JP5608955B2 - LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY - Google Patents

LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY Download PDF

Info

Publication number
JP5608955B2
JP5608955B2 JP2007026567A JP2007026567A JP5608955B2 JP 5608955 B2 JP5608955 B2 JP 5608955B2 JP 2007026567 A JP2007026567 A JP 2007026567A JP 2007026567 A JP2007026567 A JP 2007026567A JP 5608955 B2 JP5608955 B2 JP 5608955B2
Authority
JP
Japan
Prior art keywords
epoxy resin
light emitting
light
emitting device
acid anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007026567A
Other languages
Japanese (ja)
Other versions
JP2008192880A (en
Inventor
林 正樹
林  正樹
玉置 寛人
寛人 玉置
蔵本 雅史
雅史 蔵本
三木 倫英
倫英 三木
崇之 佐野
崇之 佐野
智久 岸本
智久 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2007026567A priority Critical patent/JP5608955B2/en
Publication of JP2008192880A publication Critical patent/JP2008192880A/en
Application granted granted Critical
Publication of JP5608955B2 publication Critical patent/JP5608955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、照明器具、ディスプレイ、携帯電話のバックライト、動画照明補助光源、その他の一般的民生用光源などに用いられる発光装置及びその製造方法並びに発光装置用成形体に関する。   The present invention relates to a light emitting device used for a lighting fixture, a display, a backlight of a mobile phone, a moving image illumination auxiliary light source, other general consumer light sources, a manufacturing method thereof, and a molded body for the light emitting device.

発光素子を用いた表面実装型発光装置は、小型で電力効率が良く、鮮やかな色の発光をする。また、この発光素子は半導体素子であるため球切れなどの心配がない。更に初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。このような優れた特性を有するため、発光ダイオード(LED)、レーザーダイオード(LD)などの発光素子を用いる発光装置は、各種の光源として利用されている。近年、発光素子の高出力化が急速に進んでいる。
この表面実装型発光装置は、量産性の良さから一般に液晶ポリマー、PPS(ポリフェニレンサルファイド)、ナイロン等の熱可塑性樹脂を成形体に用いる場合が多い。
一方、発光素子を水分や埃等から保護するための封止部材は、エポキシ樹脂が使用されている(例えば、特許文献1:特許第3512732号公報、特許文献2:特開2001−234032号公報、特許文献3:特開2002−302533号公報参照)。
また、発光素子の高出力化に伴い、シリコーン樹脂が使用されている。
A surface-mounted light-emitting device using a light-emitting element is small in size, has high power efficiency, and emits bright colors. In addition, since this light emitting element is a semiconductor element, there is no fear of a broken ball. Further, it has excellent initial driving characteristics and is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, light-emitting devices using light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) are used as various light sources. In recent years, output of light emitting elements has been rapidly increased.
In general, the surface-mounted light-emitting device often uses a thermoplastic resin such as a liquid crystal polymer, PPS (polyphenylene sulfide), or nylon as a molded body because of its mass productivity.
On the other hand, an epoxy resin is used as a sealing member for protecting the light emitting element from moisture and dust (for example, Patent Document 1: Japanese Patent No. 3512732, Patent Document 2: Japanese Patent Laid-Open No. 2001-234032). Patent Document 3: Japanese Patent Laid-Open No. 2002-302533).
Moreover, with the increase in output of light emitting elements, silicone resins are used.

しかしながら、従来の表面実装型発光装置の成形体に用いられる熱可塑性樹脂は耐熱性に優れるものの、分子内に芳香族成分を有するため耐光性に乏しい。また、分子末端に接着性を向上させる水酸基等を有しないため、リードや封止部材との密着性が乏しい。特にシリコーン樹脂を用いる封止部材は、エポキシ樹脂を用いる封止部材に比べ、熱可塑性樹脂を用いる成形体との密着性が大幅に低下するため、長期信頼性に乏しい。
エポキシ樹脂は封止部材として使用されているが、成形し難いこと等からリードフレームタイプの表面実装型の成形体としては使用されていない。
また、赤色を発光する発光素子よりも青色を発光する窒化ガリウム系化合物半導体の発光素子の方が高出力であり、発熱量も大きい。そのため、青色に発光する発光素子を使用した場合に成形体の劣化が問題となってくる。
However, although the thermoplastic resin used for the molded body of the conventional surface mount type light emitting device is excellent in heat resistance, it has poor light resistance because it has an aromatic component in the molecule. Moreover, since it does not have a hydroxyl group or the like for improving adhesiveness at the molecular end, adhesion with a lead or a sealing member is poor. In particular, a sealing member using a silicone resin is poor in long-term reliability because adhesion to a molded body using a thermoplastic resin is greatly reduced as compared with a sealing member using an epoxy resin.
Epoxy resin is used as a sealing member, but it is not used as a lead frame type surface mount type molded body because it is difficult to mold.
In addition, a gallium nitride compound semiconductor light emitting element that emits blue light has a higher output and generates a larger amount of heat than a light emitting element that emits red light. Therefore, when a light emitting element that emits blue light is used, deterioration of the molded body becomes a problem.

また、特許第2656336号公報(特許文献4)には、封止樹脂が、エポキシ樹脂、硬化剤及び硬化促進剤を構成成分とするBステージ状の光半導体封止用エポキシ樹脂組成物であって、上記構成成分が分子レベルで均一に混合されている樹脂組成物の硬化体で構成されていることを特徴とする光半導体装置が記載されており、この場合、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂が主として用いられ、トリグリシジルイソシアネート等を使用し得ることも記載されているが、トリグリシジルイソシアネートは、実施例においてビスフェノール型エポキシ樹脂に少量添加使用されているもので、本発明者らの検討によれば、このBステージ状半導体封止用エポキシ樹脂組成物は、特に高温・長時間の放置で黄変するという問題がある。   Japanese Patent No. 2656336 (Patent Document 4) discloses a B-stage-shaped epoxy resin composition for sealing an optical semiconductor, in which the sealing resin includes an epoxy resin, a curing agent, and a curing accelerator. And an optical semiconductor device characterized in that it is composed of a cured product of a resin composition in which the above constituent components are uniformly mixed at a molecular level. In this case, as an epoxy resin, a bisphenol A type is described. It is described that epoxy resin or bisphenol F type epoxy resin is mainly used and triglycidyl isocyanate can be used, but triglycidyl isocyanate is used in a small amount added to bisphenol type epoxy resin in Examples. According to the study by the present inventors, this epoxy resin composition for B-stage semiconductor encapsulation is particularly high. For a long time left there is a problem of yellowing.

また、いずれにしてもこの特許第2656336号公報(特許文献4)には、
「上記光半導体封止用エポキシ樹脂組成物は、特にコンパクトデイスクの受光素子封止材料あるいは固体撮像素子であるラインセンサー,エリアセンサーの封止材料に好適に用いることができる。そして、このような光半導体封止用エポキシ樹脂組成物を用い、例えば固体撮像素子等の受光素子を樹脂封止してなる光半導体装置は、形成画像に、樹脂の光学むらに起因する縞模様や封止樹脂中の異物に起因する黒点が現れることのない高性能品であり、樹脂封止品でありながら、セラミツクパツケージ品と同等かそれ以上の性能を発揮する。」
と記載されているように、その封止樹脂は受光素子に用いられるものであって、発光素子を封止するものではない。
In any case, this Japanese Patent No. 2656336 (Patent Document 4)
“The above-mentioned epoxy resin composition for sealing an optical semiconductor can be suitably used for a light receiving element sealing material for a compact disk or a sealing material for a line sensor or an area sensor which is a solid-state imaging element. An optical semiconductor device that uses an epoxy resin composition for optical semiconductor encapsulation and encapsulates a light-receiving element such as a solid-state imaging element with a resin pattern. It is a high-performance product that does not show any black spots due to the foreign material, and exhibits a performance equal to or better than a ceramic package product while being a resin-encapsulated product. "
As described, the sealing resin is used for a light receiving element, and does not seal the light emitting element.

この場合、発光素子封止用エポキシ樹脂組成物におけるトリアジン誘導体エポキシ樹脂の使用については、特開2000−196151号公報(特許文献5)、特開2003−224305号公報(特許文献6)、特開2005−306952号公報(特許文献7)に記載があるが、これらは、いずれもトリアジン誘導体エポキシ樹脂と酸無水物とを反応させて得られた固形物を用いたものではない。   In this case, with respect to the use of the triazine derivative epoxy resin in the epoxy resin composition for sealing a light emitting device, JP 2000-196151 A (Patent Document 5), JP 2003-224305 A (Patent Document 6), and JP Although there is description in 2005-306952 (patent document 7), none of these uses the solid substance obtained by making triazine derivative epoxy resin and an acid anhydride react.

なお、本発明に関連する公知文献としては、上記の公報に加えて、下記特許文献8,9及び非特許文献1が挙げられる。
特許第3512732号公報 特開2001−234032号公報 特開2002−302533号公報 特許第2656336号公報 特開2000−196151号公報 特開2003−224305号公報 特開2005−306952号公報 特開2005−259972号公報 特開2006−156704号公報 エレクトロニクス実装技術2004.4の特集
In addition to the above-mentioned publications, the following Patent Documents 8 and 9 and Non-Patent Document 1 are listed as known documents related to the present invention.
Japanese Patent No. 3512732 JP 2001-234032 A JP 2002-302533 A Japanese Patent No. 2656336 JP 2000-196151 A JP 2003-224305 A JP 2005-306952 A JP 2005-259972 A JP 2006-156704 A Special Issue on Electronics Packaging Technology 2004.4

本出願人は、上記の従来技術に鑑み、先に、耐熱性、耐光性に優れた成形体(パッケージ)を用いた発光装置を提案した(PCT/JP2006/314970)が、更にこのパッケージからの封止樹脂の耐剥離性を向上させることが望まれた。   In view of the above prior art, the present applicant has previously proposed a light emitting device using a molded body (package) having excellent heat resistance and light resistance (PCT / JP2006 / 314970). It was desired to improve the peel resistance of the sealing resin.

従って、本発明は、耐熱性、耐光性に優れた成形体(パッケージ)からの封止樹脂の剥離を抑え、長期的に安定した発光装置及びその製造方法を提供することを目的とする。更に、本発明は、発光装置用成形体を提供することを他の目的とする。   Accordingly, an object of the present invention is to provide a light-emitting device and a method for manufacturing the same, which suppresses peeling of the sealing resin from a molded body (package) excellent in heat resistance and light resistance, and is stable for a long time. Furthermore, this invention makes it the other objective to provide the molded object for light-emitting devices.

上記の問題点を解決すべく、本発明者らは鋭意検討を重ねた結果、本発明を完成するに到った。
本発明は、430nm以上に発光ピーク波長を有する窒化ガリウム系化合物半導体の発光素子と、該発光素子が載置される、トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物及びウィスカーを含む熱硬化性エポキシ樹脂組成物の硬化物を用いる成形体とを有する発光装置に関する。これにより窒化ガリウム系化合物半導体の発光素子を使用した場合でも、耐熱性、耐光性に優れた発光装置を提供することができる。
In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, the present invention has been completed.
The present invention relates to a gallium nitride compound semiconductor light-emitting device having an emission peak wavelength of 430 nm or more, and a triazine derivative epoxy resin and an acid anhydride on which the light-emitting device is mounted, epoxy group equivalent / acid anhydride group equivalent. The present invention relates to a light emitting device having a reaction product obtained by reacting at a ratio of 0.6 to 2.0 and a molded body using a cured product of a thermosetting epoxy resin composition containing whiskers. Accordingly, even when a gallium nitride compound semiconductor light emitting element is used, a light emitting device having excellent heat resistance and light resistance can be provided.

また、ウィスカーを成形体中に含有させることで、以下のような効果を発揮する。即ち、発光素子が載置されるパッケージ(成形体)を形成する第1の樹脂に対し、封止樹脂として第2の樹脂を用いて封止を行う場合、ウィスカーを配合することで、パッケージの表面に、ウィスカー先端のミクロな突起物が形成される。その表面のミクロな突起物が第2の樹脂を物理的に固定させる効果が得られ、第2の樹脂の剥離を抑えることができる。   Moreover, the following effects are demonstrated by containing a whisker in a molded object. That is, when sealing is performed using the second resin as the sealing resin with respect to the first resin forming the package (molded body) on which the light-emitting element is placed, the whisker is added to the first resin. A micro-projection at the tip of the whisker is formed on the surface. The micro-projections on the surface can obtain an effect of physically fixing the second resin, and the peeling of the second resin can be suppressed.

更に、発光装置は、従来のトランジスターのような単純形状の半導体装置と異なり、発光面を有するため、パッケージが複雑形状である。応力の集中しやすい部分ができやすいので、従来の半導体装置より、構造的にパッケージ強度が低い。そのため、発光装置のパッケージは、実装基板に発光装置をハンダ実装するとき、また、発光装置の発光時といった、熱膨張収縮で応力が発生するとき、パッケージにクラックが発生しやすい。しかし、ウィスカーの配合により樹脂の強度が改善され、高温、加熱冷却時でも、パッケージのクラック発生が抑えられる。   Further, unlike a conventional semiconductor device such as a transistor, the light emitting device has a light emitting surface, and thus the package has a complicated shape. Since a portion where stress is easily concentrated is easily formed, the package strength is structurally lower than that of a conventional semiconductor device. Therefore, the package of the light emitting device is likely to crack when stress is generated due to thermal expansion and contraction, such as when the light emitting device is solder-mounted on the mounting substrate or when the light emitting device emits light. However, the strength of the resin is improved by the addition of the whisker, and the occurrence of cracks in the package is suppressed even at high temperatures and heating and cooling.

また、本発明において、前記熱硬化性エポキシ樹脂組成物には、シリコーンパウダーを配合することが好ましい。即ち、前記第2の樹脂がシリコーン樹脂であると、線膨張率が大きく、熱膨張収縮が大きく、剥離しやすい。そこで、第1の樹脂に、線膨張率の大きいシリコーンパウダーを配合することで第1の樹脂の熱膨張を大きくし、第2の樹脂との熱膨張収縮の差を小さくすることで、剥離を抑えることができる。また、ウィスカーを配合することで、上述したようにパッケージの表面にウィスカー先端のミクロな突起物が形成されてこれが第2の樹脂を物理的に固定させ、第2の樹脂の剥離を効果的に防止し得る。
更に、シリコーンパウダーの配合によっても、樹脂の強度が改善され、パッケージのクラック発生の抑制からも有効である。
Moreover, in this invention, it is preferable to mix | blend silicone powder with the said thermosetting epoxy resin composition. That is, when the second resin is a silicone resin, the linear expansion coefficient is large, the thermal expansion / contraction is large, and the second resin is easily peeled off. Therefore, the first resin is blended with silicone powder having a large linear expansion coefficient to increase the thermal expansion of the first resin, and the difference between the thermal expansion and contraction with the second resin is reduced, thereby removing the peeling. Can be suppressed. Also, by blending the whisker, a micro-projection at the tip of the whisker is formed on the surface of the package as described above, which physically fixes the second resin, and effectively exfoliates the second resin. Can be prevented.
Furthermore, the compounding of the silicone powder improves the strength of the resin and is effective in suppressing the occurrence of cracks in the package.

しかも、封止樹脂としての第2の樹脂がシリコーン樹脂の場合、線膨張率が大きい。実装基板に発光装置をハンダ実装するとき、また、発光装置の発光時といった、熱膨張収縮加熱冷却時は、シリコーン樹脂が大きく膨張収縮し、パッケージに大きな応力が発生する。このとき、パッケージクラック、パッケージとリードフレーム(L/F)の剥離が起きやすい。しかし、本発明では、ウィスカーの配合、好ましくはウィスカーに加えてシリコーンパウダーの配合により、ウィスカーによる高温時の強度、シリコーンパウダーによる応力緩和により、樹脂強度が改善され、シリコーン樹脂が原因のパッケージのクラック、剥離が抑えられる。   In addition, when the second resin as the sealing resin is a silicone resin, the linear expansion coefficient is large. When the light-emitting device is solder-mounted on the mounting substrate, or when the light-emitting device emits light, the silicone resin expands and contracts greatly, and a large stress is generated in the package. At this time, package cracks and peeling of the package and the lead frame (L / F) are likely to occur. However, in the present invention, whisker blending, preferably silicone powder blending in addition to whisker, strength at high temperature by whisker, stress relaxation by silicone powder improves resin strength, and cracks in the package due to silicone resin , Peeling is suppressed.

前記成形体は、(A)前記トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物、(B)ウィスカー、(C)反射部材、(D)無機充填剤、(E)硬化触媒を含有する熱硬化性エポキシ樹脂組成物の硬化物であることが好ましい。この場合、この熱硬化性エポキシ樹脂組成物は、更に(F)シリコーンパウダーを配合することが好ましく、また、(G)酸化防止剤を使用することが好ましい。   The molded body comprises (A) a reaction product obtained by reacting the triazine derivative epoxy resin and an acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0, and (B) whisker. (C) Reflective member, (D) Inorganic filler, (E) A cured product of a thermosetting epoxy resin composition containing a curing catalyst is preferable. In this case, this thermosetting epoxy resin composition preferably further contains (F) silicone powder, and (G) an antioxidant is preferably used.

前記成形体は、硬化性に優れ、耐熱性、耐光性、封止樹脂に対する耐剥離性に優れると共に、良好な強度を有し、特に前記(A)成分の使用により曲げ強度を高めることができる。   The molded body has excellent curability, heat resistance, light resistance, and excellent peel resistance against a sealing resin, and has good strength, and in particular, the bending strength can be increased by using the component (A). .

この場合、前記熱硬化性エポキシ樹脂組成物は、トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させる際、トリアジン誘導体エポキシ樹脂と酸無水物との反応を、酸化防止剤の存在下で行うようにすること、又は、トリアジン誘導体エポキシ樹脂と酸無水物との反応を、硬化触媒又は硬化触媒と酸化防止剤との存在下で行うようにすることが好ましい。   In this case, when the thermosetting epoxy resin composition reacts the triazine derivative epoxy resin and the acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0, the triazine derivative epoxy resin is used. The reaction between the acid anhydride and the acid anhydride is carried out in the presence of an antioxidant, or the reaction between the triazine derivative epoxy resin and the acid anhydride is carried out in the presence of a curing catalyst or a curing catalyst and an antioxidant. It is preferable to carry out at.

前記成形体は、430nm以上の反射率が70%以上であることが好ましい。これにより発光素子からの放射効率の高い発光装置を提供することができる。
前記成形体は、底面と側面を持つ凹部を有しており、前記凹部の底面は前記発光素子が載置されており、ケイ素含有樹脂を有する封止部材で封止することが好ましい。成形体との密着性が大幅に向上するからである。
The molded body preferably has a reflectance of 430 nm or more of 70% or more. Thus, a light emitting device with high radiation efficiency from the light emitting element can be provided.
The molded body has a concave portion having a bottom surface and a side surface, and the light emitting element is placed on the bottom surface of the concave portion, and is preferably sealed with a sealing member having a silicon-containing resin. This is because the adhesion to the molded body is greatly improved.

本発明は、(A)トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物に、(B)ウィスカー、(C)反射部材、(D)無機充填剤及び(E)硬化触媒を混合する第1の工程と、
金型内にリードを配置して前記第1の工程で得られる熱硬化性エポキシ樹脂組成物をトランスファ・モールド工程により成形する第2の工程と、
前記第2の工程で成形される熱硬化性エポキシ樹脂組成物の硬化物の前記リード上に発光素子を載置する第3の工程と
を有する発光装置の製造方法に関する。これにより、簡易に熱硬化性エポキシ樹脂組成物の硬化物の成形体を用いる発光装置を提供することができる。この場合、トリアジン誘導体エポキシ樹脂と酸無水物との反応を、酸化防止剤の存在下で行うようにすること、又はトリアジン誘導体エポキシ樹脂と酸無水物との反応を、硬化触媒又は硬化触媒と酸化防止剤との存在下で行うと共に、硬化触媒の配合を前記反応物として行うようにすることができる。また、上述したように、前記第1工程において、更に(F)シリコーンパウダーを(A)〜(E)成分と共に混合、配合することが好ましい。
The present invention relates to a reaction product obtained by reacting (A) a triazine derivative epoxy resin and an acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0, (B) whisker, (C) a reflective member, (D) an inorganic filler, and (E) a first step of mixing a curing catalyst;
A second step of arranging a lead in the mold and molding the thermosetting epoxy resin composition obtained in the first step by a transfer molding step;
The manufacturing method of a light-emitting device which has a 3rd process of mounting a light emitting element on the said lead | read | reed of the hardened | cured material of the thermosetting epoxy resin composition shape | molded by the said 2nd process. Thereby, the light-emitting device using the molded object of the hardened | cured material of a thermosetting epoxy resin composition simply can be provided. In this case, the reaction between the triazine derivative epoxy resin and the acid anhydride is performed in the presence of an antioxidant, or the reaction between the triazine derivative epoxy resin and the acid anhydride is performed with a curing catalyst or a curing catalyst. While being carried out in the presence of an inhibitor, the curing catalyst can be blended as the reactant. Further, as described above, in the first step, it is preferable that (F) silicone powder is further mixed and blended with the components (A) to (E).

本発明は、(A)トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物、(B)ウィスカー、(C)反射部材、(D)無機充填剤、(E)硬化触媒、好ましくはこれらに加えて(F)シリコーンパウダーや(G)酸化防止剤を含有する熱硬化性エポキシ樹脂組成物の硬化物にて形成される発光装置用成形体に関する。これにより耐熱性、耐光性に優れた成形体を提供することができる。
なお、本発明において、フォトカプラーは包含されず、除外される。
The present invention comprises (A) a reaction product obtained by reacting a triazine derivative epoxy resin and an acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0, (B) whisker, ( C) Reflective member, (D) inorganic filler, (E) curing catalyst, preferably in addition to these (F) silicone powder and (G) a cured product of a thermosetting epoxy resin composition containing an antioxidant It is related with the molded object for light-emitting devices formed. Thereby, the molded object excellent in heat resistance and light resistance can be provided.
In the present invention, photocouplers are not included and excluded.

本発明に係る発光装置は、耐熱性、耐光性及び密着性に優れており、しかも封止樹脂の剥離が抑えられ、高出力でも長期的に安定した出力を発揮できる。発光素子を載置する成形体は、硬化性に優れ、良好な強度を有すると共に、長期間にわたり耐熱性、耐光性及び密着性を保持する。   The light emitting device according to the present invention is excellent in heat resistance, light resistance, and adhesion, and further, the peeling of the sealing resin is suppressed, and a stable output can be exhibited for a long time even at high output. A molded body on which the light-emitting element is placed has excellent curability, good strength, and maintains heat resistance, light resistance, and adhesion over a long period of time.

以下、本発明に係る発光装置、成形体及びそれらの製造方法を、実施の形態及び実施例を用いて説明する。但し、本発明は、この実施の形態及び実施例に限定されない。実施の形態に係る表面実装型発光装置について図面を用いて説明する。図1は、本発明の一実施の形態に係る表面実装型発光装置を示す概略断面図である。図2は、同実施の形態に係る表面実装型発光装置を示す概略平面図である。図1は、図2のI−Iの概略断面図である。   Hereinafter, a light-emitting device, a molded body, and a manufacturing method thereof according to the present invention will be described using embodiments and examples. However, the present invention is not limited to this embodiment and examples. A surface-mount light-emitting device according to an embodiment will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a surface-mounted light-emitting device according to an embodiment of the present invention. FIG. 2 is a schematic plan view showing the surface-mounted light-emitting device according to the embodiment. FIG. 1 is a schematic cross-sectional view taken along the line II of FIG.

発光装置100は、430nm以上に発光ピーク波長を有する窒化ガリウム系化合物半導体の発光素子10と、発光素子10を載置する成形体40とを有する。成形体40は、後述する熱硬化性エポキシ樹脂組成物の硬化物を用いることが好ましい。成形体40は第1のリード20と第2のリード30とを有している。成形体40は底面と側面を持つ凹部を有しており、凹部の底面に発光素子10を載置する。発光素子10は一対の正負の電極を有しており、その一対の正負の電極は第1のリード20及び第2のリード30とワイヤ60を介して電気的に接続している。発光素子10は封止部材50により封止している。封止部材50はトリアジン誘導体エポキシ樹脂を含むエポキシ樹脂、又は軟質もしくは硬質のシリコーン樹脂、硬質シリコーンレジン、エポキシ変性シリコーン樹脂、変成シリコーン樹脂から選ばれる1種又は2種以上のケイ素含有樹脂で封止することが好ましい。成形体40との密着性を高めることができるからである。但し、その他のエポキシ樹脂、ウレタン樹脂で封止することもできる。封止部材50は発光素子10からの波長を変換するための蛍光体70を含有している。また、金型等を使用して製造される、凹部を有する成形体40は高い反射率を有するため、成形体40の凹部の底面及び側面方向への光の透過を低減し、正面方向への光の放出を増大することができる。   The light emitting device 100 includes a light emitting element 10 of a gallium nitride compound semiconductor having an emission peak wavelength of 430 nm or more, and a molded body 40 on which the light emitting element 10 is mounted. The molded body 40 is preferably a cured product of a thermosetting epoxy resin composition described later. The molded body 40 has a first lead 20 and a second lead 30. The molded body 40 has a recess having a bottom surface and a side surface, and the light emitting element 10 is placed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 through the wire 60. The light emitting element 10 is sealed with a sealing member 50. The sealing member 50 is sealed with an epoxy resin containing a triazine derivative epoxy resin, or one or more silicon-containing resins selected from a soft or hard silicone resin, a hard silicone resin, an epoxy-modified silicone resin, and a modified silicone resin. It is preferable to do. This is because the adhesion to the molded body 40 can be improved. However, it can be sealed with other epoxy resins and urethane resins. The sealing member 50 contains a phosphor 70 for converting the wavelength from the light emitting element 10. In addition, since the molded body 40 having a recess, which is manufactured using a mold or the like, has a high reflectance, the transmission of light toward the bottom surface and the side surface of the recess of the molded body 40 is reduced, and the forward direction is reduced. The light emission can be increased.

成形体40は、430nm以上に発光ピーク波長を有する発光素子10を用いて、430nm以上の反射効率が高い成形体40を用いている。そのため発光素子10から出射される光の大部分は成形体40に吸収されず、外部に放射されるため、発光素子10からの放射効率が高い。逆に、反射率が低い成形体を使用した場合、発光素子10から出射される光の大部分が成形体に吸収され、成形体の劣化が促進される。   The molded body 40 uses the molded body 40 having a high reflection efficiency of 430 nm or more by using the light emitting element 10 having the emission peak wavelength at 430 nm or more. Therefore, most of the light emitted from the light emitting element 10 is not absorbed by the molded body 40 and is radiated to the outside, so that the radiation efficiency from the light emitting element 10 is high. Conversely, when a molded body having a low reflectance is used, most of the light emitted from the light emitting element 10 is absorbed by the molded body, and the deterioration of the molded body is promoted.

(成形体)
成形体40として、(A)トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物、(B)ウィスカー、(C)反射部材、(D)無機充填剤、(E)硬化触媒、好ましくは更に(F)シリコーンパウダー、(G)酸化防止剤を含有する熱硬化性エポキシ樹脂組成物の硬化物を用いる。以下、各要素について説明する。
(Molded body)
As the molded body 40, (A) a reaction product obtained by reacting a triazine derivative epoxy resin and an acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0, (B) whisker, A cured product of a thermosetting epoxy resin composition containing (C) a reflective member, (D) an inorganic filler, (E) a curing catalyst, preferably (F) silicone powder, and (G) an antioxidant is used. Hereinafter, each element will be described.

(A)反応物
本発明に係る熱硬化性エポキシ樹脂組成物は、トリアジン誘導体エポキシ樹脂と酸無水物とを、エポキシ基当量/酸無水物基当量を0.6〜2.0の割合で反応させて得られた反応物を樹脂成分として使用する。
(A) Reactant The thermosetting epoxy resin composition according to the present invention reacts a triazine derivative epoxy resin with an acid anhydride at an epoxy group equivalent / acid anhydride group equivalent ratio of 0.6 to 2.0. The reaction product obtained is used as a resin component.

(A−1)トリアジン誘導体エポキシ樹脂
本発明で用いられるトリアジン誘導体エポキシ樹脂は、これを酸無水物と特定の割合で反応させて得られる反応物を樹脂成分として含有することにより、熱硬化性エポキシ樹脂組成物の硬化物の黄変を抑制し、かつ経時劣化の少ない半導体発光装置を実現する。かかるトリアジン誘導体エポキシ樹脂としては、1,3,5−トリアジン核誘導体エポキシ樹脂であることが好ましい。特にイソシアヌレート環を有するエポキシ樹脂は、耐光性や電気絶縁性に優れており、1つのイソシアヌレート環に対して、2価の、より好ましくは3価のエポキシ基を有することが望ましい。具体的には、トリス(2,3−エポキシプロピル)イソシアヌレート、トリス(α−メチルグリシジル)イソシアヌレート、トリス(α−メチルグリシジル)イソシアヌレート等を用いることができる。
(A-1) Triazine derivative epoxy resin The triazine derivative epoxy resin used in the present invention contains, as a resin component, a reaction product obtained by reacting it with an acid anhydride at a specific ratio. A semiconductor light-emitting device that suppresses yellowing of a cured product of a resin composition and has little deterioration with time is realized. The triazine derivative epoxy resin is preferably a 1,3,5-triazine nucleus derivative epoxy resin. In particular, an epoxy resin having an isocyanurate ring is excellent in light resistance and electrical insulation, and desirably has a divalent, more preferably a trivalent epoxy group per one isocyanurate ring. Specifically, tris (2,3-epoxypropyl) isocyanurate, tris (α-methylglycidyl) isocyanurate, tris (α-methylglycidyl) isocyanurate, or the like can be used.

本発明で用いるトリアジン誘導体エポキシ樹脂の軟化点は90〜125℃であることが好ましい。なお、本発明において、このトリアジン誘導体エポキシ樹脂としては、トリアジン環を水素化したものは包含しない。   The softening point of the triazine derivative epoxy resin used in the present invention is preferably 90 to 125 ° C. In the present invention, the triazine derivative epoxy resin does not include a hydrogenated triazine ring.

(A−2)酸無水物
本発明で用いられる(A−2)成分の酸無水物は、硬化剤として作用するものであり、耐光性を与えるために非芳香族であり、かつ炭素炭素二重結合を有さないものが好ましく、例えば、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物などが挙げられ、これらの中でもメチルヘキサヒドロ無水フタル酸が好ましい。これらの酸無水物系硬化剤は、1種類を単独で使用してもよく、また2種類以上を併用してもよい。
(A-2) Acid anhydride The acid anhydride of component (A-2) used in the present invention acts as a curing agent, is non-aromatic to give light resistance, and is carbon Those having no double bond are preferred, for example, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hydrogenated methylnadic anhydride, and the like. Phthalic acid is preferred. These acid anhydride curing agents may be used alone or in combination of two or more.

酸無水物系硬化剤の配合量としては、酸無水物基1当量に対しトリアジン誘導体エポキシ樹脂のエポキシ基が0.6〜2.0当量、好ましくは1.0〜2.0当量、更に好ましくは1.2〜1.6当量となる量である。エポキシ基当量/酸無水物基当量が0.6当量未満では硬化不良が生じ、信頼性が低下する場合がある。また、2.0当量を超える量では未反応硬化剤が硬化物中に残り、得られる硬化物の耐湿性を悪化させる場合がある。   As the compounding amount of the acid anhydride curing agent, the epoxy group of the triazine derivative epoxy resin is 0.6 to 2.0 equivalent, preferably 1.0 to 2.0 equivalent, more preferably 1 equivalent to 1 equivalent of the acid anhydride group. Is an amount of 1.2 to 1.6 equivalents. If the epoxy group equivalent / acid anhydride group equivalent is less than 0.6 equivalent, curing failure may occur and reliability may be lowered. On the other hand, if the amount exceeds 2.0 equivalents, the unreacted curing agent may remain in the cured product, which may deteriorate the moisture resistance of the resulting cured product.

本発明においては、上記した(A−1),(A−2)成分、又は(A−1),(A−2)成分と後述する酸化防止剤を、予め70〜120℃、好ましくは80〜110℃にて4〜20時間、好ましくは6〜15時間、又は(A−1),(A−2)と後述する硬化触媒、又は(A−1),(A−2)とそれぞれ後述する酸化防止剤,硬化触媒を予め30〜80℃、好ましくは40〜60℃にて10〜72時間、好ましくは36〜60時間反応させて、軟化点が50〜100℃、好ましくは60〜90℃である固形物とし、これを粉砕して配合することが好ましい。反応させて得られる物質の軟化点が、50℃未満では固形物とはならず、100℃を超える温度では流動性が低下するおそれがある。   In the present invention, the above-described components (A-1) and (A-2), or the components (A-1) and (A-2) and the antioxidant described later are preliminarily set at 70 to 120 ° C., preferably 80. ˜110 ° C. for 4 to 20 hours, preferably 6 to 15 hours, or (A-1), (A-2) and a curing catalyst described later, or (A-1), (A-2) and each described later. The antioxidant and the curing catalyst are reacted in advance at 30 to 80 ° C., preferably 40 to 60 ° C. for 10 to 72 hours, preferably 36 to 60 hours, and the softening point is 50 to 100 ° C., preferably 60 to 90. It is preferable to form a solid material having a temperature of 0 ° C. and pulverize and mix it. If the softening point of the substance obtained by the reaction is less than 50 ° C., it does not become a solid, and if it exceeds 100 ° C., the fluidity may decrease.

この場合、反応時間が短すぎると、高分子成分が少なくて固形物とならず、長すぎると、流動性が低下する場合が生じる。   In this case, if the reaction time is too short, the polymer component is small and does not become a solid, and if it is too long, the fluidity may decrease.

ここで得られた反応物(反応固形物)は、(A−1)成分のトリアジン誘導体エポキシ樹脂と(A−2)成分の酸無水物との反応物のうち、ゲルパーミエーションクロマトグラフィー(GPC)による分析において(但し、分析条件として試料濃度0.2%、注入量50μlを移動相THF100%,流量1.0ml/min.、温度40℃の条件下、検出器RIで測定)、分子量が1,500を超える高分子量成分と、分子量300〜1,500までの中分子量成分と、モノマー成分とを含有し、高分子量成分が20〜70質量%、中分子量成分が10〜60質量%、モノマー成分が10〜40質量%であることが好ましい。   The reaction product (reaction solid material) obtained here was gel permeation chromatography (GPC) among the reaction products of the triazine derivative epoxy resin of component (A-1) and the acid anhydride of component (A-2). ) (However, as the analysis conditions, the sample concentration is 0.2%, the injection amount is 50 μl, the mobile phase THF is 100%, the flow rate is 1.0 ml / min., The temperature is 40 ° C., and the temperature is measured by the detector RI). A high molecular weight component exceeding 1,500, a medium molecular weight component having a molecular weight of 300 to 1,500, and a monomer component, the high molecular weight component being 20 to 70% by mass, the medium molecular weight component being 10 to 60% by mass, The monomer component is preferably 10 to 40% by mass.

上記反応物は、(A−1)成分としてトリグリシジルイソシアネートを用いた場合、下記式(1)で示される反応生成物を含有し、特に(A−2)成分の酸無水物がメチルヘキサヒドロ無水フタル酸である場合、下記式(2)で示される反応生成物を含有する。   When triglycidyl isocyanate is used as the component (A-1), the reaction product contains a reaction product represented by the following formula (1), and in particular, the acid anhydride of the component (A-2) is methylhexahydro In the case of phthalic anhydride, it contains a reaction product represented by the following formula (2).

Figure 0005608955
Figure 0005608955

上記式中、Rは酸無水物残基、nが0〜200、好ましくは0〜100の範囲の任意のものを含み、平均分子量が500〜10万の成分であるが、本発明に係る反応物にあっては、上述した通り、分子量1,500を超える高分子量成分を20〜70質量%、特に30〜60質量%、分子量が300〜1,500の中分子量成分を10〜60質量%、特に10〜40質量%、モノマー成分(未反応エポキシ樹脂及び酸無水物)を10〜40質量%、特に15〜30質量%含有することが好ましい。   In the above formula, R is an acid anhydride residue, and n is any component in the range of 0 to 200, preferably 0 to 100, and is an ingredient having an average molecular weight of 500 to 100,000. In the product, as described above, a high molecular weight component having a molecular weight exceeding 1,500 is 20 to 70% by mass, particularly 30 to 60% by mass, and a medium molecular weight component having a molecular weight of 300 to 1,500 is 10 to 60% by mass. In particular, it is preferable to contain 10 to 40% by mass of monomer components (unreacted epoxy resin and acid anhydride) in an amount of 10 to 40% by mass, particularly 15 to 30% by mass.

(B)ウィスカー
本発明のエポキシ樹脂組成物には、(B)ウィスカー(無機物ウィスカー状繊維)を配合する。
(B)成分の無機物ウィスカー状繊維は、成形物の強度、靭性を高めるために配合するものである。無機物繊維には、ガラス繊維やホウ珪酸ガラス、ロックウールのような非晶質繊維、カーボン繊維やアルミナ繊維のような多結晶繊維、チタン酸カリウム、珪酸カルシウム、珪酸ガラス、ホウ酸アルミニウムのような単結晶繊維、更には硫酸マグネシウム、炭化珪素、窒化珪素等や金属繊維などが挙げられるが、本発明では、優れた高強度を得る点から、チタン酸カリウム,珪酸カルシウム,珪酸ガラス,及びホウ酸アルミニウムの群から選ばれる1種又は2種以上の単結晶繊維が採用される。
(B) Whisker Into the epoxy resin composition of the present invention, (B) whisker (inorganic whisker-like fiber) is blended.
The inorganic whisker-like fiber (B) is blended to increase the strength and toughness of the molded product. Inorganic fibers include glass fiber, borosilicate glass, amorphous fiber such as rock wool, polycrystalline fiber such as carbon fiber and alumina fiber, potassium titanate, calcium silicate, silicate glass, aluminum borate, etc. Single crystal fibers, and further, magnesium sulfate, silicon carbide, silicon nitride, and metal fibers can be mentioned . In the present invention, potassium titanate, calcium silicate, silicate glass, and boric acid are used in order to obtain excellent high strength. One or more single crystal fibers selected from the group of aluminum are employed.

この場合は、無機物ウィスカー状繊維の平均繊維径は、通常0.05〜100μm、好ましくは0.05〜50μm、更に好ましくは0.1〜20μmであり、平均繊維長は、通常0.1〜1,000μm、好ましくは1〜500μm、より好ましくは2〜250μm、最も好ましくは5〜100μm、特には10〜30μmである。ウィスカーの平均繊維径が0.05μmに満たないと十分な強度、靭性が得られず、100μmを超えると表面の平滑性が悪くなる傾向がみられ、更には、ウィスカーの微視的な均一分散性が損なわれやすくなる傾向がある。また、平均繊維長が0.1μm未満である場合には剛性が低くなる傾向があり、1,000μmを超えると他成分と分散せず、十分な流動性が得られない場合がある。   In this case, the average fiber diameter of the inorganic whisker-like fibers is usually 0.05 to 100 μm, preferably 0.05 to 50 μm, more preferably 0.1 to 20 μm, and the average fiber length is usually 0.1 to It is 1,000 μm, preferably 1 to 500 μm, more preferably 2 to 250 μm, most preferably 5 to 100 μm, particularly 10 to 30 μm. If the average fiber diameter of the whisker is less than 0.05 μm, sufficient strength and toughness cannot be obtained. If the whisker exceeds 100 μm, the smoothness of the surface tends to be deteriorated. There is a tendency that the property is easily impaired. Further, when the average fiber length is less than 0.1 μm, the rigidity tends to be low, and when it exceeds 1,000 μm, it does not disperse with other components, and sufficient fluidity may not be obtained.

また、無機物ウィスカー状繊維の平均繊維長/平均繊維径の比(アスペクト比)は、通常(2〜300)/1、好ましくは(2〜100)/1、より好ましくは(3〜50)/1である。平均繊維長/平均繊維径の比が、2/1より小さいと、ウィスカーによるエポキシ樹脂組成物の強度向上効果が必ずしも十分ではなく、300/1より大きいと、混練中のウィスカーの折れの問題や、得られるエポキシ樹脂組成物の強度のバラツキの問題が生じるおそれがある。   The ratio of the average fiber length / average fiber diameter (aspect ratio) of the inorganic whisker-like fibers is usually (2 to 300) / 1, preferably (2 to 100) / 1, more preferably (3 to 50) /. 1. If the ratio of the average fiber length / average fiber diameter is smaller than 2/1, the effect of improving the strength of the epoxy resin composition by the whisker is not necessarily sufficient. If it is larger than 300/1, the problem of whisker breakage during kneading or There may be a problem of variation in strength of the resulting epoxy resin composition.

なお、本発明において、上記平均粒径、平均繊維長の測定は、顕微鏡法によるものである。   In the present invention, the average particle diameter and the average fiber length are measured by a microscope.

また、無機物ウィスカー状繊維の配合量は、組成物全体の0.001〜30質量%、好ましくは0.01〜20質量%である。配合量が組成物全体の0.001質量%に満たないと十分な強度、靭性は得られず、30質量%を超えると顕著に流動性が劣る場合がある。   Moreover, the compounding quantity of an inorganic whisker-like fiber is 0.001-30 mass% of the whole composition, Preferably it is 0.01-20 mass%. If the blending amount is less than 0.001% by mass of the whole composition, sufficient strength and toughness cannot be obtained, and if it exceeds 30% by mass, the fluidity may be remarkably inferior.

(C)反射部材
本発明のエポキシ樹脂組成物には、反射部材を配合する。(C)成分の反射部材は、白色着色剤として、白色度を高めるために配合するものであり、反射部材としては二酸化チタンを用いることが好ましく、この二酸化チタンの単位格子はルチル型、アナタース型、ブルカイト型のどれでも構わない。また、平均粒径や形状も限定されないが、平均粒径は通常0.05〜5.0μmである。上記二酸化チタンは、樹脂や無機充填剤との相溶性、分散性を高めるため、AlやSiなどの含水酸化物等で予め表面処理することができる。また、反射部材(白色着色剤)として、二酸化チタン以外にチタン酸カリウム、酸化ジルコン、硫化亜鉛、酸化亜鉛、酸化マグネシウム等を単独で又は二酸化チタンと併用して使用することもできる。
(C) Reflective member A reflective member is mix | blended with the epoxy resin composition of this invention. The (C) component reflecting member is blended as a white colorant to increase whiteness, and it is preferable to use titanium dioxide as the reflecting member. The unit cell of this titanium dioxide is a rutile type, anatase type. Any of the bulkyite types can be used. Moreover, although an average particle diameter and a shape are not limited, an average particle diameter is 0.05-5.0 micrometers normally. The titanium dioxide can be surface-treated in advance with a hydrous oxide such as Al or Si in order to enhance the compatibility and dispersibility with a resin or an inorganic filler. In addition to titanium dioxide, potassium titanate, zircon oxide, zinc sulfide, zinc oxide, magnesium oxide and the like can be used alone or in combination with titanium dioxide as the reflecting member (white colorant).

反射部材の充填量は、組成物全体の2〜80質量%、特に5〜50質量%が好ましい。2質量%未満では十分な白色度が得られない場合があり、80質量%を超えると未充填やボイド等の成形性が低下する場合がある。   The filling amount of the reflecting member is preferably 2 to 80% by mass, particularly 5 to 50% by mass, based on the entire composition. If it is less than 2% by mass, sufficient whiteness may not be obtained. If it exceeds 80% by mass, moldability such as unfilling and voids may be deteriorated.

(D)無機充填剤
本発明のエポキシ樹脂組成物には、更に無機充填剤を配合する。配合される(D)成分の無機充填剤としては、通常エポキシ樹脂組成物に配合されるものを使用することができる。例えば、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、ガラス繊維、三酸化アンチモン等が挙げられるが、上記した反射部材(白色着色剤)は除かれる。
(D) Inorganic filler An inorganic filler is further mix | blended with the epoxy resin composition of this invention. What is normally mix | blended with an epoxy resin composition can be used as an inorganic filler of the (D) component mix | blended. Examples thereof include silicas such as fused silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, glass fiber, antimony trioxide, etc., but the above-described reflecting member (white colorant) is excluded.

これら無機充填剤の平均粒径や形状は特に限定されないが、平均粒径は通常5〜40μmである。
なお、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めることができる。
Although the average particle diameter and shape of these inorganic fillers are not particularly limited, the average particle diameter is usually 5 to 40 μm.
The average particle size can be determined as a mass average value D 50 in the particle size distribution measurement by laser diffraction method (or median diameter).

上記無機充填剤は、樹脂と無機充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合してもよい。
このようなカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性アルコキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ官能性アルコキシシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプト官能性アルコキシシランなどを用いることが好ましい。なお、表面処理に用いるカップリング剤の配合量及び表面処理方法については特に制限されるものではない。
In order to increase the bonding strength between the resin and the inorganic filler, the inorganic filler may be blended with a surface treated in advance with a coupling agent such as a silane coupling agent or a titanate coupling agent.
Examples of such a coupling agent include epoxy functions such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Functional alkoxysilanes such as N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and γ-mercapto It is preferable to use a mercapto functional alkoxysilane such as propyltrimethoxysilane. The amount of coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

無機充填剤の充填量は、(A−1)エポキシ樹脂と(A−2)酸無水物の総量100質量部に対し、20〜700質量部、特に50〜400質量部が好ましい。20質量部未満では、十分な強度を得ることができないおそれがあり、700質量部を超えると、増粘による未充填不良や柔軟性が失われることで、素子内の剥離等の不良が発生する場合がある。なお、この無機充填剤は、組成物全体の10〜90質量%、特に20〜80質量%の範囲で含有することが好ましい。   The filling amount of the inorganic filler is preferably 20 to 700 parts by weight, particularly 50 to 400 parts by weight with respect to 100 parts by weight of the total amount of (A-1) epoxy resin and (A-2) acid anhydride. If the amount is less than 20 parts by mass, sufficient strength may not be obtained. If the amount exceeds 700 parts by mass, unfilled defects due to thickening and flexibility are lost, resulting in defects such as peeling in the element. There is a case. In addition, it is preferable to contain this inorganic filler in the range of 10-90 mass% of the whole composition, especially 20-80 mass%.

(E)硬化触媒
(E)成分の硬化触媒としては、エポキシ樹脂組成物の硬化触媒として公知のものが使用でき、特に限定されないが、第三級アミン類、イミダゾール類、それらの有機カルボン酸塩、有機カルボン酸金属塩、金属−有機キレート化合物、芳香族スルホニウム塩、有機ホスフィン化合物類、ホスホニウム化合物類等のリン系硬化触媒、これらの塩類等の1種又は2種以上を使用することができる。これらの中でも、イミダゾール類、リン系硬化触媒、例えば2−エチル−4−メチルイミダゾール又はメチル−トリブチルホスホニウム−ジメチルホスフェイト、第四級ホスホニウムブロマイドが更に好ましい。
(E) Curing catalyst The curing catalyst for the component (E) can be any known curing catalyst for the epoxy resin composition, and is not particularly limited, but includes tertiary amines, imidazoles, and their organic carboxylates. , Organic carboxylic acid metal salts, metal-organic chelate compounds, aromatic sulfonium salts, phosphorus-based curing catalysts such as organic phosphine compounds and phosphonium compounds, and one or more of these salts can be used. . Among these, imidazoles, phosphorus-based curing catalysts such as 2-ethyl-4-methylimidazole, methyl-tributylphosphonium-dimethyl phosphate, and quaternary phosphonium bromide are more preferable.

硬化触媒の使用量は、組成物全体の0.05〜5質量%、特に0.1〜2質量%の範囲内で配合することが好ましい。上記範囲を外れると、エポキシ樹脂組成物の硬化物の耐熱性及び耐湿性のバランスが悪くなるおそれがある。
また、エポキシ樹脂成分には、更に下記の成分を配合することができる。
It is preferable to mix the curing catalyst in an amount of 0.05 to 5% by mass, particularly 0.1 to 2% by mass of the entire composition. If it is out of the above range, the balance of heat resistance and moisture resistance of the cured product of the epoxy resin composition may be deteriorated.
Moreover, the following component can be further mix | blended with an epoxy resin component.

(F)シリコーンパウダー
本発明のエポキシ樹脂組成物には、更に、(F)シリコーンパウダーを配合することが好ましい。このシリコーンパウダーの配合により、封止樹脂の熱膨張、熱収縮や外力による成形体に加わる応力を緩和することができる
(F) Silicone powder It is preferable to mix | blend (F) silicone powder further with the epoxy resin composition of this invention. By compounding this silicone powder, the stress applied to the molded body due to thermal expansion, thermal contraction and external force of the sealing resin can be relieved.

(F)成分のシリコーンパウダーとしては、例えば、直鎖状のオルガノポリシロキサンを三次元架橋させてなるシリコーンゴムパウダー(特開昭63−77942号公報、特開平3−93834号公報、特開平04−198324号公報参照)、及びシリコーンゴムを粉末化したもの(米国特許第3843601号明細書、特開昭62−270660号公報、特開昭59−96,122号公報参照)などが利用できる。更には、上記方法で得られたシリコーンゴムパウダーの表面を(R’SiO3/2n(R’は置換又は非置換の一価炭化水素基を表す)で表される三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン硬化物であるシリコーンレジンで被覆した構造のシリコーン複合パウダー(特開平7−196815号公報参照)などがあるが、本発明の(F)成分のシリコーンパウダーとしては、単一の材質のもののみ使用してもよいし、二種類以上の材質のシリコーンパウダーをブレンドして使用してもよいが、中でもシリコーンゴムパウダーの表面をシリコーンレジンで被覆した構造のシリコーン複合パウダーが好適である。 Examples of the silicone powder of component (F) include silicone rubber powders obtained by three-dimensionally cross-linking linear organopolysiloxane (Japanese Patent Laid-Open Nos. 63-77942, 3-93934, and 04). -198324), and powdered silicone rubber (see U.S. Pat. No. 3,843,601, JP-A-62-270660, JP-A-59-96,122), and the like can be used. Furthermore, the surface of the silicone rubber powder obtained by the above method is formed into a three-dimensional network represented by (R′SiO 3/2 ) n (R ′ represents a substituted or unsubstituted monovalent hydrocarbon group). There is a silicone composite powder having a structure coated with a silicone resin which is a cured product of a polyorganosilsesquioxane having a crosslinked structure (see Japanese Patent Application Laid-Open No. 7-196815). For example, a single material may be used, or two or more types of silicone powder may be blended, but the silicone rubber powder surface is coated with a silicone resin. Silicone composite powder is preferred.

シリコーンパウダーの平均粒径は、0.01〜50μmのものが好適であるが、更には0.05〜30μmのものが好ましい。平均粒径が0.05μm未満であると十分な靭性、低弾性が得られず、50μmより大きいと、強度の低下を招く場合がある。
なお、本発明において、平均粒径は、レーザー光回折散乱法により測定することができる。
The average particle size of the silicone powder is preferably 0.01 to 50 μm, more preferably 0.05 to 30 μm. If the average particle size is less than 0.05 μm, sufficient toughness and low elasticity cannot be obtained, and if it is more than 50 μm, strength may be lowered.
In the present invention, the average particle diameter can be measured by a laser light diffraction scattering method.

かかるシリコーンパウダーとしては、トレフィルE−500、トレフィルE−600、トレフィルE−601、トレフィルE−850等がそれぞれ上記の商品名で東レ・ダウコーニング・シリコーン(株)から、また、KMP−600、KMP−601、KMP−602、KMP−605等が信越化学工業(株)から市販されているものが使用できる。   Examples of such silicone powders include Trefil E-500, Trefil E-600, Trefil E-601, Trefil E-850, etc., respectively from Toray Dow Corning Silicone Co., Ltd., KMP-600, KMP-601, KMP-602, KMP-605, etc. which are commercially available from Shin-Etsu Chemical Co., Ltd. can be used.

また、シリコーンパウダーの配合量は、組成物全体の0.001〜30質量%、好ましくは0.005〜20質量%である。配合量が組成物全体の0.001質量%に満たないと強靭性、低弾性の効果が得られず、30質量%を超えると強度の低下を招く場合がある。   Moreover, the compounding quantity of silicone powder is 0.001-30 mass% of the whole composition, Preferably it is 0.005-20 mass%. If the blending amount is less than 0.001% by mass of the whole composition, the effects of toughness and low elasticity cannot be obtained, and if it exceeds 30% by mass, the strength may be lowered.

(G)酸化防止剤
本発明のエポキシ樹脂組成物には、必要により、酸化防止剤を配合することができる。
(G)成分の酸化防止剤としては、フェノール系、リン系、硫黄系酸化防止剤を使用でき、酸化防止剤の具体例としては、以下のような酸化防止剤が挙げられる。
(G) Antioxidant An antioxidant can be mix | blended with the epoxy resin composition of this invention as needed.
(G) As an antioxidant of a component, a phenol type, phosphorus type, and sulfur type antioxidant can be used, and the following antioxidants are mentioned as a specific example of antioxidant.

フェノール系酸化防止剤としては、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−p−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられ、中でも2,6−ジ−t−ブチル−p−クレゾールが好ましい。   Examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 3,9-bis [1,1-dimethyl-2- {β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} ethyl] 2,4,8,10-tetraoxaspiro [ 5,5] undecane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 , 5-di-t-butyl-4-hydroxybenzyl) benzene, among which 2,6-di-t-butyl-p-cresol is preferable.

リン系酸化防止剤としては、亜リン酸トリフェニル、亜リン酸ジフェニルアルキル、亜リン酸フェニルジアルキル、亜リン酸トリ(ノニルフェニル)、亜リン酸トリラウリル、亜リン酸トリオクタデシル、トリフェニルホスファイト、ジステアリルペンタエリトリトールジホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ジイソデシルペンタエリトリトールジホスファイト、ジ(2,4−ジ−tert−ブチルフェニル)ペンタエリトリトールジホスファイト、トリステアリルソルビトールトリホスファイト及びテトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニルジホスホネート等が挙げられ、中でも亜リン酸トリフェニルが好ましい。   Phosphorus antioxidants include triphenyl phosphite, diphenylalkyl phosphite, phenyl dialkyl phosphite, tri (nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, triphenyl phosphite , Distearyl pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, diisodecylpentaerythritol diphosphite, di (2,4-di-tert-butylphenyl) pentaerythritol diphosphite , Tristearyl sorbitol triphosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenyl diphosphonate and the like, among which triphenyl phosphite is preferable.

また、硫黄系酸化防止剤としては、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート等が挙げられる。   Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate. .

これらの酸化防止剤は、それぞれ単独で又は2種以上を組み合わせて使用できるが、リン系酸化防止剤単独又はフェノール系酸化防止剤とリン系酸化防止剤とを組み合わせて使用することが特に好ましい。この場合、フェノール系酸化防止剤とリン系酸化防止剤との使用割合は、質量比でフェノール系酸化防止剤:リン系酸化防止剤=0:100〜70:30、特に0:100〜50:50とすることが好ましい。   These antioxidants can be used alone or in combination of two or more, but it is particularly preferable to use a phosphorus antioxidant alone or a combination of a phenolic antioxidant and a phosphorus antioxidant. In this case, the use ratio of the phenolic antioxidant and the phosphorus antioxidant is, as a mass ratio, phenolic antioxidant: phosphorus antioxidant = 0: 100 to 70:30, particularly 0: 100 to 50: 50 is preferable.

酸化防止剤の配合量は、エポキシ樹脂組成物100質量部に対して0.01〜10質量部、特に0.03〜5質量部とすることが好ましい。配合量が少なすぎると十分な耐熱性が得られず、変色する場合があり、多すぎると硬化阻害を起こし、十分な硬化性、強度を得ることができない場合がある。   It is preferable that the compounding quantity of antioxidant shall be 0.01-10 mass parts with respect to 100 mass parts of epoxy resin compositions, especially 0.03-5 mass parts. If the amount is too small, sufficient heat resistance may not be obtained and discoloration may occur, while if too large, curing inhibition may occur, and sufficient curability and strength may not be obtained.

その他のエポキシ樹脂
また、本発明の組成物には、必要に応じて、(A−1)成分以外のエポキシ樹脂を本発明の効果を損なわない範囲で一定量以下(特に、(A−1)成分100質量部に対して0〜40質量部、特に5〜20質量部)配合することができる。このエポキシ樹脂の例として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、3,3’,5,5’−テトラメチル−4,4’−ビフェノール型エポキシ樹脂又は4,4’−ビフェノール型エポキシ樹脂のようなビフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、トリスフェニロールメタン型エポキシ樹脂、テトラキスフェニロールエタン型エポキシ樹脂、及びフェノールジシクロペンタジエンノボラック型エポキシ樹脂の芳香環を水素化したエポキシ樹脂等が挙げられる。
また、その他のエポキシ樹脂の軟化点は70〜100℃であることが好ましい。
Other epoxy resins In addition, in the composition of the present invention, if necessary, an epoxy resin other than the component (A-1) is not more than a certain amount within a range not impairing the effects of the present invention (particularly, (A-1) 0 to 40 parts by mass, especially 5 to 20 parts by mass) can be added to 100 parts by mass of the component. Examples of this epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol type epoxy resin, or 4,4′-biphenol type epoxy resin. Biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, naphthalenediol type epoxy resin, trisphenylol methane type epoxy resin, tetrakisphenylol ethane type epoxy resin, And an epoxy resin obtained by hydrogenating an aromatic ring of a phenol dicyclopentadiene novolac type epoxy resin.
Moreover, it is preferable that the softening point of another epoxy resin is 70-100 degreeC.

その他の添加剤
本発明のエポキシ樹脂組成物には、更に必要に応じて各種の添加剤を配合することができる。例えば、樹脂の性質を改善する目的で種々の熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、脂肪酸エステル、グリセリン酸エステル等の内部離型剤、ハロゲントラップ剤等の添加剤を本発明の効果を損なわない範囲で添加配合することができる。
Other Additives Various additives can be further blended in the epoxy resin composition of the present invention as necessary. For example, for the purpose of improving the properties of the resin, various thermoplastic resins, thermoplastic elastomers, organic synthetic rubbers, internal mold release agents such as fatty acid esters and glyceric acid esters, and additives such as halogen trapping agents are effective for the present invention. It can be added and blended as long as it is not impaired.

エポキシ樹脂組成物の調製方法
本発明のエポキシ樹脂組成物を調製する場合の方法としては、反応物として、予め(A−1),(A−2)成分、又は(A−1),(A−2),(G)成分を混合して、70〜120℃、好ましくは80〜110℃の温度範囲にて、又は、予め(A−1),(A−2),(E)成分、又は(A−1),(A−2),(E),(G)成分の各成分を混合して30〜80℃、好ましくは40〜60℃の温度範囲にて、無溶媒の加温可能な反応釜等の装置により均一に溶融混合し、混合物が常温で取扱うのに十分な軟化点、具体的には50〜100℃、より好ましくは60〜90℃になるまで増粘させたものを冷却して、固形化したものを使用する。
Preparation Method of Epoxy Resin Composition As a method for preparing the epoxy resin composition of the present invention, (A-1), (A-2) component, or (A-1), (A -2), (G) component is mixed, in the temperature range of 70-120 degreeC, Preferably it is 80-110 degreeC, or (A-1), (A-2), (E) component beforehand, Alternatively, the components (A-1), (A-2), (E), and (G) are mixed and heated without solvent in a temperature range of 30 to 80 ° C., preferably 40 to 60 ° C. Thoroughly melted and mixed with an apparatus such as a reaction kettle, and thickened until the mixture reaches a softening point sufficient for handling at room temperature, specifically 50 to 100 ° C., more preferably 60 to 90 ° C. Is cooled and solidified.

この場合、これら成分を混合する温度域としては、(A−1),(A−2)成分、又は(A−1),(A−2),(G)成分を混合する場合は70〜120℃が適切であるが、より好ましくは80〜110℃の範囲である。混合温度が70℃未満では、室温で固形となるような混合物を得るためには温度が低すぎ、120℃を超える温度では、反応速度が速くなりすぎるため、期待した反応度で反応を停止することが難しくなってしまう。なお、(A−1),(A−2),(F)成分又は(A−1),(A−2),(F),(G)成分を混合する場合の温度は上記の通りであるが、混合温度が低すぎる場合、逆に高すぎる場合の不利は上記と同様である。   In this case, as a temperature range for mixing these components, the components (A-1) and (A-2) or the components (A-1), (A-2) and (G) are mixed in a range from 70 to 70. Although 120 degreeC is suitable, More preferably, it is the range of 80-110 degreeC. If the mixing temperature is less than 70 ° C, the temperature is too low to obtain a mixture that becomes solid at room temperature, and if the temperature exceeds 120 ° C, the reaction rate becomes too fast, so the reaction is stopped at the expected degree of reactivity. It becomes difficult. In addition, the temperature in the case of mixing (A-1), (A-2), (F) component or (A-1), (A-2), (F), (G) component is as above-mentioned. However, if the mixing temperature is too low, the disadvantage of being too high is the same as above.

次に、この固形物(反応物)を粉砕した後、(B),(C),(D)成分、及び(E),(G)成分を上記固形物(反応物)の調製に用いない場合は(E)成分や必要により(G)成分の各成分、更に好ましくは(F)成分、その他の添加物を所定の組成比で配合し、これをミキサー等によって十分均一に混合した後、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕してエポキシ樹脂組成物の成形材料とすることができる。   Next, after pulverizing the solid (reactant), the components (B), (C), (D), and (E), (G) are not used for the preparation of the solid (reactant). In the case, (E) component and, if necessary, each component of (G) component, more preferably (F) component, and other additives are blended at a predetermined composition ratio, and this is sufficiently uniformly mixed by a mixer or the like. It can be melt-mixed with a hot roll, kneader, extruder, etc., then cooled and solidified, and pulverized to an appropriate size to form a molding material for the epoxy resin composition.

このようにして得られる本発明の白色エポキシ樹脂組成物は、半導体・電子機器装置、特には発光素子を用いる成形体、あるいは発光素子、その他の半導体装置の封止材として有効に利用できるが、受光素子、及び発光素子と受光素子とが一体化されたフォトカプラーは除かれる。
この場合、成形の最も一般的な方法としては低圧トランスファ・モールド成形法が挙げられる。なお、本発明のエポキシ樹脂組成物の成形温度は150〜185℃で30〜180秒行うことが望ましい。後硬化は150〜195℃で2〜20時間行ってもよい。
The white epoxy resin composition of the present invention thus obtained can be effectively used as a sealing material for semiconductor / electronic device devices, particularly molded articles using light emitting elements, or light emitting elements, and other semiconductor devices, The light receiving element and the photocoupler in which the light emitting element and the light receiving element are integrated are excluded.
In this case, the most common method of molding is a low-pressure transfer molding method. In addition, as for the shaping | molding temperature of the epoxy resin composition of this invention, it is desirable to carry out for 30 to 180 second at 150-185 degreeC. The post-curing may be performed at 150 to 195 ° C. for 2 to 20 hours.

(発光素子)
図1において、発光素子10は、430nm以上に発光ピーク波長を持つものを使用する。この波長以上であれば成形体40は高い反射率を示し、耐光性を有するからである。特に窒化ガリウム系化合物半導体を用いることが好ましい。従来のPPSを用いた成型体に窒化ガリウム系化合物半導体の発光素子を載置した発光装置では、該成型体が該発光素子からの熱により劣化する問題を有している。窒化ガリウム系化合物半導体の発光素子はGaP系、GaAs系等の発光素子よりも電流投入時の発熱量が大きいためである。窒化ガリウム系化合物半導体の発光素子10は基板上にGaN、InGaN、InAlGaN等の半導体を発光層として形成させたものが用いられる。
(Light emitting element)
In FIG. 1, a light emitting element 10 having an emission peak wavelength of 430 nm or more is used. This is because if the wavelength is longer than this wavelength, the molded body 40 exhibits high reflectance and has light resistance. In particular, it is preferable to use a gallium nitride compound semiconductor. A conventional light-emitting device in which a gallium nitride compound semiconductor light-emitting element is mounted on a molded body using PPS has a problem that the molded body deteriorates due to heat from the light-emitting element. This is because a gallium nitride compound semiconductor light emitting element generates a larger amount of heat when a current is applied than a GaP based or GaAs based light emitting element. The gallium nitride compound semiconductor light emitting element 10 is formed by forming a semiconductor such as GaN, InGaN, InAlGaN or the like as a light emitting layer on a substrate.

(封止部材)
図1において、封止部材50は、トリアジン誘導体エポキシ樹脂を含むエポキシ樹脂又はシリコーン樹脂に代表されるケイ素含有樹脂を用いることが好ましい。
トリアジン誘導体エポキシ樹脂を含むエポキシ樹脂を用いる封止部材50は、成形体40と同一系統の材質であるため、密着性を高めることができる。この場合、上記エポキシ樹脂としては、トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られるものを使用することができる。窒化ガリウム系化合物半導体の発光素子10は、電流投入時に100℃以上になるため、わずかではあるが封止部材50と成形体40は共に熱膨張する。そのため封止部材50と成形体40とを同一系統の部材を使用することにより熱膨張係数が近似したものとなり、封止部材50と成形体40との界面の剥離が生じ難い。
(Sealing member)
In FIG. 1, the sealing member 50 is preferably made of an epoxy resin containing a triazine derivative epoxy resin or a silicon-containing resin typified by a silicone resin.
Since the sealing member 50 using an epoxy resin containing a triazine derivative epoxy resin is a material of the same system as the molded body 40, adhesion can be improved. In this case, as the epoxy resin, a resin obtained by reacting a triazine derivative epoxy resin and an acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0 can be used. . Since the gallium nitride compound semiconductor light emitting element 10 has a temperature of 100 ° C. or higher when a current is supplied, both the sealing member 50 and the molded body 40 thermally expand. Therefore, the thermal expansion coefficient is approximated by using the same member of the sealing member 50 and the molded body 40, and the interface between the sealing member 50 and the molded body 40 is hardly peeled off.

ケイ素含有樹脂を用いる封止部材の多くは熱可塑性樹脂を用いる従来の成形体と密着性が劣る傾向があるが、成形体40を本発明のエポキシ樹脂組成物とすることにより密着性を高めることができる。窒化ガリウム系化合物半導体の発光素子10は、電流投入時に発光エネルギーの高い青色光を発するため発光素子10と直に接している封止部材は最も劣化しやすいが、シリコーン樹脂に代表されるケイ素含有樹脂を封止部材とすることにより劣化速度を最小とすることができる。同様に、成形体40の表面、即ち、封止部材50との接着界面も光により劣化し、剥離が発生しやすいが、耐光性に優れたケイ素含有樹脂よりなる封止部材と本発明のエポキシ樹脂組成物よりなる成形体の接着界面は破壊され難い。   Many sealing members using a silicon-containing resin tend to be inferior in adhesion to conventional molded products using a thermoplastic resin, but the adhesion is improved by using the molded product 40 as the epoxy resin composition of the present invention. Can do. The gallium nitride compound semiconductor light emitting element 10 emits blue light with high emission energy when current is applied, so that the sealing member in direct contact with the light emitting element 10 is most likely to deteriorate. The deterioration rate can be minimized by using resin as the sealing member. Similarly, the surface of the molded body 40, that is, the adhesive interface with the sealing member 50 is also deteriorated by light and easily peeled off, but the sealing member made of a silicon-containing resin excellent in light resistance and the epoxy of the present invention The adhesive interface of the molded body made of the resin composition is not easily destroyed.

(蛍光体)
蛍光体70は発光素子10からの光を吸収し、異なる波長の光に波長変換するものであればよい。例えば、Y3Al512:Ce、(Y,Gd)3Al512:Ce、Y3(Al,Ga)512:Ce等で表されるCe等のランタノイド系元素で主に賦活される希土類系アルミン酸塩蛍光体等を用いることができる。
(Phosphor)
The phosphor 70 only needs to absorb light from the light emitting element 10 and convert the wavelength into light having a different wavelength. For example, lanthanoid elements such as Ce represented by Y 3 Al 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce are mainly used. An activated rare earth aluminate phosphor or the like can be used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

<実施例、比較例>
白色エポキシ樹脂組成物
エポキシ樹脂9質量部、酸無水物14質量部、酸化防止剤0.1質量部を予め反応釜により、80℃にて5時間溶融混合し、冷却して固化させた後、粉砕した。これに下記(B),(F)成分を表1に示す割合となるように配合すると共に、(C)成分を6質量部、(D)成分を70質量部、(E)成分を0.1質量部配合し、熱2本ロールにて均一に溶融混合し、冷却、粉砕して発光装置用の成形体である白色エポキシ樹脂組成物の硬化物を得た。使用した原材料を下記に示す。
<Examples and comparative examples>
White epoxy resin composition 9 parts by weight of epoxy resin, 14 parts by weight of acid anhydride, 0.1 parts by weight of antioxidant were previously melted and mixed at 80 ° C. for 5 hours in a reaction kettle, cooled and solidified, Crushed. The following components (B) and (F) are blended so as to have the ratio shown in Table 1, the component (C) is 6 parts by mass, the component (D) is 70 parts by mass, and the component (E) is 0. 1 mass part was mix | blended, and it melt-mixed uniformly with the heat | fever 2 roll, cooled and grind | pulverized, and obtained the hardened | cured material of the white epoxy resin composition which is a molded object for light-emitting devices. The raw materials used are shown below.

(A)エポキシ樹脂
(A)トリアジン誘導体エポキシ樹脂
トリス(2,3−エポキシプロピル)イソシアネート(TEPIC−S:日産化学工業(株)製商品名、エポキシ当量100)
(B)酸無水物
非炭素炭素二重結合酸無水物;メチルヘキサヒドロ無水フタル酸(リカシッドMH:新日本理化(株)製商品名)
(B)ウィスカー
(B−1)チタン酸カリウム(ティスモD:大塚化学(株)製商品名、線径0.5μm、長さ15μm、アスペクト比30)
(B−2)珪酸カルシウム(KH−30:関西マテック(株)製商品名、線径15μm、長さ100μm、アスペクト比7)
(B−3)珪酸ガラス(REV−9:NSG Vetorotex(株)製商品名、線径13μm、長さ35μm、アスペクト比3)
(B−4)ホウ酸アルミニウム(アルボレックスYS2B:四国化成工業(株)製商品名、線径1μm、長さ20μm、アスペクト比20)
(C)反射部材
二酸化チタン;ルチル型(R−45M:堺化学工業(株)製商品名)
(D)無機充填剤;破砕溶融シリカ((株)龍森製商品名)
(E)硬化触媒
リン系硬化触媒;第四級ホスホニウムブロマイド(U−CAT5003;サンアプロ(株)製商品名)
(F)シリコーンパウダー、
(F−1)シリコーンレジンで被覆したシリコーン複合パウダー(KMP−605;信越化学工業(株)製商品名、平均粒径2μm)
(F−2)シリコーンパウダー(トレフィルE−500;東レ・ダウコーニング(株)製商品名、平均粒径3μm)
(G)酸化防止剤
リン系酸化防止剤;亜リン酸トリフェニル(和光純薬(株)製商品名)
(A) Epoxy resin (A) Triazine derivative epoxy resin Tris (2,3-epoxypropyl) isocyanate (TEPIC-S: trade name, manufactured by Nissan Chemical Industries, Ltd., epoxy equivalent 100)
(B) Acid anhydride Non-carbon carbon double bond acid anhydride; methylhexahydrophthalic anhydride (Ricacid MH: trade name, manufactured by Shin Nippon Rika Co., Ltd.)
(B) Whisker (B-1) Potassium titanate (Tismo D: trade name, manufactured by Otsuka Chemical Co., Ltd., wire diameter 0.5 μm, length 15 μm, aspect ratio 30)
(B-2) Calcium silicate (KH-30: trade name, manufactured by Kansai Matec Co., Ltd., wire diameter 15 μm, length 100 μm, aspect ratio 7)
(B-3) Silicate glass (REV-9: NSG Vetorotex product name, wire diameter 13 μm, length 35 μm, aspect ratio 3)
(B-4) Aluminum borate (Arbolex YS2B: trade name, manufactured by Shikoku Chemicals Co., Ltd., wire diameter 1 μm, length 20 μm, aspect ratio 20)
(C) Reflective member Titanium dioxide; rutile type (R-45M: trade name manufactured by Sakai Chemical Industry Co., Ltd.)
(D) Inorganic filler; crushed fused silica (trade name, manufactured by Tatsumori Co., Ltd.)
(E) Curing catalyst Phosphorus-based curing catalyst; quaternary phosphonium bromide (U-CAT5003; trade name of San Apro Co., Ltd.)
(F) Silicone powder,
(F-1) Silicone composite powder coated with a silicone resin (KMP-605; trade name, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 2 μm)
(F-2) Silicone powder (Trefil E-500; trade name, manufactured by Toray Dow Corning Co., Ltd., average particle size 3 μm)
(G) Antioxidant Phosphorous antioxidant; Triphenyl phosphite (trade name, manufactured by Wako Pure Chemical Industries, Ltd.)

発光装置の作製
銅合金よりなるリードフレームに上記エポキシ樹脂組成物よりなる成形体をトランスファ・モールド工程により成形した。成形体は、底面と側面を持つ凹部を有する。InGanを発光層とするサファイヤ基板からなる青色発光の発光素子はエポキシ樹脂接着剤を用いて載置した。発光素子とリードフレームとは直径30μmの金線ワイヤを用いて電気的接続を行った。発光素子が底面に載置されている凹部を有する成形体に封止部材を滴下した。封止部材は、シリコーン樹脂100質量部に対しYAG蛍光体30質量部と酸化珪素よりなる光拡散剤5質量部を含むものを使用し、室温から150℃まで3時間かけ昇温し、150℃で5時間硬化させた。最後にリードフレームより切り出しを行い、白色発光の発光装置を得た。
Production of Light-Emitting Device A molded body made of the epoxy resin composition was formed on a lead frame made of a copper alloy by a transfer molding process. The molded body has a recess having a bottom surface and side surfaces. A blue light-emitting element composed of a sapphire substrate having InGan as a light-emitting layer was placed using an epoxy resin adhesive. The light emitting element and the lead frame were electrically connected using a gold wire having a diameter of 30 μm. A sealing member was dropped onto a molded body having a recess in which the light emitting element is placed on the bottom surface. The sealing member uses a material containing 30 parts by mass of a YAG phosphor and 5 parts by mass of a light diffusing agent made of silicon oxide with respect to 100 parts by mass of a silicone resin. For 5 hours. Finally, the lead frame was cut out to obtain a white light emitting device.

得られた発光装置について、下記方法で封止樹脂の剥離性、パッケージのクラックの有無、成形性を評価した。結果を表1に示す。
(封止樹脂の剥離性)
85℃で500時間通電後、顕微鏡で成形体と封止樹脂間の剥離を確認した。剥離は、成形体と封止樹脂との界面に少なくとも一部が剥離した部分があれば剥離したものとした。表1中、剥離したものを「×」、剥離しなかったものを「○」で示した。
(パッケージのクラック)
発光装置を30℃,70%RHで168時間吸湿後、加熱温度260℃,加熱時間10秒でリフロー炉で加熱した。これを5回繰り返し行った。そのとき、パッケージにクラックが発生していないかを確認した。パッケージの一部にでもクラックが発生していれば、クラック有りとした。表1中、クラックがあったものを「×」、実用上使用可能であるが、マイクロクラックがあったものを「△」、クラックがなかったものを「○」で示した。
(成形性)
金型温度180℃でトランスファー成形したとき、パッケージの一部の未充填部の有無で確認した。表1中、パッケージの一部に未充填部分があったものを「×」、微小な未充填があったものを「△」、未充填部分がなかったものを「○」で示した。
About the obtained light-emitting device, the peeling property of sealing resin, the presence or absence of the crack of a package, and the moldability were evaluated by the following method. The results are shown in Table 1.
(Releasability of sealing resin)
After energization at 85 ° C. for 500 hours, peeling between the molded body and the sealing resin was confirmed with a microscope. The peeling was performed if there was a part where at least a part was peeled off at the interface between the molded body and the sealing resin. In Table 1, what peeled was shown with "x", and what did not peel was shown with "(circle)".
(Package crack)
The light emitting device was moisture absorbed at 30 ° C. and 70% RH for 168 hours, and then heated in a reflow furnace at a heating temperature of 260 ° C. and a heating time of 10 seconds. This was repeated 5 times. At that time, it was confirmed whether cracks occurred in the package. If a crack occurred in a part of the package, it was determined that there was a crack. In Table 1, “×” indicates that there was a crack, and “△” indicates that there was a microcrack, while “◯” indicates that there was no microcrack.
(Formability)
When transfer molding was performed at a mold temperature of 180 ° C., the presence or absence of a part of the package not filled was confirmed. In Table 1, “×” indicates that a part of the package had an unfilled portion, “Δ” indicates that there was a minute unfilled portion, and “◯” indicates that there was no unfilled portion.

Figure 0005608955
Figure 0005608955

本発明の発光装置は、照明器具、ディスプレイ、携帯電話のバックライト、動画照明補助光源、その他の一般的民生用光源などに利用することができる。   The light emitting device of the present invention can be used for lighting fixtures, displays, backlights for mobile phones, moving picture illumination auxiliary light sources, other general consumer light sources, and the like.

本発明の一実施の形態に係る表面実装型発光装置を示す概略断面図である。1 is a schematic cross-sectional view showing a surface-mounted light-emitting device according to an embodiment of the present invention. 同実施の形態に係る表面実装型発光装置を示す概略平面図である。It is a schematic plan view which shows the surface mount type light-emitting device concerning the embodiment.

符号の説明Explanation of symbols

10 発光素子
20 第1のリード
30 第2のリード
40 成形体
50 封止部材
60 ワイヤ
70 蛍光体
100 発光装置
10 Light-Emitting Element 20 First Lead 30 Second Lead 40 Molded Body 50 Sealing Member 60 Wire 70 Phosphor 100 Light-Emitting Device

Claims (15)

430nm以上に発光ピーク波長を有する窒化ガリウム系化合物半導体の発光素子と、該発光素子が載置される成形体とを有し、前記成形体は、(A)トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物、(B)ウィスカー、(C)反射部材として、二酸化チタン又は酸化亜鉛、(D)無機充填剤、(E)硬化触媒を含有し、上記の(B)ウィスカーは、平均繊維径が0.05〜100μm、及び平均繊維長/平均繊維径の比(アスペクト比)が2/1〜300/1であり、チタン酸カリウム,珪酸カルシウム,珪酸ガラス,及びホウ酸アルミニウムの群から選ばれる1種又は2種以上の単結晶繊維であり、且つ、その配合量が組成物全体の0.001〜30質量%とする熱硬化性エポキシ樹脂組成物の硬化物からなると共に、前記成形体は、底面と側面を持つ凹部を有しており、前記凹部の底面は前記発光素子が載置される発光装置。 A gallium nitride compound semiconductor light-emitting element having an emission peak wavelength of 430 nm or more, and a molded body on which the light-emitting element is mounted, the molded body comprising (A) a triazine derivative epoxy resin, an acid anhydride, (B) Whisker, (C) As a reflecting member, titanium dioxide or zinc oxide, (D) inorganic The filler (E) contains a curing catalyst, and the (B) whisker has an average fiber diameter of 0.05 to 100 μm and an average fiber length / average fiber diameter ratio (aspect ratio) of 2/1 to 300. 1 and is one or more single crystal fibers selected from the group consisting of potassium titanate, calcium silicate, silicate glass, and aluminum borate , and the blending amount is 0.001 of the total composition. ~ 30 quality % And with a cured product of the thermosetting epoxy resin composition, the molded body has a recess having a bottom and side surfaces, the bottom surface of the recess emitting device wherein the light emitting element is mounted. 反射部材(C)の充填量が組成物全体の2〜80質量%である請求項1記載の発光装置。   The light emitting device according to claim 1, wherein a filling amount of the reflecting member (C) is 2 to 80 mass% of the entire composition. トリアジン誘導体エポキシ樹脂と酸無水物との反応を、酸化防止剤の存在下で行うようにした請求項1又は2に記載の発光装置。   The light emitting device according to claim 1 or 2, wherein the reaction between the triazine derivative epoxy resin and the acid anhydride is performed in the presence of an antioxidant. トリアジン誘導体エポキシ樹脂と酸無水物との反応を、硬化触媒又は硬化触媒と酸化防止剤との存在下で行うようにした請求項1又は2に記載の発光装置。   The light-emitting device according to claim 1 or 2, wherein the reaction between the triazine derivative epoxy resin and the acid anhydride is performed in the presence of a curing catalyst or a curing catalyst and an antioxidant. 前記熱硬化性エポキシ樹脂組成物が、更に(F)シリコーンパウダーを含有する請求項1乃至4のいずれか1項に記載の発光装置。   The light-emitting device according to claim 1, wherein the thermosetting epoxy resin composition further contains (F) silicone powder. 前記成形体は、430nm以上の反射率が70%以上である請求項1乃至5のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the molded body has a reflectance of 430 nm or more of 70% or more. 前記発光素子はケイ素含有樹脂を有する封止部材で封止されている請求項1乃至6のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the light emitting element is sealed with a sealing member having a silicon-containing resin. 更に、リードを具備する請求項1乃至7のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, further comprising a lead. (A)トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物に、(B)ウィスカー、(C)反射部材として、二酸化チタン又は酸化亜鉛、(D)無機充填剤及び(E)硬化触媒を混合し、その際、上記の(B)ウィスカーとして、平均繊維径が0.05〜100μm、及び平均繊維長/平均繊維径の比(アスペクト比)が2/1〜300/1であり、チタン酸カリウム,珪酸カルシウム,珪酸ガラス,及びホウ酸アルミニウムの群から選ばれる1種又は2種以上の単結晶繊維を採用し、且つ、その配合量を上記の組成物全体の0.001〜30質量%とする第1の工程と、
金型内にリードを配置して前記第1の工程で得られる熱硬化性エポキシ樹脂組成物をトランスファ・モールド工程により成形し、底面と側面を持つ凹部を形成するようにした第2の工程と、
前記第2の工程で成形される熱硬化性エポキシ樹脂組成物の硬化物の凹部の底面及び前記リード上に、発光素子を載置する第3の工程と
を有する発光装置の製造方法。
(B) Whisker, (C) Reflection to a reaction product obtained by reacting (A) triazine derivative epoxy resin and acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0. As a member, titanium dioxide or zinc oxide , (D) inorganic filler, and (E) curing catalyst are mixed. At that time, as the (B) whisker, the average fiber diameter is 0.05 to 100 μm, and the average fiber length. 1 / two or more types of single crystal fibers selected from the group of potassium titanate, calcium silicate, silicate glass, and aluminum borate, having a ratio of the average fiber diameter (aspect ratio) of 2/1 to 300/1 And a first step in which the blending amount is 0.001 to 30% by mass of the entire composition ,
A second step in which a lead is placed in a mold and the thermosetting epoxy resin composition obtained in the first step is molded by a transfer molding step to form a recess having a bottom surface and side surfaces; ,
A method for manufacturing a light emitting device, comprising: a third step of placing a light emitting element on a bottom surface of a concave portion of a cured product of the thermosetting epoxy resin composition formed in the second step and the lead.
トリアジン誘導体エポキシ樹脂と酸無水物との反応を、酸化防止剤の存在下で行うようにした請求項9に記載の発光装置の製造方法。   The method for producing a light emitting device according to claim 9, wherein the reaction between the triazine derivative epoxy resin and the acid anhydride is performed in the presence of an antioxidant. トリアジン誘導体エポキシ樹脂と酸無水物との反応を、硬化触媒又は硬化触媒と酸化防止剤との存在下で行うと共に、硬化触媒の配合を前記反応物として行うようにした請求項9に記載の発光装置の製造方法。   The light emission according to claim 9, wherein the reaction between the triazine derivative epoxy resin and the acid anhydride is performed in the presence of a curing catalyst or a curing catalyst and an antioxidant, and the curing catalyst is blended as the reactant. Device manufacturing method. 前記第1工程において、更に(F)シリコーンパウダーを(A)〜(E)成分と共に混合するようにした請求項9乃至11のいずれか1項に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to any one of claims 9 to 11, wherein in the first step, (F) silicone powder is further mixed together with the components (A) to (E). (A)トリアジン誘導体エポキシ樹脂と酸無水物とをエポキシ基当量/酸無水物基当量0.6〜2.0の割合で反応させて得られる反応物、(B)ウィスカー、(C)反射部材として、二酸化チタン又は酸化亜鉛、(D)無機充填剤、(E)硬化触媒を含有し、上記の(B)ウィスカーは、平均繊維径が0.05〜100μm、及び平均繊維長/平均繊維径の比(アスペクト比)が2/1〜300/1であり、チタン酸カリウム,珪酸カルシウム,珪酸ガラス,及びホウ酸アルミニウムの群から選ばれる1種又は2種以上の単結晶繊維であり、且つ、その配合量が組成物全体の0.001〜30質量%とする熱硬化性エポキシ樹脂組成物の硬化物にて形成され、且つ底面と側面を持つ凹部を有する発光装置用成形体。 (A) A reaction product obtained by reacting a triazine derivative epoxy resin and an acid anhydride at a ratio of epoxy group equivalent / acid anhydride group equivalent of 0.6 to 2.0, (B) whisker, (C) reflecting member As above, titanium dioxide or zinc oxide , (D) inorganic filler, (E) curing catalyst, (B) whisker has an average fiber diameter of 0.05 to 100 μm, and an average fiber length / average fiber diameter The aspect ratio is 2/1 to 300/1 , and is one or more single crystal fibers selected from the group consisting of potassium titanate, calcium silicate, silicate glass, and aluminum borate , and The molded object for light-emitting devices which is formed with the hardened | cured material of the thermosetting epoxy resin composition which the compounding quantity makes 0.001-30 mass% of the whole composition , and has a recessed part with a bottom face and a side surface. 熱硬化性エポキシ樹脂組成物が、更に(F)シリコーンパウダーを含有する請求項13に記載の発光装置用成形体。   The molded object for light-emitting devices of Claim 13 in which a thermosetting epoxy resin composition contains (F) silicone powder further. 熱硬化性エポキシ樹脂組成物が、更に(G)酸化防止剤を含有する請求項13又は14に記載の発光装置用成形体。   The molded object for light-emitting devices of Claim 13 or 14 in which a thermosetting epoxy resin composition contains (G) antioxidant further.
JP2007026567A 2007-02-06 2007-02-06 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY Active JP5608955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026567A JP5608955B2 (en) 2007-02-06 2007-02-06 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026567A JP5608955B2 (en) 2007-02-06 2007-02-06 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY

Publications (2)

Publication Number Publication Date
JP2008192880A JP2008192880A (en) 2008-08-21
JP5608955B2 true JP5608955B2 (en) 2014-10-22

Family

ID=39752685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026567A Active JP5608955B2 (en) 2007-02-06 2007-02-06 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY

Country Status (1)

Country Link
JP (1) JP5608955B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623322B2 (en) * 2007-12-26 2011-02-02 信越化学工業株式会社 White thermosetting silicone resin composition for forming optical semiconductor case, optical semiconductor case and molding method thereof
JP4678415B2 (en) * 2008-03-18 2011-04-27 信越化学工業株式会社 White thermosetting silicone resin composition for forming optical semiconductor case and optical semiconductor case
JP5217800B2 (en) 2008-09-03 2013-06-19 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
JP2010103149A (en) * 2008-10-21 2010-05-06 Showa Denko Kk Light emitting member, light emitting device, electronic device, mechanical device, method of manufacturing the light emitting member, and method of manufacturing the light emitting device
JP5402804B2 (en) * 2010-04-12 2014-01-29 デクセリアルズ株式会社 Method for manufacturing light emitting device
JP5555038B2 (en) 2010-04-13 2014-07-23 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
KR101238738B1 (en) * 2010-12-27 2013-03-06 한국세라믹기술원 Encapsulant For LED And Manufacturing Method thereof, LED using the Encapsulant and Manufacturing Method thereof
JP5609716B2 (en) * 2011-03-07 2014-10-22 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
JP5919903B2 (en) * 2011-03-31 2016-05-18 三菱化学株式会社 Package for semiconductor light emitting device, semiconductor light emitting device having the package, and method for manufacturing the same
KR20130096094A (en) * 2012-02-21 2013-08-29 엘지이노텍 주식회사 Light emitting device package, manufactueing method for light emitting device pacakge and lighting system having light emitting device package
JP5751214B2 (en) 2012-03-13 2015-07-22 信越化学工業株式会社 Curable silicone resin composition, cured product thereof and optical semiconductor device
JP6096087B2 (en) 2012-12-21 2017-03-15 信越化学工業株式会社 Curable silicone resin composition, cured product thereof and optical semiconductor device
JP6221387B2 (en) 2013-06-18 2017-11-01 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP5825390B2 (en) * 2014-04-11 2015-12-02 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
JP2017054933A (en) * 2015-09-09 2017-03-16 株式会社東芝 Light-emitting device and method of manufacturing the same
JP6834461B2 (en) * 2016-12-22 2021-02-24 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP6337996B2 (en) * 2017-08-09 2018-06-06 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713320B2 (en) * 1991-11-11 1998-02-16 富士通株式会社 Epoxy resin composition
JP4654670B2 (en) * 2003-12-16 2011-03-23 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP4359195B2 (en) * 2004-06-11 2009-11-04 株式会社東芝 Semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting unit
JP2006114854A (en) * 2004-10-18 2006-04-27 Sharp Corp Semiconductor light emitting device, and backlight device for liquid crystal display
JP2006146123A (en) * 2004-10-21 2006-06-08 Idemitsu Kosan Co Ltd Reflector for led and method for producing same
JP5060707B2 (en) * 2004-11-10 2012-10-31 日立化成工業株式会社 Thermosetting resin composition for light reflection
JP2006193570A (en) * 2005-01-12 2006-07-27 Stanley Electric Co Ltd Thermosetting resin composition, light-transmitting cured product prepared by thermally curing the composition, and light-emitting diode sealed with the cured product
JP4614075B2 (en) * 2005-03-22 2011-01-19 信越化学工業株式会社 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP5016206B2 (en) * 2005-06-23 2012-09-05 出光興産株式会社 RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR COMPRISING THE SAME

Also Published As

Publication number Publication date
JP2008192880A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5608955B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY
JP6361761B2 (en) LIGHT EMITTING DEVICE, MANUFACTURING METHOD THEREOF, AND MOLDED BODY
JP5470680B2 (en) LIGHT EMITTING DEVICE, MANUFACTURING METHOD THEREOF, AND MOLDED BODY
JP5545246B2 (en) Resin composition, reflector for light emitting semiconductor element, and light emitting semiconductor device
TWI470022B (en) White thermosetting silicone epoxy resin composition for forming an optical semiconductor substrate, a method of manufacturing the same, and a preform package and an LED device
JP2008189827A (en) Thermosetting epoxy resin composition and semiconductor apparatus
JP4837664B2 (en) Thermosetting epoxy resin composition and semiconductor device
JP5682497B2 (en) Method for manufacturing surface-mounted light-emitting device and reflector substrate
JP2008189833A (en) Thermosetting epoxy resin composition and semiconductor apparatus
JP2010031269A (en) Thermosetting silicone resin-epoxy resin composition, and pre-mold package formed with the same
JP2016180071A (en) White thermosetting epoxy resin composition for led reflector
JP6142782B2 (en) Epoxy resin composition and optical semiconductor device
JP5281040B2 (en) Thermosetting epoxy resin composition, pre-mold package, LED device and semiconductor device
JP2014095051A (en) Thermosetting epoxy resin composition, reflector for led using the composition, and led device
JP2014095039A (en) Thermosetting epoxy resin composition and optical semiconductor device
JP6094450B2 (en) White thermosetting epoxy resin composition for LED reflector, and optical semiconductor device including cured product of the composition
JP5924840B2 (en) Thermosetting epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5608955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250