JP5617862B2 - Cyanide wastewater treatment method - Google Patents

Cyanide wastewater treatment method Download PDF

Info

Publication number
JP5617862B2
JP5617862B2 JP2012080437A JP2012080437A JP5617862B2 JP 5617862 B2 JP5617862 B2 JP 5617862B2 JP 2012080437 A JP2012080437 A JP 2012080437A JP 2012080437 A JP2012080437 A JP 2012080437A JP 5617862 B2 JP5617862 B2 JP 5617862B2
Authority
JP
Japan
Prior art keywords
cyanide
containing wastewater
chlorine
cyan
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012080437A
Other languages
Japanese (ja)
Other versions
JP2013208550A (en
Inventor
小野 貴史
貴史 小野
幸祐 志村
幸祐 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012080437A priority Critical patent/JP5617862B2/en
Priority to DE112013001804.7T priority patent/DE112013001804T5/en
Priority to PCT/JP2013/059476 priority patent/WO2013147128A1/en
Priority to CN201380014559.3A priority patent/CN104169226B/en
Priority to TW102111464A priority patent/TWI527768B/en
Priority to KR1020147026020A priority patent/KR102054535B1/en
Publication of JP2013208550A publication Critical patent/JP2013208550A/en
Application granted granted Critical
Publication of JP5617862B2 publication Critical patent/JP5617862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明はシアン含有排水の処理方法に係り、特に、シアン含有排水をアルカリ塩素法により処理する方法に関する。   The present invention relates to a method for treating cyan-containing wastewater, and more particularly, to a method for treating cyan-containing wastewater by an alkali chlorine method.

めっき工場、製鉄所、製錬所、発電所、コークス製造工場などの産業施設から排出されるシアン含有排水の処理方法として、現在最も広く採用されている方法は、アルカリ塩素法である。この方法では、塩素源、例えば次亜塩素酸ナトリウムをアルカリ性下にシアン含有排水に添加して排水中のシアンを酸化処理する(特許文献1,2)。   The most widely used method for treating cyanide-containing wastewater discharged from industrial facilities such as plating factories, ironworks, smelters, power plants, and coke factories is the alkali chlorine method. In this method, a chlorine source, for example, sodium hypochlorite is added to cyanide-containing wastewater under alkalinity to oxidize cyanide in the wastewater (Patent Documents 1 and 2).

特許文献1のアルカリ塩素法では、以下に示すようなpH及びORP制御値における2段階の反応でシアン化合物を酸化分解する。   In the alkali chlorine method of Patent Document 1, the cyanide compound is oxidatively decomposed by a two-stage reaction at pH and ORP control values as shown below.

一段反応:pH10以上,ORP制御値300〜350mV
NaCN+NaOCl→NaCNO+NaCl …(1)
二段反応:pH7〜8,ORP制御値600〜650mV
2NaCNO+3NaClO+HO→N+3NaCl+2NaHCO …(2)
特許文献2には、アンモニアを含むシアン含有排水をアルカリ塩素法の2段階の反応によって処理する方法が記載されている。
One-step reaction: pH 10 or higher, ORP control value 300 to 350 mV
NaCN + NaOCl → NaCNO + NaCl (1)
Two-stage reaction: pH 7-8, ORP control value 600-650 mV
2NaCNO + 3NaClO + H 2 O → N 2 + 3NaCl + 2NaHCO 3 (2)
Patent Document 2 describes a method of treating cyanide-containing wastewater containing ammonia by a two-stage reaction of the alkali chlorine method.

特開2001−269674JP 2001-269664 A 特開2006−334508JP 2006-334508 A

本発明者らの研究の結果、シアン含有排水がアンモニウムイオン及び有機物を含んでいる場合、アルカリ塩素法を適用すると、第一段目の反応でシアン化合物が十分には酸化されないことが見出された。   As a result of our research, it was found that when cyanide-containing wastewater contains ammonium ions and organic substances, the cyanide compound is not sufficiently oxidized in the first-stage reaction when the alkali chlorine method is applied. It was.

即ち、アンモニウムイオン及び有機物を含有するシアンを従来のアルカリ塩素法の第1段目反応における一般的なpH範囲のpH10〜10.5、ORP300〜350mVで処理した場合、シアン化合物の分解は不十分である。また、NaClOを追加しORPを400mV以上に上げても全シアン濃度は下がらない。pH11以上でORP300〜350mVとなるように制御するには、さらに過剰の塩素源が必要となり、コスト高になると共に、鋼材が腐食するおそれがある。   That is, when cyanide containing ammonium ions and organic substances is treated at pH 10 to 10.5 in the general pH range in the first step reaction of the conventional alkali chlorine method and ORP 300 to 350 mV, decomposition of cyanide is insufficient. It is. Further, even if NaClO is added and ORP is raised to 400 mV or higher, the total cyan density does not decrease. In order to control the ORP to be 300 to 350 mV at a pH of 11 or more, an excessive chlorine source is required, which increases the cost and corrodes the steel material.

このようにアルカリ塩素法の第1段目反応においてシアン化合物が十分に酸化されないと、第2段目の反応が進行しないだけでなく、第2段目反応においてシアン化合物が次亜塩素酸ナトリウムと反応して塩化シアン(CNCl)が発生するおそれがある。   As described above, if the cyanide compound is not sufficiently oxidized in the first stage reaction of the alkali chlorine method, not only the second stage reaction does not proceed, but also the cyanide compound and sodium hypochlorite in the second stage reaction. There is a risk that cyanogen chloride (CNCl) may be generated upon reaction.

また、アンモニウムイオン及び有機物を含有するシアン含有排水に塩素源を添加した場合、pHが11未満であると、アンモニウムイオンと塩素源とが反応して結合塩素が生じる。この結合塩素は有機物と反応してシアンを生成させるので、シアン含有排水のシアン濃度が低下しなかったり、逆に上昇することもある。   In addition, when a chlorine source is added to cyanide-containing wastewater containing ammonium ions and organic substances, if the pH is less than 11, the ammonium ions and the chlorine source react to produce combined chlorine. Since this bonded chlorine reacts with organic matter to produce cyan, the cyan concentration of the cyanate-containing wastewater does not decrease or may increase.

本発明は、上記従来の問題点を解決し、シアン含有排水がアンモニウムイオン及び有機物を含有する場合でもシアン化合物を十分に酸化分解することができるシアン含有排水の処理方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for treating cyanide-containing wastewater that can sufficiently oxidatively decompose cyanide compounds even when the cyanide-containing wastewater contains ammonium ions and organic matter. To do.

本発明のシアン含有排水の処理方法は、シアン化合物を含有するシアン含有排水に塩素源を添加してシアン化合物を分解するシアン含有排水の処理方法において、該シアン含有排水がアンモニウムイオン及び有機物を含有しており、該シアン含有排水の溶解性鉄の濃度が0.4mg/L以下であり、該シアン含有排水のpHを11以上とし、シアン化合物分解反応後においても遊離残留塩素濃度が0.1mg/L以上となるように前記塩素源を添加することを特徴とするものである。 The method for treating cyan-containing wastewater of the present invention is a method for treating cyanide-containing wastewater in which a cyanide is decomposed by adding a chlorine source to cyanide-containing wastewater containing cyanide, wherein the cyanate-containing wastewater contains ammonium ions and organic matter. The concentration of soluble iron in the cyanide-containing wastewater is 0.4 mg / L or less, the pH of the cyanine-containing wastewater is 11 or more, and the free residual chlorine concentration is 0.1 mg even after the cyanide decomposition reaction. The chlorine source is added so as to be at least / L.

本発明では、前記遊離残留塩素濃度が0.1〜1mg/Lとなるように前記塩素源を添加することが好ましい。   In this invention, it is preferable to add the said chlorine source so that the said free residual chlorine concentration may be 0.1-1 mg / L.

また、前記シアン含有排水にアルカリ源を添加してpHを11〜12.5とすることが好ましい。   Moreover, it is preferable to add an alkali source to the cyanate-containing wastewater to adjust the pH to 11 to 12.5.

シアン含有排水の水温を40℃以上例えば40〜80℃特に50〜70℃とすることが好ましい。   The water temperature of the cyanate-containing wastewater is preferably 40 ° C. or higher, for example, 40 to 80 ° C., particularly 50 to 70 ° C.

本発明のシアン含有排水の処理方法では、アンモニウムイオン及び有機物を含むシアン含有排水に対しpH11以上にて塩素源を添加する。pH11以上であると、塩素源とアンモニウムイオンとの反応が抑制され、これにより結合塩素の生成が抑制し、その結果、結合塩素と有機物との反応によるシアン生成も抑制される。   In the method for treating cyanide-containing wastewater of the present invention, a chlorine source is added at a pH of 11 or more to cyanide-containing wastewater containing ammonium ions and organic matter. When the pH is 11 or more, the reaction between the chlorine source and ammonium ions is suppressed, whereby the generation of bonded chlorine is suppressed, and as a result, the generation of cyan due to the reaction between the combined chlorine and organic matter is also suppressed.

なお、本発明では、反応終了後においてもpH11以上であることが好ましい。   In the present invention, the pH is preferably 11 or more even after completion of the reaction.

また、アンモニウムイオン及び有機物含有排水に対しpH11以上で塩素源を添加し、且つ反応後においても遊離残留塩素濃度を0.1mg/Lとすることによりシアンが十分に酸化され、被処理排水中のシアン濃度が十分に低下する。   Moreover, by adding a chlorine source at a pH of 11 or more to ammonium ion and organic matter-containing wastewater and setting the residual residual chlorine concentration to 0.1 mg / L even after the reaction, cyan is sufficiently oxidized, The cyan density is sufficiently reduced.

反応後の遊離残留塩素濃度を1mg/L以下とすることにより、鋼材等よりなる接液部材の腐食が抑制される。   By setting the free residual chlorine concentration after the reaction to 1 mg / L or less, corrosion of the wetted member made of steel or the like is suppressed.

反応時の水温を40℃以上とすると、シアン分解反応効率が向上し、シアン濃度が短時間で低下する。また、反応時間が短くなると、遊離残留塩素を含有する被処理水と接液部材との接触時間が短くなり、鋼材等よりなる接液部材の腐食が抑制される。   When the water temperature during the reaction is 40 ° C. or higher, the cyanide decomposition reaction efficiency is improved, and the cyan density is lowered in a short time. Moreover, when reaction time becomes short, the contact time of the to-be-processed water containing free residual chlorine and a liquid-contacting member will become short, and corrosion of the liquid-contacting member which consists of steel materials etc. will be suppressed.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明において、処理対象となるシアン含有排水は、めっき工場、発電所、製鉄所、製錬所、コークス製造工場などの産業施設から排出される、シアンを金属のシアン錯体例えば、Ni,Ag,Cu,Zn,Cd等の金属のシアン錯体として含有するシアン含有排水が例示されるが、これに限定されない。   In the present invention, cyanide-containing wastewater to be treated is discharged from industrial facilities such as a plating plant, a power plant, a steel mill, a smelter, a coke production plant, and cyan is a metal cyan complex such as Ni, Ag, Although the cyan containing waste water contained as a cyan complex of metals, such as Cu, Zn, Cd, is illustrated, it is not limited to this.

通常の場合、このようなシアン含有排水のシアン濃度は0.1〜100mg/L程度であり、またpHは6〜10程度である。   Normally, the cyan concentration of such cyan-containing wastewater is about 0.1 to 100 mg / L, and the pH is about 6 to 10.

本発明では、アンモニウムイオン及び有機物を含有するシアン含有排水を処理対象とする。このアンモニウムイオンの濃度は5mg/L以上例えば5〜250mg/L程度であることが好ましい。また、有機物としては石炭やコークス由来のものなどが例示されるが、これに限定されない。有機物の濃度は1mg/L以上例えば1〜30mg/L程度であることが好ましい。   In the present invention, cyanide-containing wastewater containing ammonium ions and organic substances is treated. The concentration of this ammonium ion is preferably 5 mg / L or more, for example, about 5 to 250 mg / L. In addition, examples of the organic matter include those derived from coal and coke, but are not limited thereto. The concentration of the organic substance is preferably 1 mg / L or more, for example, about 1 to 30 mg / L.

シアン化合物が含まれるpH中性以上の工場廃水中に含まれる溶解性鉄は、大部分が鉄シアノ錯体で存在している。本発明方法のアルカリ塩素法によるシアン化合物酸化分解反応では鉄シアノ錯体は分解されにくい。そのため、本発明方法が処理対象とするシアン含有排水は、鉄シアノ錯体の全シアン濃度が1.0mg/L以下であり、溶解性鉄の濃度としては0.4mg/L未満であることが好ましい。   Most of the soluble iron contained in industrial wastewater containing a cyanide and having a pH neutrality or higher exists as an iron cyano complex. In the cyanide oxidative decomposition reaction by the alkali chlorine method of the present invention, the iron cyano complex is hardly decomposed. Therefore, the cyan-containing wastewater to be treated by the method of the present invention preferably has a total cyan concentration of iron cyano complex of 1.0 mg / L or less and a concentration of soluble iron of less than 0.4 mg / L. .

シアン含有排水に添加する塩素源としては、塩素、さらし粉、次亜塩素酸ナトリウムなどが例示される。   Examples of the chlorine source added to the cyanate-containing wastewater include chlorine, bleached powder, and sodium hypochlorite.

シアン含有排水に塩素源を添加する場合、必要に応じアルカリ例えばNaOH及び/又はKOHを添加することによりシアン含有排水のpHを11以上、好ましくは11〜12.5特に11〜12とする。アルカリ添加は塩素源の添加の前又は後に行われてもよく、同時に行われてもよい。シアン含有排水のpHが11以上であれば、アルカリは添加しなくてもよい。なお、処理反応後の水のpHが11以上であることが好ましい。   When the chlorine source is added to the cyanide-containing wastewater, the pH of the cyanate-containing wastewater is adjusted to 11 or more, preferably 11 to 12.5, particularly 11 to 12 by adding an alkali such as NaOH and / or KOH as necessary. The alkali addition may be performed before or after the addition of the chlorine source, or may be performed simultaneously. If the pH of the cyanate-containing wastewater is 11 or more, the alkali may not be added. In addition, it is preferable that pH of the water after process reaction is 11 or more.

塩素源の添加量は、反応後の遊離残留塩素濃度が0.1mg/L以上、好ましくは0.1〜1mg/L特に0.1〜0.5mg/Lとなるように制御される。   The addition amount of the chlorine source is controlled so that the concentration of free residual chlorine after the reaction is 0.1 mg / L or more, preferably 0.1 to 1 mg / L, particularly 0.1 to 0.5 mg / L.

シアン含有排水の処理を槽内でバッチ式に行う場合には、槽内の液の遊離残留塩素濃度を経時後に測定し、遊離残留塩素濃度の低下速度がゼロ又は所定値以下となった時点を反応終了時とすればよい。この所定値としては0〜0.1mg/L/minの間から選択された値とするのが好ましい。   When processing cyanide-containing wastewater batchwise in the tank, measure the free residual chlorine concentration of the liquid in the tank after time, and determine when the rate of decrease in free residual chlorine concentration is zero or below the specified value. It may be at the end of the reaction. The predetermined value is preferably a value selected from 0 to 0.1 mg / L / min.

シアン含有排水を反応槽に連続的に流入させ、かつ該反応槽から連続的に流出させ、該反応槽にてシアン分解反応を行う場合には、槽内滞留時間を反応終了時間よりも長くし、反応槽出口にて測定される遊離残留塩素濃度を反応後の遊離残留塩素濃度として扱うのが好ましい。   When cyanide-containing wastewater is continuously flowed into and out of the reaction tank and the cyanide decomposition reaction is performed in the reaction tank, the residence time in the tank is made longer than the reaction end time. The free residual chlorine concentration measured at the reaction vessel outlet is preferably treated as the free residual chlorine concentration after the reaction.

シアン含有排水を配管に流し、この配管に塩素源及び必要に応じアルカリを添加してライン処理する場合には、ライン下流側の複数箇所で遊離残留塩素濃度を測定し、2以上の箇所での遊離残留塩素濃度測定値が実質的に同一となった場合、当該測定箇所又はそれよりも上流域において反応が終了したものと扱うことができる。この測定箇所は5m以上特に10〜30m程度離隔していることが好ましい。   When draining cyan-containing wastewater into a pipe and adding a chlorine source and alkali as necessary to this pipe for line treatment, measure the free residual chlorine concentration at multiple locations downstream of the line, and at two or more locations. When the measured values of the free residual chlorine concentration are substantially the same, it can be treated that the reaction has been completed at the measurement location or in the upstream region. It is preferable that this measurement location is 5 m or more, especially 10-30 m apart.

このような条件でシアン含有排水を処理した場合、pH11以上としたことにより、結合塩素の生成が抑制され、結合塩素と有機物との反応によるシアン生成も抑制される。また、反応終了後の遊離残留塩素濃度が0.1mg/L以上となるように塩素源を添加することにより、シアンが十分に分解される。遊離残留塩素濃度を1mg/L以下とすることにより、塩素源の過剰添加が防止され、塩素源コストが抑制される。また、接液部材を構成する鋼材等の金属材の腐食も抑制される。   When cyanide-containing wastewater is treated under such conditions, by setting the pH to 11 or more, generation of bonded chlorine is suppressed, and generation of cyan due to reaction between bonded chlorine and organic matter is also suppressed. Further, cyan is sufficiently decomposed by adding a chlorine source so that the concentration of free residual chlorine after the reaction is 0.1 mg / L or more. By setting the free residual chlorine concentration to 1 mg / L or less, excessive addition of the chlorine source is prevented, and the chlorine source cost is suppressed. Moreover, corrosion of metal materials, such as steel materials which comprise a liquid-contact member, is also suppressed.

本発明では、シアン含有排水の水温を40℃以上例えば40〜80℃特に50〜70℃程度とし、これによりシアン分解反応速度を大きくすることが好ましい。シアン分解速度を大きくすると、遊離残留塩素を含んだ被処理水と鋼材等よりなる接液部材との接触時間が短くて済み、該接液部材の腐食が抑制される。加熱コストを抑制するために、水温は80℃以下、特に70℃以下とすることが好ましい。   In the present invention, the water temperature of the cyanide-containing wastewater is preferably 40 ° C. or higher, for example, 40 to 80 ° C., particularly about 50 to 70 ° C., thereby increasing the cyan decomposition reaction rate. When the cyan decomposition rate is increased, the contact time between the water to be treated containing free residual chlorine and the liquid contact member made of steel or the like is short, and corrosion of the liquid contact member is suppressed. In order to suppress the heating cost, the water temperature is preferably 80 ° C. or lower, particularly 70 ° C. or lower.

以下実施例及び比較例について説明する。なお、以下の実施例及び比較例ではアルカリ剤としてNaOH(48%)を用い、塩素源としてNaClO(12%)を用いた。また、全CN分析は、L(+)−アスコルビン酸を添加し残留塩素を還元し、NaOHでpH12に調整し、濾過せずJIS K 0102に準拠した4−ピリジン−ピラゾロン吸光光度法により測定した。   Examples and comparative examples will be described below. In the following Examples and Comparative Examples, NaOH (48%) was used as the alkali agent, and NaClO (12%) was used as the chlorine source. Further, the total CN analysis was carried out by adding L (+)-ascorbic acid to reduce residual chlorine, adjusting to pH 12 with NaOH, and measuring by a 4-pyridine-pyrazolone spectrophotometry method according to JIS K 0102 without filtration. .

[実施例1〜7、比較例1〜9]
試験水として次の水質の発電設備の集塵水を用いた。
pH:8.7、
全シアン:3mg/L、
アンモニウムイオン:120mg/L、
TOC:10mg/L、
溶解性鉄:0.1mg/L未満
[Examples 1-7, Comparative Examples 1-9]
As test water, the collected water from the following power generation facilities was used.
pH: 8.7
Total cyan: 3 mg / L,
Ammonium ion: 120 mg / L,
TOC: 10 mg / L,
Soluble iron: less than 0.1 mg / L

試験水50mLを蓋付きのガラス製容器に収容し、水温を20℃、40℃、50℃又は60℃に保ち、アルカリ剤及び塩素源を表1の条件となるように添加した。反応時間は次の通りとした。
水温20℃の場合 120分
水温40℃の場合 90分
水温50,60℃の場合 60分
50 mL of test water was placed in a glass container with a lid, the water temperature was kept at 20 ° C., 40 ° C., 50 ° C. or 60 ° C., and an alkali agent and a chlorine source were added so as to satisfy the conditions shown in Table 1. The reaction time was as follows.
Water temperature 20 ° C 120 minutes Water temperature 40 ° C 90 minutes Water temperature 50, 60 ° C 60 minutes

薬剤添加から5分経過後及び上記各時間経過後のpHと、NaClO添加量と、上記反応時間経過後の残留塩素濃度、ORP及び全シアン濃度とを表1に示す。表1及び後述の表2,3においてfreeは遊離残留塩素を表わす。   Table 1 shows the pH after 5 minutes from the addition of the chemical and after the passage of each time, the added amount of NaClO, the residual chlorine concentration, the ORP and the total cyan concentration after the reaction time. In Table 1 and Tables 2 and 3 to be described later, free represents free residual chlorine.

Figure 0005617862
Figure 0005617862

表1の通り、pH≧11とした各実施例はpH<11の各比較例よりも全シアン濃度が低くなること、また水温を高くするほど全シアン濃度が低くなることが分かる。   As shown in Table 1, it can be seen that each example having pH ≧ 11 has a lower total cyan density than each comparative example having a pH <11, and that the higher the water temperature is, the lower the total cyan density is.

[実施例8、比較例10]
試験水として次の水質の発電設備の集塵水を用いた。
pH:8.2、
全シアン:3mg/L、
アンモニウムイオン:100mg/L、
TOC:8mg/L、
溶解性鉄:0.1mg/L未満
[Example 8, Comparative Example 10]
As test water, the collected water from the following power generation facilities was used.
pH: 8.2,
Total cyan: 3 mg / L,
Ammonium ion: 100 mg / L,
TOC: 8 mg / L,
Soluble iron: less than 0.1 mg / L

試験水100mLを1000mLのビーカーに収容し、水温を60℃に保ち、アルカリ剤及び塩素源を表2の条件にて添加し、鉄テストピースを入れ、3日間スターラー(回転数150rpm)にて攪拌した。結果を表2に示す。この実施例8及び比較例10では、上記の通り、各ビーカー中に鉄(SPCC)よりなるテストピースを入れておき、3日後に腐食量を測定し、腐食速度を測定し、結果を表2に示した。   Place 100 mL of test water in a 1000 mL beaker, keep the water temperature at 60 ° C., add an alkaline agent and a chlorine source under the conditions shown in Table 2, put an iron test piece, and stir with a stirrer (rotation speed 150 rpm) for 3 days. did. The results are shown in Table 2. In Example 8 and Comparative Example 10, as described above, a test piece made of iron (SPCC) was put in each beaker, the corrosion amount was measured after 3 days, the corrosion rate was measured, and the results are shown in Table 2. It was shown to.

Figure 0005617862
Figure 0005617862

表2の通り、遊離残留が低い実施例8の方が比較例10よりも腐食速度が小さい。   As shown in Table 2, the corrosion rate is lower in Example 8 where the free residue is lower than in Comparative Example 10.

[実施例9〜14]
試験水として次の水質の発電設備の集塵水を用いた。
pH:8、
全シアン:3mg/L、
アンモニウムイオン:130mg/L、
TOC:7mg/L、
溶解性鉄:0.1mg/L未満
[Examples 9 to 14]
As test water, the collected water from the following power generation facilities was used.
pH: 8,
Total cyan: 3 mg / L,
Ammonium ion: 130 mg / L,
TOC: 7 mg / L,
Soluble iron: less than 0.1 mg / L

試験水500mLを蓋付きのビーカーに収容し、水温を25℃、40℃、50℃、60℃又は80℃に保ち、アルカリ剤及び塩素源を表3の条件にて添加した。60分経過後の水質測定値を表3に示した。   500 mL of test water was placed in a beaker with a lid, the water temperature was kept at 25 ° C., 40 ° C., 50 ° C., 60 ° C. or 80 ° C., and an alkali agent and a chlorine source were added under the conditions shown in Table 3. The measured water quality after 60 minutes is shown in Table 3.

Figure 0005617862
Figure 0005617862

表3の通り、水温が高いほどシアン濃度が低下する。   As shown in Table 3, the higher the water temperature, the lower the cyan density.

[実施例15〜18]
実施例1と同じ発電設備集塵水に塩化第二鉄水溶液を添加して溶解性鉄濃度0.1mg/L、0.3mg/L、0.4mg/L又は0.5mg/Lの試験水を調製した。各試験水500mLを蓋付きのガラス製容器に採り、水温を60℃に保ち、反応後のpH11となるようにアルカリ剤を添加すると共に、塩素源を添加直後の濃度が33.5mg/Lとなるように添加し、60分反応させた。60分後の水質測定値を表4に示す。
[Examples 15 to 18]
Test water having a soluble iron concentration of 0.1 mg / L, 0.3 mg / L, 0.4 mg / L or 0.5 mg / L by adding an aqueous ferric chloride solution to the same power generation facility dust collection water as in Example 1. Was prepared. Take 500 mL of each test water in a glass container with a lid, keep the water temperature at 60 ° C., add an alkali agent so that the pH is 11 after the reaction, and the concentration immediately after adding the chlorine source is 33.5 mg / L. Was added and allowed to react for 60 minutes. Table 4 shows the measured water quality after 60 minutes.

Figure 0005617862
Figure 0005617862

表4の通り、溶解性鉄の濃度が高くなるほど、反応後のシアン濃度が高くなる。   As Table 4 shows, the higher the concentration of soluble iron, the higher the cyan concentration after the reaction.

Claims (4)

シアン化合物を含有するシアン含有排水に塩素源を添加してシアン化合物を分解するシアン含有排水の処理方法において、
該シアン含有排水がアンモニウムイオン及び有機物を含有しており、
該シアン含有排水の溶解性鉄の濃度が0.4mg/L以下であり、
該シアン含有排水のpHを11以上とし、シアン化合物分解反応後においても遊離残留塩素濃度が0.1mg/L以上となるように前記塩素源を添加することを特徴とするシアン含有排水の処理方法。
In a method for treating cyanide-containing wastewater, which adds a chlorine source to cyanide-containing wastewater containing cyanide to decompose cyanide,
The cyanate-containing wastewater contains ammonium ions and organic matter;
The concentration of soluble iron in the cyanate-containing wastewater is 0.4 mg / L or less,
A method for treating cyanide-containing wastewater, wherein the pH of the cyanide-containing wastewater is 11 or more, and the chlorine source is added so that the free residual chlorine concentration is 0.1 mg / L or more even after the cyanide decomposition reaction .
請求項1において、前記遊離残留塩素濃度が0.1〜1mg/Lとなるように前記塩素源を添加することを特徴とするシアン含有排水の処理方法。   The method for treating cyanide-containing wastewater according to claim 1, wherein the chlorine source is added so that the free residual chlorine concentration is 0.1 to 1 mg / L. 請求項1又は2において、前記シアン含有排水にアルカリ源を添加してpHを11〜12.5とすることを特徴とするシアン含有排水の処理方法。   3. The method for treating cyan-containing wastewater according to claim 1, wherein an alkali source is added to the cyanine-containing wastewater to adjust the pH to 11 to 12.5. 請求項1ないしのいずれか1項において、シアン含有排水の水温を40℃以上とすることを特徴とするシアン含有排水の処理方法。 4. The method for treating cyan-containing wastewater according to any one of claims 1 to 3 , wherein the temperature of the cyan-containing wastewater is 40 ° C. or higher.
JP2012080437A 2012-03-30 2012-03-30 Cyanide wastewater treatment method Active JP5617862B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012080437A JP5617862B2 (en) 2012-03-30 2012-03-30 Cyanide wastewater treatment method
DE112013001804.7T DE112013001804T5 (en) 2012-03-30 2013-03-29 Process for treating cyanide-containing wastewater
PCT/JP2013/059476 WO2013147128A1 (en) 2012-03-30 2013-03-29 Method for treating cyanogen-containing waste water
CN201380014559.3A CN104169226B (en) 2012-03-30 2013-03-29 Containing the treatment process of cyanogen draining
TW102111464A TWI527768B (en) 2012-03-30 2013-03-29 Cyanide-containing drainage treatment method
KR1020147026020A KR102054535B1 (en) 2012-03-30 2013-03-29 Method for treating cyanogen-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080437A JP5617862B2 (en) 2012-03-30 2012-03-30 Cyanide wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2013208550A JP2013208550A (en) 2013-10-10
JP5617862B2 true JP5617862B2 (en) 2014-11-05

Family

ID=49526963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080437A Active JP5617862B2 (en) 2012-03-30 2012-03-30 Cyanide wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5617862B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867538B2 (en) * 2014-04-16 2016-02-24 栗田工業株式会社 Treatment method for wastewater containing cyanide and ammonia
JP6712706B2 (en) * 2016-04-28 2020-06-24 株式会社片山化学工業研究所 Method for suppressing volatilization of cyanogen chloride
CN111592088A (en) * 2020-05-19 2020-08-28 华福(上海)环保科技有限公司 Wastewater treatment system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549191A (en) * 1978-10-03 1980-04-09 Hitachi Plant Eng & Constr Co Ltd Purifying treatment method of waste water
JPH01171690A (en) * 1987-12-26 1989-07-06 Sumitomo Metal Mining Co Ltd Removal of iron cyan complex
JPH0675707B2 (en) * 1990-07-25 1994-09-28 栗田工業株式会社 Method and apparatus for treating liquid containing cyanide compound
JP4423734B2 (en) * 2000-03-27 2010-03-03 栗田工業株式会社 Cyanide wastewater treatment method
JP4106415B2 (en) * 2000-04-21 2008-06-25 株式会社片山化学工業研究所 Treatment method of wastewater containing cyanide
JP2006334508A (en) * 2005-06-02 2006-12-14 Nippon Parkerizing Co Ltd Method and apparatus for simultaneously and continuously treating cyanide/ammonia-containing liquid waste continuously
JP2007260586A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Treatment method of waste water generated in coke oven
JP4611928B2 (en) * 2006-04-24 2011-01-12 栗田工業株式会社 Coal gasification wastewater treatment method and treatment equipment
JP4894403B2 (en) * 2006-08-10 2012-03-14 栗田工業株式会社 Cyanide-containing wastewater treatment method and apparatus
JP5047715B2 (en) * 2007-07-19 2012-10-10 電源開発株式会社 Coal gasification wastewater treatment method and treatment equipment
JP5434663B2 (en) * 2010-02-23 2014-03-05 Jfeスチール株式会社 Cyanide-containing wastewater treatment method and treatment equipment
JP5663988B2 (en) * 2010-07-12 2015-02-04 Jfeスチール株式会社 Cyanide water treatment method
JP2012157798A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for treating cyanide-containing wastewater

Also Published As

Publication number Publication date
JP2013208550A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP2020104115A (en) Method for treating cyanogen-containing waste water
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP5617862B2 (en) Cyanide wastewater treatment method
JP5867538B2 (en) Treatment method for wastewater containing cyanide and ammonia
JP4291151B2 (en) Cyan waste liquid treatment method
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP7065184B2 (en) Wastewater treatment method
WO2013147128A1 (en) Method for treating cyanogen-containing waste water
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JP5617863B2 (en) Cyanide wastewater treatment method
Khodadadi et al. Detoxification of cyanide in gold processing wastewater by hydrogen peroxide
CN103880218A (en) Complete cycle technology of vanadium smelting wastewater
RU2517507C2 (en) Method of treating cyanide-containing pulp with &#34;active&#34; chlorine
JP7454096B1 (en) Wastewater treatment method
JP4423734B2 (en) Cyanide wastewater treatment method
JP7454092B1 (en) How to treat collected dust water
JP6152751B2 (en) Method of treating low-concentration cyanide-containing water containing iron cyano complex
JP2013056327A (en) Treatment method and treatment apparatus of cyanide-containing water
JP2004058011A (en) Decontamination treatment method of soil contaminated with cyanide
Rakhmidinovich et al. WASTEWATER TREATMENT OF GOLD FACTORIES
JP2017196585A (en) Cyanogen chloride volatilization suppression method
CN203754534U (en) Cyanide-containing wastewater treatment device
JP2021016845A (en) Method for treating cyanide-containing wastewater
Kotori et al. WAYS OF WATER RECUPERATION BY THE INDUSTRIAL METALLIC REMAINS.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250