JP2005144374A - Method for removing chlorine ion in nonferrous metal sulfate solution - Google Patents

Method for removing chlorine ion in nonferrous metal sulfate solution Download PDF

Info

Publication number
JP2005144374A
JP2005144374A JP2003387442A JP2003387442A JP2005144374A JP 2005144374 A JP2005144374 A JP 2005144374A JP 2003387442 A JP2003387442 A JP 2003387442A JP 2003387442 A JP2003387442 A JP 2003387442A JP 2005144374 A JP2005144374 A JP 2005144374A
Authority
JP
Japan
Prior art keywords
silver
solution
ions
chlorine
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003387442A
Other languages
Japanese (ja)
Other versions
JP4321231B2 (en
Inventor
Chu Kobayashi
宙 小林
Masaki Imamura
正樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003387442A priority Critical patent/JP4321231B2/en
Publication of JP2005144374A publication Critical patent/JP2005144374A/en
Application granted granted Critical
Publication of JP4321231B2 publication Critical patent/JP4321231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and inexpensive method capable of separating and removing chlorine ions contained in a solution of a nonferrous metal sulfate such as nickel sulfate or the like to reduce the same to an extremely minute amount level desired in a use of an electronic material, a catalyst material or the like. <P>SOLUTION: In this method, at least one of metal silver, silver oxide or silver sulfate or carbonate is added to a chlorine-containing sulfate solution to sediment and remove chlorine ions in the solution as silver chloride. The excessive silver ions remaining in the solution can be removed by a cementation method. Further, this sedimented and removed silver chloride is reacted with an alkali solution to regenerate silver oxide and this silver oxide is returned to a chlorine ion removing process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、硫酸ニッケル、硫酸銅、硫酸コバルト等の非鉄金属の硫酸塩溶液から、溶液中に含まれる塩素イオンを分離除去する方法に関する。   The present invention relates to a method for separating and removing chlorine ions contained in a solution from a sulfate solution of a non-ferrous metal such as nickel sulfate, copper sulfate, and cobalt sulfate.

硫酸ニッケル、硫酸銅、硫酸コバルト等の硫酸塩は、メッキ用、顔料用をはじめ各種工業原料として汎用されているが、最近では電子材料や触媒材料の用途として特に高純度のものが要求されている。   Sulfates such as nickel sulfate, copper sulfate, and cobalt sulfate are widely used as various industrial raw materials for plating, pigments, etc. Recently, high purity materials are required for electronic materials and catalytic materials. Yes.

上記したような非鉄金属の硫酸塩溶液中には、不純物の1種としてしばしば塩素が含有される。この不純物としての塩素は、鉱石から硫酸塩を製造する工程中で用いられる塩酸や塩素が残留したり、あるいは、各種スクラップやメッキスラジ等の雑原料中に付随して混入したりすることに起因している。   Non-ferrous metal sulfate solutions as described above often contain chlorine as one of the impurities. Chlorine as an impurity is attributed to the fact that hydrochloric acid and chlorine used in the process of producing sulfate from ore remain or are mixed in various raw materials such as scrap and plating sludge. ing.

これら塩素イオンは、溶液から非鉄金属硫酸塩を精製する工程中の反応槽や配管等の腐食の進行に悪影響を及ぼすだけでなく、非鉄金属硫酸塩の製品中にも残留する。特に電子材料や触媒材料等の用途に用いられる製品の場合には、塩素イオンの化学反応により電子部品や触媒の性能を劣化させることから、極微量であっても混入することが嫌われ、塩素イオンの完全な除去が望まれている。   These chloride ions not only adversely affect the progress of corrosion of reaction vessels and piping during the process of purifying nonferrous metal sulfate from solution, but also remain in nonferrous metal sulfate products. In particular, in the case of products used for applications such as electronic materials and catalyst materials, the performance of electronic components and catalysts deteriorates due to the chemical reaction of chlorine ions. The complete removal of ions is desired.

硫酸塩溶液中に含まれる塩素イオンの除去は難しいが、完全に除去する方法として、一旦酸性抽出溶媒を用いて溶液中の金属イオンを抽出した後、硫酸で逆抽出して硫酸塩溶液を得る方法がある(特開平10−310436号公報)。酸性抽出剤は金属陽イオンのみを抽出し、塩素イオンを抽出しないので、塩素イオンを含まない硫酸塩溶液を得ることができる。しかし、この方法は、抽出及び逆抽出において、pH調整用のアルカリや酸を必要とすることから、コスト高となるため、特定の用途以外での適用は困難であった。   Although it is difficult to remove chloride ions contained in sulfate solution, as a complete removal method, once extract metal ions in solution using acidic extraction solvent, back extraction with sulfuric acid to obtain sulfate solution There is a method (Japanese Patent Laid-Open No. 10-310436). Since the acidic extractant extracts only metal cations and does not extract chloride ions, a sulfate solution containing no chloride ions can be obtained. However, this method requires an alkali or acid for pH adjustment in the extraction and back extraction, and thus increases the cost. Therefore, it has been difficult to apply this method for other purposes.

また、溶液中の塩素イオンは、イオン交換樹脂への選択吸着等により除去することも可能である。しかし、硫酸塩溶液では、除去したい塩素イオン濃度に比べ、マトリックスとなる硫酸イオン濃度が著しく高いため、イオン交換樹脂の吸着サイトの競合が起こって硫酸イオンも吸着されてしまう。そのため塩素イオンの選択吸着は非常に困難であり、その除去は十分なものではなかった。   Further, chlorine ions in the solution can be removed by selective adsorption to an ion exchange resin. However, in the sulfate solution, since the concentration of sulfate ions serving as a matrix is significantly higher than the concentration of chloride ions to be removed, competition of adsorption sites of the ion exchange resin occurs, and sulfate ions are also adsorbed. Therefore, selective adsorption of chloride ions is very difficult, and the removal thereof is not sufficient.

更に、金属塩の結晶析出など、晶析効率の違いを利用した分離方法も考えられる。例えば、塩化物に比べて硫酸塩は溶解度が小さく、塩素イオンを含んだ硫酸塩溶液を加熱濃縮すると硫酸塩が優先的に析出する。しかし、塩素イオンが混入しないように晶析度を調整して、所望の金属硫酸塩の結晶だけを分離回収する方法は工業的にはコスト高となる。   Furthermore, a separation method using a difference in crystallization efficiency such as crystallization of metal salt is also conceivable. For example, sulfate is less soluble than chloride, and sulfate concentrates preferentially when a sulfate solution containing chlorine ions is concentrated by heating. However, a method for adjusting the crystallization degree so that chlorine ions are not mixed and separating and recovering only desired metal sulfate crystals is industrially expensive.

その他の方法としては、硝酸銀を添加することにより、塩素イオンを塩化銀として沈殿させる方法も知られている(特開平10−216741号公報)。しかしながら、この方法は、塩素イオンに対して添加する硝酸銀の最適量を判断することが困難であるため、過剰量のAgイオンが溶液中に残留するうえ、系内に硝酸根が残るためアニオン除去工程には適応できない。また、この方法で沈殿分離した塩化銀は錯体形成反応を利用して再溶解され、電解によりメタルとして回収されて、再び硝酸銀として工程に繰り返されていたため、再生コストが高く工業的な利用には問題があった。   As another method, a method of precipitating chlorine ions as silver chloride by adding silver nitrate is also known (Japanese Patent Laid-Open No. 10-216741). However, in this method, it is difficult to determine the optimum amount of silver nitrate to be added to chlorine ions, so an excess amount of Ag ions remains in the solution and nitrate radicals remain in the system, thus removing anions. It cannot be adapted to the process. In addition, the silver chloride precipitated and separated by this method was redissolved using a complex formation reaction, recovered as a metal by electrolysis, and repeated as a process again as silver nitrate. There was a problem.

特開平10−310436号JP-A-10-310436 特開平10−216741号Japanese Patent Laid-Open No. 10-216741

本発明は、上記した従来の事情に鑑み、硫酸ニッケル等の非鉄金属の硫酸塩溶液に含まれる塩素イオンを分離除去して、電子材料や触媒材料等の用途で望まれている極微量のレベルにまで塩素イオンを低減することができる、簡便で安価な方法を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention separates and removes chlorine ions contained in a sulfate solution of a non-ferrous metal such as nickel sulfate, so that a trace amount level desired for applications such as electronic materials and catalyst materials is obtained. It is an object of the present invention to provide a simple and inexpensive method capable of reducing chlorine ions to a minimum.

上記の目的を達成するため、本発明が提供する非鉄金属硫酸塩溶液中の塩素イオン除去方法は、塩素を含む非鉄金属の硫酸塩溶液に、金属銀、酸化銀、あるいは銀の硫酸塩又は炭酸塩の少なくとも1種を添加し、溶液中の塩素イオンを塩化銀として沈殿除去することを特徴とする。   In order to achieve the above object, the present invention provides a method for removing chlorine ions in a non-ferrous metal sulfate solution by adding metal silver, silver oxide, silver sulfate or carbonate to a non-ferrous metal sulfate solution containing chlorine. It is characterized in that at least one salt is added and chlorine ions in the solution are precipitated and removed as silver chloride.

上記本発明の非鉄金属硫酸塩溶液中の塩素イオン除去方法において、前記塩素イオン除去反応の進行及び終点を、イオンメーターを用いた塩素イオン濃度の測定値により管理することが好ましい。   In the method for removing chlorine ions in the non-ferrous metal sulfate solution of the present invention, it is preferable to manage the progress and end point of the chlorine ion removal reaction by the measured value of the chlorine ion concentration using an ion meter.

また、上記本発明の非鉄金属硫酸塩溶液中の塩素イオン除去方法においては、前記塩化銀を沈殿除去させた後、溶液中に残留する過剰な銀イオンをセメンテーション法により除去することができる。   In the method for removing chlorine ions in the non-ferrous metal sulfate solution of the present invention, excessive silver ions remaining in the solution can be removed by a cementation method after the silver chloride is precipitated and removed.

更に、上記本発明の非鉄金属硫酸塩溶液中の塩素イオン除去方法においては、沈澱除去した塩化銀をアルカリと反応させて酸化銀とし、得られた酸化銀を前記塩素イオン除去工程に繰り返して硫酸塩溶液に添加することができる。   Furthermore, in the method for removing chlorine ions in the non-ferrous metal sulfate solution of the present invention, the silver chloride that has been removed by precipitation is reacted with an alkali to form silver oxide, and the obtained silver oxide is repeatedly subjected to the chlorine ion removing step to produce sulfuric acid. Can be added to the salt solution.

本発明によれば、硫酸塩溶液に金属銀、酸化銀、銀の硫酸塩又は炭酸塩を添加するだけで、溶液中に含まれる塩素イオンを塩化銀として簡単且つ安価に分離除去することができ、特に電子材料や触媒材料等の用途で望まれている極微量のレベルにまで塩素イオンを低減することが可能である。また、分離回収さられた塩化銀は、アルカリにより安価に再生して、塩素イオン除去工程へ繰り返して使用することができる。   According to the present invention, by simply adding silver metal, silver oxide, silver sulfate or carbonate to a sulfate solution, chlorine ions contained in the solution can be separated and removed as silver chloride easily and inexpensively. In particular, it is possible to reduce chlorine ions to a very small level desired in applications such as electronic materials and catalyst materials. Further, the separated and recovered silver chloride can be regenerated with an alkali at a low cost and repeatedly used in the chlorine ion removing step.

本発明の塩素イオン除去方法においては、硫酸ニッケル等の硫酸塩溶液中に含まれる塩素イオンを、銀イオンと反応させて難溶性の塩化銀(AgCl)とし、溶液から沈殿させて分離除去する。硫酸塩溶液に添加する銀イオン源としては、金属銀(銀メタル)、酸化銀(AgO)、銀の硫酸塩(AgSO)又は銀の炭酸塩(AgCO)の少なくともいずれか1種とする。 In the chlorine ion removal method of the present invention, chlorine ions contained in a sulfate solution such as nickel sulfate are reacted with silver ions to form hardly soluble silver chloride (AgCl), which is precipitated and separated from the solution. The silver ion source added to the sulfate solution is at least metal silver (silver metal), silver oxide (Ag 2 O), silver sulfate (Ag 2 SO 4 ), or silver carbonate (Ag 2 CO 3 ). Any one of them.

上記塩素イオン除去工程における主な反応として、銀メタルを使用した場合を下記反応式1に示す。
[反応式1]
2Ag+H+2HCl=2AgCl+2H
As a main reaction in the chlorine ion removing step, the case of using silver metal is shown in the following reaction formula 1.
[Reaction Formula 1]
2Ag + H 2 O 2 + 2HCl = 2AgCl + 2H 2 O

銀メタルは硫酸塩溶液中添加されると、酸性且つ酸化性の条件下で銀イオンとして溶液中に溶出し、溶液中の塩素イオンと反応して難溶性の塩化銀(AgCl)を生成して沈殿する。銀メタルが溶解する条件としては、pHは1〜2、酸化還元電位ORPは600mV(vs.Ag/AgCl)程度が望ましい。この600mV以下のORPでは銀メタルの溶解が進まず、銀表面のみでの塩化が起り、塩素イオンの固定は進まない。   When silver metal is added in a sulfate solution, it elutes into the solution as silver ions under acidic and oxidizing conditions, and reacts with chlorine ions in the solution to form poorly soluble silver chloride (AgCl). Precipitate. As conditions for the silver metal to dissolve, it is desirable that the pH is 1-2 and the redox potential ORP is about 600 mV (vs. Ag / AgCl). In the ORP of 600 mV or less, the dissolution of silver metal does not proceed, chlorination occurs only on the silver surface, and the fixation of chloride ions does not proceed.

また、上記塩素イオン除去工程における主な反応として、酸化銀を使用した場合を下記反応式2に、銀の硫酸塩又は炭酸塩を使用した場合を下記反応式3に、それぞれ示す。
[反応式2]
AgO+NiCl+HSO=2AgCl+NiSO+H
[反応式3]
Ag+Cl=AgCl
Moreover, as a main reaction in the said chlorine ion removal process, the case where silver oxide is used is shown in the following Reaction Formula 2, and the case where silver sulfate or carbonate is used is shown in the following Reaction Formula 3, respectively.
[Reaction Formula 2]
Ag 2 O + NiCl 2 + H 2 SO 4 = 2AgCl + NiSO 4 + H 2 O
[Reaction Formula 3]
Ag + + Cl = AgCl

酸化銀、炭酸銀は酸性の硫酸塩溶液に溶解し、硫酸銀は水に溶解するため、溶解により発生した銀イオンと塩素イオンが反応し、難溶性の塩化銀を形成して沈澱する。これらの反応は、pH7以下で進行する。尚、硝酸銀も硫酸銀と同様に溶液中に溶解し、塩素イオンと反応して塩化銀を形成するが、この場合は硝酸イオンが溶液中に混入するため、本工程のようなアニオンを分離する場合には不向きである。   Since silver oxide and silver carbonate are dissolved in an acidic sulfate solution, and silver sulfate is dissolved in water, silver ions and chloride ions generated by dissolution react to form hardly soluble silver chloride and precipitate. These reactions proceed at pH 7 or lower. Silver nitrate also dissolves in the solution in the same way as silver sulfate and reacts with chlorine ions to form silver chloride. In this case, nitrate ions are mixed in the solution, so that anions such as this step are separated. It is unsuitable for cases.

添加する銀量は、塩素イオンに対して銀イオン換算で1当量程度とすることが望ましい。塩素イオンと銀イオンの反応は定量的に起こるが、一般に硫酸塩溶液中の塩素イオン濃度を迅速に又は連続的に分析することは難しく、従って銀イオンの添加量を決定することは困難である。そのため、当量以上に添加した銀又は銀の塩は、溶液中に銀イオンの状態で残留しやすい。そこで、このような反応の進行及び終点判定は、イオンメーターを用いた塩素イオン濃度の測定値により管理制御することが好ましい。   The amount of silver to be added is desirably about 1 equivalent in terms of silver ions with respect to chlorine ions. Although the reaction between chloride ion and silver ion occurs quantitatively, it is generally difficult to analyze the chloride ion concentration in a sulfate solution quickly or continuously, and therefore it is difficult to determine the amount of silver ion added. . Therefore, silver or a silver salt added in an equivalent amount or more tends to remain in the solution in the form of silver ions. Therefore, it is preferable to control and control the progress and end point determination of the reaction based on the measured value of the chlorine ion concentration using an ion meter.

また、塩化銀を沈殿除去させた後、溶液中に残留する過剰な銀イオンは、金属のセメンテーションによる回収が可能である。添加する金属としては、例えば、ニッケル、亜鉛、銅などが使用できる。ただし、セメンテーション反応に必要な量の金属を溶解する必要があるため、pHを1程度に保って反応させる必要がある。このセメンテーションより、溶液中に残存している銀イオンをほぼ完全に除去することができる。   Moreover, after silver chloride is precipitated and removed, excess silver ions remaining in the solution can be recovered by metal cementation. For example, nickel, zinc, copper, or the like can be used as the metal to be added. However, since it is necessary to dissolve an amount of metal necessary for the cementation reaction, it is necessary to perform the reaction while maintaining the pH at about 1. From this cementation, the silver ions remaining in the solution can be almost completely removed.

従来、各種方法で硫酸塩溶液から分離除去された塩化銀は、アンモニア水、濃塩酸等に錯塩として溶解された後、電解により金属銀を得た後、必要に応じて銀を硝酸に溶解するなどして、塩素イオン除去工程に繰り返されてきた(特開平10−216741号公報参照)。しかし、この方法は、錯形成による溶解、及び電解という異なる工程を必要とするため、コスト面で割高であった。   Conventionally, the silver chloride separated and removed from the sulfate solution by various methods is dissolved as a complex salt in aqueous ammonia, concentrated hydrochloric acid, etc., and after obtaining metallic silver by electrolysis, the silver is dissolved in nitric acid as necessary. Thus, the process has been repeated in the chlorine ion removal step (see JP-A-10-216741). However, this method is expensive in terms of cost because it requires different steps of dissolution by complex formation and electrolysis.

本発明方法においては、このコストを低減するため、分離回収した塩化銀を苛性ソーダ等のアリカリと接触させ、下記反応式4により反応させて酸化銀として再生する。得られた酸化銀は、上記塩素イオン除去工程に繰り返し、硫酸塩溶液に添加することが可能である。
[反応式4]
2AgCl+2NaOH=2NaCl+AgO+H
In the method of the present invention, in order to reduce this cost, the separated and recovered silver chloride is brought into contact with ants such as caustic soda and reacted according to the following reaction formula 4 to regenerate as silver oxide. The obtained silver oxide can be added to the sulfate solution by repeating the chlorine ion removing step.
[Reaction Formula 4]
2AgCl + 2NaOH = 2NaCl + Ag 2 O + H 2 O

上記の反応は脱水を伴うため、できるだけ高濃度のアルカリ溶液を使用することが望まれる。また、塩素イオン濃度が高くなると反応が進まないため、当量に対して5〜15倍のアルカリを加えること、また、8N程度の高濃度アルカリ溶液を用いることが有効である。尚、上記の反応においては、苛性ソーダ等のアルカリ溶液に大気中から吸収された炭酸ガスが含まれる場合、AgOと共にAgCOが生成されることがあるが、本発明では塩素イオン除去のために銀の炭酸塩を使用できるので、このような場合も何ら支障はない。 Since the above reaction involves dehydration, it is desirable to use an alkali solution having a concentration as high as possible. In addition, since the reaction does not proceed as the chlorine ion concentration increases, it is effective to add 5 to 15 times the alkali with respect to the equivalent, and to use a high concentration alkaline solution of about 8N. In the above reaction, if the alkali solution such as caustic soda include carbon dioxide absorbed from the atmosphere, although there may be a Ag 2 CO 3 generated with Ag 2 O, chloride ions removed in the present invention In this case, there is no problem because silver carbonate can be used.

また、塩素イオンとの再反応を防ぐため、混合液は濾過し、その後洗浄し、更に新たなアルカリ溶液と接触させることで、AgOへの再生効率を向上させることができる。この一連の再生工程(反応、濾過、洗浄)を数回繰り返すことにより、更に塩化銀品位の低い酸化銀を得ることが可能である。また、過剰に加えたアルカリには溶解度分の酸化銀が含まれるが、これは逆に塩素イオンを加えることで回収が可能である。 Also, to prevent re-reaction with chlorine ions, the mixture was filtered, then washed, is contacted with further fresh alkali solution, thereby improving the regeneration efficiency of the Ag 2 O. By repeating this series of regeneration steps (reaction, filtration, washing) several times, it is possible to obtain silver oxide having a lower silver chloride quality. Further, the alkali added excessively contains silver oxide corresponding to the solubility, but this can be recovered by adding chlorine ions.

[実施例1]
塩素イオンを含む合成硫酸ニッケル液100mlを200mlのビーカーに入れ、溶液中の塩素イオンに対して0.9〜1.5当量の硫酸銀又は酸化銀を添加して、常温(25℃)にてスターラーで1時間撹拌混合した。尚、上記合成硫酸ニッケル液の組成は、Ni:102g/l、Cl:1.0g/l、SO:165g/lであった。
[Example 1]
Place 100 ml of synthetic nickel sulfate solution containing chlorine ions in a 200 ml beaker, add 0.9 to 1.5 equivalents of silver sulfate or silver oxide to chlorine ions in the solution, and at room temperature (25 ° C.). The mixture was stirred and mixed with a stirrer for 1 hour. The composition of the synthetic nickel sulfate solution was Ni: 102 g / l, Cl: 1.0 g / l, and SO 4 : 165 g / l.

反応後の溶液を濾過し、得られた濾液の分析結果を、添加した硫酸銀又は酸化銀の添加当量、溶液のpH、及び溶液のORPと共に、下記表1に示した。この結果から分るように、硫酸銀及び酸化銀とも塩素イオン除去効果があり、反応性は非常に良好で、塩素イオンを1mg/l以下とすることができた。   The solution after the reaction was filtered, and the analysis result of the obtained filtrate was shown in Table 1 below together with the added equivalent of silver sulfate or silver oxide added, the pH of the solution, and the ORP of the solution. As can be seen from the results, both silver sulfate and silver oxide have an effect of removing chlorine ions, the reactivity is very good, and the chlorine ions can be reduced to 1 mg / l or less.

Figure 2005144374
Figure 2005144374

[実施例2]
上記実施例1と同じ組成の合成硫酸ニッケル液100mlを200mlのビーカーに入れ、溶液中の塩素イオンに対して1.0当量の銀メタルの粉末を添加して、80℃にてスターラーで1時間撹拌混合した。尚、銀粉末は溶解し難いため、硫酸にてpHを1に調整し、且つ過酸化水素でORPを600mV(vs.Ag/AgCl)まで上げて反応を行った。
[Example 2]
100 ml of a synthetic nickel sulfate solution having the same composition as in Example 1 above was placed in a 200 ml beaker, 1.0 equivalent of silver metal powder was added to the chlorine ions in the solution, and the mixture was stirred at 80 ° C. for 1 hour. Stir and mix. Since silver powder is difficult to dissolve, the reaction was carried out by adjusting the pH to 1 with sulfuric acid and raising the ORP to 600 mV (vs. Ag / AgCl) with hydrogen peroxide.

反応後の溶液を濾過し、得られた濾液の分析結果を、添加した銀粉末の添加当量、溶液のpH、及び溶液のORPと共に、下記表2に示した。この結果から分るように、銀粉末も塩素イオン除去効果があり、反応性は非常に良好で、塩素イオンを1mg/l以下とすることができた。   The solution after the reaction was filtered, and the analysis result of the obtained filtrate was shown in Table 2 below together with the addition equivalent of the added silver powder, the pH of the solution, and the ORP of the solution. As can be seen from this result, the silver powder also has an effect of removing chlorine ions, the reactivity is very good, and the chlorine ions can be reduced to 1 mg / l or less.

Figure 2005144374
Figure 2005144374

[実施例3]
塩素イオンを含む2種類の合成硫酸ニッケル液50mlをそれぞれ100mlのビーカーに入れ、塩素イオン電極を具えたイオンメーターにより溶液中の塩素イオン濃度を確認しながら酸化銀を少量ずつ添加して、常温(25℃)にてスターラーで1時間撹拌混合した。尚、上記合成硫酸ニッケル液は、始液Niイオン濃度は共に100g/lであり、始液Clイオン濃度はそれぞれ0.53g/lと0.19g/lである。
[Example 3]
50 ml of two kinds of synthetic nickel sulfate solutions containing chlorine ions are put in a 100 ml beaker, and silver oxide is added little by little while confirming the chlorine ion concentration in the solution with an ion meter equipped with a chlorine ion electrode. The mixture was stirred and mixed with a stirrer at 25 ° C for 1 hour. The synthetic nickel sulfate solution has an initial Ni ion concentration of 100 g / l, and an initial Cl ion concentration of 0.53 g / l and 0.19 g / l, respectively.

添加した酸化銀は、反応当初はほとんど瞬時に反応してしまうが、塩素イオン濃度が100mg/lを切るぐらいから徐々に反応が遅くなった。そのため、塩素イオン濃度が100mg/lを切ったときから、イオンメーターで塩素イオン濃度を測定しながら酸化銀を更に細かく分けて添加し、最終的には1時間反応させた後、30分間保持して終了した。   The added silver oxide reacts almost instantaneously at the beginning of the reaction, but the reaction gradually slows from the point where the chloride ion concentration falls below 100 mg / l. Therefore, when the chlorine ion concentration falls below 100 mg / l, silver oxide is added in finer portions while measuring the chlorine ion concentration with an ion meter, and finally the reaction is performed for 1 hour, and then held for 30 minutes. Finished.

反応終了後の終液について、それぞれ、塩素イオン濃度のイオンメーター値と化学分析値、及び銀イオン量の分析結果を、添加した酸化銀の添加当量と共に、下記表3に示した。この結果から分るように、終液の塩素イオン濃度が10mg/lの場合における終液中の銀は0.001g/l未満と極めて極微量であるが、終液の塩素イオン濃度を0.1mg/l程度まで低減させた場合には終液中に0.016g/lの銀イオンが検出された。   Regarding the final solution after completion of the reaction, the ion meter value and chemical analysis value of the chlorine ion concentration and the analysis result of the silver ion amount are shown in Table 3 below together with the addition equivalent of the added silver oxide. As can be seen from this result, when the chlorine ion concentration in the final liquid is 10 mg / l, the silver in the final liquid is extremely small, less than 0.001 g / l, but the chlorine ion concentration in the final liquid is 0.001. When the concentration was reduced to about 1 mg / l, 0.016 g / l of silver ions was detected in the final solution.

Figure 2005144374
Figure 2005144374

上記の実施例3によって、塩素イオンメーターにより溶液中の塩素イオンの化学分析値を予想しながら反応を制御することができ、確実に終点を判定できることが確認された。また、イオンメーターで銀の添加量を管理することで、塩素イオン除去後の硫酸ニッケル溶液中に銀イオンをほとんど残留させないことが可能であった。   According to Example 3 above, it was confirmed that the reaction could be controlled while predicting the chemical analysis value of chlorine ions in the solution with a chlorine ion meter, and the end point could be determined reliably. In addition, by controlling the amount of silver added with an ion meter, it was possible to hardly leave silver ions in the nickel sulfate solution after chlorine ion removal.

[実施例4]
銀イオン濃度0.16g/lの合成硫酸ニッケル液50mlを100mlのビーカーに入れ、過剰のニッケルメタル又は硫化ニッケルを添加して、セメンテーションによる銀イオンの固定を試みた。尚、反応温度は80℃とし、pHは硫酸により1に調整した。また、銀イオンとしては、硫酸浴への溶解形態である硫酸銀を用いた。
[Example 4]
50 ml of a synthetic nickel sulfate solution having a silver ion concentration of 0.16 g / l was placed in a 100 ml beaker, and excess nickel metal or nickel sulfide was added to try to fix silver ions by cementation. The reaction temperature was 80 ° C. and the pH was adjusted to 1 with sulfuric acid. As the silver ion, silver sulfate, which is a dissolved form in a sulfuric acid bath, was used.

セメンテーション終了後の終液中の銀イオン濃度を測定し、その結果をニッケルメタル及び硫化ニッケルの銀に対する添加当量と共に、下記表4に示した。この結果から分るように、溶液中に過剰に溶出した銀イオンは、ニッケルメタルあるいは硫化ニッケルのセメンテーションにより固定が可能である。   The silver ion concentration in the final solution after completion of cementation was measured, and the results are shown in Table 4 below together with the addition equivalents of nickel metal and nickel sulfide to silver. As can be seen from this result, silver ions excessively eluted in the solution can be fixed by cementation of nickel metal or nickel sulfide.

Figure 2005144374
Figure 2005144374

[実施例5]
塩化銀5gを100mlのビーカーに入れ、8N(25%)の苛性ソーダ溶液を塩化銀の反応当量の1〜15倍添加し、反応温度を常温あるいは60℃として2時間反応させることにより、塩化銀から酸化銀(AgO)への再生試験を行った。ただし、試料7についてのみ、3倍当量の8N苛性ソーダを5サイクル接触させて試験を行った。
[Example 5]
From silver chloride, put 5 g of silver chloride in a 100 ml beaker, add 1-15 times caustic soda solution of 8N (25%) and react for 2 hours at normal temperature or 60 ° C. A regeneration test to silver oxide (Ag 2 O) was performed. However, only for sample 7, the test was conducted by contacting 3 times the equivalent of 8N caustic soda for 5 cycles.

反応後のスラリーを、濾過し、水洗した後、乾燥して、X線回折により分析を行い、そのピーク強度からAgOの構成比を求め、その結果を下記表5にAgO品位として示した。前述した反応式4に示した反応によりNaClも同時に生成されるが、水洗により除去されて、ほとんど検出されることはなかった。 The slurry after the reaction is filtered, washed with water, dried, analyzed by X-ray diffraction, the composition ratio of Ag 2 O is obtained from the peak intensity, and the result is shown in Table 5 as Ag 2 O quality. Indicated. Although NaCl was simultaneously generated by the reaction shown in the above reaction formula 4, it was removed by washing with water and was hardly detected.

Figure 2005144374
Figure 2005144374

この結果から分るように、塩化銀から酸化銀への再生率を高めるには、当量に対して5〜15倍の苛性ソーダを加えると効果的であり、また、高温ほど効果的である。更に、試料7のように、塩素イオンの影響を抑えることができる繰り返し接触による再生が最も効果が大きく、酸化銀品位で約90%まで再生が可能であった。   As can be seen from this result, to increase the regeneration rate from silver chloride to silver oxide, it is effective to add 5 to 15 times caustic soda with respect to the equivalent, and the higher the temperature, the more effective. Furthermore, as in sample 7, regeneration by repeated contact that can suppress the influence of chlorine ions was most effective, and regeneration was possible up to about 90% in silver oxide quality.

[実施例6]
上記実施例5と同様にして得られた再生酸化銀(銀品位:86.2〜90.4重量%)、及び試薬酸化銀(銀品位:93.1重量%)を用いて、それぞれ塩素イオン除去試験を実施した。即ち、組成がNi:105g/l、Cl:1.10g/lの硫酸ニッケル溶液に、上記の各酸化銀を添加して、常温(25℃)にて1時間反応させた。尚、反応の終点判定は、イオンメーターを用いて行った。
[Example 6]
Using regenerated silver oxide (silver quality: 86.2 to 90.4% by weight) and reagent silver oxide (silver quality: 93.1% by weight) obtained in the same manner as in Example 5 above, each of chloride ions A removal test was performed. That is, the above silver oxides were added to a nickel sulfate solution having a composition of Ni: 105 g / l and Cl: 1.10 g / l and reacted at room temperature (25 ° C.) for 1 hour. The reaction end point was determined using an ion meter.

反応後の終液について、塩素イオン濃度と銀イオン濃度を分析し、添加した酸化銀の銀品位と添加当量、終液のイオンメーターによる塩素イオン濃度と共に、下記表6に示した。この結果から分るように、塩化銀から再生された酸化銀も塩素イオンの除去効果があり、塩素イオンを1mg/l以下とすることができた。   The final solution after the reaction was analyzed for chlorine ion concentration and silver ion concentration. The results are shown in Table 6 below together with the silver quality and added equivalent of added silver oxide and the chlorine ion concentration measured by an ion meter in the final solution. As can be seen from this result, silver oxide regenerated from silver chloride also has an effect of removing chlorine ions, and the chlorine ions could be reduced to 1 mg / l or less.

Figure 2005144374
Figure 2005144374

Claims (4)

塩素を含む非鉄金属の硫酸塩溶液に、金属銀、酸化銀、あるいは銀の硫酸塩又は炭酸塩の少なくとも1種を添加し、溶液中の塩素イオンを塩化銀として沈殿除去することを特徴とする非鉄金属硫酸塩溶液中の塩素イオン除去方法。 It is characterized by adding at least one of metallic silver, silver oxide, or silver sulfate or carbonate to a nonferrous metal sulfate solution containing chlorine, and precipitating and removing chlorine ions in the solution as silver chloride. A method for removing chloride ions in a non-ferrous metal sulfate solution. 前記塩素イオン除去反応の進行及び終点を、イオンメーターを用いた塩素イオン濃度の測定値により管理することを特徴とする、請求項1に記載の非鉄金属硫酸塩溶液中の塩素イオン除去方法。 The method for removing chlorine ions in a non-ferrous metal sulfate solution according to claim 1, wherein the progress and end point of the chlorine ion removal reaction are managed by the measured value of the chlorine ion concentration using an ion meter. 前記塩化銀を沈殿除去させた後、溶液中に残留する過剰な銀イオンをセメンテーション法により除去することを特徴とする、請求項1又は2に記載の非鉄金属硫酸塩溶液中の塩素イオン除去方法。 3. The removal of chlorine ions in a non-ferrous metal sulfate solution according to claim 1, wherein excess silver ions remaining in the solution are removed by a cementation method after the silver chloride is precipitated and removed. Method. 沈澱除去した塩化銀をアルカリと反応させて酸化銀とし、得られた酸化銀を前記塩素イオン除去工程に繰り返して硫酸塩溶液に添加することを特徴とする、請求項1〜3のいずれかに記載の非鉄金属硫酸塩溶液中の塩素イオン除去方法。 The precipitated silver chloride is reacted with an alkali to form silver oxide, and the obtained silver oxide is added to the sulfate solution by repeating the chlorine ion removing step. A method for removing chloride ions in a nonferrous metal sulfate solution as described.
JP2003387442A 2003-11-18 2003-11-18 Method for removing chloride ions in non-ferrous metal sulfate solutions Expired - Fee Related JP4321231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387442A JP4321231B2 (en) 2003-11-18 2003-11-18 Method for removing chloride ions in non-ferrous metal sulfate solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387442A JP4321231B2 (en) 2003-11-18 2003-11-18 Method for removing chloride ions in non-ferrous metal sulfate solutions

Publications (2)

Publication Number Publication Date
JP2005144374A true JP2005144374A (en) 2005-06-09
JP4321231B2 JP4321231B2 (en) 2009-08-26

Family

ID=34694792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387442A Expired - Fee Related JP4321231B2 (en) 2003-11-18 2003-11-18 Method for removing chloride ions in non-ferrous metal sulfate solutions

Country Status (1)

Country Link
JP (1) JP4321231B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202457A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Method for removing chlorine in acidic liquid
JP2013511620A (en) * 2009-11-23 2013-04-04 オウトテック オサケイティオ ユルキネン Method for removing chloride from zinc sulfate solution
US9834825B2 (en) 2014-09-12 2017-12-05 Samsung Display Co., Ltd. Method for collecting silver ions and phosphoric acid in waste fluid
CN108088842A (en) * 2018-02-23 2018-05-29 江西省农业科学院土壤肥料与资源环境研究所 A kind of system and method for measuring soil with organic matter
CN110655251A (en) * 2019-08-19 2020-01-07 西北矿冶研究院 Method for removing chloride ions in desulfurization slurry
CN111410283A (en) * 2020-04-16 2020-07-14 中国科学院生态环境研究中心 Agent for removing chloride ions in strongly acidic copper-containing wastewater and method for removing chloride by using same
CN113636634A (en) * 2021-08-04 2021-11-12 宁波弗镁瑞环保科技有限公司 Method for separating and recovering chlorine from chlorine-containing industrial wastewater
FR3124503A1 (en) * 2021-06-25 2022-12-30 Eurenco Process for the treatment of liquid effluents containing chloride ions
US11865522B2 (en) 2019-09-27 2024-01-09 Lg Chem, Ltd. Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202457A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Method for removing chlorine in acidic liquid
JP2013511620A (en) * 2009-11-23 2013-04-04 オウトテック オサケイティオ ユルキネン Method for removing chloride from zinc sulfate solution
US8540950B2 (en) 2009-11-23 2013-09-24 Outotec Oyj Method for the removal of chloride from zinc sulphate solution
KR101463320B1 (en) 2009-11-23 2014-11-18 오토텍 오와이제이 Method for the removal of chloride from zinc sulphate solution
US9834825B2 (en) 2014-09-12 2017-12-05 Samsung Display Co., Ltd. Method for collecting silver ions and phosphoric acid in waste fluid
CN108088842A (en) * 2018-02-23 2018-05-29 江西省农业科学院土壤肥料与资源环境研究所 A kind of system and method for measuring soil with organic matter
CN110655251A (en) * 2019-08-19 2020-01-07 西北矿冶研究院 Method for removing chloride ions in desulfurization slurry
US11865522B2 (en) 2019-09-27 2024-01-09 Lg Chem, Ltd. Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby
CN111410283A (en) * 2020-04-16 2020-07-14 中国科学院生态环境研究中心 Agent for removing chloride ions in strongly acidic copper-containing wastewater and method for removing chloride by using same
FR3124503A1 (en) * 2021-06-25 2022-12-30 Eurenco Process for the treatment of liquid effluents containing chloride ions
CN113636634A (en) * 2021-08-04 2021-11-12 宁波弗镁瑞环保科技有限公司 Method for separating and recovering chlorine from chlorine-containing industrial wastewater

Also Published As

Publication number Publication date
JP4321231B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
CA2938134C (en) Scandium recovery method
JP5994912B2 (en) Scandium recovery method
JP3879126B2 (en) Precious metal smelting method
WO2014181721A1 (en) Method for recovering scandium
KR101861885B1 (en) Improved method of ore processing
JP2013508566A (en) Precious metal recovery method
JP5220143B2 (en) Method for recovering Ir from platinum group-containing solution
RU2693285C1 (en) METHOD OF SEPARATING METALS FROM PLATINUM, PALLADIUM, RHODIUM Pt-Pd-Rh
JP2018111858A (en) Method for producing scandium oxide
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
US5401296A (en) Precious metal extraction process
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
JP5200588B2 (en) Method for producing high purity silver
JP5339967B2 (en) Method for removing chlorine from acidic liquid
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
WO2011120093A1 (en) Recovering metals from pickle liquor
JP2009126759A (en) Method of preparing high-purity solution containing nickel sulfate and cobalt sulfate, and method of producing high-purity nickel with use of the same solution
CN114317997A (en) Novel process for purifying high-purity platinum
JP2011195935A (en) Method for separating and recovering platinum group element
JP3823307B2 (en) Method for producing high purity cobalt solution
JP5573763B2 (en) High purity silver production waste liquid treatment method
RU2204620C2 (en) Method of reprocessing iron oxide based sediments containing precious metals
JP3387109B2 (en) Recovery of rhodium
JP2003089827A (en) Method for refining silver
JP2005047776A (en) Method for reducing chlorine ion in sulfuric acid acidic solution of nonferrous metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A131 Notification of reasons for refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120612

LAPS Cancellation because of no payment of annual fees