JPH01171690A - Removal of iron cyan complex - Google Patents

Removal of iron cyan complex

Info

Publication number
JPH01171690A
JPH01171690A JP32839787A JP32839787A JPH01171690A JP H01171690 A JPH01171690 A JP H01171690A JP 32839787 A JP32839787 A JP 32839787A JP 32839787 A JP32839787 A JP 32839787A JP H01171690 A JPH01171690 A JP H01171690A
Authority
JP
Japan
Prior art keywords
ions
copper
iron
hexacyanoferrate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32839787A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hirota
弘田 吉拡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP32839787A priority Critical patent/JPH01171690A/en
Publication of JPH01171690A publication Critical patent/JPH01171690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To remove iron cyan complex with high efficiency in a form of water- insoluble precipitate by adding an equimolar amt. of Cu(II) ion to iron cyan complex to an aq. soln. contg. iron cyan complex having <=7pH and removing separated precipitate. CONSTITUTION:An equimolar amt. of Cu(II) ion to iron cyan complex is added to an aq. soln. contg. iron cyan complex having a pH adjusted to <=7pH, and the iron cyan complex is removed from the aq. soln. by removing the generated precipitate. The addition of the Cu(II) ion is finished pref. at a point where jumping of an oxidation-reduction potential happens while measuring the oxidation-reduction potential of the aq. soln. contg. the iron cyan complex. Suitable iron cyan complex is hexacyano iron(II), etc., and suitable Cu(II) compd. for producing the Cu(II) ion to be added is CuSO4(II), Cu(NO3)2(II), CuCl2(II), CuBr2(II), etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄シアン錯体を含む水溶液から、鉄シアン錯体
を分離除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for separating and removing an iron cyanide complex from an aqueous solution containing the iron cyanide complex.

〔従来の技術〕[Conventional technology]

遊離シアンまたはそれを生成しやすいシアン化合物は一
般に酸化分解されやすく、そのようなシアン化合物を含
む廃水を無害化する処理方法としては、アルカリ塩素法
、オゾン酸化法、電解酸化法などの各種方法が開発実用
化されている。現在もっとも一般的な処理方法はアルカ
リ塩素法である。しかしながら、重金属イオンを含有し
ている場合は重金属イオンは一般にシアン錯体を形成し
ており、上記方法による分解は困難となる。特に鉄及び
ニッケルのシアン錯体は安定性が高いことが知られてい
る。ニッケルシアン錯体の場合は処理時間を十分にとれ
ばアルカリ塩素法でも分解は可能であるが、鉄シアン錯
体はアルカリ塩素法でも分解は困難であり、ヘキサシア
ノ鉄(H)酸イオンからヘキサシアノ鉄(I[)酸イオ
ンへの酸化が起こるのみである。鉄シアン錯体は比較的
安定な錯イオンであるため人体には無害とされているが
、鉄シアン錯体は太陽光の下で徐々に分解しシアン化水
素を遊離するため、たとえ低濃度であっても鉄シアン錯
体を含有する廃水の河川への放流は避けなければならな
い。従って、鉄シアン錯体は必ず十分に除去しなければ
ならない。
Free cyanide or the cyanide compounds that easily generate it are generally easily decomposed by oxidation, and various treatment methods such as the alkali chlorine method, ozone oxidation method, and electrolytic oxidation method are available to detoxify wastewater containing such cyanide compounds. It has been developed and put into practical use. The most common treatment method at present is the alkali chlorine method. However, when heavy metal ions are contained, the heavy metal ions generally form a cyanide complex, making decomposition by the above method difficult. In particular, cyanide complexes of iron and nickel are known to be highly stable. Nickel cyanide complexes can be decomposed by the alkali chlorine method if sufficient processing time is allowed, but iron cyanide complexes are difficult to decompose even by the alkali chlorine method, and the hexacyanoferrate (I [) Only oxidation to acid ions occurs. Iron cyanide complexes are relatively stable complex ions and are considered harmless to the human body.However, iron cyanide complexes gradually decompose under sunlight and liberate hydrogen cyanide, so even at low concentrations iron cyanide complexes are considered harmless to the human body. Discharging wastewater containing cyanide complexes into rivers should be avoided. Therefore, the iron cyanide complex must be thoroughly removed.

鉄シアン錯体の場合シアノ基の効率のよい酸化分解は困
難であるため、逆に不溶性の鉄シアン錯体を生成させ沈
澱として除去する方法が検討されている。鉄シアン錯体
を沈澱として除去する方法としては、四級アンモニウム
塩などの陽イオン界面活性剤を用いる方法及び重金属塩
を用いる方法が知られている。四級アンモニウム塩はそ
の薬剤が高価であること、また、沈澱分離した後薬剤の
再利用が困難であるために一般的ではない。一方、重金
属塩を用いる方法としては、鉄(I[)塩、亜鉛(IT
)塩及び銅(II)塩を用いる鉄シアン錯体の沈澱除去
法が知られているが、鉄(II)塩を用いるいわゆる紺
青法は鉄シアン錯体を完全に沈澱分離することは困難で
あり、沈澱分離をした後の溶液の全シアン濃度を排水基
準に合格するほどに低減することが容易でない上に、汚
泥の発生量が多いという欠点がある。また、亜it>(
II)塩を用いるいわゆる亜鉛自決は、ヘキサシアノ鉄
(II)酸イオンに対しては有効であるが、ヘキサシア
ノ鉄(II[)酸イオンに対しては生成する沈澱の溶解
度が高いため有効性が劣る。そこで、ヘキサシアノ鉄(
III)酸イオンを処理するためには過剰の亜鉛(II
)塩の存在下で還元を行う必要があり、還元剤としては
亜硫酸ナトリウムやチオ硫酸ナトリウムを使用する方法
が提案されているが、還元反応が遅く、また空気酸化に
より、還元剤が無駄に消費される欠点があるばかりでな
く、共存する塩によっては還元反応が阻害される欠点が
ある。−方、銅(II)塩を用いる鉄シアン錯体の沈澱
除去法についてはへキサシアノ鉄(It)酸イオンに対
しては有効であるがヘキサシアノ鉄(I[I)酸イオン
に対しては沈澱生成は不完全であるので銅(I[)塩を
用いてヘキサシアノ鉄(1)酸イオンを沈澱除去するに
は消石灰と還元剤としての亜硫酸ナトリウムの添加が不
可欠であった。それでも最終的な処理液中の全シアン濃
度を排水基準(0,1mg/ I! )以下とした例は
見当たらない。従って、ヘキサシアノ銖(III)酸イ
オンを含む溶?夜あるいはへキサシアノ鉄(III)酸
イオンとへキサシアノ鉄(II)酸イオンを含む溶液か
らこれらのへキサシアノ鉄酸イオンを十分完全にかつ有
効に沈澱分離する方法は確立されていない。
In the case of iron-cyanide complexes, efficient oxidative decomposition of cyano groups is difficult, so methods are being considered that conversely produce insoluble iron-cyanide complexes and remove them as precipitates. As methods for removing iron cyanide complexes as precipitates, methods using cationic surfactants such as quaternary ammonium salts and methods using heavy metal salts are known. Quaternary ammonium salts are not common because the drug is expensive and it is difficult to reuse the drug after precipitation. On the other hand, methods using heavy metal salts include iron (I[) salt, zinc (IT
) salt and copper(II) salt are known, but the so-called Prussian method using iron(II) salt is difficult to completely separate the iron cyanide complex by precipitation. It is not easy to reduce the total cyanide concentration of the solution after precipitation separation to a level that passes wastewater standards, and it has the disadvantage that a large amount of sludge is generated. Also, it>(
II) The so-called self-determination of zinc using salt is effective against hexacyanoferrate(II) ions, but is less effective against hexacyanoferrate(II[) ions due to the high solubility of the precipitate formed. . Therefore, iron hexacyano (
III) Excess zinc(II) to treat acid ions
) It is necessary to carry out the reduction in the presence of salt, and methods using sodium sulfite or sodium thiosulfate as the reducing agent have been proposed, but the reduction reaction is slow and the reducing agent is wasted due to air oxidation. Not only does this have the disadvantage that the reduction reaction may be inhibited depending on the coexisting salt. On the other hand, the precipitation removal method of iron cyanide complexes using copper(II) salts is effective against hexacyanoferrate(It) ions, but precipitates are formed against hexacyanoferrate(I[I) ions. Since this is incomplete, it was necessary to add slaked lime and sodium sulfite as a reducing agent to precipitate and remove hexacyanoferrate(1) ions using copper(I[) salts. Even so, no examples have been found in which the total cyanide concentration in the final treated solution was lower than the wastewater standard (0.1 mg/I!). Therefore, a solution containing hexacyano(III) acid ion? No method has been established for completely and effectively precipitating and separating these hexacyanoferrate ions overnight or from a solution containing hexacyanoferrate (III) ions and hexacyanoferrate (II) ions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は従来の問題点を解消し、ヘキサシアノ1
失(II)酸イオン及び/またはへキサシアノ鉄(lT
[)酸イオン等の鉄シアン錯体を含む水溶液から、該イ
オンを十分に不)容性な沈澱として形成し分離除去する
方法を提供することにある。
The purpose of the present invention is to solve the conventional problems and to
loss (II) acid ion and/or iron hexacyano (lT
() An object of the present invention is to provide a method for forming and separating iron cyanide complexes such as acid ions as a sufficiently insoluble precipitate from an aqueous solution containing the iron cyanide complexes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法は上記問題点を解消するために、鉄シアン錯
体を含む水溶液に、前記水溶液のpHを7以下に保ち5
lq(II)イオンを該鉄シアン錯体に対して当モル以
上を添加し、生成した沈澱物を分離する点に特徴がある
In order to solve the above-mentioned problems, the method of the present invention provides an aqueous solution containing an iron cyanide complex by keeping the pH of the aqueous solution at 5 or less.
The method is characterized in that lq(II) ions are added in an amount equal to or more than the equivalent molar amount to the iron cyanide complex, and the resulting precipitate is separated.

〔作 用〕[For production]

該鉄シアン錯体としてはへキサシアノ鉄(III)酸イ
オン又はヘキサシアノ鉄(II) uイオン又はこれら
の混合物が対象とされ、該鉄シアン錯体を含む水溶液と
しては、各種工業排水、試験排水等が挙げられる。
The iron cyanide complexes include hexacyanoferrate (III) ions, hexacyanoferrate (II) u ions, or mixtures thereof, and examples of the aqueous solutions containing the iron cyanide complexes include various industrial wastewaters, test wastewaters, etc. It will be done.

本発明における、銅(n)イオンの添加は、溶解して銅
(n)イオンを与えるものであれば特に限定されないが
、例えば水溶性の銅(II)化合物として、硫酸銅(■
)、硝酸銅(■)、塩化銅(■)、臭化銅(■)、ヨウ
化銅(■)、塩素酸銅(■)、過塩素酸銅(■)、次亜
塩素酸銅(n)、亜硝酸銅(■)、酢酸銅(n)などの
ような銅(II)塩が挙げられる。また、酸に溶解して
銅(II)イオンを与える、金属状の銅、水酸化銅(■
)、酸化銅(■)、塩基性炭酸銅(■)、フン化銅(■
)、リン酸銅(■)、硫化銅(If)などのような銅化
合物、あるいは、溶解後もしくはヘキサシアノ鉄酸イオ
ンとの沈澱生成の際に酸化反応によって銅(II)イオ
ンを生成する塩化銅(■)、臭化銅(I)、ヨウ化銅(
I)、酸化銅(■)、硫化銅(1)などのような銅(1
)化合物も用いることができる。
In the present invention, the addition of copper (n) ions is not particularly limited as long as it dissolves to give copper (n) ions, but for example, as a water-soluble copper (II) compound, copper sulfate (
), copper nitrate (■), copper chloride (■), copper bromide (■), copper iodide (■), copper chlorate (■), copper perchlorate (■), copper hypochlorite (n ), copper (II) salts such as copper nitrite (■), copper acetate (n), and the like. Metallic copper, copper hydroxide (■
), copper oxide (■), basic copper carbonate (■), copper fluoride (■
), copper phosphate (■), copper (If) sulfide, etc., or copper chloride which produces copper(II) ions by oxidation reaction after dissolution or during precipitation with hexacyanoferrate ions. (■), copper(I) bromide, copper iodide (
I), copper oxide (■), copper sulfide (1), etc.
) compounds can also be used.

該洞(II)イオンの添加量は該鉄シアン錯体に対して
当モル以上であることが必要であり、該銅(IT)イオ
ンの添加量が当モル未満の場合該鉄シアン錯体の沈澱生
成が十分に行なわれないのでよくない。
The amount of the IT (II) ion added must be equal to or more than the equivalent molar amount to the iron cyanide complex, and if the amount of the copper (IT) ion added is less than the equivalent molar amount, precipitation of the iron cyanide complex will occur. This is not good because it is not done enough.

上記沈澱を分離除去する際に該水溶液のρ11を7以下
としなければならないが、該水溶液のpitが7を超え
る場合には該沈澱の分離除去が不完全となりよくない。
When separating and removing the above-mentioned precipitate, the ρ11 of the aqueous solution must be set to 7 or less, but if the pit of the aqueous solution exceeds 7, the separation and removal of the precipitate will be incomplete, which is not good.

該水溶液のpHを7以下とするには、常法に従い一般的
な酸あるいはアリカリを添加して行えばよい。
In order to adjust the pH of the aqueous solution to 7 or less, a general acid or alkali may be added according to a conventional method.

政調(II)イオンを該水溶液中に含まれる該鉄シアン
錯体に対して当モル以上を添加するに当り、該水溶液の
酸化還元電位を測定することで、該酸化還元電位の飛躍
が起きた時点で該銅化合物の添加を終了するようにする
と掘めで正確に本発明を実施することができる。該酸化
還元電位の測定には作用電極、比較電掘及び電位差計等
が使用される。該作用電極としては白金電極、銀電極、
金電極等の該水溶液に侵されない不反応電極であればよ
く、また該比較電極としては銀−塩化銀電極、甘こう電
極、水素電極等を挙げることができる。
When adding political research (II) ions to the iron cyanide complex contained in the aqueous solution in an amount equal to or more than the same mole, the redox potential of the aqueous solution is measured, and the point at which a jump in the redox potential occurs. By ending the addition of the copper compound at this point, the present invention can be carried out accurately. A working electrode, a comparison electrode, a potentiometer, etc. are used to measure the redox potential. The working electrode includes a platinum electrode, a silver electrode,
Any non-reactive electrode, such as a gold electrode, that is not affected by the aqueous solution may be used, and examples of the reference electrode include a silver-silver chloride electrode, an agaric electrode, and a hydrogen electrode.

政調(II)イオンを該水溶液に添加してゆくと、該酸
化還元電位は上界してゆき、ヘキサシアノ鉄(n)酸イ
オンとへキサシアノ鉄(I[I)酸イオンの2種類を含
む場合には2箇所で酸化還元電位の飛yldが認められ
る。1箇所目の酸化還元電位の飛躍はへキサシアノ鉄(
n)酸イオン1モルに対して銅(n)塩1.5モル以上
を添加した時点で認められ、また、2箇所目の酸化還元
電位の飛躍はへキサシアノ鉄(II[)酸イオン1モル
に対して1箇所目の酸化還元電位の飛躍が認められた時
点より更に銅(II)塩1.5モル以上を添加した時点
で認められる。2箇所目の酸化還元電位の飛躍が終了し
た後は銅(II)塩を添加していっても酸化還元電位の
上昇は緩慢となりそれ以上の上昇は起こらなくなる。勿
論、該鉄シアン錯体が1種類の場合には、該酸化還元電
位の飛躍は1箇所でしかおこらない。該酸化還元電位の
飛躍は該水溶液のpHが7以下の場合に特に明瞭に認め
られる。
As Seikyo (II) ions are added to the aqueous solution, the redox potential becomes upper bound, and when two types of hexacyanoferrate (n) ions and hexacyanoferrate (I[I) ions are included] A jump in redox potential is observed at two locations. The jump in redox potential at the first location is due to iron hexacyano (
n) It was observed when 1.5 mol or more of copper(n) salt was added to 1 mol of acid ion, and a jump in the redox potential at the second location was observed when 1 mol of hexacyanoferrate(II[) acid ion was added. A jump in the oxidation-reduction potential at the first location was observed at the time when 1.5 mol or more of the copper(II) salt was further added. After the jump in the redox potential at the second location is completed, even if copper (II) salt is added, the redox potential increases slowly and no further increase occurs. Of course, when there is only one type of iron cyanide complex, the jump in redox potential occurs only at one location. The jump in the redox potential is particularly clearly observed when the pH of the aqueous solution is 7 or less.

〔実施例1〕 JISK8801特級へキサシアノ鉄(Ill)カリウ
ムを水に溶解し、ヘキサシアノ鉄(II[)酸イオンの
644mg/J溶液を調製した。また、JISに898
3特級硫酸銅(■)5水和物を水に溶解し銅(II)イ
オンの582mg/ll溶液を調製した。ヘキサシアノ
鉄(III)酸イオン溶液20m6、水、銅(U)イオ
ン溶液O〜20mjl!をこの順序で添加して全液量を
100mj2とした。硫酸で溶液のI)Hを3.0に調
製して10分間攪拌を行った後、孔径0.05μmのメ
ンブランフィルタ−を用いて吸引濾過を行った。得られ
た濾液中の鉄の濃度を原子吸光法で定量し、また、全シ
アン濃度をJrSKO102工場排水試験方法の全シア
ンの蒸留を行った後、4−ピリジンカルボン酸−ビラゾ
ロン吸光光度法によって定量した。全液量を100mj
2とした後のへキサシアノ鉄(I[r)酸イオンの全濃
度は129mg/ II、一方、銅(II)イオンの全
濃度は0から116mg/ e、また、ヘキサシアノ鉄
(I[I)酸イオンのモル濃度に対する銅(n)イオン
のモル濃度の比は0から3.0である。銅(n)イオン
の添加量と濾液中の鉄及び全シアン濃度との関係を第1
表に示す。第1表からヘキサシアノ鉄(II[)酸イオ
ンと1ff(II)イオンのモル比が当モル以上におい
て濾液中の全シアン濃度は著しく残少しでいる。
[Example 1] JIS K8801 special grade hexacyanoferrate (Ill) potassium was dissolved in water to prepare a 644 mg/J solution of hexacyanoferrate (II[) acid ion. Also, JIS 898
A 582 mg/ll solution of copper (II) ions was prepared by dissolving 3 special grade copper sulfate (■) pentahydrate in water. Hexacyanoferrate(III) acid ion solution 20m6, water, copper (U) ion solution O ~ 20mjl! were added in this order to make the total liquid volume 100 mj2. After adjusting the I)H of the solution to 3.0 with sulfuric acid and stirring for 10 minutes, suction filtration was performed using a membrane filter with a pore size of 0.05 μm. The iron concentration in the obtained filtrate was determined by atomic absorption spectrometry, and the total cyanide concentration was determined by 4-pyridinecarboxylic acid-virazolone absorption spectrophotometry after distilling the total cyanide according to the JrSKO102 factory wastewater test method. did. Total liquid volume 100mj
The total concentration of hexacyanoferrate (I[r) acid ions after setting 2 is 129 mg/II, while the total concentration of copper(II) ions is from 0 to 116 mg/e, and The ratio of the molar concentration of copper(n) ions to the molar concentration of ions is between 0 and 3.0. The relationship between the amount of copper (n) ions added and the iron and total cyanide concentrations in the filtrate is
Shown in the table. Table 1 shows that when the molar ratio of hexacyanoferrate (II) ions to 1ff (II) ions is equal to or higher than the equivalent molar ratio, the total cyanide concentration in the filtrate remains extremely small.

〔実施例2〕 JISK8801特級へキサシアノ鉄(I[[)カリウ
ムを水に溶解し、更に水で適宜希釈してヘキサシアノ鉄
(I[[)酸イオンの652mg/l、65.2mg/
 1及び6.52mg/j!溶液を調製した。JISK
8802特級へキサシアノ鉄(n)カリウム3水和物を
水に溶解し、更に水で適宜希釈してヘキサシアノ鉄(n
)酸イオンの644mg/ l及び6.44 mg/ 
l溶液を調製した。調製した種々の濃度のへキサシアノ
鉄(III)酸イオン溶液とへキサシアノ鉄(If)酸
イオン溶液を用いて、両イオンの濃度を段階的に変化さ
せて両イオンの濃度の合計が約130mg/ /1とな
るように、両イオンの混合溶液100m1を調製した。
[Example 2] Dissolve JIS K8801 special grade hexacyanoferric (I[[) potassium] in water, and further dilute with water appropriately to obtain 652 mg/l and 65.2 mg/l of hexacyanoferric (I[[) acid ion.
1 and 6.52 mg/j! A solution was prepared. JISK
Dissolve 8802 special grade hexacyanoferric (n) potassium trihydrate in water, and further dilute with water appropriately to dissolve hexacyanoferric (n) potassium trihydrate.
) 644 mg/l and 6.44 mg/l of acid ions
l solution was prepared. Using the prepared hexacyanoferrate (III) ion solutions and hexacyanoferrate (If) ion solutions of various concentrations, the concentrations of both ions were changed stepwise until the total concentration of both ions was approximately 130 mg/ 100 ml of a mixed solution of both ions was prepared so that the ratio was 1/1.

調製したヘキサシアノ鉄(I)酸イオン、ヘキサシアノ
鉄(II)酸イオンの混合溶液中に、JISK8983
特級硫酸銅(■)5水和吻を水に溶解して調製した銅(
II)イオンの774mg/ (l溶液を0.5mlず
つ1分間隔で添加していった。銅(n)イオン溶液を添
加する間、硫酸あるいは水酸化ナトリウム溶液を用いて
、溶液のpHは4.0に保持したヘキサシアノ鉄(I[
l)酸イオン及びヘキサシアノ鉄(II)酸イオンの濃
度に応じて、774mg/A洞(H)イオン溶液を合計
8 ml、または10mj!沃加して、10分間攪拌を
行った後、孔径0.05μmのメンブランフィルタ−を
用いて吸引濾過を行、った。以下、実施例1と同様に得
られた濾液中の鉄及び全シアンの定量を行った。ヘキサ
シアノ鉄(III) [1イオン及びヘキサシアノ鉄(
II)酸イオンの濃度、銅(II)、(オンの添加量、
ヘキサシアノ鉄酸イオンのモル濃度に対する銅(n)イ
オンのモル)農度の比(CCu”] / [[Fe(C
N)6]コ)と濾液中の鉄及び全シアン濃度との関係を
第2表に示す。第2表から−・キサシアノ鉄(II[)
酸イオン及びヘキサシアノ鉄(II)酸イオンの2種類
を含む水溶液の場合でも本発明の効果は著しい。
In the prepared mixed solution of hexacyanoferrate (I) ion and hexacyanoferrate (II) ion, JISK8983
Copper prepared by dissolving special grade copper sulfate (■) pentahydrate in water (
II) A solution of 774 mg/(l) of ions was added in 0.5 ml portions at 1 minute intervals. During the addition of the copper(n) ion solution, the pH of the solution was adjusted to 4 using sulfuric acid or sodium hydroxide solution. Iron hexacyano (I[
l) Depending on the concentration of acid ions and hexacyanoferrate(II) ions, a total of 8 ml of 774 mg/H) ion solution, or 10 mj! After adding chlorine and stirring for 10 minutes, suction filtration was performed using a membrane filter with a pore size of 0.05 μm. Hereinafter, iron and total cyanide in the obtained filtrate were determined in the same manner as in Example 1. Hexacyanoferrate (III) [1 ion and hexacyanoferrate (
II) Concentration of acid ions, amount of copper(II) added,
The ratio of the molar concentration of copper (n) ions to the molar concentration of hexacyanoferrate ions (CCu”) / [[Fe(C
Table 2 shows the relationship between N)6]c) and the iron and total cyanide concentrations in the filtrate. From Table 2 - Xacyanoiron (II[)
Even in the case of an aqueous solution containing two types of acid ions and hexacyanoferrate(II) acid ions, the effects of the present invention are remarkable.

〔実施例3〕 JISK8801特級へキサシアノ鉄(II[)カリウ
ム及びJISK8802特級へキサシアノ鉄(II)カ
リウム3水和物を夫々水に溶解し、ヘキサシアノ鉄(I
[[)酸イオン及びヘキサシアノ鉄(II)酸イオンの
夫々644mg//!溶液を調製した。また、JISに
8983特級硫酸銅(■)5水和物を溶解し、銅(n)
イオンの631mg/l及び850mg/A!溶液を調
製した。ヘキサシアノ鉄(I[[)酸イオン溶液201
Ill、水10m1、銅(II)イオン溶液10mj!
をこの順序で添加して全液量100mIlとした後、水
酸化ナトリウム溶液を用いて溶液のpHを5から11の
間に調製し、以下実施例1と同様に操作して溶液から沈
澱を分離する際のpHの影響を調べた。全液量を100
mj!とした時のへキサシアノ鉄(I[[)酸イオンの
全濃度は129mg/j!、一方、銅(II)イオンの
全濃度は63.7mg/β、また、ヘキサシアノ鉄(I
[I)酸イオンのモル濃度に対する銅(II)イオンの
モル濃度の比は1.65である。
[Example 3] JISK8801 special grade hexacyanoferric (II) potassium and JISK8802 special grade hexacyanoferric (II) potassium trihydrate were each dissolved in water, and hexacyanoferric (II) potassium trihydrate was dissolved in water.
[[) 644 mg// each of acid ion and hexacyanoferrate(II) acid ion! A solution was prepared. In addition, 8983 special grade copper sulfate (■) pentahydrate was dissolved in JIS, and copper (n)
631mg/l and 850mg/A of ions! A solution was prepared. Hexacyanoferric (I[[) acid ion solution 201
Ill, 10ml of water, 10mj of copper(II) ion solution!
were added in this order to make a total liquid volume of 100ml, the pH of the solution was adjusted to between 5 and 11 using sodium hydroxide solution, and the precipitate was separated from the solution in the same manner as in Example 1. We investigated the influence of pH on this process. The total liquid volume is 100
mj! The total concentration of hexacyanoferrate (I [[) acid ion is 129 mg/j! , on the other hand, the total concentration of copper(II) ions was 63.7 mg/β, and the total concentration of copper(II) ions was 63.7 mg/β.
[I) The ratio of the molar concentration of copper(II) ions to the molar concentration of acid ions is 1.65.

また、ヘキサシアノ鉄(II)酸イオンの場合にはヘキ
サシアノ鉄(n)酸イオン644mg/β溶液及び銅(
n)イオン850mg/6溶液を用いる以外は上記のへ
キサシアノ鉄(III)酸イオンの場合と同様に操作し
て溶液から沈澱を分離する際のpHの影響を調べた。全
液量を100n/!とした時のへキサシアノ鉄(I[)
酸イオンの全濃度は129mg/ i 、一方、銅(I
I)イオンの全濃度は85.0mg/ 1 %またへキ
サシアノ鉄(II)酸イオンのモル濃度に対する銅(I
I)イオンのモル濃度の比は2.20である。ヘキサシ
アノ鉄(III)酸イオンと銅(n)イオンについての
pHの影響を第3表に、また、ヘキサシアノ鉄(n)酸
イオンとtli(II)イオンについてのpl+の影響
を第4表に示す。
In the case of hexacyanoferrate (II) ion, 644 mg of hexacyanoferrate (n) ion/β solution and copper (
n) The effect of pH on separating the precipitate from the solution was investigated in the same manner as in the case of hexacyanoferrate (III) ion, except that 850 mg of ion/6 solutions were used. The total liquid volume is 100n/! Iron hexacyano (I[) when
The total concentration of acid ions was 129 mg/i, while copper (I
I) The total concentration of ions is 85.0 mg/1% and copper(I) relative to the molar concentration of hexacyanoferrate(II) ions.
I) The ratio of molar concentrations of ions is 2.20. The effects of pH on hexacyanoferrate(III) ions and copper(n) ions are shown in Table 3, and the effects of pl+ on hexacyanoferrate(n) ions and tli(II) ions are shown in Table 4. .

第3表及び第4表からヘキサシアノ鉄(III)酸イオ
ン及びヘキサシアノ鉄(II)酸イオンそれぞれを単独
に含む水溶液の場合、pH7以下において、濾液中の全
シアン濃度は顕著に減少している。
Tables 3 and 4 show that in the case of aqueous solutions containing hexacyanoferrate (III) ions and hexacyanoferrate (II) ions alone, the total cyanide concentration in the filtrate decreases significantly at pH 7 or lower.

〔実施例4〕 金、恨、並びに鉄などの重金属を含有する鉱石をシアン
化ナトリウム溶液で浸漬した浸出液を調製し、浸出液中
より金、銀を活性炭で吸着分離した後の溶液を試料原液
とした。
[Example 4] A leachate was prepared by immersing ores containing heavy metals such as gold, iron, and iron in a sodium cyanide solution. Gold and silver were adsorbed and separated from the leachate using activated carbon. The solution was then used as the sample stock solution. did.

試料原液1000 mlに対し次亜塩素酸ナトリウム溶
液(次亜塩素酸イオン濃度40.9mg/ m l )
を次亜塩素酸イオンとして1060mgを添加して、p
Hを12.0に保って60分分間−てpHを8.5に保
って60分間攪拌を行い、アルカリ塩素法によって遊離
シアン及びそれを生成しやすいシアン化合物を酸化分解
した後1.0μmメンブランフィルタ−で吸引濾過を行
って濾液■を得た。濾液■の880m1のp!(を硫酸
を用いて7.0に調製した後、硫酸銅(■)5水和物を
溶解して調製した銅(II)イオン(1,35mg/ 
me )溶液を銅(II)イオンとして40.5 mg
を添加して、更に硫酸及び水酸化ナトリウム溶液で溶液
のpHを6.8に調製して15分間攪拌を行い、1.0
μmメンブランフィルタ−で吸引濾過を行って処理液を
得た。
Sodium hypochlorite solution (hypochlorite ion concentration 40.9 mg/ml) for 1000 ml of sample stock solution
By adding 1060 mg of hypochlorite ion, p
After stirring for 60 minutes while keeping the pH at 12.0 and stirring for 60 minutes while keeping the pH at 8.5, free cyanide and cyanide compounds that tend to generate it were oxidized and decomposed by the alkali chlorine method, and then a 1.0 μm membrane was removed. Suction filtration was performed using a filter to obtain a filtrate (2). 880 ml p of filtrate ■! Copper (II) ion (1.35 mg/
me) solution as copper(II) ions, 40.5 mg
The pH of the solution was adjusted to 6.8 with sulfuric acid and sodium hydroxide solution, stirred for 15 minutes, and the pH was adjusted to 1.0.
Suction filtration was performed using a μm membrane filter to obtain a treated solution.

試料原液、濾液■及び処理液中の全シアンの分析を実施
例−1と同様に行った。また、各溶液中の重金属の定量
はICP発光分光分析法で行った。
Analysis of total cyanide in the sample stock solution, filtrate (1), and treated solution was conducted in the same manner as in Example-1. Furthermore, the amount of heavy metals in each solution was determined by ICP emission spectrometry.

各溶液の全シアン及び重金属の定量結果を第5表に示す
。第5表によればアルカリ塩素処理終了後の濾液■に含
まれていた3、’l+++g/eの鉄は銅(U)イオン
を添加してpt16.8で溶液から沈澱を分離すること
で、処理液では0.05 mg/ 1.まで除去された
。アルカリ塩素処理終了後のへキサシアノ鉄酸イオンの
大部分は一、キサシアノ鉄([[)酸イオンとして存在
し、1fl(II)イオンと難溶性の沈澱を生成して沈
澱分離されたさとは明らかであり、処理液中の全シアン
濃度は0.1mg71以下に処理された。
Table 5 shows the quantitative results of total cyanide and heavy metals in each solution. According to Table 5, 3,'l+++g/e of iron contained in the filtrate (■) after the alkali chlorination treatment can be removed by adding copper (U) ions and separating the precipitate from the solution at a pt of 16.8. 0.05 mg/1. has been removed. It is clear that most of the hexacyanoferrate ions after the alkali chlorination treatment were present as mono-, xacyanoferrate ([[) acid ions, and were separated by precipitation by forming poorly soluble precipitates with 1fl(II) ions. The total cyanide concentration in the treatment solution was reduced to 0.1 mg71 or less.

〔実施例5〕 JISK8801特級へキサシアノ鉄(III)カリウ
ムを水に溶解し、更に水で適宜希釈してヘキサシアノ鉄
([lI)酸イオンの652mg/l、65.2mg/
 It及び6.52 mg/ E溶液を調製した。JI
SK8802特級へキサシアノ鉄(■)カリウム3水和
物を水に溶解、更に水で適宜希釈してヘキサシアノ鉄(
II)酸イオンの644mg//!及び6.44 mg
/ l溶液を調製した。調製した種々の濃度のへキサシ
アノ鉄(III)酸イオン溶液とへキサシアノ鉄(II
)酸イオン溶液を用いて、両イオン濃度を段階的に変化
させて両イオン濃度の合計が約130mg/ffiとな
るように、ヘキサシアノ鉄酸イオン溶液100  ml
を調製した。調製したヘキサシアノ鉄酸イオン溶液のp
oを4.0に保持して、ヘキサシアノ鉄酸イオン溶液中
に特級硫酸銅(■)5水和物を水に溶解しりこi同(I
I)イオンの774mg/ρン容ン夜を0.5m7iず
つ1分間隔で添加していって、その間、溶液の酸化還元
電位を測定した。溶液の酸化還元電位の測定には白金電
極及び内部液に飽和塩化カリウム溶液を使用した銀−塩
化銀電極を用いた。洞(II)イオンの総添加量は11
.6mgで、即ち、ヘキサシアノ鉄酸イオンのモル濃度
に対する銅(II)イオンのモル濃度の比([Cu”]
 /[[Fe(CN)i、 ] ] )が0〜3.0の
間で塩化還元電位を測定した。調製した100m1のへ
キサシアノ鉄イオン溶液中のへキサシアノ鉄(II)酸
イオン及びヘキサシアノ鉄(1)酸イオンのそれぞれの
濃度、ヘキサシアノ鉄酸イオンの全濃度に対するヘキサ
シアノ鉄(III)酸イオンの濃度の比([[Fe(C
N)6] 3−] / [[Fe(CN)6コ])また
、1箇所ないし2箇所の酸化還元電位の飛躍を認めた後
の銅(n)イオン774mg/ 12 溶液の0.5m
7!ずつの添加による酸化還元電位の上昇が10mV以
内となった時の銅(I[)イオンの総添加量及びその時
のへキサシアノ鉄酸イオンのモル濃度に対する銅(II
)イオンのモル濃度の比([Cu2°]/C[Fe(C
N)b ] ])をそれぞれ第6表に示す。更に、[C
u2°] / [[Fe(CN)、] ]の値を横軸に
、酸化還元電位を縦軸にとった結果を第1図に示す。
[Example 5] JIS K8801 special grade hexacyanoferrate (III) potassium was dissolved in water, and further diluted with water as appropriate to obtain 652 mg/l and 65.2 mg/l of hexacyanoferrate ([lI) acid ion.
It and 6.52 mg/E solutions were prepared. J.I.
Dissolve SK8802 special grade hexacyanoferric (■) potassium trihydrate in water, and further dilute with water as appropriate to dissolve hexacyanoferric (■) potassium trihydrate.
II) 644 mg of acid ions //! and 6.44 mg
/l solution was prepared. Hexacyanoferrate(III) acid ion solutions with various concentrations prepared and hexacyanoferrate(II)
) Using an acid ion solution, change the concentration of both ions stepwise so that the total concentration of both ions is about 130 mg/ffi, and prepare 100 ml of hexacyanoferrate ion solution.
was prepared. p of the prepared hexacyanoferrate ion solution
Dissolve special grade copper sulfate (■) pentahydrate in water in a hexacyanoferrate ion solution while maintaining o at 4.0.
I) 774 mg/rh of ion was added in 0.5 m7i at 1 minute intervals, during which time the redox potential of the solution was measured. A platinum electrode and a silver-silver chloride electrode using a saturated potassium chloride solution as the internal solution were used to measure the redox potential of the solution. The total amount of Ca(II) ions added is 11
.. 6 mg, i.e. the ratio of the molar concentration of copper(II) ions to the molar concentration of hexacyanoferrate ions ([Cu”]
The chloride-reduction potential was measured when /[[Fe(CN)i, ] ] ) was between 0 and 3.0. The respective concentrations of hexacyanoferrate (II) ions and hexacyanoferrate (1) ions in the prepared 100 ml hexacyanoferrate ion solution, and the concentration of hexacyanoferrate (III) ions relative to the total concentration of hexacyanoferrate ions. ratio ([[Fe(C
N) 6] 3-] / [[Fe(CN) 6]) In addition, copper (n) ions 774 mg/0.5 m of the 12 solution after a jump in redox potential at one or two locations was observed.
7! The total amount of copper(I[) ions added and the molar concentration of hexacyanoferrate ions at that time when the increase in redox potential due to the addition of
) ion molar concentration ratio ([Cu2°]/C[Fe(C
N) b ] ]) are shown in Table 6, respectively. Furthermore, [C
FIG. 1 shows the results with the horizontal axis representing the value of u2°]/[[Fe(CN),] ] and the redox potential representing the vertical axis.

第1図から分かるように、鉄シアン錯体の種類と?溶度
に応じて酸化還元電位の飛躍が確認され銅(II)イオ
ンの添加量をどこで終了すべきか明瞭にわかる。
As you can see from Figure 1, what are the types of iron cyanide complexes? A jump in the oxidation-reduction potential was confirmed depending on the solubility, and it was clearly understood where the amount of copper (II) ions added should end.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を用いることにより、ヘキサシアノ鉄(I
I)酸イオン及び/又はへキサシアノ鉄(I[l)酸イ
オン等の鉄シアン錯体を含む水溶液から該イオンを十分
に不溶性な沈澱として形成し分離除去することができ、
酸化還元電位を標識とすることで、適正な量の銅化合物
の添加量とその終了とを知ることができる等極めてその
効果は大である。
By using the method of the present invention, iron hexacyano (I
I) from an aqueous solution containing acid ions and/or iron cyanide complexes such as hexacyanoferrate (I[l) acid ions, the ions can be separated and removed as sufficiently insoluble precipitates;
By using the oxidation-reduction potential as a label, the effect is extremely large, such as being able to know the appropriate amount of addition of the copper compound and the end of addition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例5で得られた酸化還元電位の
変化を示すものである。 特許出願人 住友金属鉱山株式会社 第1 0   to   20
FIG. 1 shows the change in redox potential obtained in Example 5 of the present invention. Patent applicant: Sumitomo Metal Mining Co., Ltd. No. 10 to 20

Claims (2)

【特許請求の範囲】[Claims] (1)鉄シアン錯体を含む水溶液に、前記水溶液のpH
を7以下に保ち、銅(II)イオンを該鉄シアン錯体に対
して当モル以上を添加し、生成した沈澱物を分離するこ
とを特徴とする鉄シアン錯体の除去方法。
(1) In an aqueous solution containing an iron cyanide complex, the pH of the aqueous solution is
7 or less, adding copper (II) ions in an amount equal to or more than the equivalent molar amount to the iron cyanide complex, and separating the formed precipitate.
(2)前記水溶液の酸化還元電位を測定しつつ該酸化還
元電位の飛躍が起きた時点で前記銅(II)イオンの添加
を終了することを特徴とする特許請求範囲第(1)項記
載の鉄シアン錯体の除去方法。
(2) The addition of the copper (II) ions is terminated at the time when the redox potential of the aqueous solution increases while measuring the redox potential of the aqueous solution. Method for removing iron cyanide complex.
JP32839787A 1987-12-26 1987-12-26 Removal of iron cyan complex Pending JPH01171690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32839787A JPH01171690A (en) 1987-12-26 1987-12-26 Removal of iron cyan complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32839787A JPH01171690A (en) 1987-12-26 1987-12-26 Removal of iron cyan complex

Publications (1)

Publication Number Publication Date
JPH01171690A true JPH01171690A (en) 1989-07-06

Family

ID=18209799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32839787A Pending JPH01171690A (en) 1987-12-26 1987-12-26 Removal of iron cyan complex

Country Status (1)

Country Link
JP (1) JPH01171690A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214074A (en) * 2013-05-15 2013-07-24 上海宇昂水性新材料科技股份有限公司 Aquaculture water purification agent and preparation method thereof
JP2013146696A (en) * 2012-01-20 2013-08-01 Katayama Chem Works Co Ltd Method for treating cyanide-containing wastewater
JP2013208551A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating cyanogen-containing waste water
JP2013208550A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating cyanogen-containing waste water
JP2014028356A (en) * 2012-06-28 2014-02-13 Mie Chuo Kaihatsu Kk Method for treating effluent including water-soluble iron-cyano complex, method for preparing insolubilized liquid used for the treating method, and method for preparing flocculated and precipitated sludge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146696A (en) * 2012-01-20 2013-08-01 Katayama Chem Works Co Ltd Method for treating cyanide-containing wastewater
JP2013208551A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating cyanogen-containing waste water
JP2013208550A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating cyanogen-containing waste water
JP2014028356A (en) * 2012-06-28 2014-02-13 Mie Chuo Kaihatsu Kk Method for treating effluent including water-soluble iron-cyano complex, method for preparing insolubilized liquid used for the treating method, and method for preparing flocculated and precipitated sludge
CN103214074A (en) * 2013-05-15 2013-07-24 上海宇昂水性新材料科技股份有限公司 Aquaculture water purification agent and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6474472B2 (en) Wastewater treatment method
US4822496A (en) Process for the treatment of effluent containing cyanide and toxic metals, using hydrogen peroxide and trimercaptotriazine
KR20180069852A (en) Process for treating wastewater containing cyanide complex and treating agent used therefor
US5415848A (en) Method for removal of hexavalent chromium from a solution
JP2778964B2 (en) Detoxification of wastewater containing elemental mercury
US4445935A (en) Method for the recovery of silver from waste photographic fixer solutions
JPH01171690A (en) Removal of iron cyan complex
KR20180118759A (en) Treatment agent for wastewater containing cyanide and method for treating wastewater containing cyanide using the same
JPH0248315B2 (en)
JP2923757B2 (en) Reduction method of hexavalent selenium
US5137642A (en) Detoxification of aqueous cyanide solutions
US4530768A (en) Method for the disposal of waste water containing iron-cyanide complexes
US4840735A (en) Process for the removal of cyanide and other impurities from solution
JP2005144374A (en) Method for removing chlorine ion in nonferrous metal sulfate solution
JP4106415B2 (en) Treatment method of wastewater containing cyanide
JPH05169071A (en) Treatment of cyanide containing waste water
JPH01210096A (en) Removal of iron cyanide complex
JP4639309B2 (en) Treatment method of wastewater containing cyanide
JP2018202270A (en) Agent and treatment method of selenium-containing wastewater
JP2009247940A (en) Treatment method of sulfate solution
JPH0475285B2 (en)
JP2003251367A (en) Treatment method for selenic acid-containing waste water and treating agent used therefor
JPS5932194B2 (en) Treatment method for wastewater containing iron cyano complex salts
JPS58153585A (en) Treatment of waste water containing cyano-iron complex salt
JP2003063826A (en) Method for recovering chromic acid and bichromic acid