JP5622630B2 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
JP5622630B2
JP5622630B2 JP2011065643A JP2011065643A JP5622630B2 JP 5622630 B2 JP5622630 B2 JP 5622630B2 JP 2011065643 A JP2011065643 A JP 2011065643A JP 2011065643 A JP2011065643 A JP 2011065643A JP 5622630 B2 JP5622630 B2 JP 5622630B2
Authority
JP
Japan
Prior art keywords
working fluid
power generation
stator
permanent magnet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011065643A
Other languages
English (en)
Other versions
JP2012097725A (ja
Inventor
足立 成人
成人 足立
松村 昌義
昌義 松村
裕 成川
成川  裕
和雄 ▲高▼橋
和雄 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011065643A priority Critical patent/JP5622630B2/ja
Publication of JP2012097725A publication Critical patent/JP2012097725A/ja
Application granted granted Critical
Publication of JP5622630B2 publication Critical patent/JP5622630B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

本発明は、作動流体の膨張を利用して発電する発電システムに関するものである。
従来から、作動流体の膨張を利用した発電システムとして、例えば特許文献1に開示される蒸気発電システムが知られている。
特許文献1の蒸気発電システムは、作動流体を吐出する供給ポンプと、この供給ポンプから供給された作動流体を加熱するボイラーと、加熱された作動流体の膨張により回転するロータを有する膨張器と、前記ロータの出力軸に連結されるとともに当該ロータの回転駆動に応じて発電する発電機と、膨張した作動流体を凝縮する凝縮器とを備えている。
特許文献1の膨張器は、一対のロータと、これらロータを収容するハウジングと、このハウジングに対してロータの出力軸を回転可能に支持する軸受けとを備えている。
特表2008−542629号公報
特許文献1の蒸気発電システムでは、作動流体の膨張と凝縮とを繰返し行うために当該作動流体を閉鎖した回路内で循環させる必要があるため、膨張器には気密性が要求される。その一方、特許文献1の膨張器では、ロータの出力軸(又はこれに連結された軸)とハウジング外部の発電機とを連結する必要があるため、ロータの出力軸は、ハウジングを貫通して設けられる。
そのため、特許文献1の膨張器は、ケーシングとロータの出力軸とを気密状態でシールしながら、当該ケーシングに対してロータの出力軸を回転可能に支持するための軸受けを具備する必要がある。このように、特許文献1の膨張器では、出力軸とケーシングとの相対的な変位を許容しながら両者の間の気密性を確保するという相反する機能を軸受けに持たせる必要があるため、軸受けの構造が複雑となるだけでなく、軸受けの耐久性が低いという問題があった。
本発明は、上記課題に鑑みてなされたものであり、構造の簡素化及び耐久性の向上を図ることができる発電システムを提供することを目的としている。
上記課題を解決するために、本願発明者等は、作動流体の膨張により回転体(ロータ)と一体に回転する出力軸、回転体を格納する格納部に対して出力軸を回転可能に支持する軸受け部、及び前記出力軸に連結する発電機をまとめて収納する収納容器を備えた発電システムに係る発明に想到した。
この発明によれば、出力軸、軸受け部及び発電機が共通の収納容器内に収納されているため、軸受け部により格納部と出力軸との間の気密性を確保しなくても、回転体の回転に供した作動流体を収納容器内に閉じ込めることができる。したがって、この発明によれば、従来の軸受け部に比べて構造の簡素化及び耐久性の向上を図ることができる。
しかしながら、収納容器を採用した発電システムでは、収納容器内に発電機が収容されているため、発電時に発電機において発生した熱が収納容器内に籠って当該発電機の発電効率を低下させるという新たな問題がある。
そこで、本発明は、作動流体の膨張を利用して発電する発電システムであって、前記作動流体を吐出する流体供給ポンプと、前記流体供給ポンプから供給された作動流体を加熱する蒸発器と、前記蒸発器から導かれた作動流体の膨張により回転する回転体と、前記回転体を格納する格納部と、前記回転体から前記格納部を貫通して当該格納部の外部に延びるとともに前記回転体と一体に回転する出力軸と、前記格納部に設けられ、前記出力軸を回転可能に支持する軸受け部と、前記出力軸に連結されるとともに前記回転体の回転駆動に応じて発電する発電機と、前記回転体の回転に供された作動流体を凝縮する凝縮器と、前記出力軸、前記軸受け部、及び前記発電機を収納する収納容器と、前記流体供給ポンプから吐出された作動流体の一部を前記蒸発器を介さずに前記収納容器内に導くための冷却用配管とを備え、前記発電機は、前記冷却用配管を介して前記収納容器内に導入された作動流体に接触する位置に設けられ、前記格納部は、前記収納容器内に収納され、前記回転体の回転に供された作動流体を前記格納部の外部であって前記収納容器の内側に導出する第1導出口を有し、前記収納容器は、前記第1導出口から導出された作動流体を前記収納容器の外部に導出する第2導出口を有し、前記発電機は、前記第1導出口と前記第2導出口との間に設けられ、前記冷却用配管は、前記第1導出口から第2導出口に至る作動流体の流れ方向において、前記発電機の配設位置よりも第1導出口寄りの位置から前記収納容器内に作動流体を導入する、発電システムを提供する。
本発明に係る発電システムでは、蒸発器を経由していない作動流体、つまり、加熱されていない比較的低温の作動流体を収容容器内に導入することにより、作動流体を利用して収容容器内の発電機を効果的に冷却することができる。したがって、本発明によれば、発電機の発熱に起因する発電効率の低下を抑制することができる。
すなわち、本発明に係る発電システムでは、発電機の冷却のために別途冷媒を用いるのではなく、作動流体を用いることとしているため、別途ポンプを設けなくても前記流体供給ポンプを用いて作動流体を収納容器に供給することができ、システムの大型化を抑えつつ前記発電効率の低下の抑制を図ることができる。
また、本発明に係る発電システムでは、第1導出口から第2導出口に至る作動流体の流れ方向において発電機よりも上流側の位置から作動流体が導入されるため、第1導出口からの作動流体の流れに沿って、冷却用配管から導入された作動流体を効率的に発電機に接触させることができる。したがって、前記構成によれば、効果的に発電機を冷却することが可能となる。
前記発電システムにおいて、前記冷却用配管内を流れる作動流体の流量、圧力の少なくとも一方を調整する調整部材をさらに備えていることが好ましい。
この発電システムでは、作動流体の流量、圧力の少なくとも一方を調整することにより、発電機に対する冷却能力を調整できるため、発電機の負荷(発電する電力の大小)に応じて冷却能力を調整することにより、効果的に発電機を冷却することができる。
また、本発明は、作動流体の膨張を利用して発電する発電システムであって、前記作動流体を吐出する流体供給ポンプと、前記流体供給ポンプから供給された作動流体を加熱する蒸発器と、前記蒸発器から導かれた作動流体の膨張により回転する回転体と、前記回転体を格納する格納部と、前記回転体から前記格納部を貫通して当該格納部の外部に延びるとともに前記回転体と一体に回転する出力軸と、前記格納部に設けられ、前記出力軸を回転可能に支持する軸受け部と、前記出力軸に連結されるとともに前記回転体の回転駆動に応じて発電する発電機と、前記回転体の回転に供された作動流体を凝縮する凝縮器と、前記出力軸、前記軸受け部、及び前記発電機を収納する収納容器と、前記流体供給ポンプから吐出された作動流体の一部を前記蒸発器を介さずに前記収納容器内に導くための冷却用配管とを備え、前記発電機は、前記冷却用配管を介して前記収納容器内に導入された作動流体に接触する位置に設けられ、前記発電機は、ステータと、このステータに対して回転可能でかつ永久磁石が設けられたロータとを有し、前記発電システムは、前記冷却用配管内を流れる作動流体の流量を調整する調整部材と、前記ロータの永久磁石の温度を推定するとともに、推定された温度に基づいて前記永久磁石が予め設定された温度となるように前記調整部材を制御する制御部とをさらに備え、前記制御部は、前記永久磁石の磁束密度を特定するための磁束密度特定手段と、前記永久磁石の温度が既知である条件下において前記磁束密度特定手段により特定された基準磁束密度を記憶する記憶部と、前記磁束密度特定手段により特定された特定磁束密度と、前記既知の温度と、前記基準磁束密度とに基づいて、前記特定磁束密度の特定時における前記永久磁石の温度を推定する温度推定部と、前記永久磁石の推定温度に基づいて前記永久磁石が予め設定された目標温度となるように、前記調整部材に指令する指令部とを備えている、発電システムを提供する
本発明に係る発電システムでは、蒸発器を経由していない作動流体、つまり、加熱されていない比較的低温の作動流体を収容容器内に導入することにより、作動流体を利用して収容容器内の発電機を効果的に冷却することができる。したがって、本発明によれば、発電機の発熱に起因する発電効率の低下を抑制することができる。
すなわち、本発明に係る発電システムでは、発電機の冷却のために別途冷媒を用いるのではなく、作動流体を用いることとしているため、別途ポンプを設けなくても前記流体供給ポンプを用いて作動流体を収納容器に供給することができ、システムの大型化を抑えつつ前記発電効率の低下の抑制を図ることができる。
また、本発明に係る発電システムでは、永久磁石が予め設定された温度となるように調整部材を制御する制御部を備えている。そのため、永久磁石の温度上昇に伴う減磁を防止することにより、発電能力の低下を抑制することができる。
具体的に、前記発電機では、ロータの温度が所定の温度を超えると、不可逆的に永久磁石の磁束密度が低下する、いわゆる減磁と称される減少が生じる。そして、永久磁石の減磁が生じると発電能力が低下する。これに対し、前記発電システムでは、永久磁石の温度を予め設定された温度に維持することができるので、永久磁石の減磁を防止することができる。
さらに、本発明に係る発電システムでは、既知の温度と、基準磁束密度と、特定磁束密度とに基づいて永久磁石の温度を推定することができる。
具体的に、温度変化後の永久磁石の温度は、温度変化後の磁束密度に対する温度変化前の磁束密度の比に比例する。つまり、変化前の温度をT0、そのときの永久磁石の磁束密度をB0とし、変化後の温度をT1、そのときの永久磁石の磁束密度をB1とした場合、以下の式(1)の関係が成立する。
T1=T0−1/m×(1−B1/B0)・・・(1)
ここで、mは、永久磁石の素材により規定される係数である。したがって、T0、B0及びB1を用いることにより、T1を算出し、このT1を永久磁石の温度として推定することができる。
具体的に、前記温度推定部は、前記特定磁束密度に対する前記基準磁束密度の比と、前記既知の温度とに基づいて前記永久磁石の温度を推定することができる。
前記発電システムにおいて、前記磁束密度特定手段は、前記ステータに設けられるとともに前記永久磁石の磁束密度の大きさに応じた大きさの起電力を生じさせることが可能な検出用コイルと、前記検出用コイルに印加された電圧を検出可能な電圧検出部と、前記電圧検出部により検出された電圧に基づいて前記永久磁石の磁束密度を算出する演算部とを備えていることが好ましい。
この発電システムでは、磁束密度特定手段が検出用コイルと電圧検出部と演算部とを有する。そのため、検出用コイルに印加された電圧に基づいて永久磁石の磁束密度を算出することができる。
ここで、前記態様では、永久磁石の磁束密度の大きさに応じて変化する起電力(電圧)を検出するため、例えば、特開2004−222387号公報に記載の従来技術と比較して、永久磁石の温度変化に対する推定温度の変化の応答性(追従の速さ)を向上することができる。具体的に、前記従来技術では、永久磁石から熱を奪った磁化素子の磁界の強さを検出するため、永久磁石から磁化素子への熱伝達に要する時間が前記応答性を低下させる要因となる。これに対し、前記態様では、熱伝達を介さずに、永久磁石の磁束密度に応じて生じる起電力に基づいて温度を推定するため、前記応答性を向上することができる。さらに、前記従来技術では、磁化素子の温度が永久磁石ではなくその周囲の温度によって変動して、永久磁石の推定温度が不正確になるおそれもある。これに対し、前記態様では、永久磁石の磁束密度に対応する起電力に基づいて永久磁石の温度を推定するため、周囲の温度により受ける影響は小さく、永久磁石の温度をより正確に推定することが可能となる。
前記発電システムにおいて、前記電圧検出部は、前記検出用コイルに印加された電圧波形における波高値と、周波数とを検出し、前記演算部は、前記波高値と周波数とに基づいて前記永久磁石の磁束密度を算出することが好ましい。
この発電システムでは、電圧波形における波高値及び周波数に基づいて永久磁石の磁束密度を算出することができる。ここで、『波高値』は、実効値に代替することができ、『周波数』は、周期に代替することができる。
前記発電システムにおいて、前記電圧検出部は、前記波高値及び前記周波数を複数回検出し、前記演算部は、前記波高値の平均値又は最大値、及び前記周波数の平均値又は最大値をそれぞれ算出するとともに、これら平均値又は最大値を用いて永久磁石の磁束密度を算出することが好ましい。
この発電システムでは、波高値及び周波数の平均値又は最大値を用いて永久磁石の磁束密度が算出される。そのため、例えば、検出用コイルにインバータが電気的に接続されている場合に、インバータのインピーダンスの変化に伴う波高値及び周波数の誤差を緩和することができる。
前記発電システムにおいて、前記検出用コイルとの間で電力を受け渡し可能な受渡部材と、前記受渡部材と前記検出コイルとを電気的に接続した接続状態と、前記受渡部材を前記検出用コイルから切断した切断状態との間で切換動作可能な切換部材とをさらに備え、前記電圧検出部は、前記切換部材が前記切断状態に切り換えられた状態で、前記検出用コイルに印加された電圧を検出することが好ましい。
この発電システムでは、切換部材により受渡部材が検出用コイルから切断された状態で検出用コイルに印加された電圧が検出される。そのため、受渡部材のインピーダンスの変化にかかわらず、検出用コイルに生じた電圧をより正確に検出することができる。
前記発電システムにおいて、前記ステータは、前記永久磁石の磁束密度の大きさに応じた大きさの起電力を生じさせることが可能なステータコイルを有し、前記ステータコイルとの間で電力を受け渡し可能な受渡部材をさらに備え、前記検出用コイルは、前記受渡部材に対して電気的に非接続であることが好ましい。
この発電システムでは、受渡部材に接続されたステータコイルとは独立して検出用コイルが設けられている。そのため、受渡部材のインピーダンスの変化にかかわらず、検出用コイルに印加された電圧をより正確に検出することができる。
前記発電システムにおいて、前記検出用コイルは、前記電圧検出部にのみ電気的に接続されていることが好ましい。
この発電システムでは、検出用コイルが電圧検出部以外に接続されていないため、より正確に検出用コイルに印加された電圧を検出することができる。
前記発電システムにおいて、前記永久磁石は、前記ロータの回転軸の軸線方向において前記ステータよりも突出する突出部を有し、前記検出用コイルは、前記ステータコイルから前記軸線方向に離間するとともに前記永久磁石の突出部に対向するように配置され、前記検出用コイルと前記ステータコイルとの間には、前記検出用コイルと前記ステータコイルとの間を磁気的に遮断するためのシールド部材が設けられていることが好ましい。
この発電システムでは、シールド部材により検出用コイルとステータコイルとが磁気的に遮断されている。そのため、ステータコイルに生じる磁場が検出用コイルに与える影響を小さくすることができ、これにより、検出用コイルに印加された電圧をより正確に検出することができる。
前記発電システムにおいて、前記ステータに設けられ、前記ステータの周囲の温度を検出する周囲温度検出部をさらに備え、前記記憶部は、前記周囲温度検出部により検出された温度を記憶することが好ましい。
この発電システムでは、ステータの周囲の温度を検出することができる。そのため、周囲の温度と永久磁石の温度とが略同等となる条件(例えば、初めて発電機を始動させる場合、又は長期間停止の後の再始動時)に周囲の温度を検出することにより、この温度を前記既知の温度として用いることができる。
前記発電システムにおいて、前記磁束密度特定手段は、前記ステータに設けられるとともに前記永久磁石の磁束、磁界の強さ、磁束密度の少なくとも1つを検出可能な物理量検出部を含んでいることが好ましい。
この発電システムでは、永久磁石の磁束、磁界の強さ、磁束密度の少なくとも1つを検出可能である。そのため、検出結果に基づいて磁束密度を特定することができ、この磁束密度に基づいて永久磁石の温度を推定することができる。
前記蒸発器を経由して前記流体供給ポンプと前記格納部とを接続する膨張用配管を備え、前記冷却用配管は、前記流体供給ポンプと前記蒸発器との間で前記膨張用配管から分岐して、前記収納容器に接続されている構成とすることにより、共通の流体供給ポンプを用いて蒸発器を介した経路と介さない経路とに分けて作動流体を導くことが可能となる。
前記発電システムにおいて、前記発電機は、筒状のステータと、このステータの内側に設けられるとともに永久磁石が設けられたロータとを有し、前記ステータは、筒状のステータ本体と、前記ステータ本体に保持された複数のステータコイルとを備え、前記ステータ本体には、前記各ステータコイルの間で前記ステータ本体を内外に貫通する貫通通路が形成されていることが好ましい。
この発電システムでは、ステータ本体を内外に貫通する貫通通路が形成されている。そのため、前記冷却用配管を通じて導入された作動流体を貫通通路を介してロータに導くことができる。したがって、永久磁石の減磁を抑制することにより、発電能力の低下をより有効に抑制することができる。
前記発電システムにおいて、前記貫通通路と前記冷却用配管とを連結するための連結配管をさらに備えていることが好ましい。
この発電システムでは、貫通通路と冷却用配管とが連結配管によって連結されているため、より確実にロータを冷却することができる。
なお、前記発電システムにおいて、前記ロータに潤滑油を供給するための潤滑油供給ポンプと、作動流体の流れに伴い前記第2導出口から導出される潤滑油を作動流体とともに受け入れるとともに、作動流体と潤滑油とを分離する分離器とをさらに備え、前記分離器により分離された潤滑油が前記潤滑油供給ポンプにより前記ロータに供給される一方、前記分離器により分離された作動流体が前記凝縮器に導かれるようにすることもできる。
この発電システムでは、潤滑油によりロータの駆動が円滑となるため、発電効率を向上することができる。ここで、ロータに供給された潤滑油の一部は、作動流体とともに収納容器から導出されることになるが、前記発電システムは、収納容器から導出された流体を潤滑油と作動流体とに分離する分離器を備えているため、潤滑油をロータへ、作動流体を凝縮器へそれぞれ導くことができる。したがって、前記発電システムでは、作動流体の膨張及び凝縮のサイクルを確実に保持しつつ、発電効率の向上を図ることができる。
本発明によれば、発電システムの構造の簡素化及び耐久性の向上を図ることができる。
本発明の実施形態に係る発電システムの全体構成を示す概略図である。 図1の密閉式発電機の具体的構成を示す断面図である。 図2の発電機を拡大して示す断面図である。 図3のIV―IV線断面図である。 図1の発電システムの電気的構成を示すブロック図である。 図5の制御部により実行される処理を示すフローチャートである。 図6の初期設定処理を示すフローチャートである。 図5の電圧検出部により検出される物理量を説明するための電圧波形図である。 別の実施形態を示す図5相当図である。 図9の制御部により実行される処理を示すフローチャートである。 別の実施形態を示す図3相当図である。 さらに別の実施形態を示す図3相当図である。 図12のXIII―XIII線断面図である。
以下、本発明の好ましい実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係る発電システムの全体構成を示す概略図である。
図1を参照して、発電システム1は、作動流体を吐出する流体供給ポンプ2と、この流体供給ポンプ2から供給された作動流体を加熱する蒸発器3と、この蒸発器3から導かれた作動流体の膨張により発電する密閉式発電機4と、この密閉式発電機4から導出された作動流体とこの作動流体に含まれる潤滑油とを分離する分離器5と、この分離器5により分離された作動流体を冷却して凝縮する凝縮器6と、前記分離器5により分離された潤滑油を前記密閉式発電機4内に供給するための潤滑油供給ポンプ7と、前記流体供給ポンプ2から密閉式発電機4に供給される作動流体の流量を調整する調整部材8と、前記密閉式発電機4により発電された電力が供給されるインバータ21(図5参照)と、前記流体供給ポンプ2、蒸発器3、凝縮器6及び調整部材8を制御する制御部23(図5参照)とを備えている。
より具体的に、発電システム1は、流体供給ポンプ2と密閉式発電機4とを接続する第1供給配管(膨張用配管の一部)L1と、密閉式発電機4と分離器5とを接続する第1導出配管L2と、分離器5と流体供給ポンプ2とを接続する第2導出配管L3とを備え、これら配管L1〜L3を介して作動流体を循環させる。第1供給配管L1の途中部には、前記蒸発器3が設けられ、第2導出配管L3の途中部には、前記凝縮器6が設けられている。また、本実施形態に係る発電システム1は、流体供給ポンプ2と蒸発器3との間で第1供給配管L1から分岐して前記密閉式発電機4に接続される第2供給配管(冷却用配管)L5を備え、この第2供給配管L5を介して蒸発器3により加熱される前の作動流体を密閉式発電機4内に供給する。第2供給配管L5の途中部には、前記調整部材8が設けられている。
流体供給ポンプ2は、例えば、フロン等の作動流体を吐出する。この流体供給ポンプ2から吐出された作動流体のうちの一部は、第1供給配管L1を介して蒸発器3に導かれ、残りの部分は、第2供給配管L5を介して直接密閉式発電機4に導かれる。
蒸発器3は、第1供給配管L1を介して導かれる作動流体を加熱して蒸発させる。具体的に、本実施形態に係る蒸発器3は、加熱媒体を流通させる流路と、この流路を流れる加熱媒体を昇温可能な蒸発用昇温器3a(図5参照)と、前記流路を流れる加熱媒体の流速を調整可能な蒸発用調整器3b(図5参照)とを有している。そして、前記流路内を流れる比較的低温(90℃〜100℃)の加熱媒体との間で熱交換を行うことにより作動流体が加熱される。前記加熱媒体としては、例えば、製造設備等から排出される温水、蒸気、加熱空気、排ガス等を利用することができる。
密閉式発電機4は、前記蒸発器3により加熱された作動流体の膨張に応じてスクリュータービン(回転体)10a、10aを回転させることにより、スクリュータービン10aの出力軸10bに連結された発電機11を作動させて発電を行う。なお、スクリュータービン10a、10aは、それぞれの外周面に螺旋状の突条が形成された円柱形状の部材である。そして、スクリュータービン10a、10aの突条同士を互いに噛合させることにより、各スクリュータービン10a、10aの外周面の間でかつ各突条の間に流路が形成される。なお、各スクリュータービン10a、10a間に形成される流路の断面積は、各スクリュータービン10a、10aの一端側から他端側(図2の左側から右側)へ向けて広くなるように設定されている。以下、密閉式発電機4の具体的構成について説明する。
図2は、図1の密閉式発電機の具体的構成を示す断面図である。
図1及び図2を参照して、密閉式発電機4は、作動流体の膨張により回転する回転部材10と、この回転部材10の回転に応じて発電する発電機11と、これら回転部材10及び発電機11を収納する収納容器12と、この収納容器12内に設けられ前記発電機11の周囲の温度(例えば、後述する発電機11のステータ11aの温度)を検出可能な周囲温度検出部22(図5参照)とを備えている。
回転部材10は、前記スクリュータービン10a、10aと、これらスクリュータービン10a、10aの一方に固定された出力軸10bとを備えている。各スクリュータービン10a、10a間に形成される流路の断面積は、図2の左から右に向かうに従い広くなるように設定されている。出力軸10bは、一方のスクリュータービン10aと一体に回転する。
発電機11は、後述する収納容器12に固定された筒状のステータ11aと、このステータ11aの内側に設けられるとともに当該ステータ11aに対して回転可能なロータ11bとを備えている。ロータ11bは、前記回転部材10の出力軸10bに連結され、当該出力軸10bと一体に回転する。以下、発電機11の具体的構成について図3及び図4を参照して説明する。
ステータ11aは、収納容器12に固定された筒状のステータ本体11cと、このステータ本体11cに保持された複数のステータコイル11dとを有する。各ステータコイル11dは、図3に示すようにロータ11bの回転軸11eの軸線方向に並ぶとともに、図4に示すように回転軸11eの軸線回りに並ぶように、配置されている。また、各ステータコイル11dは、発電した電力を供給するためにインバータ21(図5参照)に電気的に接続されている。本実施形態において、インバータ21は、ステータコイル11dとの間で電力の受け渡し可能な受渡部材に相当する。
ロータ11bは、前記ステータ11a内に設けられたロータ本体11fと、このロータ本体11fと前記回転部材10の出力軸とを連結する回転軸11eと、前記ロータ本体11fに保持された複数の永久磁石11gとを備えている。各永久磁石11gは、図3に示すように回転軸11eの軸線に沿って延びるとともに、図4に示すように回転軸11eの軸線回りの同一円周上に並んで配置されている。
図2を参照して、収納容器12は、図2の左から順に配置された回転部材10、後述する軸受け部J1、及び発電機11をまとめて収納する。作動流体は、図2において収納容器12の左端に設けられた導入管19aを介して収納容器12内に導入されるとともに、図2の右側に設けられた導出口17cを介して収納容器12の外側に導出される。さらに、収納容器12には、導入管19aと導出口17cとの間となる位置(図2の上側)に設けられた冷却用導入部(冷却用導入部)16iが設けられ、この冷却用導入部16iを介して導入された作動流体によって発電機11が冷却される。
具体的に、収納容器12は、前記各スクリュータービン10a、10aを保持する保持部材16と、この保持部材16から左側に延びる筒状部材14と、この筒状部材14の左端に設けられた蓋部材15と、前記保持部材16から右側に延びる有底部材17とを備えている。
保持部材16は、本体部16aと、この本体部16aの左側に取り付けられた軸受部材16bと、本体部16aから右側に延びる延設部16cと、この延設部16cの右端に形成されたフランジ部16hとを備えている。本体部16aには、各スクリュータービン10a、10aを格納するための格納孔16dと、この格納孔16d内に格納された各スクリュータービン10a、10aに作動流体を導入するための導入口16eと、格納孔16d内に格納された各スクリュータービン10a、10aによって導かれた作動流体を導出するための導出口(第1導出口)16fと、スクリュータービン10aの出力軸10bを支持するための軸受け部J1とが設けられている。格納孔16dは、本体部16aを左右方向に貫通する孔である。導入口16eは、本体部16aの左端に設けられ、格納孔16dに連通するとともに左側に開口する。導出口16fは、本体部16aの右端に設けられ、格納孔16dに連通するとともに右側に開口する。また、本体部16aには、前記格納孔16dに連通する図外の油供給孔が形成され、この油供給孔を介して前記潤滑油供給ポンプ7から各スクリュータービン10a、10aに対して潤滑油が供給される。軸受け部J1は、各スクリュータービン10aの右側となる格納孔16dの内側位置に設けられ、スクリュータービン10aの出力軸10bを回転可能に支持する。このように本実施形態では、軸受け部J1が収納容器12内に収納されているため、当該軸受け部J1に気密性を持たせなくても作動流体を収納容器12内に閉じこめることができる。なお、本実施形態において、本体部16aのうち各スクリュータービン10a、10aを格納する部分が格納部を構成し、本体部16aのうち格納部を取り囲む部分が収納容器の一部を構成する。
軸受部材16bは、スクリュータービン10aの出力軸10bの左端の周囲を取り囲む部材である。この軸受部材16bの内側には、スクリュータービン10aの出力軸10bの左端を回転可能に支持する軸受け部J2が設けられている。延設部16cは、本体部16aから右側に延びる出力軸10bの周囲を取り囲む筒状に形成されている。この延設部16cには、前記第2供給配管L5(図1参照)を介して作動流体を導入するための冷却用導入部16iが設けられている。この冷却用導入部16iは、第2供給配管L5が接続可能となるように延設部16cの側壁を貫通する開口である。
筒状部材14は、前記軸受部材16bよりも左側に延びる筒状本体14aと、この筒状本体14aの右端に設けられた取付部14bとを備えている。取付部14bは、気体の流通を妨げる態様で、筒状本体14aを前記保持部材16の本体部16aに取り付けるためのものである。
蓋部材15は、前記筒状部材14の筒状本体14aの左側の開口部を封止することにより、当該筒状部材14と協働して保持部材16の左側にタービン室S1を形成する。つまり、タービン室S1は、保持部材16と筒状部材14と蓋部材15との間に設けられ、各スクリュータービン10a、10aを収納するための室である。具体的に、蓋部材15は、前記筒状本体14aの開口端に取り付けられた閉鎖板18と、この閉鎖板18の外側から前記各スクリュータービン10a、10aの導入口までの流路を形成する流路形成部材19と、この流路形成部材19により形成された流路に設けられたフィルタ20とを備えている。閉鎖板18は、筒状本体14aの開口を塞ぐように当該筒状本体14aに取り付けられた円板状の部材である。この閉鎖板18の略中央位置には、表裏に貫通する孔が形成されている。流路形成部材19は、前記閉鎖板18から右側に延びる導入管19aと、この導入管19aの右端部から周方向の外側へ向けて突出する円板部19bと、この円板部19bの周縁部から左側に延びる側板部19cと、前記円板部19bから右側に延びる誘導管19dとを備えている。導入管19aは、前記閉鎖板18の左側(外側)から円板部19bの右側に至る作動流体の流路を構成する。具体的に、導入管19aの内腔部は、閉鎖板18及び円板部19bを貫通している。円板部19bは、筒状本体14aの内側面との間に間隙が形成されるように、当該筒状本体14aの内径よりも小さな直径寸法を有している。したがって、円板部19bの外側面と筒状本体14aの内側面との間には、円板部19bを跨ぐ左右方向(表裏方向)の作動流体の流路が形成される。誘導管19dは、円板部19bの左側から各スクリュータービン10a、10aに対する導入口16eへ至る作動流体の流路を構成する。具体的に、誘導管19dの内腔部は、円板部19bを貫通するとともに、誘導管19dの右端部は、作動流体を導入口16e内に導入可能となるように、前記保持部材16の本体部16aの左端面に取り付けられている。したがって、この流路形成部材19により、図2の矢印Y1に示すように、閉鎖板18の左側(外側)から円板部19bの右側へ至るとともに円板部19bの右側から左側へ至り、さらに円板部19bの左側から導入口16eへ至る流路が形成される。フィルタ20は、前記矢印Y1に示す流路と交差するように、円板部19bの左側の位置、及び円板部19b(側板部19c)と筒状本体14aとの間の位置に設けられている。
本実施形態では、第1供給配管L1、筒状部材14及び蓋部材15が、蒸発器3を経由して流体供給ポンプ2と本体部(格納部)16aとを接続する膨張用配管を構成する。
有底部材17は、前記保持部材16の延設部16cの右側に固定された有底部材本体17aと、この有底部材本体17aの底部に設けられたフィルタ17dとを備えている。有底部材本体17aは、延設部16cの右側の開口部を封止することにより、当該延設部16cと協働して本体部16aの右側に発電室S2を形成する。つまり、発電室S2は、本体部16aと延設部16cと有底部材本体17aとの間に設けられ、発電機11を収納するための室である。具体的に、有底部材本体17aには、延設部16cに固定されたフランジ部17bと、底部を貫通する導出口(第2導出口)17cと、内側に形成された凹溝17eとが設けられている。フランジ部17bは、気体の流通を妨げるように、延設部16cの右端面に密着した状態で当該延設部16cに取り付けられている。導出口17cは、作動流体を導出するためのものであり、この導出口17cにはフィルタ17dが設けられている。凹溝17eは、発電機11のステータ11aと有底部材本体17aの内側面との間に間隙を形成するためのものである。具体的に、凹溝17eは、有底部材本体17aの内側面を周方向で間欠的に窪ませるように複数個所に設けられており、発電機11のステータ11aは、各凹溝17eが形成されていない有底部材本体17aの内側面に当接した状態で保持されている。したがって、各凹溝17eとステータ11aとの間の間隙は、矢印Y3に示すように作動流体の流路として機能する。また、発電機11のステータ11aとロータ11bとの間の間隙Gも、矢印Y2に示すように作動流体の流路として機能する。そして、これら矢印Y2及びY3に示す流路を流れた作動油は、矢印Y4に示すように、フィルタ17dを介して導出口17cから導出される。
以下、前記発電システム1の動作について図1及び図2を参照して説明する。
流体供給ポンプ2から吐出された作動流体は、蒸発器3において加熱され、第1供給配管L1を介して密閉式発電機4に導かれる。この作動流体は、導入管19aを通って密閉式発電機4内に導入され、矢印Y1に示すように、フィルタ20を介して各スクリュータービン10a、10aの導入口16eに導かれる。各スクリュータービン10a、10a間の流路に導入された作動流体は、前記蒸発器3での加熱により膨張しようとするため、前記流路を押し広げる方向に各スクリュータービン10a、10aを回転させながら図2の右方向に進行する。各スクリュータービン10a、10a間の流路から導出された作動流体は、矢印Y2、Y3に示すように発電機11に接触しながら流れて導出口17cから導出される。ここで、本実施形態では、矢印Y2、Y3に示す作動流体の流れ方向において発電機11よりも上流側に冷却用導入部16iが設けられているため、この冷却用導入部16iから導入された作動流体は、発電機11に接触して当該発電機11の冷却に寄与する。なお、冷却用導入部16iを介して導入される作動流体の流量は、調整部材8によって調整されている。具体的に、後述する制御部23は、発電機11が所定の目標温度となるように調整部材8をフィードバック制御する。
矢印Y4に示すように、密閉式発電機4から導出された作動流体は、第1導出配管L2を介して分離器5に導かれる。この分離器5において作動流体から分離された潤滑油は、潤滑用配管L4を介して潤滑油供給ポンプ7に導かれ、再び各スクリュータービン10a、10aに供給される。一方、分離器5において潤滑油から分離された作動流体は、第2導出配管L3を介して凝縮器6に導かれる。この凝縮器6は、冷却水を流通させる流路と、この流路を流れる冷却水を冷却可能な凝縮用冷却機6a(図5参照)と、前記流路を流れる冷却水の流速を調整可能な凝縮用調整器6b(図5参照)とを有している。そして、前記流路内を流れる例えば約20℃の冷却水との間で熱交換を行うことにより作動流体を冷却する。そして、凝縮器6により冷却された作動流体は、前記流体供給ポンプ2に導かれ、再び上記のように発電に供される。
次に、前記発電機11の温度を制御するための制御部23について、図5を参照して説明する。
制御部23は、前記ステータコイル11dに印加された電圧を検出する電圧検出部24と、この電圧検出部24の検出結果に基づいて演算処理を行う演算部25と、この演算部25の演算結果を記憶する記憶部26と、前記演算部25の演算結果及び記憶部26に記憶された情報に基づいて永久磁石11gの温度を推定する温度推定部27と、この温度推定部27による推定温度に基づいて流体供給ポンプ2、蒸発器3、凝縮器6、及び調整部材8に対して指令を出力する指令部28とを備えている。
電圧検出部24は、ステータコイル11dに印加された電圧を検出可能である。具体的に、電圧検出部24は、図8に示すように、ステータコイル11dに生じる交流電圧波形における波高値Vm及び周波数fを検出する。なお、波高値Vmは、実効値から算出可能であるため、電圧検出部24は、実効値を検出してもよい。また、周波数fは、周期から算出可能であるため、電圧検出部24は、周期を検出してもよい。なお、ステータコイル11dに多相交流電圧が印加されている場合、電圧検出部24は、少なくとも1相以外の相について波高値Vm及び周波数fを検出することができる。
演算部25は、電圧検出部24により検出された電圧に基づいて永久磁石11gの磁束密度を算出する。具体的に、演算部25は、以下の式(2)に基づいて永久磁石11gの磁束密度を算出する。
B=k×Vm÷f・・・(2)
ここで、Bは、永久磁石11gの磁束密度であり、kは発電機11固有の定数である。
記憶部26は、前記演算部25により算出された磁束密度及び前記周囲温度検出部22により検出された周囲温度を記憶する。具体的に、記憶部26は、周囲温度と永久磁石11gの温度とが略同等となる条件(例えば、初めて発電機を始動させる場合、又は長期間停止後の再始動時)で周囲温度検出部22により検出された周囲温度と、この周囲温度条件下で前記電圧検出部24により検出された波高値Vm及び周波数fに基づいて算出された磁束密度とを記憶する。
温度推定部27は、前記記憶部26に記憶された周囲温度及び磁束密度と、前記電圧検出部24により検出された波高値Vm及び周波数fに基づいて算出された磁束密度とに基づいて永久磁石11gの温度を推定する。具体的には、以下の式(1)に基づいて永久磁石11gの温度を推定する。
T1=T0−1/m×(1−B1/B0)・・・(1)
ここで、T0は記憶部26に記憶された周囲温度であり、この周囲温度条件下において算出された磁束密度がB0である。また、B1は、電圧検出部24により検出された波高値Vm及び周波数fに基づいて算出された磁束密度である。なお、mは、永久磁石11gの素材により規定される係数である。この式(1)により推定温度T1が算出される。
指令部28は、前記温度推定部27により推定された温度に基づいて永久磁石11gが予め設定された温度となるように調整部材8に対して流量制御指令を出力する。つまり、指令部28は、推定温度が予め設定された温度よりも高い場合には、作動流体の流量を増やす方向に調整する指令を調整部材8に出力する。一方、指令部28は、推定温度が予め設定された温度よりも低い場合には、作動流体の流量を減らす方向に調整する指令を調整部材8に出力する。なお、指令部28は、推定温度が予め設定された温度(温度範囲)にあるときは、作動流体の流量を維持するための指令を調整部材8に出力する(又は、作動流体の流量を変化するための指令を出力しない)。
なお、指令部28は、永久磁石11gが予め設定された温度となるように、前記調整部材8に加えて流体供給ポンプ2、蒸発器3、及び凝縮器6に指令を出力することもできる。具体的に、推定温度が予め設定された温度よりも高い場合、指令部28は、作動流体の流量を増やす方向の指令を流体供給ポンプ2に出力する、又は/及び、作動流体の温度を下げる方向の指令を蒸発用昇温器3a、蒸発用調整器3b、凝縮用冷却機6a、及び凝縮用調整器6bに出力することができる。一方、推定温度が予め設定された温度よりも低い場合、指令部28は、作動流体の流量を減らす方向の指令を流体供給ポンプ2に出力する、又は/及び、作動流体の温度を上げる方向の指令を蒸発用昇温器3a、蒸発用調整器3b、凝縮用冷却機6a、及び凝縮用調整器6bに出力することができる。
以下、図6及び図7を参照して、制御部23により実行される処理について説明する。
制御部23による処理が開始すると、初期設定処理Tが実行される。初期設定処理Tでは、まず、発電機11の周囲の温度と永久磁石の温度とが略同等となる条件において周囲温度T0が検出される(ステップT1)。次いで、ステータコイル11dに印加された電圧(波高値Vm及び周波数f)を検出し(ステップT2)、予め設定された回数Nだけ電圧が検出されたか否かが判定される(ステップT3)。
このステップT3で回数N未満であると判定されると、前記ステップT2が繰り返し実行される。一方、ステップT3で回数Nであると判定されると、検出結果(波高値Vm及び周波数f)の平均値が算出される(ステップT4)。このように検出結果の平均値を算出することにより、インバータ21(図5参照)のインピーダンスが変動する場合においても、検出値の誤差を低減することができる。なお、ステップT4では、検出結果の最大値を算出してもよい。
次いで、算出された平均値(波高値Vm及び周波数f)を上述した式(2)に代入することにより、磁束密度B0を算出する。つまり、この磁束密度B0は、永久磁石11gの温度がステップT1で検出された周囲温度T0である条件下での磁束密度である。そして、これら周囲温度T0及び磁束密度B0を記憶部26に記憶して(ステップT6)、図6のメインルーチンにリターンする。
メインルーチンでは、現在、ステータコイル11dに印加されている電圧(波高値Vm及び周波数f)を検出し(ステップS1)、予め設定された回数(前記ステップT3と同回数)Nだけ電圧が検出されたか否かが判定される(ステップS2)。
このステップS2で回数N未満であると判定されると、前記ステップS1が繰り返し実行される。一方、ステップS2で回数Nであると判定されると、検出結果(波高値Vm及び周波数f)の平均値が算出される(ステップS3)。このように検出結果の平均値を算出することにより、インバータ21(図5参照)のインピーダンスが変動する場合においても、検出値の誤差を低減することができる。なお、ステップS3では、検出結果の最大値を算出してもよい。
次いで、算出された平均値(波高値Vm及び周波数f)を上述した式(2)に代入することにより、磁束密度B1を算出する(ステップS4)。つまり、この磁束密度B1は、永久磁石11gの温度が不明な条件下での磁束密度である。そして、この磁束密度B1と、前記磁束密度B0及び周囲温度T0を上述した式(1)に代入することにより、推定温度T1を算出する(ステップS5)。
次に、推定温度T1に基づいて、温度制御指令を出力する(ステップS6)。具体的に、推定温度T1が予め設定された温度よりも高い場合には、作動流体の流量を増やす方向の指令を調整部材8に出力する。一方、推定温度T1が予め設定された温度よりも低い場合には、作動流体の流量を減らす方向の指令を調整部材8に出力する。また、推定温度T1が予め設定された温度(又は温度範囲内)にある場合には、作動流体の流量を維持するための指令を出力する(又は流量を変更するための指令を出力しない)。なお、ステップS6では、調整部材8に対する指令に加えて、流体供給ポンプ2、蒸発器3、凝縮器6の少なくとも1つに指令を出力することもできる。
そして、前記ステップS1〜S6までの処理は、図外の操作部を介して発電システム1の停止指令が入力されるまで(ステップS7でNOと判定されるまで)繰り返し実行される。前記停止指令が入力されると(ステップS7でYES)、当該処理が終了する。
以上説明したように、前記発電システム1では、各スクリュータービン10a、10a、出力軸10b、及び軸受け部J1が共通の収納容器12に収納されている。そのため、軸受け部J1により本体部16aと出力軸10bとの間の気密性を確保しなくても、各スクリュータービン10a、10aの回転に供した作動流体を収納容器12内に閉じこめることができる。したがって、前記発電システム1によれば、従来の軸受け部に比べて構造の簡素化及び耐久性の向上を図ることができる。
さらに、前記発電システム1では、蒸発器3を経由していない作動流体、つまり、加熱されていない比較的低温の作動流体を収納容器12内に導入することにより、作動流体を利用して収納容器12内の発電機11を効果的に冷却することができる。したがって、前記発電システム1によれば、発電機11の発熱に起因する発電効率の低下を抑制することができる。
すなわち、前記発電システム1では、発電機11の冷却のために別途冷媒を用いるのではなく、作動流体を用いることとしているため、別途ポンプを設けなくても前記流体供給ポンプ2を用いて作動流体を収納容器12に供給することができ、システムの大型化を抑えつつ発電効率の低下の抑制を図ることができる。
前記発電システム1では、調整部材8を用いて作動油の流量を調整することにより、発電機11に対する冷却能力を調整することができる。そのため、発電機11の負荷(発電する電力の大小)に応じて冷却能力を調整することにより、効果的に発電機11を冷却することができる。なお、本実施形態に係る調整部材8は、作動流体の流量を調整しているが、これに代えて又はこれに加えて作動流体の圧力を調整することもできる。
前記発電システム1では、導出口16fから導出口17cに至る作動流体の流れ方向において冷却用導入部16iが発電機11よりも上流側に配置されているため、導出口16fからの作動流体の流れに沿って、冷却用導入部16iから導入された作動流体を効率的に発電機11に接触させることができる。
なお、前記発電システム1では、作動流体の流れ方向において発電機11よりも上流側に冷却用導入部16iを配置することとしているが、これに限定されることはない。例えば、図2の二点鎖線で示すように、発電機11の側方に冷却用導入部17fを配置して、この冷却用導入部17fから発電機11に対して直接作動流体を吹き付けるようにしてもよい。具体的に、冷却用導入部17fは、前記凹溝17eに連通するように、有底部材本体17aの側壁を貫通する開口部である。
前記発電システム1では、潤滑油供給ポンプ7から供給された潤滑油により各スクリュータービン10a、10aの駆動が円滑となるため、発電効率を向上することができる。ここで、各スクリュータービン10a、10aに供給された潤滑油の一部は、作動流体とともに収納容器12から導出されることになるが、前記発電システム1は、収納容器12から導出された流体を潤滑油と作動流体とに分割する分離器5を備えているため、潤滑油を各スクリュータービン10a、10aへ、作動流体を凝縮器へそれぞれ導くことができる。したがって、前記発電システム1では、作動流体の膨張及び凝縮のサイクルを確実に保持しつつ、発電効率の向上を図ることができる。
なお、前記実施形態では、作動流体の膨張に応じて回転するロータとしてスクリュータービン10a、10aを例示したが、これに限定されることはなく、例えば、ラジアルタービンを採用することもできる。
また、前記実施形態では、各スクリュータービン10a、10a、これらを格納する本体部16a、出力軸10b、軸受け部J1及び発電機11をまとめて収納する収納容器12について説明したが、少なくとも出力軸10b、軸受け部J1及び発電機11を収納する収納容器を有する構成とすることにより、軸受け部J1により本体部16aと出力軸10bとの間に気密性を確保しなくても、各スクリュータービン10a、10aの回転に供した作動流体を収納容器内に閉じ込めることができる。
前記実施形態では、永久磁石11gが予め設定された温度となるように調整部材8を制御する制御部23を備えている。そのため、永久磁石11gの温度上昇に伴う減磁を防止することにより、発電能力の低下を抑制することができる。
具体的に、発電機11では、ロータ11bの温度が所定温度を超えると、不可逆的に永久磁石11gの磁束密度が低下する、いわゆる減磁と称される減少が生じる。そして、永久磁石11gの減磁が生じると発電能力が低下する。これに対し、前記実施形態では、永久磁石11gの温度を予め設定された温度に維持することができるので、永久磁石11gの減磁を防止することができる。
前記実施形態では、既知の温度T0と、基準磁束密度B0と、特定磁束密度B1とに基づいて永久磁石11gの温度T1を推定することができる。そのため、温度と磁束密度との関係を示すマップ等の情報を保持する場合と比較して、予め準備しておく情報量(T0、B0、及びB1)を低減することができる。
前記実施形態では、ステータコイル11dと、電圧検出部24と、演算部25とを有する。そのため、ステータコイル11dに印加された電圧に基づいて永久磁石11gの磁束密度を算出することができる。
前記実施形態では、電圧波形における波高値Vm及び周波数fに基づいて永久磁石の磁束密度を算出することができる。
前記実施形態では、波高値Vm及び周波数fの平均値又は最大値を用いて永久磁石11gの磁束密度が算出される。そのため、ステータコイル11dに電気的に接続されたインバータ21のインピーダンスが変化しても、波高値Vm及び周波数fの誤差が緩和される。
なお、前記実施形態では、ステータコイル11dとインバータ21とを電気的に接続した状態で、ステータコイル11dに印加された電圧を検出しているが、これに限定されない。例えば、ステータコイル11dとインバータ21とを切断した状態で、ステータコイル11dに印加された電圧を検出することもできる。
図9は、別の実施形態を示す図5相当図である。以下の説明では、図5と同一の構成に対して同一の符号を付すとともに、その説明を省略する。
この実施形態に係る発電システムは、ステータコイル11dとインバータ21との間に設けられたコンタクタ29と、制御部23に設けられるとともに前記コンタクタ29の駆動を制御するコンタクタ制御部31と、前記発電機11のロータ11bの回転位置を検出する回転位置検出部30とを備えている。
コンタクタ29は、インバータ21とステータコイル11dとを電気的に接続した接続状態と、インバータ21をステータコイル11dから切断した切断状態との間で切換動作可能である。
コンタクタ制御部31は、前記接続状態と切断状態との間でコンタクタ29の駆動を制御する。具体的に、コンタクタ制御部31は、電圧検出部24により電圧を検出するのに先立って、コンタクタ29を切断状態に切り換える。また、コンタクタ制御部31は、回転位置検出部30により検出されたロータ11bの回転位置に基づいて、ロータ11bが目標となる回転位置に到達した時点でステータコイル11dとインバータ21とを接続するように、コンタクタ29を接続状態に切り換える。これにより、コンタクタ29の切換の前後において、インバータ21に印加される電圧の位相と、ロータ11bの回転位置(位相)とを整合させることができる。
以下、図10を参照して、図9に記載の制御部23により実行される処理を説明する。
制御部23による処理が開始すると、前記初期設定処理Tを行った後、コンタクタ29を切断状態に切り換える(ステップS01)。次いで、上述したステップS1及びS2を実行して電圧を検出した後、回転位置検出部30によりロータ11bの回転位置を検出する(ステップS21)。次に、この回転位置に基づいて、ロータ11bの回転位置とインバータ21に印加される電圧の位相とが整合するタイミングでコンタクタ29を接続状態に切り換えて(ステップS22)、上述したステップS3に移行する。
本実施形態では、コンタクタ29によりインバータ21からステータコイル11dを切断した状態で電圧を検出することができる。そのため、インバータ21のインピーダンスの変化にかかわらず、ステータコイル11dに印加された電圧を正確に検出することができる。
なお、本実施形態では、上述のようにコンタクタ29によりインバータ21のインピーダンスの影響を回避することができるため、電圧の平均値を算出するためのステップS2及びS3を省略することもできる。
また、本実施形態では、図7に示す初期設定処理のステップT1とステップT2との間に、前記ステップS01を挿入するとともに、ステップT3とステップS5との間にステップS21及びステップS22を挿入することもできる。これにより、初期設定処理においても、インバータ21のインピーダンスの変化にかかわらず、ステータコイル11dに印加された電圧を正確に検出することができる。この初期設定処理においても、電圧の平均値を算出するためのステップT3及びステップT4を省略することができる。
なお、前記実施形態では、永久磁石11gに印加された起電力(電圧)を検出するための検出用コイルとして、発電機11のステータコイル11dを用いているが、これに限定されない。例えば、発電機11のステータコイル11dとは別に電圧検出用のコイルを設けることもできる。以下、この実施形態について図11を参照して説明する。
本実施形態に係る発電機11では、ロータ11bが回転軸11eの軸線方向においてステータ11aよりも長い。具体的に、永久磁石11g(ロータ11b)は、回転軸11eの軸線方向においてステータ11aよりも突出する突出部11hを有している。
そして、本実施形態に係る発電機11は、永久磁石11gの突出部11hに対向するように配置された検出用コイル33と、この検出用コイル33と各ステータコイル11dのうち回転軸11eの軸線方向の末端に配置されたステータコイル11dとの間に設けられたシールド部材32とを備えている。検出用コイル33は、ステータコイル11dから回転軸11eの軸線方向に離間して配置されている。また、検出用コイル33は、インバータ21(図5及び図9参照)に接続されずに、前記電圧検出部24(図5及び図9参照)に対して電気的に接続されている。一方、各ステータコイル11dは、電圧検出部24に対して接続されずに、前記インバータ21に電気的に接続されている。シールド部材32は、検出用コイル33と各ステータコイル11dとの間を磁気的に遮断する。
前記実施形態では、インバータ21に接続されたステータコイル11dとは独立して検出用コイル33が設けられている。そのため、インバータ21のインピーダンスの変化にかかわらず、検出用コイル33に印加された電圧をより正確に検出することができる。なお、検出用コイル33が電圧検出部24のみに接続されているようにすれば、より正確に検出コイルに印加された電圧を検出することができる。
また、前記実施形態では、シールド部材32により検出用コイル33とステータコイル11dとが磁気的に遮断されている。そのため、ステータコイル11dに生じる磁場がステータコイル11dに与える影響を小さくすることができる。これにより、検出用コイル33に印加された電圧をより正確に検出することができる。
なお、前記実施形態では、発電機11のステータ11aと収納容器12の凹溝17eとの間の間隙、及び発電機11のステータ11aとロータ11bとの間の間隙Gを作動流体の流路として利用しているが、これに限定されない。例えば、ステータ11aを貫通する流路を形成して、この流路を介してロータ11bの側面に作動流体を吹き付けることもできる。以下、この実施形態について図12及び図13を参照して説明する。
本実施形態に係る発電機11は、前記実施形態と同様に、筒状のステータ11aと、このステータ11aの内側に設けられるとともに永久磁石11gを有するロータ11bとを有する。前記ステータ11aは、筒状のステータ本体11cと、ステータ本体11cに保持された複数のステータコイル11dとを備えている。そして、前記ステータ本体11cには、前記ステータ本体11cを内外に貫通する貫通配管34が形成されている。
前記貫通配管34は、回転軸11eの軸線方向において各ステータコイル11dの間の位置でステータ本体11cを内外に貫通する複数の個別配管(貫通通路)34aと、これら個別配管34aを集合させるとともに前記第2供給配管L5に連結された集合配管(連結配管)34bとを備えている。
本実施形態では、集合配管34bによって第2供給配管L5と各個別配管34aとが連結されている。そのため、第2供給配管L5を通じて導入された作動流体を直接ロータ11bに吹き付けて当該ロータ11bを効果的に冷却することができる。
なお、本実施形態では、第2供給配管L5と集合配管34bとを連結しているが、これに限定されない。例えば、集合配管34bを省略した場合であっても、ステータ本体11cを内外に貫通する個別配管34aを通じてステータ本体11cの外側の作動流体をロータ11bに導くことができる。そのため、各個別配管34aが形成されていない場合と比較して、ロータ11bの冷却効率を向上することができる。
また、前記実施形態では、図13に示すように、回転軸11eの周方向の1箇所に個別配管34a及び集合配管34bが形成されているが、これに限定されない。例えば、各ステータコイル11dの間となる位置であって回転軸11eの周方向の複数個所に個別配管34aを形成することができる。この場合、これら個別配管34aを集合させる集合配管34bを設けることもできる。このように個別配管34aの数量を増やすことにより、より効果的にロータ11bを冷却することが可能となる。
なお、前記実施形態では、コイル11d、33に印加された電圧を検出することにより、永久磁石11gの磁束密度を算出しているが、これに限定されない。例えば、永久磁石11gの磁束、磁界の強さ、磁束密度の少なくとも1つを検出可能な物理量検出手段を設けることもできる。これにより、物理量検出手段の検出結果に基づいて磁束密度を特定することができ、この磁束密度に基づいて永久磁石11gの温度を推定することができる。この場合においても、ステータコイル11dに印加される電圧の周波数を特定することができる手段を設けることが好ましい。
なお、前記実施形態では、ロータ11bの永久磁石11gの温度を推定し、この推定温度に基づいて、調整部材8が制御されているが、これに限定されない。例えば、発電機11の温度を検出可能な図外の温度センサからの出力信号に応じて調整部材8を制御することもできる。
B0 基準磁束密度
B1 特定磁束密度
J1 軸受け部
L1 第1供給配管(膨張配管の一部)
L5 第2供給配管(冷却用配管)
T0 周囲温度(既知の温度)
T1 推定温度
Vm 波高値
f 周波数
1 発電システム
2 流体供給ポンプ
3 蒸発器
4 密閉式発電機
5 分離器
6 凝縮器
8 調整部材
10 回転部材
10a スクリュータービン(回転体)
10b 出力軸
11 発電機
11a ステータ
11b ロータ
11d ステータコイル(検出用コイル)
11f ロータ本体
11g 永久磁石
11h 突出部
12 収納容器
14 筒状部材(膨張用配管の一部)
15 蓋部材(膨張用配管の一部)
16a 本体部(格納部)
16f 導出口(第1導出口)
16i、17f 冷却用導入部
17c 導出口(第2導出口)
21 インバータ(受渡部材)
22 周囲温度検出部
23 制御部
24 電圧検出部
25 演算部
26 記憶部
27 温度推定部
28 指令部
29 コンタクタ(切換部材)
30 回転位置検出部
32 シールド部材
33 検出用コイル
34a 個別配管(貫通通路)
34b 集合配管(連結配管)

Claims (16)

  1. 作動流体の膨張を利用して発電する発電システムであって、
    前記作動流体を吐出する流体供給ポンプと、
    前記流体供給ポンプから供給された作動流体を加熱する蒸発器と、
    前記蒸発器から導かれた作動流体の膨張により回転する回転体と、
    前記回転体を格納する格納部と、
    前記回転体から前記格納部を貫通して当該格納部の外部に延びるとともに前記回転体と一体に回転する出力軸と、
    前記格納部に設けられ、前記出力軸を回転可能に支持する軸受け部と、
    前記出力軸に連結されるとともに前記回転体の回転駆動に応じて発電する発電機と、
    前記回転体の回転に供された作動流体を凝縮する凝縮器と、
    前記出力軸、前記軸受け部、及び前記発電機を収納する収納容器と、
    前記流体供給ポンプから吐出された作動流体の一部を前記蒸発器を介さずに前記収納容器内に導くための冷却用配管とを備え、
    前記発電機は、前記冷却用配管を介して前記収納容器内に導入された作動流体に接触する位置に設けられ
    前記格納部は、前記収納容器内に収納され、前記回転体の回転に供された作動流体を前記格納部の外部であって前記収納容器の内側に導出する第1導出口を有し、
    前記収納容器は、前記第1導出口から導出された作動流体を前記収納容器の外部に導出する第2導出口を有し、
    前記発電機は、前記第1導出口と前記第2導出口との間に設けられ、
    前記冷却用配管は、前記第1導出口から第2導出口に至る作動流体の流れ方向において、前記発電機の配設位置よりも第1導出口寄りの位置から前記収納容器内に作動流体を導入する、発電システム。
  2. 前記冷却用配管内を流れる作動流体の流量、圧力の少なくとも一方を調整する調整部材をさらに備えている、請求項1に記載の発電システム。
  3. 作動流体の膨張を利用して発電する発電システムであって、
    前記作動流体を吐出する流体供給ポンプと、
    前記流体供給ポンプから供給された作動流体を加熱する蒸発器と、
    前記蒸発器から導かれた作動流体の膨張により回転する回転体と、
    前記回転体を格納する格納部と、
    前記回転体から前記格納部を貫通して当該格納部の外部に延びるとともに前記回転体と一体に回転する出力軸と、
    前記格納部に設けられ、前記出力軸を回転可能に支持する軸受け部と、
    前記出力軸に連結されるとともに前記回転体の回転駆動に応じて発電する発電機と、
    前記回転体の回転に供された作動流体を凝縮する凝縮器と、
    前記出力軸、前記軸受け部、及び前記発電機を収納する収納容器と、
    前記流体供給ポンプから吐出された作動流体の一部を前記蒸発器を介さずに前記収納容器内に導くための冷却用配管とを備え、
    前記発電機は、前記冷却用配管を介して前記収納容器内に導入された作動流体に接触する位置に設けられ、
    前記発電機は、ステータと、このステータに対して回転可能でかつ永久磁石が設けられたロータとを有し、
    前記発電システムは、
    前記冷却用配管内を流れる作動流体の流量を調整する調整部材と、
    前記ロータの永久磁石の温度を推定するとともに、推定された温度に基づいて前記永久磁石が予め設定された温度となるように前記調整部材を制御する制御部とをさらに備え、
    前記制御部は、
    前記永久磁石の磁束密度を特定するための磁束密度特定手段と、
    前記永久磁石の温度が既知である条件下において前記磁束密度特定手段により特定された基準磁束密度を記憶する記憶部と、
    前記磁束密度特定手段により特定された特定磁束密度と、前記既知の温度と、前記基準磁束密度とに基づいて、前記特定磁束密度の特定時における前記永久磁石の温度を推定する温度推定部と、
    前記永久磁石の推定温度に基づいて前記永久磁石が予め設定された目標温度となるように、前記調整部材に指令する指令部とを備えている、発電システム。
  4. 前記温度推定部は、前記特定磁束密度に対する前記基準磁束密度の比と、前記既知の温度とに基づいて前記永久磁石の温度を推定する、請求項3に記載の発電システム。
  5. 前記磁束密度特定手段は、前記ステータに設けられるとともに前記永久磁石の磁束密度の大きさに応じた大きさの起電力を生じさせることが可能な検出用コイルと、前記検出用コイルに印加された電圧を検出可能な電圧検出部と、前記電圧検出部により検出された電圧に基づいて前記永久磁石の磁束密度を算出する演算部とを備えている、請求項3又は4に記載の発電システム。
  6. 前記電圧検出部は、前記検出用コイルに印加された電圧波形における波高値と、周波数とを検出し、
    前記演算部は、前記波高値と周波数とに基づいて前記永久磁石の磁束密度を算出する、請求項5に記載の発電システム。
  7. 前記電圧検出部は、前記波高値及び前記周波数を複数回検出し、
    前記演算部は、前記波高値の平均値又は最大値、及び前記周波数の平均値又は最大値をそれぞれ算出するとともに、これら平均値又は最大値を用いて永久磁石の磁束密度を算出する、請求項6に記載の発電システム。
  8. 前記検出用コイルとの間で電力を受け渡し可能な受渡部材と、
    前記受渡部材と前記検出コイルとを電気的に接続した接続状態と、前記受渡部材を前記検出用コイルから切断した切断状態との間で切換動作可能な切換部材とをさらに備え、
    前記電圧検出部は、前記切換部材が前記切断状態に切り換えられた状態で、前記検出用コイルに印加された電圧を検出する、請求項5〜7の何れか1項に記載の発電システム。
  9. 前記ステータは、前記永久磁石の磁束密度の大きさに応じた大きさの起電力を生じさせることが可能なステータコイルを有し、
    前記ステータコイルとの間で電力を受け渡し可能な受渡部材をさらに備え、
    前記検出用コイルは、前記受渡部材に対して電気的に非接続である、請求項5〜7の何れか1項に記載の発電システム。
  10. 前記検出用コイルは、前記電圧検出部にのみ電気的に接続されている、請求項9に記載の発電システム。
  11. 前記永久磁石は、前記ロータの回転軸の軸線方向において前記ステータよりも突出する突出部を有し、
    前記検出用コイルは、前記ステータコイルから前記軸線方向に離間するとともに前記永久磁石の突出部に対向するように配置され、
    前記検出用コイルと前記ステータコイルとの間には、前記検出用コイルと前記ステータコイルとの間を磁気的に遮断するためのシールド部材が設けられている、請求項9又は10に記載の発電システム。
  12. 前記ステータに設けられ、前記ステータの周囲の温度を検出する周囲温度検出部をさらに備え、
    前記記憶部は、前記周囲温度検出部により検出された温度を記憶する、請求項3〜11に記載の発電システム。
  13. 前記磁束密度特定手段は、前記ステータに設けられるとともに前記永久磁石の磁束、磁界の強さ、磁束密度の少なくとも1つを検出可能な物理量検出部を含んでいる、請求項3又は4に記載の発電システム。
  14. 前記蒸発器を経由して前記流体供給ポンプと前記格納部とを接続する膨張用配管を備え、
    前記冷却用配管は、前記流体供給ポンプと前記蒸発器との間で前記膨張用配管から分岐して、前記収納容器に接続されている、請求項1〜13の何れか1項に記載の発電システム。
  15. 前記発電機は、筒状のステータと、このステータの内側に設けられるとともに永久磁石が設けられたロータとを有し、
    前記ステータは、筒状のステータ本体と、前記ステータ本体に保持された複数のステータコイルとを備え、
    前記ステータ本体には、前記各ステータコイルの間で前記ステータ本体を内外に貫通する貫通通路が形成されている、請求項1〜14の何れか1項に記載の発電システム。
  16. 前記貫通通路と前記冷却用配管とを連結するための連結配管をさらに備えている、請求項15に記載の発電システム。
JP2011065643A 2010-10-07 2011-03-24 発電システム Expired - Fee Related JP5622630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065643A JP5622630B2 (ja) 2010-10-07 2011-03-24 発電システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010227962 2010-10-07
JP2010227962 2010-10-07
JP2011065643A JP5622630B2 (ja) 2010-10-07 2011-03-24 発電システム

Publications (2)

Publication Number Publication Date
JP2012097725A JP2012097725A (ja) 2012-05-24
JP5622630B2 true JP5622630B2 (ja) 2014-11-12

Family

ID=46389903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065643A Expired - Fee Related JP5622630B2 (ja) 2010-10-07 2011-03-24 発電システム

Country Status (1)

Country Link
JP (1) JP5622630B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819796B2 (ja) * 2012-10-19 2015-11-24 株式会社神戸製鋼所 回転機駆動システム
WO2014167795A1 (ja) * 2013-04-09 2014-10-16 パナソニック株式会社 ランキンサイクル装置、膨張システム、及び膨張機
JP6272141B2 (ja) * 2014-05-27 2018-01-31 株式会社Subaru 電動モータの冷却装置
JP6751031B2 (ja) 2017-02-06 2020-09-02 株式会社神戸製鋼所 熱エネルギー回収装置
JP6763848B2 (ja) * 2017-12-04 2020-09-30 株式会社神戸製鋼所 熱エネルギー回収装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4286062B2 (ja) * 2003-05-29 2009-06-24 株式会社荏原製作所 発電装置および発電方法
JP4496914B2 (ja) * 2004-10-19 2010-07-07 三菱自動車工業株式会社 モータの冷却装置
JP2007092653A (ja) * 2005-09-29 2007-04-12 Ntn Corp 熱発電システム
JP2008178243A (ja) * 2007-01-19 2008-07-31 Toyota Motor Corp 磁石温度推定装置、磁石保護装置および磁石温度推定方法、磁石保護方法

Also Published As

Publication number Publication date
JP2012097725A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5707195B2 (ja) モータの温度推定装置並びにこれを備えた発電システム及びモータの温度推定方法
JP6141526B2 (ja) モータハウジング温度制御システム
JP5622630B2 (ja) 発電システム
JP2019525064A (ja) 遠心圧縮機、遠心圧縮機のインペラ隙間量コントローラ、及び遠心圧縮機のインペラ隙間量制御方法
EP3269982B1 (en) Screw compressor drive control
US20170097006A1 (en) Centrifugal compressor with surge prediction
JP6606280B2 (ja) 流量調節とインペラの軸方向シフトによるサージ抑制を行う遠心圧縮機
JP2009097387A (ja) 廃熱利用装置
EP3227620B1 (en) Head pressure control
JP2007255327A (ja) 膨張機制御装置
JP2019503449A (ja) ホットガスインジェクションが行われる遠心圧縮機
TW200404982A (en) Apparatus, method and software for use with an air conditioning cycle
JP5674236B2 (ja) 遠心分離機
JP3758074B2 (ja) 電子機器の冷却装置
WO2016090735A1 (zh) 一种自动调速的ecm电机及其应用的冰柜
EP3431723A1 (en) Combined heat and power system and operating method of combined heat and power system
JP6076136B2 (ja) 冷凍装置
JP6597117B2 (ja) 出力装置及び出力装置の制御方法
JP6091077B2 (ja) 冷凍装置
KR20200063472A (ko) 온도 및 압력 탐지 기반의 냉동 차량의 작동 제어 장치 및 그 방법
JP7560774B2 (ja) モータ駆動装置、および圧縮機
JP2011169257A (ja) ランキンサイクル装置
JP3121358U (ja) ターボ分子ポンプ
JP6473200B1 (ja) 回転電気機械の冷却システム
JP2008032234A (ja) 圧縮機およびそれを用いたヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees