電動WP17へと戻る。つまり、冷却水通路18a、冷却水通路182a、冷却水通路182b、冷却水通路183a、冷却水通路183b及び冷却水通路18bから、エンジン20を通過する(つまり、迂回しない)と共にラジエータ14も通過する(つまり、迂回しない)サブ通路が形成されている。
エンジン20は、供給される燃料と空気との混合気を燃焼させることによって動力を発生する装置である。例えば、エンジン20は、ガソリンエンジンやディーゼルエンジン等である。また、エンジン20は、ハイブリッド車両等に搭載されてもよい。冷却水は、冷却水通路182aからエンジン20に流入する。エンジン20に流入した冷却水は、エンジン20内のウォータジャケットを通過した後、冷却水通路182bより流出する。ウォータジャケットは、エンジン20内のシリンダ(不図示)の周囲に設けられている。シリンダは、ウォータジャケットを通過する冷却水と熱交換を行う。その結果、エンジンの冷却が行われる。
尚、エンジン20を通過する冷却水の水温(以下、適宜“エンジン水温”と称する)は、エンジン20に設置された又はエンジン20の近傍に設置された水温センサ17bによって適宜測定される。水温センサ17bが測定したエンジン水温は、ECU30に出力される。
排熱回収器11は、エンジン20からの排気ガスが通過する排気通路(不図示)上に設けられている。排熱回収器11の内部では、冷却水が通過する。排熱回収器11は、内部を通過する冷却水と排気ガスの間で熱交換を行うことで、排気熱を回収する。つまり、排熱回収器11は、排気ガスの熱を用いて冷却水を加熱することができる。
ヒータコア12は、当該ヒータコア12の内部を通過する冷却水と空気との間で熱交換を行うことで、冷却水が有する熱を回収する。ヒータコア12が回収した熱によって暖められた空気は、例えば、暖房やデフロスタやデアイス等のために、ヒータブロア(不図示)と呼ばれる送風機によって車室内に送風される。
尚、ヒータコア12を通過する冷却水の水温(以下、適宜“ヒータ水温”と称する)は、ヒータコア12に設置された又はヒータコア12の近傍に設置された水温センサ17aによって適宜測定される。水温センサ17aが測定したヒータ水温は、ECU30に出力される。
流量調整弁13は、ECU30の制御の下で、弁体の開閉状態を変えることができる弁(例えば、FCV:Flow Control Valve)である。例えば、流量調整弁13が閉弁されている場合には、冷却水通路182bから冷却水通路182cへ冷却水の流入及び冷却水通路182bから冷却水通路183aへの冷却水の流入が遮断される。この場合、冷却水通路182a、冷却水通路182b、冷却水通路182c、冷却水通路183a及び冷却水通路183b内では、冷却水が滞留する。一方で、流量調整弁13が開弁されている場合には、冷却水通路182bから冷却水通路182cへの冷却水の流入及び冷却水通路182bから冷却水通路183aへの冷却水の流入が許可される。この場合、エンジン20から冷却水通路182bに流出した冷却水は、冷却水通路182cを通過してヒータコア12に流入すると共に、冷却水通路183aを通過してラジエータ14に流入する。加えて、流量調整弁13は、ECU30の制御の下で、開弁時の弁体の開度を調整することができる。つまり、流量調整弁13は、流量調整弁13から冷却水通路182cへと流出する冷却水の流量(実質的には、メイン通路における冷却水の流量)及び流量調整弁13から冷却水通路183aへと流出する冷却水の流量(実質的には、サブ通路における冷却水の流量)を調整することができる。
ラジエータ14では、当該ラジエータ14の内部を通過する冷却水が外気によって冷却される。この場合、電動ファン(不図示)の回転により導入された風によって、ラジエータ14内の冷却水の冷却が促進される。
サーモスタット15は、冷却水の温度に応じて開閉する弁を含んでいる。典型的には、サーモスタット15は、冷却水の温度が高温である(例えば、所定温度以上である)場合に開弁する。この場合、サーモスタット15を介して冷却水通路183bと冷却水通路18bとが接続される。その結果、冷却水はラジエータ14を通過することとなる。これにより、冷却水が冷却され、エンジン20のオーバーヒートが抑制される。これに対して、冷却水の温度が比較的低温である(例えば、所定温度以上でない)場合には、サーモスタット15は閉弁している。この場合には、冷却水はラジエータ14を通過しない。これにより、冷却水の温度低下が抑制されるため、エンジン20のオーバークールが抑制される。
電動WP16は、電動式のモータを備えて構成され、このモータの駆動により冷却水を冷却水通路18内で循環させる。具体的には、電動WP16は、バッテリから電力が供給され、ECU30から供給される制御信号によって回転数などが制御される。なお、電動WP16の代わりに、エンジン20の作動とは関係なく動作可能で、且つ、ECU30によって制御可能な機械式のウォータポンプを用いることとしてもよい。
ECU(Electronic Control Unit)30は、図示しないCP
U(Central Processing Unit)、ROM(Read Only
Memory)及びRAM(Random Access Memory)などを備え
る。ECU30は、「冷却水制御装置」の一具体例であって、冷却装置10の制御(特に、冷却装置10内における冷却水の流量及び経路の制御)を行う。
冷却装置10の制御(特に、冷却装置10内における冷却水の流量及び経路の制御)を行うために、ECU30は、熱量判定部31と、「第1制御手段」、「第2制御手段」及び「第3制御手段」の一具体例である流量調整部32とを備える。尚、熱量判定部31及び流量調整部32の詳細な動作については、後に詳述する(図2参照)。
(2)冷却装置の制御の流れ
続いて、図2を参照して、本実施形態のECU30によって実現される冷却装置10の制御の流れについて説明する。図2は、本実施形態のECU30によって実現される冷却装置10の制御の流れを示すフローチャートである。尚、図2に示す動作は、主としてエンジン20の暖機中(つまり、冷機状態にあるエンジン20を暖機する時)に行われる動作であることが好ましい。
図2に示すように、熱量判定部31は、ヒータ要求(例えば、ヒータコア12が回収した熱を利用した暖房やデフロスタやデアイス等の要求)があるか否かを判定する(ステップS11)。例えば、車両1の搭乗者が暖房、デフロスタ又はデアイスのスイッチをオンにした場合には、熱量判定部31は、ヒータ要求があると判定してもよい。
ステップS11の判定の結果、ヒータ要求がないと判定される場合には(ステップS11:No)、流量調整部32は、流量調整弁13が閉弁されるように、流量調整弁13を制御する(ステップS19)。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留する。加えて、流量調整部32は、電動WP16が吐出する冷却水の流量を最小値に設定するように電動WP16を制御する(ステップS19)。その結果、バイパス通路内を循環する冷却水の流量は、最小値に設定される。
ここで、図3を参照しながら、流量調整弁13が閉弁されている場合の冷却水の循環の態様について説明する。図3は、流量調整弁13が閉弁されている場合の冷却水の循環の態様を示すブロック図である。
図3に示すように、流量調整弁13が閉弁されている場合には、冷却水通路182bから冷却水通路182cへ冷却水の流入及び冷却水通路182bから冷却水通路183aへの冷却水の流入が遮断される。このため、メイン通路を構成する冷却水通路182a、冷却水通路182b及び冷却水通路182c内では、冷却水が滞留する。同様に、サブ通路を構成する冷却水通路183a及び冷却水通路183b内では、冷却水が滞留する。他方で、バイパス通路を構成する冷却水通路18a、冷却水通路181a、冷却水通路181b、冷却水通路181c及び冷却水通路18b内では、冷却水が循環する。尚、図3中の矢印は、冷却水が流れる方向を示している。
再び図2において、他方で、ステップS11の判定の結果、ヒータ要求があると判定される場合には(ステップS11:Yes)、熱量判定部31は、ヒータコア12が要求している熱量(以降、適宜“ヒータ要求熱量”と称する)を取得する(ステップS12)。尚、ヒータ要求熱量は、ヒータコア12が回収した熱を利用した暖房やデフロスタやデアイス等に必要な熱量を意味する。
加えて、熱量判定部31は、水温センサ17aの測定結果を参照することで、ヒータ水温(つまり、ヒータコア12を通過する冷却水の水温)を取得する(ステップS13)。
その後、熱量判定部31は、ヒータコア12が回収可能な熱(言い換えれば、ヒータコア12を通過する冷却水が有する熱)によって、ヒータ要求熱量が充足されるか否かを判定する(ステップS14)。特に、熱量判定部31は、ヒータコア12を通過する冷却水の流量が最小値となっており且つ流量調整弁13が閉弁されている(つまり、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留している)状態でヒータコア12が回収可能な熱によって、ヒータ要求熱量が充足されるか否かを判定することが好ましい。尚、ヒータコア12が回収可能な熱量は、ヒータ水温及びヒータコア12を通過する冷却水の流量に応じて定まる。ヒータコア12が回収可能な熱量(特に、ヒータコア12を通過する冷却水の流量が最小値となっている状態でヒータコア12が回収可能な熱量)がヒータ要求熱量以上となる場合には、熱量判定部31は、ヒータコア12が回収可能な熱によってヒータ要求熱量が充足されると判定してもよい。他方で、ヒータコア12が回収可能な熱量がヒータ要求熱量以上とならない場合には、ヒータコア12が回収可能な熱によってヒータ要求熱量が充足されないと判定してもよい。
尚、流量調整弁13が閉弁されている状態でヒータコア12が回収可能な熱によってヒータ要求熱量が充足されるか否かの判定は、実質的には、排熱回収器11が回収した熱によってヒータ要求熱量が充足されるか否かの判定に相当するとも言える。
ステップS14の判定の結果、ヒータコア12が回収可能な熱によってヒータ要求熱量が充足されると判定される場合には(ステップS14:Yes)、流量調整部32は、流量調整弁13が閉弁されるように、流量調整弁13を制御する(ステップS19)。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留する。加えて、流量調整部32は、電動WP16が吐出する冷却水の流量を最小値に設定するように電動WP16を制御する(ステップS19)。その結果、バイパス通路内を循環する冷却水の流量は、最小値に設定される。
このような制御が行われても、ヒータコア12を通過する冷却水の流量が最小値となっており且つ流量調整弁13が閉弁されている状態でヒータコア12が回収可能な熱によってヒータ要求熱量が充足されるがゆえに、ヒータ要求に応じた動作(例えば、暖房やデフロスタやデアイス等)が好適に行われる。
他方で、ステップS14の判定の結果、ヒータコア12が回収可能な熱によってヒータ要求熱量が充足されないと判定される場合には(ステップS14:No)、ヒータ要求熱量を充足させるための動作が行われる。本実施形態では、ヒータ要求熱量を充足させるための動作として、(i)流量調整弁13を閉弁したまま、排熱回収器11を通過する冷却水(つまり、バイパス通路を循環する冷却水)の流量を増加させる動作、及び、(ii)排熱回収器11のみならず、エンジン20にも冷却水を通過させる動作(つまり、流量調整弁13を開弁させることで、メイン通路にも冷却水を循環させる動作)のいずれかが選択的に行われる。これら2種類の動作のいずれを行うかを選択するために、熱量判定部31は、まず、ヒータコア12を通過する冷却水の流量を最小値から増加させた状態(更には、流量調整弁13が閉弁されている状態)でヒータコア12が回収可能な熱によって、ヒータ要求熱量が充足されるか否かを判定する(ステップS15)。というのも、ヒータコア12を通過する冷却水の流量が増加すれば、ヒータコア12が回収可能な熱量もまた増加するからである。
但し、熱量判定部31は、ステップS15の判定の際に、燃費の悪化を極力小さくしながらも(言い換えれば、最小限に抑制しながらも)ヒータ要求熱量が充足されるか否かを判定することが好ましい。例えば、熱量判定部31は、上述した2種類の動作のうち、燃費の悪化が極力小さくなる(好ましくは、燃費の悪化が最も小さくなる又は燃費が悪化しない)動作を選択することが好ましい。
ここで、図4を参照しながら、上述した2種類の動作と燃費の悪化との関係について説明する。図4は、排熱回収器11を通過する冷却水(つまり、バイパス通路を循環する冷却水)から回収可能な熱量及びエンジン20を通過する冷却水(つまり、メイン通路を循環する冷却水)から回収可能な熱量の夫々と冷却水の流量との関係、排熱回収器11を通過する冷却水の流量と燃費の悪化との関係、並びにエンジン20を通過する冷却水の流量と燃費の悪化との関係を示すグラフである。
図4(a)に示すように、排熱回収器11を通過する冷却水の流量が増加すれば、排熱回収器11を通過する冷却水から回収可能な熱量もまた増加する。同様に、エンジン20を通過する冷却水の流量が増加すれば、エンジン20を通過する冷却水から回収可能な熱量もまた増加する。但し、排熱回収器11を通過する冷却水の流量とエンジン20を通過する冷却水の流量とが同じであるという条件下では、排熱回収器11を通過する冷却水から回収可能な熱量は、エンジン20を通過する冷却水から回収可能な熱量よりも小さくなる。従って、熱量判定部31は、排熱回収器11を通過する冷却水の流量及びエンジン20を通過する冷却水の流量を適宜設定することで、ヒートコア12が回収可能な熱量を比較的容易に認識することができる。
ところで、排熱回収器11を通過する冷却水の流量の増加は、典型的には、電動WP16が吐出する冷却水の流量の増加によって実現される。電動WP16が吐出する冷却水の流量の増加に伴って、電動WP16の消費電力量が増加する。電動WP16の消費電力量の増加は、車両1の燃費の悪化につながる。つまり、図4(b)に示すように、電動WP16が吐出する冷却水の流量が増加するほど、車両1の燃費は悪化する。
一方で、エンジン20にも冷却水を通過させることで、エンジン20の暖機が妨げられる。言い換えれば、エンジン20を通過する冷却水の流量の増加に伴って、エンジン20の暖機が妨げられる。エンジン20の暖機の妨げは、車両1の燃費の悪化につながる。つまり、図4(c)に示すように、エンジン20を通過する冷却水の流量が増加するほど、車両1の燃費は悪化する。
従って、熱量判定部31は、上述した2種類の動作のうち、電動WP16が吐出する冷却水の流量の調整に起因した燃費の悪化及びエンジン20を通過する冷却水の流量の増加に起因した燃費の悪化の双方を考慮した全体としての燃費の悪化が極力小さくなる(好ましくは、燃費の悪化が最も小さくなる又は燃費が悪化しない)動作を選択することが好ましい。このような動作を行う際には、熱量判定部31は、図4(a)から図4(c)に示すグラフ(或いは、関数や、マッピングや、数式や、テーブル等のその他の各種情報)を参照してもよい。
具体的には、排熱回収器11のみならずエンジン20にも冷却水を通過させる動作を行わなければヒータ要求熱量が充足されない場合には、燃費の悪化を考慮する必要性は小さい。従って、燃費の悪化を考慮するのは、典型的には、(i)流量調整弁13を閉弁したまま、排熱回収器11を通過する冷却水の流量を増加させる動作、及び、(ii)排熱回収器11のみならず、エンジン20にも冷却水を通過させる動作のいずれによっても、ヒータ要求熱量が充足される場合である。この場合、図4(a)に示すグラフから、流量調整弁13を閉弁したまま排熱回収器11を通過する冷却水の流量を増加させる動作が行われる場合の、排熱回収器11を通過する冷却水の流量(つまり、ヒータ要求熱量を充足可能な流量)が導き出される。その結果、図4(b)に示すグラフから、流量調整弁13を閉弁したまま排熱回収器11を通過する冷却水の流量を増加させる動作に起因した燃費の悪化の程度が導き出される。同様に、図4(a)に示すグラフから、排熱回収器11のみならずエンジン20にも冷却水を通過させる動作が行われる場合の、排熱回収器11を通過する冷却水の流量及びエンジン20を通過する冷却水の流量(つまり、ヒータ要求熱量を充足可能な流量)が導き出される。その結果、図4(b)及び図4(c)に示すグラフから、排熱回収器11のみならずエンジン20にも冷却水を通過させる動作に起因した燃費の悪化の程度が導き出される。熱量判定部31は、双方の燃費の悪化の程度を比較することで、燃費の悪化が極力小さくなる(好ましくは、燃費の悪化が最も小さくなる又は燃費が悪化しない)動作を選択することができる。
再び図2において、ステップS15の判定の結果、ヒータコア12を通過する冷却水の流量を最小値から増加させた状態でヒータコア12が回収可能な熱によって、ヒータ要求熱量が充足されると判定される場合には(ステップS15:Yes)、流量調整部32は、流量調整弁13が閉弁されるように、流量調整弁13を制御する(ステップS18)。但し、ステップS18の動作が行われるためには、流量調整弁13を閉弁したまま排熱回収器11を通過する冷却水の流量を増加させる動作に起因した燃費の悪化が、流量調整弁13を開弁させる動作に起因した燃費の悪化よりも小さいと判定されていることが好ましい。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留する。
加えて、流量調整部32は、電動WP16が吐出する冷却水の流量を最小値よりも増加させる(言い換えれば、調整する)ように電動WP16を制御する(ステップS18)。このとき、流量調整部32は、ヒータコア12が回収可能な熱によってヒータ要求熱量が充足されるように、冷却水の流量を増加させることが好ましい。従って、流量調整部32は、電動WP16が吐出する冷却水の流量を、ステップS12で取得したヒータ要求熱量及びステップS13で取得したヒータ水温に応じて決定することが好ましい。
尚、ステップS18の動作が行われる場合には、流量調整弁13が閉弁されている。従って、電動WP16が吐出する冷却水の流量は、実質的には、バイパス通路を循環する冷却水の流量と概ね同一である。従って、流量調整部32は、バイパス通路を循環する冷却水の流量を、ヒータ要求熱量に応じて決定しているとも言える。
ここで、図5を参照して、電動WP16が吐出する冷却水の流量(言い換えれば、バイパス通路を循環する冷却水の流量)を、ヒータ要求熱量に応じて決定する動作の一例について説明する。図5は、ヒータ要求熱量と、当該ヒータ要求熱量を充足するために電動WP16が吐出するべき冷却水の流量(言い換えれば、バイパス通路を循環するべき冷却水の流量)との間の関係を示すグラフである。
図5に示すように、ヒータ要求熱量が相対的に小さい(例えば、ヒータ要求熱量が、ヒータコア12を通過する冷却水の流量が最小値となる状態でヒータコア12が回収可能な熱量以下となる)場合には、上述したように、電動WP16が吐出する冷却水の流量は、最小値のままでよい。
他方で、ヒータ要求熱量が相対的に大きい(例えば、ヒータ要求熱量が、ヒータコア12を通過する冷却水の流量が最小値となる状態でヒータコア12が回収可能な熱量を超える)場合には、ヒータ要求熱量の増加に応じて、電動WP16が吐出する冷却水の流量もまた増加する。従って、流量調整部32は、図5に示すグラフ(或いは、関数や、マッピングや、数式や、テーブル等のその他の各種情報)を参照することで、ヒータ要求熱量に応じて、電動WP16が吐出する冷却水の流量を決定することが好ましい。
但し、電動WP16の仕様や冷却装置10の仕様等の観点から、電動WP16が吐出する冷却水の流量(言い換えれば、バイパス通路を循環する冷却水の流量)には最大値が存在する。つまり、流量調整弁13が閉弁されている場合には、ヒータコア12を通過する冷却水の流量が最大値となる状態でヒータコア12が回収可能な熱量を超えるようなヒータ要求熱量を充足することができない。従って、この場合には、排熱回収器11を介してヒートコア12に流入する冷却水の熱のみならず、エンジン20を経由してヒートコア12に流入する冷却水の熱をも用いて、ヒータ要求熱量の充足が図られる(図6参照)。
尚、図5に示すように、ヒータ水温が変わると、ヒータ要求熱量と冷却水の流量との間の関係もまた変わる。例えば、ヒータ水温が増加すると、同じ流量の冷却水から回収可能な熱量が増加する。つまり、ヒータ水温が増加すると、同じヒータ要求熱量を充足させるために必要な冷却水の流量が少なくなる。その結果、ヒータ水温が増加すると、ヒータ要求熱量と冷却水の流量との間の関係は、図5中の一点鎖線で示すように、相対的に右側にシフトする。他方で、例えば、ヒータ水温が減少すると、同じ流量の冷却水から回収可能な熱量が減少する。つまり、ヒータ水温が減少すると、同じヒータ要求熱量を充足させるために必要な冷却水の流量が多くなる。その結果、ヒータ水温が減少すると、ヒータ要求熱量と冷却水の流量との間の関係は、図5中の点線で示すように、相対的に左側にシフトする。
再び図2において、他方で、ヒータコア12を通過する冷却水の流量を最小値から増加させた状態でヒータコア12が回収可能な熱によって、ヒータ要求熱量が充足されないと判定される場合には(ステップS15:No)、排熱回収器11を介してヒートコア12に流入する冷却水の熱のみならず、エンジン20を経由してヒートコア12に流入する冷却水の熱をも用いて、ヒータ要求熱量の充足が図られる。或いは、ステップS15の判定の結果、ヒータコア12を通過する冷却水の流量を最小値から増加させた状態でヒータコア12が回収可能な熱によって、ヒータ要求熱量が充足されると判定される場合であっても、流量調整弁13を閉弁したまま排熱回収器11を通過する冷却水の流量を増加させる動作に起因した燃費の悪化が、流量調整弁13を開弁させる動作に起因した燃費の悪化よりも大きいと判定される場合には、排熱回収器11を介してヒートコア12に流入する冷却水の熱のみならず、エンジン20を経由してヒートコア12に流入する冷却水の熱をも用いて、ヒータ要求熱量の充足が図られる。このために、まず、熱量判定部31は、水温センサ17bの測定結果を参照することで、エンジン水温(つまり、エンジン20を通過する冷却水の水温)を取得する(ステップS16)。
その後、流量調整部32は、流量調整弁13が開弁されるように、流量調整弁13を制御する(ステップS17)。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路内を冷却水が循環する。
ここで、図6を参照しながら、流量調整弁13が開弁されている場合の冷却水の循環の態様について説明する。図6は、流量調整弁13が開弁されている場合の冷却水の循環の態様を示すブロック図である。
図6に示すように、流量調整弁13が開弁されている場合には、冷却水通路182bから冷却水通路182cへ冷却水の流入及び冷却水通路182bから冷却水通路183aへの冷却水の流入が許容される。このため、メイン通路を構成する冷却水通路182a、冷却水通路182b及び冷却水通路182c内では、冷却水が循環する。また、サーモスタット15が開弁されている場合には、サブ通路を構成する冷却水通路183a及び冷却水通路183b内でも、冷却水が循環する。但し、図5は、サーモスタット15が閉弁されている状態(つまり、サブ通路を構成する冷却水通路183a及び冷却水通路183b内で、冷却水が滞留している状態)を示している。また、バイパス通路を構成する冷却水通路18a、冷却水通路181a、冷却水通路181b、冷却水通路181c及び冷却水通路18b内でもまた、冷却水が循環する。尚、図6中の矢印は、冷却水が流れる方向を示している。
再び図2において、加えて、流量調整部32は、流量調整弁13の弁体の開度を調整するように、流量調整弁13を制御する(ステップS17)。つまり、流量調整部32は、流量調整弁13の弁体の開度を調整することで、メイン通路内を循環する冷却水の流量(言い換えれば、エンジン20を通過する冷却水の流量)を調整する。加えて、流量調整部32は、電動WP16が吐出する冷却水の流量を調整するように電動WP16を制御する(ステップS17)。つまり、流量調整部32は、電動WP16が吐出する冷却水の流量を調整することで、バイパス通路内を循環する冷却水の流量(言い換えれば、排熱回収器11を通過する冷却水の流量)及びメイン通路内を循環する冷却水の流量(言い換えれば、エンジン20を通過する冷却水の流量)を調整する。
このとき、流量調整部32は、バイパス通路を構成する冷却水通路181a、冷却水通路182a及び冷却水通路182cを通過する冷却水の流量(つまり、実質的には、排熱回収器11を通過する冷却水の流量)を減らさないように、流量調整弁13の弁体の開度及び電動WP16が吐出する冷却水の流量を調整する。特に、流量調整部32は、バイパス通路を構成する冷却水通路181a、冷却水通路182a及び冷却水通路182cを通過する冷却水の流量(つまり、実質的には、排熱回収器11を通過する冷却水の流量)が最大値に維持されるように、流量調整弁13の弁体の開度及び電動WP16が吐出する冷却水の流量を調整することが好ましい。
更に、流量調整部32は、ヒータコア12が回収可能な熱(つまり、排熱回収器11を介してヒートコア12に流入する冷却水の熱及びエンジン20を経由してヒートコア12に流入する冷却水の熱)によってヒータ要求熱量が充足されるように、流量調整弁13の弁体の開度及び電動WP16が吐出する冷却水の流量を調整する。従って、流量調整部32は、流量調整弁13の弁体の開度及び電動WP16が吐出する冷却水の流量を、ステップS12で取得したヒータ要求熱量、ステップS13で取得したヒータ水温及びステップS16で取得したエンジン水温に応じて決定することが好ましい。
尚、本実施形態では、上述したように、排気熱回収器11を通過する冷却水の流量が最大値に維持される。つまり、排熱回収器11を介してヒートコア12に流入する冷却水からヒータコア12が回収可能な熱量が最大値に維持される。このため、ヒータ要求熱量を充足させるためにエンジン20を介してヒートコア12に流入する冷却水からヒータコア12が回収するべき熱量が、最小限に抑えられる。つまり、エンジン20を通過する冷却水の流量が最小限に抑えられる。流量調整部32は、このような観点から、流量調整弁13の弁体の開度及び電動WP16が吐出する冷却水の流量を調整する。
但し、エンジン20を介してヒートコア12に流入する冷却水の流量は、エンジン20を通過する冷却水の流量の増加に起因した燃費の悪化を極力小さくするという観点から定められる所定の上限値を超えないことが好ましい。
尚、上述したように、電動WP16が吐出する冷却水の流量の増加は、車両1の燃費の悪化につながる。一方で、メイン通路を循環する冷却水(つまり、エンジン20を通過する冷却水)の流量の増加もまた、車両1の燃費の悪化につながる。従って、流量調整部32は、電動WP16が吐出する冷却水の流量の調整に起因した燃費の悪化及びメイン通路を循環する冷却水(つまり、エンジン20を通過する冷却水)の流量の増加に起因した燃費の悪化の双方を考慮した全体としての燃費の悪化が極力小さくなる(好ましくは、最も小さくなる)ように、流量調整弁13の弁体の開度及び電動WP16が吐出する冷却水の流量を調整してもよい。
以上説明したように、本実施形態によれば、ヒータ要求がない場合には、流量調整弁13が閉弁される。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留する。このため、メイン通路及びサブ通路の少なくとも一方で冷却水が循環する(つまり、エンジン20のウォータジャケットを冷却水が通過する)態様と比較して、エンジン20のウォータジャケット内で滞留する冷却水の加熱が促進される(言い換えれば、冷却水の冷却が抑制される)。その結果、エンジン20の暖機が促進される。従って、エンジン20を冷却水が通過することに起因した燃費の悪化が好適に抑制される。
また、ヒータ要求があり且つ冷却水の流量が最小値となる状態でヒータ要求熱量が充足される場合にも、流量調整弁13が閉弁される。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留する。従って、エンジン20を冷却水が通過することに起因した燃費の悪化が好適に抑制される。加えて、この場合であっても、ヒータ要求熱量が充足されるがゆえに、ヒータ要求に応じた動作(例えば、暖房やデフロスタやデアイス等)が好適に行われる。
また、ヒータ要求があり且つ電動WP16が吐出する冷却水の流量の増加(つまり、最小値からの増加)によってヒータ要求熱量が充足される場合にも、流量調整弁13が閉弁される。その結果、バイパス通路内を冷却水が循環すると共に、メイン通路及びサブ通路内で冷却水が滞留する。従って、エンジン20を冷却水が通過することに起因した燃費の悪化が好適に抑制される。加えて、この場合であっても、ヒータ要求熱量が充足されるがゆえに、ヒータ要求に応じた動作(例えば、暖房やデフロスタやデアイス等)が好適に行われる。
一方で、流量調整弁13が開弁される(つまり、エンジン20に冷却水が流入する)のは、ヒータ要求があり且つ電動WP16が吐出する冷却水の流量の増加(つまり、最小値からの増加)によってヒータ要求熱量が充足されない場合に限られる。この場合であっても、排熱回収器11を通過する冷却水の流量が減ることはない(典型的には、最大値に維持される)。つまり、排熱回収器11を介してヒートコア12に流入する冷却水からヒータコア12が回収可能な熱量が減ることはない(典型的には、最大値に維持される)。このため、エンジン20を介してヒートコア12に流入する冷却水から、ヒータ要求熱量を充足させるためにヒータコア12が回収するべき熱量が、最小限に抑えられる。つまり、流量調整弁13が開弁される場合であっても、エンジン20を通過する冷却水の流量が最小限に抑えられる。従って、流量調整弁13が開弁される場合であっても、流量調整弁13の開弁(つまり、エンジン20への冷却水の流入)に起因した燃費の悪化を最小限に抑えることができる。
このように、本実施形態では、エンジン20の暖機中には、ヒータ要求がある場合であっても、原則として、流量調整弁13が閉弁される。但し、本実施形態では、流量調整弁13が閉弁されたままではヒータ要求熱量が充足されない場合に、エンジン20を通過しないバイパス通路における冷却水の流量を維持したまま、流量調整弁13が限定的に開弁される。その結果、本実施形態では、エンジン20を通過するメイン通路への冷却水の循環を可能な限り抑制すると共に、エンジン20を通過するメイン通路への冷却水の循環を行わざるを得ない状況であってもメイン通路における冷却水の流量を可能な限り抑制することができる。言い換えれば、本実施形態では、燃費の悪化を可能な限り抑制することを主目的として、エンジン20を通過するメイン通路への冷却水の循環を可能な限り抑制すると共に、エンジン20を通過するメイン通路への冷却水の循環を行わざるを得ない状況であってもメイン通路における冷却水の流量を可能な限り抑制することができる。従って、燃費の悪化が好適に抑制される。
本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う冷却水制御装置もまた本発明の技術的範囲に含まれるものである。
1 車両
10 冷却装置
11 排熱回収器
12 ヒータコア
13 流量調整弁
14 ラジエータ
15 サーモスタット
16 電動WP
17 水温センサ
18 冷却水通路
18a 冷却水通路
18b 冷却水通路
181a 冷却水通路
181b 冷却水通路
181c 冷却水通路
182a 冷却水通路
182b 冷却水通路
182c 冷却水通路
183a 冷却水通路
183b 冷却水通路
20 エンジン
30 ECU
31 熱量判定部
32 流量調整部

Claims (5)

  1. 内燃機関を迂回させて排熱回収器とヒータコアとの間で冷却水を循環させる第1通路と、ラジエータを迂回させて前記内燃機関と前記ヒータコアとの間で前記冷却水を循環させる第2通路とを備える冷却装置を制御するための冷却水制御装置であって、
    前記内燃機関の暖機時に、(i)第1通路に前記冷却水を循環させ且つ(ii)前記第2通路における前記冷却水の循環を停止する第1制御手段と、
    前記内燃機関の暖機時であって且つ前記ヒータコアが要求している要求熱量が所定閾値以下となる場合に、(i)前記第1通路を循環する前記冷却水の流量を前記要求熱量に応じて調整しながら、前記第1通路に前記冷却水を循環させ、且つ、(ii)前記第2通路における前記冷却水の循環を停止する第2制御手段と、
    前記内燃機関の暖機時であって且つ前記要求熱量が前記所定閾値を超える場合に、(i)前記要求熱量が前記所定閾値以下となる場合に前記第1通路を循環する前記冷却水の流量と比較して前記第1通路を循環する前記冷却水の流量を減らすことなく、前記第1通路に前記冷却水を循環させ、且つ、(ii)前記第2通路を循環する前記冷却水の流量を前記要求熱量に応じて調整しながら前記第2通路に前記冷却水を循環させる第3制御手段と
    を備えることを特徴とする冷却水制御装置。
  2. 前記第2制御手段は、前記要求熱量がゼロとなる場合における前記第1通路を循環する前記冷却水の流量と比較して前記第1通路を循環する前記冷却水の流量を前記要求熱量に応じて増加させながら、前記第1通路に前記冷却水を循環させることを特徴とする請求項1に記載の冷却水制御装置。
  3. 前記第3制御手段は、前記第1通路を循環する前記冷却水の流量を最大値に維持しながら、前記第1通路に前記冷却水を循環させることを特徴とする請求項1に記載の冷却水制御装置。
  4. 前記第3制御手段は、前記要求熱量が前記所定閾値以下となる場合に前記第2通路を循環する前記冷却水の流量と比較して前記第2通路を循環する前記冷却水の流量を前記要求熱量に応じて増加させながら、前記第2通路に前記冷却水を循環させることを特徴とする請求項1に記載の冷却水制御装置。
  5. 前記第3制御手段は、前記第2通路を循環する前記冷却水の流量を所定の上限値を超えないように前記要求熱量に応じて増加させながら、前記第2通路に前記冷却水を循環させることを特徴とする請求項1に記載の冷却水制御装置。
JP2012179317A 2012-08-13 2012-08-13 冷却水制御装置 Expired - Fee Related JP5623474B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012179317A JP5623474B2 (ja) 2012-08-13 2012-08-13 冷却水制御装置
CN201380043308.8A CN104583555B (zh) 2012-08-13 2013-08-09 冷却剂控制装置
DE112013004036.0T DE112013004036T5 (de) 2012-08-13 2013-08-09 Kühlmittelsteuervorrichtung
US14/420,976 US9850802B2 (en) 2012-08-13 2013-08-09 Coolant control device
PCT/IB2013/001743 WO2014027238A1 (en) 2012-08-13 2013-08-09 Coolant control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179317A JP5623474B2 (ja) 2012-08-13 2012-08-13 冷却水制御装置

Publications (2)

Publication Number Publication Date
JP2014037785A JP2014037785A (ja) 2014-02-27
JP5623474B2 true JP5623474B2 (ja) 2014-11-12

Family

ID=49385292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179317A Expired - Fee Related JP5623474B2 (ja) 2012-08-13 2012-08-13 冷却水制御装置

Country Status (5)

Country Link
US (1) US9850802B2 (ja)
JP (1) JP5623474B2 (ja)
CN (1) CN104583555B (ja)
DE (1) DE112013004036T5 (ja)
WO (1) WO2014027238A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647349C1 (ru) * 2014-05-23 2018-03-15 Ниссан Мотор Ко., Лтд. Контур охлаждения для двигателей внутреннего сгорания
JP6079766B2 (ja) 2014-12-12 2017-02-15 トヨタ自動車株式会社 エンジン冷却システム及びその運転方法
DE102015006303A1 (de) * 2015-05-16 2016-11-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kühlsystem mit einer Kühlmittelpumpe für eine Brennkraftmaschine
DE102015006302A1 (de) * 2015-05-16 2016-11-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kühlsystem mit einer Kühlmittelpumpe für eine Brennkraftmaschine
JP6361703B2 (ja) * 2015-09-04 2018-07-25 株式会社デンソー 車両用熱管理装置
SE540918C2 (en) * 2016-01-15 2018-12-18 Scania Cv Ab A method for controlling a cooling system delivering coolant to heat exchanger in a vehicle
KR102324760B1 (ko) * 2017-05-18 2021-11-10 현대자동차주식회사 하이브리드 차량의 열 관리방법
JP6627826B2 (ja) * 2017-07-10 2020-01-08 トヨタ自動車株式会社 熱交換システムの制御装置
KR20210049491A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049490A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10232150A1 (de) * 2002-07-16 2004-02-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Temperatur eines Kühlmittels einer Brennkraftmaschine
JP2004360509A (ja) * 2003-06-03 2004-12-24 Nissan Motor Co Ltd 内燃機関の冷却装置
JP2007016718A (ja) * 2005-07-08 2007-01-25 Toyota Motor Corp エンジンの冷却装置
GB2429763B (en) * 2005-09-02 2011-01-19 Ford Global Tech Llc A cooling system for a motor vehicle providing cold start oil heating
FR2921866A3 (fr) * 2007-10-03 2009-04-10 Renault Sas Dispositif et procede de montee en temperature d'un moteur et du chauffage d'un habitacle de vehicule.
JP4998247B2 (ja) 2007-12-19 2012-08-15 トヨタ自動車株式会社 内燃機関の冷却水制御装置
US8156733B2 (en) * 2008-02-29 2012-04-17 Detroit Diesel Corporation Method of operating an internal combustion engine to heat up a selective catalyst reducer
JP4911126B2 (ja) * 2008-06-27 2012-04-04 株式会社デンソー 内燃機関の暖機制御システム
US20120160447A1 (en) * 2009-09-08 2012-06-28 Toyota Jidosha Kabushiki Kaisha Cooling system for vehicle
JP2011099400A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 車両の冷却装置
KR101509685B1 (ko) * 2009-12-02 2015-04-06 현대자동차 주식회사 차량의 배기열 회수장치 및 방법
FR2953889A1 (fr) * 2009-12-14 2011-06-17 Renault Sa Circuit d'echange de calories et procede de regulation thermique d'un fluide caloporteur circulant dans un moteur thermique d'un vehicule automobile
JP2012031800A (ja) * 2010-07-30 2012-02-16 Honda Motor Co Ltd エンジンの冷却装置

Also Published As

Publication number Publication date
CN104583555A (zh) 2015-04-29
JP2014037785A (ja) 2014-02-27
DE112013004036T5 (de) 2015-05-07
WO2014027238A1 (en) 2014-02-20
US20150240701A1 (en) 2015-08-27
CN104583555B (zh) 2017-06-30
US9850802B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
JP5623474B2 (ja) 冷却水制御装置
JP6417315B2 (ja) 車両用内燃機関の冷却装置
JP4877057B2 (ja) 内燃機関の冷却系装置
JP6011495B2 (ja) 冷却水制御装置
JP6386411B2 (ja) 内燃機関の冷却システム及びその制御方法
WO2017217462A1 (ja) 車両用内燃機関の冷却装置及び冷却装置の制御方法
JP6024822B2 (ja) 冷却水制御装置
JP6096492B2 (ja) エンジンの冷却装置
KR101637779B1 (ko) 차량의 배기열 회수 장치 및 방법
KR101592428B1 (ko) 통합 유량 제어 밸브 장치
JP2011099400A (ja) 車両の冷却装置
JP6655220B2 (ja) 内燃機関の冷却装置及び冷却方法
JP2011157035A (ja) ハイブリッド車両の冷却装置
JP5490987B2 (ja) エンジンの冷却装置
JP5633390B2 (ja) 内燃機関の冷却装置
JP5267654B2 (ja) エンジンの冷却装置
WO2011089705A1 (ja) 車両の冷却装置
JP2016211482A (ja) エンジンの冷却装置
JP2016210298A (ja) 内燃機関の冷却装置
JP2006132469A (ja) Egrガスの冷却装置
JP2013096259A (ja) 車両用エンジンの暖機装置
JP2006207449A (ja) 車両の制御装置
JP2013124546A (ja) 車両の冷却装置
JP2010163897A (ja) 内燃機関の冷却装置
JP2008248741A (ja) 内燃機関の暖機装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R151 Written notification of patent or utility model registration

Ref document number: 5623474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees