JP4614075B2 - Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device - Google Patents

Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device Download PDF

Info

Publication number
JP4614075B2
JP4614075B2 JP2005081054A JP2005081054A JP4614075B2 JP 4614075 B2 JP4614075 B2 JP 4614075B2 JP 2005081054 A JP2005081054 A JP 2005081054A JP 2005081054 A JP2005081054 A JP 2005081054A JP 4614075 B2 JP4614075 B2 JP 4614075B2
Authority
JP
Japan
Prior art keywords
component
epoxy
diglycidyl ether
emitting semiconductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005081054A
Other languages
Japanese (ja)
Other versions
JP2006265274A (en
Inventor
欣也 児玉
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005081054A priority Critical patent/JP4614075B2/en
Priority to KR1020060025617A priority patent/KR101252301B1/en
Priority to TW095109697A priority patent/TWI418591B/en
Priority to CN2006100682631A priority patent/CN1837284B/en
Publication of JP2006265274A publication Critical patent/JP2006265274A/en
Application granted granted Critical
Publication of JP4614075B2 publication Critical patent/JP4614075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、硬化物表面における埃付着が全くなく、かつ低弾性で耐クラック性、接着性に優れた発光半導体被覆保護材として有効なエポキシ・シリコーン混成樹脂組成物及びその製造方法、並びにこれを用いて発光半導体素子を被覆してなる発光半導体装置に関するものである。   The present invention relates to an epoxy / silicone hybrid resin composition that has no dust adhesion on the surface of a cured product, and is effective as a light-emitting semiconductor coating protective material having low elasticity, crack resistance, and adhesiveness, and a method for producing the same. The present invention relates to a light emitting semiconductor device formed by coating a light emitting semiconductor element.

発光ダイオード(LED)等の発光半導体装置には素子がリード電極上に配置され、その周囲を透明樹脂で覆われた砲弾型と称される図3のような発光半導体装置が使用されていたが、近年実装工程の簡略化から図1及び図2に示されるような「表面実装型」と称される発光半導体装置が主流になりつつある。   Although a light emitting semiconductor device such as a light emitting diode (LED) is used as a light emitting semiconductor device shown in FIG. 3, which is called a shell type in which an element is disposed on a lead electrode and the periphery thereof is covered with a transparent resin. In recent years, light-emitting semiconductor devices called “surface mount type” as shown in FIGS. 1 and 2 are becoming mainstream due to simplification of the mounting process.

なお、図1〜3において、1はガラス繊維強化エポキシ樹脂製筐体、2は発光素子、3,4はリード電極、5はダイボンド材、6は金線、7は被覆保護材である。   1-3, 1 is a glass fiber reinforced epoxy resin housing, 2 is a light emitting element, 3 and 4 are lead electrodes, 5 is a die bond material, 6 is a gold wire, and 7 is a covering protective material.

発光ダイオード(LED)等の発光半導体素子の被覆保護用樹脂組成物としては、その硬化体が透明性を有することが要求されており、一般にビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂と酸無水物系硬化剤を用いて得られるものが用いられている(特許文献1:特許第3241338号公報、特許文献2:特開平7−25987号公報参照)。
しかし、かかる透明エポキシ樹脂においても、樹脂の吸水率が高いために耐湿耐久性が低い、特に短波長の光に対する光線透過性が低いために耐光耐久性が低い、あるいは光劣化により着色するという欠点を有していた。
As a resin composition for protecting a light-emitting semiconductor element such as a light-emitting diode (LED), the cured product is required to have transparency, and is generally an epoxy such as a bisphenol A type epoxy resin or an alicyclic epoxy resin. What is obtained using resin and an acid anhydride type hardening | curing agent is used (patent document 1: patent 3241338 gazette, patent document 2: Unexamined-Japanese-Patent No. 7-25987).
However, even in such a transparent epoxy resin, the moisture absorption resistance of the resin is high, so the moisture resistance durability is low, particularly the light resistance to low-wavelength light is low, so the light resistance is low, or it is colored due to light deterioration. Had.

そのため、SiH基と反応性を有する炭素−炭素二重結合を一分子中に少なくとも2個含有する有機化合物、及び一分子中に少なくとも2個のSiH基を含有するケイ素化合物、ヒドロシリル化触媒からなる光半導体素子の被覆保護用樹脂組成物も提案されている(特許文献3:特開2002−327126号公報、特許文献4:特開2002−338833号公報参照)。   Therefore, it consists of an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. Resin compositions for protecting the coating of optical semiconductor elements have also been proposed (see Patent Document 3: Japanese Patent Laid-Open No. 2002-327126, Patent Document 4: Japanese Patent Laid-Open No. 2002-338833).

しかし、このようなシリコーン系の硬化物は耐クラック性を改良しようとすると一般に硬化物表面にタックがのこり、埃が容易に付着し光の透過性を損なう欠点がある。   However, in order to improve the crack resistance, such a silicone-based cured product generally has a drawback in that the surface of the cured product is tacky and dust easily adheres to impair the light transmittance.

そのため、高硬度シリコーン樹脂を保護被覆用に使用したものが提案されている(特許文献5:特開2002−314139号公報、特許文献6:特開2002−314143号公報参照)。   Therefore, what uses the high hardness silicone resin for protective coating is proposed (refer patent document 5: Unexamined-Japanese-Patent No. 2002-314139, patent document 6: Unexamined-Japanese-Patent No. 2002-314143).

しかし、これらの高硬度シリコーン樹脂ではまだ接着性が乏しく、セラミック及び/又はプラスチック筐体内に発光素子が配置され、その筐体内部をシリコーン樹脂で充填したケース型の発光半導体装置では、−40℃〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックやプラスチックから剥離してしまう問題点が生じていた。   However, these high-hardness silicone resins still have poor adhesion, and in case-type light-emitting semiconductor devices in which light-emitting elements are arranged in a ceramic and / or plastic housing and the inside of the housing is filled with silicone resin, −40 ° C. In the thermal shock test at ˜120 ° C., there was a problem that the silicone resin was peeled off from the ceramic or plastic of the housing.

また、これら欠点を補う可能性をもつ組成物として、特開昭52−107049号公報(特許文献7)のエポキシ樹脂とシリコーン樹脂の成形組成物についても、接着力、変色の問題が生じていた。また更に、発光素子に使用されるSiC、GaAs、GaP、GaAsP、GaAlAs、InAlGaP、InGaN、GaN等の各種の化合物半導体の光学結晶の屈折率が高いため、被覆保護樹脂の屈折率がジメチル系シリコーン樹脂のように低い場合、被覆樹脂と光学結晶との界面で反射して発光効率が低下する欠点があった。   In addition, as a composition having the possibility of compensating for these drawbacks, the adhesive and discoloration problems have also occurred in the molding composition of epoxy resin and silicone resin disclosed in JP-A-52-107049 (Patent Document 7). . Furthermore, since the refractive index of the optical crystal of various compound semiconductors such as SiC, GaAs, GaP, GaAsP, GaAlAs, InAlGaP, InGaN, and GaN used in the light emitting element is high, the refractive index of the coating protective resin is dimethyl silicone. When it is as low as a resin, there is a drawback in that the light emission efficiency decreases due to reflection at the interface between the coating resin and the optical crystal.

このため、出光率を高めるための手段として反射防止膜をつけるなどの手法が提案されている(特許文献8:特開2001−246236号公報、特許文献9:特開2001−217467号公報参照)。しかし、反射防止膜を作製するためには工程が増え、コスト高になってしまう。   For this reason, methods such as attaching an antireflection film have been proposed as means for increasing the light emission rate (see Patent Document 8: Japanese Patent Laid-Open No. 2001-246236, Patent Document 9: Japanese Patent Laid-Open No. 2001-217467). . However, the number of steps is increased to produce an antireflection film, resulting in an increase in cost.

特許第3241338号公報Japanese Patent No. 3241338 特開平7−25987号公報JP 7-25987 A 特開2002−327126号公報JP 2002-327126 A 特開2002−338833号公報JP 2002-338833 A 特開2002−314139号公報JP 2002-314139 A 特開2002−314143号公報JP 2002-314143 A 特開昭52−107049号公報JP-A 52-107049 特開2001−246236号公報JP 2001-246236 A 特開2001−217467号公報JP 2001-217467 A

本発明は、上記事情に鑑みなされたもので、本来相溶性のよくないエポキシ樹脂、特に、高分子量エポキシ樹脂とシリコーン樹脂を用いた場合においても均一に溶解し、かつ耐衝撃性、光透過性に優れた発光半導体被覆保護材として好適なエポキシ・シリコーン混成樹脂組成物及びその製造方法並びにこれを用いて被覆され、発光効率の高い発光半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is inherently incompatible with an epoxy resin, in particular, even when a high molecular weight epoxy resin and a silicone resin are used, and is uniformly dissolved, and has impact resistance and light transmittance. An object of the present invention is to provide an epoxy-silicone hybrid resin composition suitable as a light-emitting semiconductor coating protective material excellent in the above, a method for producing the same, and a light-emitting semiconductor device that is coated using the composition and that has high luminous efficiency.

本発明者は、上記目的を達成するため鋭意検討した結果、(A)一分子中に1個のケイ素原子結合水酸基をもつ有機ケイ素化合物、(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、(E)アルミニウム系硬化触媒及び(F)粘度が25℃で50mPa・s以下である非環式低粘度液状エポキシ樹脂を必須成分とし、かつ硬化物が透明なエポキシ・シリコーン混成樹脂組成物で封止保護することで発光効率が高く、信頼性に優れた発光半導体装置が得られることを見出したものである。   As a result of intensive studies to achieve the above object, the present inventor has found that (A) an organosilicon compound having one silicon atom-bonded hydroxyl group in one molecule, (B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or Essential components include a hydrogenated epoxy resin partially or completely hydrogenated with an aromatic ring, (E) an aluminum-based curing catalyst, and (F) an acyclic low-viscosity liquid epoxy resin having a viscosity of 50 mPa · s or less at 25 ° C. In addition, it has been found that a light-emitting semiconductor device having high luminous efficiency and excellent reliability can be obtained by sealing and protecting the cured product with a transparent epoxy / silicone hybrid resin composition.

即ち、本発明者らは、先に表面タック性がなく、かつ接着性に優れ、しかも耐衝撃性、光透過性に優れた発光半導体被覆保護材として好適なエポキシ・シリコーン混成樹脂組成物及びこれを用いて被覆され、発光効率の高い発光半導体装置を提案した(特願2003−390482号参照)。   That is, the present inventors previously prepared an epoxy-silicone hybrid resin composition suitable as a light-emitting semiconductor coating protective material having no surface tackiness, excellent adhesion, impact resistance, and light transmittance, and the same. Proposed a light-emitting semiconductor device that is coated with a high light-emitting efficiency (see Japanese Patent Application No. 2003-390482).

しかし、更に鋭意検討を重ねた結果、エポキシ・シリコーン混成樹脂組成物の必須成分であるシリコーン樹脂とエポキシ樹脂が組合せによっては相溶し難い場合があり、特に、エポキシ樹脂が高分子量体の場合に顕著であったが、その結果として、透明な硬化物が得られず、光透過性が不十分となってしまう場合があり、この点の解決が望まれた。
このような要望に対し、上述した(F)成分の粘度が25℃で50mPa・s以下である非環式低粘度液状エポキシ樹脂を配合することが有効であることを知見したものである。
However, as a result of further intensive studies, it may be difficult for some combinations of silicone resin and epoxy resin, which are essential components of the epoxy / silicone hybrid resin composition, particularly when the epoxy resin is a high molecular weight polymer. Although it was remarkable, as a result, a transparent hardened | cured material was not obtained and light transmittance may become inadequate, and the solution of this point was desired.
In response to such a demand, it has been found that it is effective to blend an acyclic low-viscosity liquid epoxy resin in which the viscosity of the component (F) is 50 mPa · s or less at 25 ° C.

特に、新規なエポキシ・シリコーン混成樹脂組成物として、
(A’)一分子中に1個以上の脂肪族不飽和一価炭化水素基をもち、かつ少なくとも1個のケイ素原子結合水酸基をもつ有機ケイ素化合物、
(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、
(C)オルガノハイドロジェンポリシロキサン、
(D)白金族金属系触媒、
(E)アルミニウム系硬化触媒、
(F)粘度が25℃で50mPa・s以下である非環式低粘度液状エポキシ樹脂
を必須成分とする、ヒドロシリル化反応とエポキシ樹脂の硬化反応が共存するエポキシ・シリコーン混成樹脂組成物の硬化物で発光半導体素子を封止することで、硬化物の表面タック性もなく、低弾性及び透明性を兼ね備え、接着性も良好な発光半導体装置が得られることを知見し、本発明をなすに至ったものである。
In particular, as a novel epoxy-silicone hybrid resin composition,
(A ′) an organosilicon compound having one or more aliphatic unsaturated monovalent hydrocarbon groups in one molecule and having at least one silicon atom-bonded hydroxyl group,
(B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin in which an aromatic ring is partially or completely hydrogenated,
(C) organohydrogenpolysiloxane,
(D) a platinum group metal catalyst,
(E) an aluminum-based curing catalyst,
(F) Cured product of an epoxy / silicone hybrid resin composition having a non-cyclic low-viscosity liquid epoxy resin having a viscosity at 25 ° C. of 50 mPa · s or less as an essential component and coexisting with a hydrosilylation reaction and a curing reaction of the epoxy resin By sealing the light emitting semiconductor element, it was found that a light emitting semiconductor device having both low elasticity and transparency without adhesion to the surface of the cured product and good adhesion can be obtained, and the present invention has been made. It is a thing.

従って、本発明は、
(A’)一分子中に1個以上の脂肪族不飽和一価炭化水素基をもち、かつ少なくとも1個のケイ素原子結合水酸基をもつ有機ケイ素化合物、
(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、
(C)オルガノハイドロジェンポリシロキサン、
(D)白金族金属系触媒、
(E)アルミニウム系硬化触媒、
(F)エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,3−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルから選ばれる非環式低粘度液状エポキシ樹脂
を必須成分とするエポキシ・シリコーン混成樹脂組成物を提供する。
また、本発明は、発光半導体素子が、
(A)一分子中に1個以上のケイ素原子結合水酸基をもつ有機ケイ素化合物、
(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、
(E)アルミニウム系硬化触媒、
(F)エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,3−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルから選ばれる非環式低粘度液状エポキシ樹脂
を必須成分とするエポキシ・シリコーン混成樹脂組成物の透明硬化物で封止保護された発光半導体装置を提供する。
更に、発光半導体素子が上記(A’)〜(F)成分を必須成分とするエポキシ・シリコーン混成樹脂組成物の透明硬化物で封止保護された発光半導体装置を提供する。
なおまた、本発明は、(B)成分と(F)成分を均一に混合した後、(A’)成分と(C)成分及び(D)成分と(E)成分を加えて均一に混合するエポキシ・シリコーン混成樹脂組成物の製造方法を提供する。
Therefore, the present invention
(A ′) an organosilicon compound having one or more aliphatic unsaturated monovalent hydrocarbon groups in one molecule and having at least one silicon atom-bonded hydroxyl group,
(B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin in which an aromatic ring is partially or completely hydrogenated,
(C) organohydrogenpolysiloxane,
(D) a platinum group metal catalyst,
(E) an aluminum-based curing catalyst,
(F) ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerol di Provided is an epoxy / silicone hybrid resin composition comprising an acyclic low-viscosity liquid epoxy resin selected from glycidyl ether and glycerol triglycidyl ether as an essential component.
In the present invention, the light emitting semiconductor element is
(A) an organosilicon compound having one or more silicon atom-bonded hydroxyl groups in one molecule;
(B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin in which an aromatic ring is partially or completely hydrogenated,
(E) an aluminum-based curing catalyst,
(F) ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerol di Provided is a light-emitting semiconductor device which is sealed and protected with a transparent cured product of an epoxy / silicone hybrid resin composition comprising an acyclic low-viscosity liquid epoxy resin selected from glycidyl ether and glycerol triglycidyl ether as an essential component .
Furthermore, a light-emitting semiconductor device in which a light-emitting semiconductor element is sealed and protected with a transparent cured product of an epoxy / silicone hybrid resin composition containing the components (A ′) to (F) as essential components is provided.
In the present invention, the (B) component and the (F) component are mixed uniformly, and then the (A ′) component, the (C) component, the (D) component, and the (E) component are added and mixed uniformly. A method for producing an epoxy / silicone hybrid resin composition is provided.

本発明のエポキシ・シリコーン混成樹脂組成物の硬化物で被覆保護された発光半導体装置は、耐熱試験による変色も少なく、発光効率も高いため長寿命で省エネルギーに優れる発光半導体装置を提供することが可能となり、産業上のメリットは多大である。   The light-emitting semiconductor device coated and protected with the cured product of the epoxy / silicone hybrid resin composition of the present invention can provide a light-emitting semiconductor device that is long in life and excellent in energy saving because of less discoloration due to a heat resistance test and high luminous efficiency. Thus, the industrial merit is great.

本発明の発光半導体素子を被覆保護する被覆保護材として好適に用いられるエポキシ・シリコーン混成樹脂組成物としては、(A)一分子中に1個以上のケイ素原子結合水酸基をもつ有機ケイ素化合物、(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、(E)アルミニウム系硬化触媒及び(F)粘度が25℃で50mPa・s以下である非環式低粘度液状エポキシ樹脂を必須成分とし、かつ硬化物が透明なエポキシ・シリコーン混成樹脂組成物、特に、(A’)一分子中に1個以上の脂肪族不飽和一価炭化水素基をもち、かつ少なくとも1個のケイ素原子結合水酸基をもつ有機ケイ素化合物、(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、(C)オルガノハイドロジェンポリシロキサン、(D)白金族金属系触媒、(E)アルミニウム系硬化触媒及び(F)粘度が25℃で50mPa・s以下である非環式低粘度液状エポキシ樹脂を含有してなるヒドロシリル化反応とエポキシ樹脂の硬化反応が共存するエポキシ・シリコーン混成樹脂組成物である。   Examples of the epoxy / silicone hybrid resin composition suitably used as a coating protective material for coating and protecting the light emitting semiconductor element of the present invention include (A) an organosilicon compound having one or more silicon atom-bonded hydroxyl groups in one molecule; B) An aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin partially or completely hydrogenated with an aromatic ring, (E) an aluminum-based curing catalyst, and (F) a viscosity of 50 mPa · s or less at 25 ° C. An epoxy-silicone hybrid resin composition having an acyclic low-viscosity liquid epoxy resin as an essential component and having a transparent cured product, in particular, (A ′) one or more aliphatic unsaturated monovalent carbonizations in one molecule An organosilicon compound having a hydrogen group and having at least one silicon-bonded hydroxyl group, (B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or part of an aromatic ring Is a fully hydrogenated hydrogenated epoxy resin, (C) an organohydrogenpolysiloxane, (D) a platinum group metal catalyst, (E) an aluminum curing catalyst, and (F) a viscosity of 50 mPa · s or less at 25 ° C. It is an epoxy-silicone hybrid resin composition in which a hydrosilylation reaction containing an acyclic low-viscosity liquid epoxy resin and a curing reaction of the epoxy resin coexist.

ここで、(A)成分及び(A’)成分としての一分子中に1個以上のケイ素原子結合水酸基(シラノール基)を有する有機ケイ素化合物としては、オルガノシラン、オルガノシロキサン、オルガノシルアルキレン、オルガノシルアリーレン等が挙げられ、特にオルガノシラン、オルガノシロキサンの場合は、下記一般組成式(1)で示されるものを使用することができる。
1 a2 b(HO)c(R3O)dSiO(4-a-b-c-d)/2 (1)
(式中、R1は同一又は異種の脂肪族不飽和結合を有する置換もしくは非置換の一価炭化水素基、R2は同一又は異種の脂肪族不飽和結合を有さない置換もしくは非置換の一価炭化水素基、R3は同一又は異種の脂肪族不飽和結合を有さない置換もしくは非置換の一価炭化水素基である。cは正数、a,b,dは0又は正数であるが、但し、(A’)成分の場合はa>0であり、また(A)成分、(A’)成分がオルガノシランである場合には、cは正の整数、a,b,dは0又は正の整数であって、a+b+c+d=4であり、オルガノポリシロキサンの場合にはa+b+c+d<4である。)
この場合、R1、R2、R3は炭素数が1〜10、特に1〜6の範囲にあるものが好適である。
Here, as organosilicon compounds having one or more silicon atom-bonded hydroxyl groups (silanol groups) in one molecule as component (A) and component (A ′), organosilane, organosiloxane, organosilalkylene, organo Examples include silarylene, and in particular, in the case of organosilane and organosiloxane, those represented by the following general composition formula (1) can be used.
R 1 a R 2 b (HO) c (R 3 O) d SiO (4-abcd) / 2 (1)
(In the formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having the same or different aliphatic unsaturated bond, and R 2 is a substituted or unsubstituted hydrocarbon having no identical or different aliphatic unsaturated bond. A monovalent hydrocarbon group, R 3 is a substituted or unsubstituted monovalent hydrocarbon group having no identical or different aliphatic unsaturated bond, c is a positive number, a, b, d are 0 or a positive number However, in the case of (A ′) component, a> 0, and when (A) component and (A ′) component are organosilane, c is a positive integer, a, b, d is 0 or a positive integer, a + b + c + d = 4, and in the case of organopolysiloxane, a + b + c + d <4.)
In this case, R 1 , R 2 and R 3 are preferably those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms.

具体的には、R1としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基、アクリロキシ基、メタクリロキシ基などが代表的なものとして挙げられる。R2としては、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基等のアルキル基、フェニル基、トリル基等のアリール基、ベンジル基等のアラルキル基などが代表的なものとして挙げられる。R3としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基やフェニル基等のアリール基などを例示することができる。 Specific examples of R 1 include alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, and butenyl group, acryloxy group, methacryloxy group, and the like. Typical examples of R 2 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group and cyclohexyl group, aryl groups such as phenyl group and tolyl group, and aralkyl groups such as benzyl group. Examples of R 3 include alkyl groups such as methyl group, ethyl group, propyl group, and butyl group, and aryl groups such as phenyl group.

代表的な水酸基含有オルガノシランとしては、トリフェニルシラノール、ジフェニルメチルシラノール、ジフェニルシランジオール、テトラメチル−ジヒドロキシジシロキサン、ビニルジフェニルシランジオールなどである。   Typical hydroxyl group-containing organosilanes include triphenylsilanol, diphenylmethylsilanol, diphenylsilanediol, tetramethyl-dihydroxydisiloxane, vinyldiphenylsilanediol, and the like.

また、アルコキシ基等の加水分解可能な基を含んだシラノール基含有オルガノシラン、オルガノシロキサンは加水分解可能なシランの加水分解又は一部加水分解によって製造することができる。代表的なシランとしては、CH3(CH3O)C65SiOH、CH3(C25O)C65SiOH、(CH2=CH)(CH3O)C65SiOH、C65(CH3O)Si(OH)OSi(OH)(CH3O)C65などである。 Silanol group-containing organosilanes and organosiloxanes containing hydrolyzable groups such as alkoxy groups can be produced by hydrolysis or partial hydrolysis of hydrolyzable silanes. Typical silanes include CH 3 (CH 3 O) C 6 H 5 SiOH, CH 3 (C 2 H 5 O) C 6 H 5 SiOH, (CH 2 ═CH) (CH 3 O) C 6 H 5. SiOH, C 6 H 5 (CH 3 O) Si (OH) OSi (OH) (CH 3 O) C 6 H 5 and the like.

オルガノポリシロキサンの好適なシロキサン単位は、(CH32(OH)SiO1/2、(CH32SiO、CH3(C65)(OH)SiO1/2、CH3SiO3/2、CH3(C65)SiO、C37(CH3)SiO、(CH2=CH)(C65)(OH)SiO1/2、C65(CH2=CH)(CH3)SiO1/2、(CH2=CH)(CH3)SiO、C65(OH)SiO、(C652SiO及びC65(CH32SiO1/2を含み、かつ少量のSiO2単位を含んでもよい。この種のオルガノポリシロキサンはシロキサン単位に対応するオルガノクロロシランを加水分解し、更にヒドロキシル基を縮合させることで必要量の水酸基を残し重合させることで容易に得ることができる。 Suitable siloxane units of the organopolysiloxane are (CH 3 ) 2 (OH) SiO 1/2 , (CH 3 ) 2 SiO, CH 3 (C 6 H 5 ) (OH) SiO 1/2 , CH 3 SiO 3 / 2 , CH 3 (C 6 H 5 ) SiO, C 3 H 7 (CH 3 ) SiO, (CH 2 ═CH) (C 6 H 5 ) (OH) SiO 1/2 , C 6 H 5 (CH 2 ═CH) (CH 3 ) SiO 1/2 , (CH 2 ═CH) (CH 3 ) SiO, C 6 H 5 (OH) SiO, (C 6 H 5 ) 2 SiO and C 6 H 5 (CH 3 ) 2 It contains SiO 1/2 and may contain a small amount of SiO 2 units. This type of organopolysiloxane can be easily obtained by hydrolyzing the organochlorosilane corresponding to the siloxane unit and then condensing the hydroxyl group to polymerize leaving the required amount of hydroxyl groups.

なお、(A)、(A’)成分がオルガノポリシロキサンの場合、上記式(1)において、a,b,c,dは0≦a≦0.5、特に0≦a≦0.2(但し、(A’)成分の場合0.001≦a≦0.5、特に0.01≦a≦0.2)、0≦b≦2.2、特に0.5≦b≦2、0.001≦c≦0.5、特に0.01≦c≦0.2、0≦d≦0.5、特に0≦d≦0.2であることが好ましく、a+b+c+dは0.8≦a+b+c+d≦3、特に1≦a+b+c+d≦2.5であることが好ましい。   When the components (A) and (A ′) are organopolysiloxane, a, b, c, d in the above formula (1) are 0 ≦ a ≦ 0.5, particularly 0 ≦ a ≦ 0.2 ( However, in the case of the component (A ′), 0.001 ≦ a ≦ 0.5, particularly 0.01 ≦ a ≦ 0.2), 0 ≦ b ≦ 2.2, particularly 0.5 ≦ b ≦ 2, 0. 001 ≦ c ≦ 0.5, particularly 0.01 ≦ c ≦ 0.2, 0 ≦ d ≦ 0.5, and particularly preferably 0 ≦ d ≦ 0.2, and a + b + c + d is 0.8 ≦ a + b + c + d ≦ 3 In particular, it is preferable that 1 ≦ a + b + c + d ≦ 2.5.

具体的には、下記構造で示されるようなオルガノポリシロキサンが好適な化合物として例示される。   Specifically, organopolysiloxanes represented by the following structures are exemplified as suitable compounds.

Figure 0004614075
(但し、k,m,nは正数で、k+m+nは下記の粘度を満足する数である。)
Figure 0004614075
(However, k, m, and n are positive numbers, and k + m + n is a number that satisfies the following viscosity.)

なお、(A),(A’)成分がオルガノポリシロキサンである場合、特に(A),(A’)成分が基本的に直鎖状構造のジオルガノポリシロキサンである場合、回転粘度計(BM型)による粘度測定法(以下、同様)による25℃の粘度が10〜1,000,000mPa・s、特に100〜100,000mPa・sであることが好ましい。また、(A),(A’)成分が分子中に3官能性シロキサン単位や4官能性シロキサン単位(SiO2)を含んだ分岐状又は三次元網状構造のものである場合には、例えばGPC(ゲルパーミエーションクロマトグラフィ)によるポリスチレン換算の重量平均分子量が500〜100,000、特に1,000〜10,000程度であることが好ましい。 When the components (A) and (A ′) are organopolysiloxanes, especially when the components (A) and (A ′) are basically diorganopolysiloxanes having a linear structure, a rotational viscometer ( The viscosity at 25 ° C. according to a viscosity measurement method (hereinafter the same) by BM type is preferably 10 to 1,000,000 mPa · s, particularly preferably 100 to 100,000 mPa · s. In the case where the components (A) and (A ′) have a branched or three-dimensional network structure containing a trifunctional siloxane unit or a tetrafunctional siloxane unit (SiO 2 ) in the molecule, for example, GPC The weight average molecular weight in terms of polystyrene by (gel permeation chromatography) is preferably about 500 to 100,000, particularly about 1,000 to 10,000.

このように、ケイ素原子結合水酸基含有オルガノポリシロキサンとしては、液状から固体状のものであるが、高重合度(上記粘度測定で1,000mPa・s以上あるいは重量平均分子量が1,000以上)のオルガノポリシロキサンではケイ素原子結合水酸基含有量が0.5〜15質量%、特に1.5〜10質量%のものが好ましい。0.5質量%未満ではエポキシ基との反応性に乏しく、かつ15質量%を超えると、オルガノポリシロキサンを安定的に製造することができない場合がある。これらの有機ケイ素化合物のうち、分子中にアルケニル基等の脂肪族不飽和炭化水素基を有するものが(A’)成分として適用されるものである。   Thus, the silicon-bonded hydroxyl group-containing organopolysiloxane is liquid to solid, but has a high degree of polymerization (1,000 mPa · s or more or a weight average molecular weight of 1,000 or more in the above viscosity measurement). The organopolysiloxane preferably has a silicon atom-bonded hydroxyl group content of 0.5 to 15% by mass, particularly 1.5 to 10% by mass. If it is less than 0.5% by mass, the reactivity with the epoxy group is poor, and if it exceeds 15% by mass, the organopolysiloxane may not be stably produced. Among these organosilicon compounds, those having an aliphatic unsaturated hydrocarbon group such as an alkenyl group in the molecule are applied as the component (A ′).

これらのオルガノシラン、オルガノ(ポリ)シロキサンの他に、シラノール基含有オルガノシルエチレン、オルガノシルフェニレン等のオルガノシルアルキレン、オルガノシルアリーレンや、シルエチレン、シルフェニレン結合をもったシラノール基含有オルガノシラン、オルガノポリシロキサンも本発明に使用することができる。   In addition to these organosilanes and organo (poly) siloxanes, silanol group-containing organosilethylene, organosilalkylene such as organosilphenylene, organosilarylene, silethylene, silanol group-containing organosilane having a silphenylene bond, Organopolysiloxanes can also be used in the present invention.

次に、(B)成分はエポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂であり、骨格に芳香族あるいは脂肪族環の環構造を持つ、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂等のトリフェノールアルカン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂、アラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、前記各種エポキシ樹脂のフェニル基を水素添加した水添型エポキシ樹脂などを挙げることができるが、エポキシ当量250以上の芳香族又は脂肪族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂であれば上記樹脂に限定されるものではない。中でも光による劣化を防止するため水添型のエポキシ樹脂が好適に使用される。   Next, the component (B) is an aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin in which an aromatic ring is partially or completely hydrogenated, and the skeleton has an aromatic or aliphatic ring structure. Bisphenol F type epoxy resin, bisphenol type epoxy resin such as bisphenol A type epoxy resin, novolac type epoxy resin such as phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, triphenolmethane type epoxy resin, Triphenolalkane type epoxy resin such as triphenolpropane type epoxy resin, alicyclic epoxy resin such as biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, aralkyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl allylate Kill-type epoxy resins, hydrogenated epoxy resins obtained by hydrogenating the phenyl groups of the above-mentioned various epoxy resins, and the like, but aromatic or aliphatic epoxy resins having an epoxy equivalent of 250 or more, or aromatic rings partially or completely It is not limited to the above resin as long as it is a hydrogenated epoxy resin hydrogenated. Among these, hydrogenated epoxy resins are preferably used in order to prevent deterioration due to light.

エポキシ樹脂の(F)成分を除く全有機樹脂(即ち、(A),(B)成分の合計、あるいは(A’),(B),(C)成分の合計)に占める比率は5〜80質量%である。5質量%未満ではエポキシ・シリコーン混成樹脂組成物の硬化物強度が十分に得られず、この種の材料で発光半導体装置を封止保護した場合、温度サイクルなどの試験で容易に樹脂クラックが発生したり、接着不良が生ずるおそれがある。一方、80質量%を超えるとエポキシ樹脂分が多くなり、発光素子が紫外線等を発光するような場合、エポキシ・シリコーン混成樹脂組成物の硬化物が紫外光により劣化してしまう。このため、より望ましくは10〜50質量%である。   The ratio of the epoxy resin in the total organic resin excluding the component (F) (that is, the sum of the components (A) and (B) or the sum of the components (A ′), (B), and (C)) is 5 to 80 % By mass. If it is less than 5% by mass, sufficient strength of the cured product of the epoxy / silicone hybrid resin composition cannot be obtained, and when a light emitting semiconductor device is sealed and protected with this kind of material, a resin crack easily occurs in a test such as a temperature cycle. Or there is a risk of poor adhesion. On the other hand, when the content exceeds 80% by mass, the epoxy resin content increases, and when the light emitting element emits ultraviolet rays or the like, the cured product of the epoxy-silicone hybrid resin composition is deteriorated by ultraviolet light. For this reason, it is 10-50 mass% more desirably.

(C)成分のオルガノハイドロジェンポリシロキサンは、架橋剤として作用するものであり、該成分中のSiH基と(A’)成分中のビニル基等の脂肪族不飽和一価炭化水素基とが付加反応(ヒドロシリル化)することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、例えば、下記平均組成式(2)
m(R4nSiO(4-m-n)/2 (2)
(式中、R4は脂肪族不飽和結合を含有しない同一又は異種の非置換又は置換の一価炭化水素基であり、m及びnは、0.001≦m<2、0.7≦n≦2、かつ0.8≦m+n≦3を満たす数である。)
で表され、一分子中にケイ素原子に結合した水素原子(SiH基)を少なくとも2個、好ましくは3個以上有するものが挙げられる。
The (C) component organohydrogenpolysiloxane acts as a crosslinking agent, and the SiH group in the component and the aliphatic unsaturated monovalent hydrocarbon group such as a vinyl group in the component (A ′). A cured product is formed by addition reaction (hydrosilylation). Such organohydrogenpolysiloxane is, for example, the following average composition formula (2)
H m (R 4 ) n SiO (4-mn) / 2 (2)
Wherein R 4 is the same or different unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond, and m and n are 0.001 ≦ m <2, 0.7 ≦ n ≦ 2 and 0.8 ≦ m + n ≦ 3.)
And one having at least 2, preferably 3 or more hydrogen atoms (SiH groups) bonded to a silicon atom in one molecule.

ここで、上記式(2)中のR4は、脂肪族不飽和結合を含有しない同一又は異種の非置換又は置換の炭素数1〜10、特に炭素数1〜7の一価炭化水素基であることが好ましく、例えばメチル基等の低級アルキル基、フェニル基等のアリール基等、前述の一般式(1)の置換基R2で例示したものが挙げられる。また、m及びnは、0.001≦m<2、0.7≦n≦2、かつ0.8≦m+n≦3を満たす数であり、好ましくは0.05≦m≦1、0.8≦n≦2、かつ1≦m+n≦2.7となる数である。ケイ素原子に結合した水素原子の位置は特に制約はなく、分子の末端でも途中でもよい。 Here, R 4 in the above formula (2) is an identical or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 7 carbon atoms, which does not contain an aliphatic unsaturated bond. It is preferable that there are, for example, those exemplified for the substituent R 2 in the general formula (1), such as a lower alkyl group such as a methyl group, an aryl group such as a phenyl group, and the like. M and n are numbers satisfying 0.001 ≦ m <2, 0.7 ≦ n ≦ 2, and 0.8 ≦ m + n ≦ 3, preferably 0.05 ≦ m ≦ 1, 0.8 ≦ n ≦ 2 and 1 ≦ m + n ≦ 2.7. The position of the hydrogen atom bonded to the silicon atom is not particularly limited, and may be at the end of the molecule or in the middle.

具体的には、例えば両末端トリメチルシリル基封鎖のメチルハイドロジェンポリシロキサン、両末端トリメチルシリル基封鎖のジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシリル基封鎖のメチルハイドロジェンポリシロキサン、両末端ジメチルハイドロジェンシリル基封鎖のジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、テトラメチルテトラハイドロジェンシクロテトラシロキサン、ペンタメチルトリハイドロジェンシクロテトラシロキサン、トリ(ジメチルハイドロジェンシロキサン)メチルシラン等が挙げられる。   Specifically, for example, methyl hydrogen polysiloxane blocked with trimethylsilyl groups at both ends, dimethylsiloxane / methyl hydrogensiloxane copolymer blocked with trimethylsilyl groups at both ends, methyl hydrogen polysiloxane blocked with dimethylhydrogensilyl groups at both ends, Examples thereof include dimethylsiloxane / methylhydrogensiloxane copolymers blocked with dimethylhydrogensilyl groups at both ends, tetramethyltetrahydrogencyclotetrasiloxane, pentamethyltrihydrogencyclotetrasiloxane, and tri (dimethylhydrogensiloxane) methylsilane. .

また、下記構造で示されるような化合物も使用することができる。

Figure 0004614075
Moreover, a compound as shown by the following structure can also be used.
Figure 0004614075

なお、本成分は分子構造上直鎖状、分岐状、環状、網状のいずれであってもよい。このようなオルガノハイドロジェンポリシロキサンは、通常、R4SiHCl2、(R43SiCl、(R42SiCl2、(R42SiHCl(R4は、前記の通りである)のようなクロロシランを加水分解するか、加水分解して得られたシロキサンを平衡化することにより得ることができる。 In addition, this component may be linear, branched, cyclic, or network-like in terms of molecular structure. Such organohydrogenpolysiloxanes are usually R 4 SiHCl 2 , (R 4 ) 3 SiCl, (R 4 ) 2 SiCl 2 , (R 4 ) 2 SiHCl (R 4 is as described above). Such chlorosilanes can be hydrolyzed or siloxanes obtained by hydrolysis can be equilibrated.

なお、このオルガノハイドロジェンポリシロキサンの配合量は、上記(A’)成分の硬化有効量であり、特にそのSiH基が(A’)成分中のビニル基等の脂肪族不飽和基の合計量あたり0.1〜4.0、特に好ましくは1.0〜3.0、更に好ましくは1.2〜2.8のモル比で使用されることが好ましい。0.1未満では硬化反応が進行せずシリコーンゴム硬化物を得ることが困難であり、4.0を超えると、未反応のSiH基が硬化物中に多量に残存するため、ゴム物性が経時的に変化する原因となるおそれがある。   In addition, the compounding amount of this organohydrogenpolysiloxane is a curing effective amount of the above component (A ′), and in particular, the total amount of aliphatic unsaturated groups such as vinyl groups in the SiH group of the component (A ′). It is preferably used at a molar ratio of 0.1 to 4.0, particularly preferably 1.0 to 3.0, and more preferably 1.2 to 2.8. If it is less than 0.1, the curing reaction does not proceed and it is difficult to obtain a cured silicone rubber. If it exceeds 4.0, a large amount of unreacted SiH groups remain in the cured product, so that the rubber physical properties are deteriorated over time. May cause changes.

(D)成分の白金族金属系触媒は、本発明の組成物の付加硬化反応を生じさせるために配合されるものであり、白金系、パラジウム系、ロジウム系のものがあるが、コスト等の見地から白金系のもの、例えば、H2PtCl6・mH2O,K2PtCl6,KHPtCl6・mH2O,K2PtCl4,K2PtCl4・mH2O,PtO2・mH2O,PtCl4・mH2O,PtCl2,H2PtCl4・mH2O(mは、正の整数)等や、これらと炭化水素、アルコール又はビニル基含有オルガノポリシロキサンとの錯体等を例示することができ、これらは単独でも2種以上の組み合わせでも使用することができる。これらの触媒成分の配合量は、所謂触媒量でよく、通常、前記(A’)〜(C)成分の合計量あたり、白金族金属換算(質量)で0.1〜1,000ppm、好ましくは1〜300ppmの範囲で使用される。 The component (D) platinum group metal catalyst is blended to cause the addition curing reaction of the composition of the present invention, and there are platinum, palladium, and rhodium catalysts. From the viewpoint, platinum-based materials such as H 2 PtCl 6 · mH 2 O, K 2 PtCl 6 , KHPtCl 6 · mH 2 O, K 2 PtCl 4 , K 2 PtCl 4 · mH 2 O, PtO 2 · mH 2 O , PtCl 4 · mH 2 O, PtCl 2 , H 2 PtCl 4 · mH 2 O (m is a positive integer), and complexes of these with hydrocarbons, alcohols or vinyl group-containing organopolysiloxanes These can be used alone or in combination of two or more. The compounding amount of these catalyst components may be a so-called catalyst amount, and is usually 0.1 to 1,000 ppm in terms of platinum group metal (mass) per total amount of the components (A ′) to (C), preferably It is used in the range of 1 to 300 ppm.

(E)成分のシラノールとエポキシ基を重合させるアルミニウム系硬化触媒としては、具体的には三水酸化アルミニウム、あるいはアルミニウムアルコラート、アルミニウムアシレート、アルミニウムアシレートの塩、アルミノシロキシ化合物及びアルミニウムキレートからなる群から選択された触媒量の有機アルミニウム化合物が例示される。触媒量としては(A)成分又は(A’)成分と(B)成分との合計量に対し0.1〜10質量%、より望ましくは0.3〜5質量%である。0.1質量%未満では十分な硬化速度が得られず、10質量%を超えると、硬化が早すぎて目的とする発光半導体装置を製造することができない場合がある。   Specifically, the aluminum curing catalyst for polymerizing silanol and epoxy group of component (E) is composed of aluminum trihydroxide, aluminum alcoholate, aluminum acylate, aluminum acylate salt, aluminosyloxy compound and aluminum chelate. Illustrative are catalytic amounts of organoaluminum compounds selected from the group. The amount of the catalyst is 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, based on the total amount of the component (A) or the component (A ′) and the component (B). If the amount is less than 0.1% by mass, a sufficient curing rate cannot be obtained. If the amount exceeds 10% by mass, the intended light-emitting semiconductor device may not be manufactured because the curing is too early.

(F)成分の粘度が25℃で50mPa・s以下(なお、粘度の測定法は上記の通りである)である非環式低粘度液状エポキシ樹脂としては、具体的には、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,3−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、グリセロールプロポキシレートトリグリシジルエーテル、オクチルグリシジルエーテル、デシルグリシジルエーテル、テトラデシルグリシジルエーテル、1,3−ジグリシジルグリセリルエーテル、1,3−ビス(グリシドキシプロピル)テトラメチルジシロキサンなどが例示されるが、これに限定されるものではない。使用量としては、(B)成分のエポキシ樹脂に対し、0.1〜10質量%、より望ましくは1.0〜8.0質量%である。0.1質量%未満では十分な相溶化剤としての効果が得られず、10質量%を超えると、クラック耐性等が不十分となり、目的とする発光半導体装置を製造することができない場合がある。 Specific examples of the acyclic low-viscosity liquid epoxy resin in which the viscosity of the component (F) is 50 mPa · s or less at 25 ° C. (the viscosity is measured as described above) include ethylene glycol diglycidyl. Ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether Glycerol propoxylate triglycidyl ether, octyl glycidyl ether, decyl glycidyl ether, tetradecyl glycidyl ether, 1,3-diglycidyl glyceryl ether, 1,3-bis (glycidoxy Propyl) Although tetramethyl disiloxane are exemplified, but not limited thereto. As a usage-amount, it is 0.1-10 mass% with respect to the epoxy resin of (B) component, More desirably, it is 1.0-8.0 mass%. If the amount is less than 0.1% by mass, the effect as a sufficient compatibilizer cannot be obtained. If the amount exceeds 10% by mass, crack resistance and the like are insufficient, and the target light emitting semiconductor device may not be manufactured. .

本発明のエポキシ・シリコーン混成樹脂組成物を硬化して得られる硬化物の接着性を向上させるため、ケイ素原子結合アルコキシ基を有するオルガノシラン、オルガノポリシロキサン等の有機ケイ素化合物などの(G)接着助剤を任意成分として、必要に応じて添加配合してもよい。このような有機ケイ素化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン等のアルコキシシラン化合物及び一分子中にケイ素原子に結合した水素原子(SiH基)、ケイ素原子に結合したアルケニル基(例えばSi−CH=CH2基)、アルコキシシリル基(例えばトリメトキシシリル基等のトリアルコキシシリル基など)、エポキシ基(例えばグリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基)から選ばれる官能性基を少なくとも2種、好ましくは2又は3種含有する、通常、ケイ素原子数4〜30、特には4〜20程度の、直鎖状又は環状構造のシロキサン化合物(オルガノシロキサンオリゴマー)が挙げられる。 (G) Adhesion of organosilicon compounds such as organosilanes and organopolysiloxanes having silicon atom-bonded alkoxy groups in order to improve the adhesion of the cured product obtained by curing the epoxy / silicone hybrid resin composition of the present invention You may add and mix | blend an adjuvant as an arbitrary component as needed. Examples of such organosilicon compounds include tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and vinyl. Alkoxysilane compounds such as trimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and hydrogen atoms bonded to silicon atoms in one molecule ( SiH group), alkenyl groups bonded to silicon atom (e.g., Si-CH = CH 2 groups), such as trialkoxysilyl groups alkoxysilyl group (e.g., such as trimethoxysilyl group), an epoxy group (eg Glycidoxypropyl group, 3,4-epoxycyclohexylethyl group) containing at least 2, preferably 2 or 3 functional groups, usually having 4 to 30 silicon atoms, particularly about 4 to 20 And a siloxane compound (organosiloxane oligomer) having a linear or cyclic structure.

この場合、(G)成分の接着助剤として、下記一般式(3)で示されるオルガノオキシシリル変性イソシアヌレート化合物及び/又はその加水分解縮合物(オルガノシロキサン変性イソシアヌレート化合物)が好適に使用される。

Figure 0004614075
(式中、R5は、下記式(4)
Figure 0004614075
で表される有機基又は脂肪族不飽和結合を含有する一価炭化水素基であるが、少なくとも1個は式(4)の有機基であり、R6は水素原子又は炭素数1〜6の一価炭化水素基、sは1〜6、特に1〜4の整数である。) In this case, an organooxysilyl-modified isocyanurate compound represented by the following general formula (3) and / or a hydrolysis condensate thereof (organosiloxane-modified isocyanurate compound) is suitably used as an adhesion assistant for the component (G). The
Figure 0004614075
(Wherein R 5 represents the following formula (4)
Figure 0004614075
Is an organic group or a monovalent hydrocarbon group containing an aliphatic unsaturated bond, but at least one is an organic group of the formula (4), and R 6 is a hydrogen atom or a C 1-6 carbon atom. A monovalent hydrocarbon group, s is an integer of 1-6, especially 1-4. )

ここで、R5の脂肪族不飽和結合を含有する一価炭化水素基としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基等の炭素数2〜8、特に2〜6のアルケニル基が挙げられる。また、R6の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等のアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基等のアルケニル基、フェニル基等のアリール基などの炭素数1〜8、特に1〜6の一価炭化水素基が挙げられ、好ましくはアルキル基である。 Here, the monovalent hydrocarbon group containing an aliphatic unsaturated bond represented by R 5 includes a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, a hexenyl group, and a cyclohexenyl group. And alkenyl groups having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms. Examples of the monovalent hydrocarbon group for R 6 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group and other alkyl groups, vinyl Group, allyl group, propenyl group, alkenyl group such as isopropenyl group, aryl group such as phenyl group and the like, and monovalent hydrocarbon group having 1 to 8 carbon atoms, particularly 1 to 6 carbon atoms, preferably alkyl group. .

上記(G)成分として具体的には、下記のものを例示することができる。

Figure 0004614075
(式中、m,nはそれぞれm+nが2〜50、好ましくは4〜20を満足する正の整数である。) Specific examples of the component (G) include the following.
Figure 0004614075
(In the formula, m and n are each a positive integer satisfying m + n of 2 to 50, preferably 4 to 20.)

Figure 0004614075
Figure 0004614075

Figure 0004614075
Figure 0004614075

このような有機ケイ素化合物のうち、得られる硬化物の接着性が特に優れている化合物としては、一分子中にケイ素原子結合アルコキシ基とアルケニル基もしくはケイ素原子結合水素原子(SiH基)とを有する有機ケイ素化合物であることが好ましい。   Among such organosilicon compounds, compounds having particularly excellent adhesion of the resulting cured product have silicon-bonded alkoxy groups and alkenyl groups or silicon-bonded hydrogen atoms (SiH groups) in one molecule. An organosilicon compound is preferred.

本発明において、上記(G)成分(任意成分)の接着助剤の配合量は、(A)成分又は(A’)成分と(B)成分との合計100質量部に対して、通常10質量部以下(即ち、0〜10質量部)、好ましくは0.01〜5質量部、より好ましくは0.1〜1質量部程度配合することができる。(G)成分の配合量が少なすぎると基材に対する接着性に劣る場合があり、多すぎると硬化物の硬度が低下したり、硬化物の表面タック性に悪影響を及ぼす場合がある。   In this invention, the compounding quantity of the adhesion promoter of the said (G) component (arbitrary component) is 10 mass normally with respect to a total of 100 mass parts of (A) component or (A ') component, and (B) component. Or less (that is, 0 to 10 parts by mass), preferably 0.01 to 5 parts by mass, more preferably about 0.1 to 1 part by mass. If the blending amount of the component (G) is too small, the adhesion to the substrate may be inferior, and if it is too large, the hardness of the cured product may decrease or the surface tackiness of the cured product may be adversely affected.

本発明のエポキシ・シリコーン混成樹脂組成物は、接着力が強いため樹脂硬化や実装時のIRリフローによる剥離を起こすことはない。また、その硬化した樹脂はデュロメータタイプAで70以上の硬さをもち、硬化物の表面に対する埃の付着もなく、低弾性特性を有することからセラミックやプラスチックの筐体との熱膨張係数の違いによる応力を吸収できるため、低温側−40℃、高温側120℃の熱衝撃試験を1,000サイクル行ってもクラックが発生することはない。   Since the epoxy / silicone hybrid resin composition of the present invention has a strong adhesive force, it does not peel off due to resin curing or IR reflow during mounting. The cured resin is durometer type A, has a hardness of 70 or more, does not adhere dust to the surface of the cured product, and has low elastic characteristics, so the difference in thermal expansion coefficient from a ceramic or plastic housing Therefore, cracks do not occur even if 1,000 cycles of the thermal shock test at the low temperature side of −40 ° C. and the high temperature side of 120 ° C. are performed.

本発明のエポキシ・シリコーン混成樹脂組成物は、(A),(B)及び(E)成分あるいは(A’),(B),(C),(D)及び(E)成分を混合し、加熱することによって容易に製造することができる。(A’),(B),(C),(D),(E)成分を混合すると室温でも硬化が進行するので、作業可能時間を長くするためにアセチレンアルコール系化合物、トリアゾール類、ニトリル化合物、リン化合物などの反応抑制剤を微量添加することが好ましい。また、本発明のエポキシ・シリコーン混成樹脂組成物を波長変更するための蛍光体や酸化チタン微粉末(TiO2)などのような光散乱剤等を添加することもできる。 The epoxy / silicone hybrid resin composition of the present invention comprises the components (A), (B) and (E) or the components (A ′), (B), (C), (D) and (E), It can be easily manufactured by heating. When the components (A ′), (B), (C), (D), and (E) are mixed, the curing proceeds even at room temperature. Therefore, in order to increase the workable time, acetylene alcohol compounds, triazoles, and nitrile compounds It is preferable to add a trace amount of a reaction inhibitor such as a phosphorus compound. Further, a phosphor for changing the wavelength of the epoxy / silicone hybrid resin composition of the present invention, a light scattering agent such as titanium oxide fine powder (TiO 2 ), and the like can be added.

この場合、(B)成分と(F)成分を均一に混合した後、これに(A)成分及び(E)成分、又は(A’)成分と(C)成分及び(D)成分と(E)成分を加えて均一に混合することが好ましく、このような配合方法を採用することにより、通常、(A)成分又は(A’)成分との均一な混合が困難な場合が多い(B)成分を、予め(F)成分と均一に混合することにより、(A)成分に対するぬれ性が向上したり、(B)成分単独の場合より低粘度化することによる撹拌の容易さから、上記各成分を均一に混合しやすくなる。(A)成分又は(A’)成分と(B)成分とを均一に混合することが困難な場合には、より長時間の撹拌操作やよりせん断応力の高い撹拌操作が必要となるが、例えば機械撹拌を用いて、より長時間又はより高せん断応力下での混合を行うと、混合撹拌時に発生する熱のために、揮発分を含む樹脂組成物や熱硬化性の樹脂に対しては好ましくない場合がある。   In this case, after the (B) component and the (F) component are uniformly mixed, the (A) component and the (E) component, or the (A ′) component, the (C) component, the (D) component, and the (E) ) Component is preferably added and mixed uniformly. By adopting such a blending method, it is often difficult to uniformly mix with component (A) or component (A ′) (B). By mixing the component uniformly with the component (F) in advance, the wettability to the component (A) is improved, or from the ease of stirring by lowering the viscosity than the case of the component (B) alone, It becomes easy to mix the components uniformly. When it is difficult to uniformly mix the component (A) or the component (A ′) and the component (B), a longer stirring operation or a higher shear stress stirring operation is required. When mixing with mechanical stirring for a longer time or under higher shear stress, it is preferable for resin compositions containing volatile matter and thermosetting resins because of the heat generated during mixing and stirring. There may not be.

更に、本発明の目的を逸脱しない範囲で、ヒュームドシリカや沈降性シリカなどの補強性充填材、難燃性向上剤、有機溶剤などを添加してもよい。また、公知の変色防止剤、例えば有機リン系変色防止剤を添加することもできる。   Furthermore, reinforcing fillers such as fumed silica and precipitated silica, flame retardants, organic solvents and the like may be added without departing from the object of the present invention. Moreover, a known discoloration preventing agent, for example, an organic phosphorus discoloration preventing agent can be added.

なお、(A’),(B),(C),(D),(E)成分を必須に含有し、エポキシ樹脂の縮合とヒドロシリル化付加反応を併用して硬化させる組成物のほうが、(A),(B),(E)成分を必須に含有し、エポキシ樹脂の縮合のみによって硬化物を形成する組成物に比較して発光半導体素子に対する接着性、信頼性の点で、より優れているため望ましいものである。   In addition, the composition which contains (A '), (B), (C), (D), (E) essential, and hardens | cures by combining condensation of an epoxy resin and hydrosilylation addition reaction is more ( A), (B), (E) components are essential, and are superior in terms of adhesion and reliability to the light-emitting semiconductor element as compared with a composition that forms a cured product only by condensation of an epoxy resin. This is desirable.

また、本発明の発光半導体を被覆保護するための(A),(B),(E)成分あるいは(A’),(B),(C),(D),(E)成分を必須成分とする組成物(被覆保護材)をポッティングや液状インジェクションなどで使用する場合は液状であることが好ましく、25℃の粘度は10〜1,000,000mPa・s、特には100〜1,000,000mPa・s程度が好ましい。一方、トランスファー成形で発光半導体装置を製造する場合は、上記の液状樹脂を使用することもできるが、液状樹脂を増粘させて固形化し、ペレット化した後、成形することでも製造することができる。   Further, the components (A), (B), (E) or the components (A ′), (B), (C), (D), (E) for protecting the light-emitting semiconductor of the present invention are essential components. When the composition (coating protective material) is used for potting or liquid injection, it is preferably liquid and the viscosity at 25 ° C. is 10 to 1,000,000 mPa · s, particularly 100 to 1,000,000. About 000 mPa · s is preferable. On the other hand, when manufacturing a light emitting semiconductor device by transfer molding, the above-mentioned liquid resin can be used, but it can also be manufactured by thickening the liquid resin, solidifying it, pelletizing it, and then molding it. .

本発明の被覆保護材は、発光半導体を被覆保護するために使用される。この場合、発光半導体としては、発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイ等を挙げることができる。発光半導体を被覆保護する態様は特に制限されるものではないが、図1,2に示されるように、開口部を有する筐体内に配置された発光半導体を覆って筐体内に被覆保護材を充填し、これを硬化させる等の方法を採用し得る。また、図3で示されるようなマトリックス化された基板状にLEDを搭載したものを印刷法、トランスファー成形、インジェクション成形などで製造することもできる。   The coating protective material of the present invention is used for coating protection of a light emitting semiconductor. In this case, examples of the light emitting semiconductor include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array. The mode of covering and protecting the light emitting semiconductor is not particularly limited, but as shown in FIGS. 1 and 2, the casing is filled with a covering protective material covering the light emitting semiconductor disposed in the housing having an opening. Then, a method such as curing it can be adopted. Moreover, what mounted LED on the matrix-shaped board | substrate form as shown in FIG. 3 can also be manufactured by a printing method, transfer molding, injection molding, etc. FIG.

なお、本発明の被覆保護材の硬化条件は、室温(25℃)で72時間から200℃で3分間と、その作業条件に合わせて任意であり、生産性と発光素子や筐体耐熱性とのバランスから適宜選定することができる。トランスファー成形やインジェクション成形の場合は150〜180℃の温度で20〜50kgf/cm2の圧力で1〜5分間成形することで容易に製造することができる。 In addition, the curing conditions of the coating protective material of the present invention are arbitrary depending on the working conditions from 72 hours to 200 ° C. for 3 minutes at room temperature (25 ° C.). It is possible to select appropriately from the balance. In the case of transfer molding or injection molding, it can be easily produced by molding at a temperature of 150 to 180 ° C. and a pressure of 20 to 50 kgf / cm 2 for 1 to 5 minutes.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、Me、Ph、Viはそれぞれメチル基、フェニル基、ビニル基を示し、部は質量部を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, Me, Ph, and Vi represent a methyl group, a phenyl group, and a vinyl group, respectively, and parts represent parts by mass.

まず、実施例、比較例の被覆保護材の評価方法を示す。
[評価方法]
シリコーン系ダイボンド材の調製
下記式(I)

Figure 0004614075
で表される末端ビニルジメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体(粘度3Pa・s)100部、下記式(II)
Figure 0004614075
で表されるメチルハイドロジェンポリシロキサン(粘度15mPa・s)2.5部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2質量%)0.03部、エチニルシクロヘキシルアルコール0.05部、3−グリシドキシプロピルトリメトキシシラン7部及び平均粒径9μmの球状アルミナ微粉末400部を均一混合して、シリコーンダイボンド材を調製した。 First, the evaluation method of the coating protective material of an Example and a comparative example is shown.
[Evaluation methods]
Preparation of silicone die bond material
Figure 0004614075
A terminal vinyldimethylsiloxy group-capped dimethylsiloxane / diphenylsiloxane copolymer (viscosity 3 Pa · s) represented by the following formula (II):
Figure 0004614075
Methyl hydrogen polysiloxane (viscosity 15 mPa · s) 2.5 parts, chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2% by mass) 0.03 parts, ethynylcyclohexyl alcohol 0.05 parts, 3 -A silicone die bond material was prepared by uniformly mixing 7 parts of glycidoxypropyltrimethoxysilane and 400 parts of spherical alumina fine powder having an average particle size of 9 µm.

樹脂の混合方法
樹脂の混合は、所定の配合物を予めスパチュラ等で約30秒程度手で撹拌した後、真空ミキサーARV−200(シンキー(株)製)にて撹拌することにより行った。
Resin mixing method The resin was mixed in advance by stirring a predetermined formulation by hand with a spatula or the like for about 30 seconds and then stirring with a vacuum mixer ARV-200 (manufactured by Shinky Corporation).

発光半導体装置の作製方法
発光素子として、InGaNからなる発光層を有し、主発光ピークが470nmのLEDチップを用いて、図3に示すような発光半導体装置を作製した。発光素子2をリード電極にシリコーン系ダイボンド材5を用い、180℃で10分間加熱して固定した。発光素子2とリード電極3,4を金線6にて接続させた後、被覆保護材7をポッティングし、180℃で1時間硬化し、発光半導体装置を作製した。
耐湿試験及び赤外線リフロー
作製した発光半導体装置を、85℃/85%RHの恒温恒湿室内に168時間放置した後、赤外線リフロー装置(260℃)に3回通して、外観のクラックが発生した数及び/又は剥離が発生した数を観察した。
表面埃付着性
作製した発光半導体装置に微粉末シリカを降りかけ、表面に付着させた後、エアーを吹きかけることで半導体装置表面に付着した微粉末シリカを除去できるかどうか確認した。
光透過率変化
それぞれの硬化物(厚み1mm)を100℃の雰囲気下で1,000時間放置した後、初期の光透過率と1,000時間後の光透過率を測定し、光透過率の保持率を測定した。
Method for Manufacturing Light-Emitting Semiconductor Device A light-emitting semiconductor device as shown in FIG. 3 was manufactured using an LED chip having a light-emitting layer made of InGaN and having a main light emission peak of 470 nm as a light-emitting element. The light emitting element 2 was fixed by heating at 180 ° C. for 10 minutes using a silicone die bond material 5 as a lead electrode. After the light emitting element 2 and the lead electrodes 3 and 4 were connected by the gold wire 6, the covering protective material 7 was potted and cured at 180 ° C. for 1 hour to produce a light emitting semiconductor device.
The number of appearance cracks after the light-emitting semiconductor device produced by the moisture resistance test and infrared reflow was left in a constant temperature and humidity chamber of 85 ° C./85% RH for 168 hours and then passed through the infrared reflow device (260 ° C.) three times. And / or the number of peeling occurred.
Surface dust adhesion The finely divided silica was applied to the light emitting semiconductor device produced and adhered to the surface, and then it was confirmed whether or not the finely divided silica adhered to the surface of the semiconductor device could be removed by blowing air.
Light transmittance change Each cured product (thickness 1 mm) was allowed to stand in an atmosphere of 100 ° C. for 1,000 hours, and then the initial light transmittance and the light transmittance after 1,000 hours were measured. Retention was measured.

[実施例1]
エポキシ当量が310のビスフェノールA型エポキシ樹脂20部、ヘキサンジオールジグリシジルエーテル1.0部を手撹拌後、ミキサーで90秒間混合した後、下記式

Figure 0004614075
(但し、k=65、m=30、n=2)
で示されるポリシロキサン50部、シロキサン単位が(PhSiO3/20.6(MeSiO3/20.2(ViMeSiO2/20.2の組成(モル比)で示され、ケイ素原子に結合した水酸基を8質量%含有するオルガノポリシロキサン30部、下記式
Figure 0004614075
で示されるオルガノハイドロジェンポリシロキサン5部、下記式
Figure 0004614075
で示される接着助剤0.3部、及び、塩化白金酸のオクチルアルコール変性溶液0.05部、アルミニウムアセチルアセトン0.1部を加え、手撹拌した後、180秒間ミキサーにて混合することにより、エポキシ・シリコーン混成樹脂組成物を調製した。
この組成物を、150℃、4時間にて加熱成形して硬化物を形成し、JIS K6301に準拠して、硬度(ショアD)を測定した。この組成物を150℃、4時間の条件で硬化(以下、同様)させたものは無色透明なものであった。
この樹脂組成物を用いて発光半導体装置を作製した。 [Example 1]
After manually stirring 20 parts of bisphenol A type epoxy resin having an epoxy equivalent of 310 and 1.0 part of hexanediol diglycidyl ether, after mixing for 90 seconds with a mixer, the following formula
Figure 0004614075
(However, k = 65, m = 30, n = 2)
The composition (molar ratio) of the polysiloxane represented by the formula (50 parts) and the siloxane unit of (PhSiO 3/2 ) 0.6 (MeSiO 3/2 ) 0.2 (ViMeSiO 2/2 ) 0.2 is represented by 8 hydroxyl groups bonded to silicon atoms. 30 parts by weight of organopolysiloxane containing the following formula
Figure 0004614075
5 parts of an organohydrogenpolysiloxane represented by the formula:
Figure 0004614075
By adding 0.3 part of an adhesion aid represented by the formula, 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid, 0.1 part of aluminum acetylacetone, and stirring manually, the mixture is mixed with a mixer for 180 seconds. An epoxy / silicone hybrid resin composition was prepared.
This composition was thermoformed at 150 ° C. for 4 hours to form a cured product, and the hardness (Shore D) was measured in accordance with JIS K6301. The composition cured at 150 ° C. for 4 hours (hereinafter the same) was colorless and transparent.
A light emitting semiconductor device was fabricated using this resin composition.

[実施例2]
エポキシ当量が310のビスフェノールA型エポキシ樹脂20部と、ヘキサンジオールジグリシジルエーテル1.0部を実施例1と同様の混合方法で予めよく混合した後、シロキサン単位が(PhSiO3/20.6(MeSiO3/20.2(ViMeSiO2/20.2の組成(モル比)で示され、ケイ素原子に結合した水酸基を8質量%含有するオルガノポリシロキサン80部、下記式

Figure 0004614075
で示されるオルガノハイドロジェンポリシロキサン5部、下記式
Figure 0004614075
で示される接着助剤0.3部、及び、塩化白金酸のオクチルアルコール変性溶液0.05部、アルミニウムアセチルアセトン0.1部を加え、実施例1と同様に混合することにより、エポキシ・シリコーン混成樹脂組成物を調製した。
この組成物を、150℃、4時間にて加熱成形して硬化物を形成し、JIS K 6301に準拠して、硬度(ショアD)を測定した。この組成物を硬化させたものは無色透明なものであった。
この樹脂組成物を用いて発光半導体装置を作製した。 [Example 2]
After mixing 20 parts of bisphenol A type epoxy resin having an epoxy equivalent of 310 and 1.0 part of hexanediol diglycidyl ether in advance by the same mixing method as in Example 1, the siloxane unit was (PhSiO 3/2 ) 0.6 ( 80 parts by weight of an organopolysiloxane having a composition (molar ratio) of MeSiO 3/2 ) 0.2 (ViMeSiO 2/2 ) 0.2 and containing 8% by mass of a hydroxyl group bonded to a silicon atom,
Figure 0004614075
5 parts of an organohydrogenpolysiloxane represented by the formula:
Figure 0004614075
An epoxy / silicone hybrid was prepared by adding 0.3 part of the adhesion aid represented by the formula, 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid and 0.1 part of aluminum acetylacetone and mixing in the same manner as in Example 1. A resin composition was prepared.
This composition was heat-molded at 150 ° C. for 4 hours to form a cured product, and the hardness (Shore D) was measured according to JIS K 6301. The cured product was colorless and transparent.
A light emitting semiconductor device was fabricated using this resin composition.

[実施例3]
実施例2において使用したビスフェノールA型エポキシ樹脂を、エポキシ当量が290の水添ビスフェノールA型エポキシ樹脂(商品名YX8034:JER)に変えた他は実施例2と全く一緒の組成で実施例1と同様にしてエポキシ・シリコーン混成樹脂組成物を調製し、硬化物を形成し、実施例1と同様に測定した結果を表1に示した。硬化物は無色透明であった。
この樹脂組成物を用いて発光半導体装置を作製した。
[Example 3]
The same composition as in Example 2 except that the bisphenol A type epoxy resin used in Example 2 was changed to a hydrogenated bisphenol A type epoxy resin having an epoxy equivalent of 290 (trade name YX8034: JER). Similarly, an epoxy / silicone hybrid resin composition was prepared, a cured product was formed, and the results measured in the same manner as in Example 1 are shown in Table 1. The cured product was colorless and transparent.
A light emitting semiconductor device was fabricated using this resin composition.

[実施例4]
実施例3において使用したアルミニウムアセチルアセトンに変えて安息香酸アルミニウムを0.8部添加した以外は実施例3と一緒の組成で実施例1と同様にしてエポキシ・シリコーン混成樹脂組成物を調製し、硬化物を形成し、実施例1と同様に測定した結果を表1に示した。硬化物は無色透明であった。
この樹脂組成物を用いて発光半導体装置を作製した。
[Example 4]
An epoxy-silicone hybrid resin composition was prepared in the same manner as in Example 1 except that 0.8 parts of aluminum benzoate was added instead of aluminum acetylacetone used in Example 3, and cured. Table 1 shows the results of forming the product and measuring the same as in Example 1. The cured product was colorless and transparent.
A light emitting semiconductor device was fabricated using this resin composition.

[実施例5]
(CH3SiO3/20.45(PhSiO3/20.4(CH3PhSiO)0.15からなり、ケイ素原子結合水酸基を5質量%含有するオルガノポリシロキサン70部、水添ビスフェノールA型エポキシ樹脂(商品名YX8034:JER)30部、ヘキサンジオールジグリシジルエーテル1.5部、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(商品名KBM403:信越化学工業(株)製)1部、安息香酸アルミニウム1.5部を溶融しながら十分混合し、エポキシ・シリコーン混成樹脂組成物を得た。硬化物は無色透明であった。
この樹脂組成物を用いて発光半導体装置を作製した。
[Example 5]
(CH 3 SiO 3/2 ) 0.45 (PhSiO 3/2 ) 0.4 (CH 3 PhSiO) 0.15 , 70 parts of an organopolysiloxane containing 5% by mass of silicon-bonded hydroxyl groups, hydrogenated bisphenol A type epoxy resin (product) Name YX8034: JER) 30 parts, hexanediol diglycidyl ether 1.5 parts, γ-glycidoxypropyltrimethoxysilane (trade name KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part as silane coupling agent, benzoic acid While melting 1.5 parts of aluminum, it was sufficiently mixed to obtain an epoxy / silicone hybrid resin composition. The cured product was colorless and transparent.
A light emitting semiconductor device was fabricated using this resin composition.

[比較例1]
実施例1において使用したヘキサンジオールジグリシジルエーテルを不使用とした以外は実施例1と同様の操作を行った。硬化物を形成したが、硬化物は半透明であった。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the hexanediol diglycidyl ether used in Example 1 was not used. Although a cured product was formed, the cured product was translucent.

[比較例2]
(CH3SiO3/20.45(PhSiO3/20.4(CH3PhSiO)0.15からなり、ケイ素原子結合水酸基を5質量%含有するオルガノポリシロキサン60部、水添ビスフェノールA型エポキシ樹脂(商品名YX8034:JER)40部、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(商品名KBM403:信越化学工業(株)製)1部、安息香酸アルミニウム1.5部を溶融しながら十分混合し、エポキシ・シリコーン混成樹脂組成物を得た。硬化物は無色透明であった。
この樹脂組成物を用いて発光半導体装置を作製した。
[Comparative Example 2]
(CH 3 SiO 3/2 ) 0.45 (PhSiO 3/2 ) 0.4 (CH 3 PhSiO) 0.15 , 60 parts of an organopolysiloxane containing 5% by mass of silicon atom-bonded hydroxyl groups, hydrogenated bisphenol A type epoxy resin (product) Name YX8034: JER) 40 parts, 1 part of γ-glycidoxypropyltrimethoxysilane (trade name KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent and 1.5 parts of aluminum benzoate are sufficiently melted By mixing, an epoxy / silicone hybrid resin composition was obtained. The cured product was colorless and transparent.
A light emitting semiconductor device was fabricated using this resin composition.

実施例1〜5及び比較例2の樹脂組成物を用いて発光素子を封止し、特性を評価した。
上記実施例、比較例の被覆保護材の評価結果を表1に示す。
The light emitting element was sealed using the resin compositions of Examples 1 to 5 and Comparative Example 2, and the characteristics were evaluated.
Table 1 shows the evaluation results of the coating protective materials of the above Examples and Comparative Examples.

Figure 0004614075
Figure 0004614075

表面実装型半導体発光装置の一例(発光素子が絶縁性の筐体上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows an example (thing by which the light emitting element was die-bonded on the insulating housing | casing) of a surface mounted semiconductor light-emitting device. 表面実装型半導体発光装置の他の例(発光素子が筐体に挿入されたリード電極上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows the other example (The thing by which the light emitting element was die-bonded on the lead electrode inserted in the housing | casing). 砲弾型半導体発光装置を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows a shell-type semiconductor light-emitting device.

符号の説明Explanation of symbols

1 筐体
2 発光素子
3,4 リード電極
5 ダイボンド材
6 金線
7 被覆保護材
DESCRIPTION OF SYMBOLS 1 Case 2 Light emitting element 3, 4 Lead electrode 5 Die-bonding material 6 Gold wire 7 Covering protective material

Claims (6)

(A’)一分子中に1個以上の脂肪族不飽和一価炭化水素基をもち、かつ少なくとも1個のケイ素原子結合水酸基をもつ有機ケイ素化合物、
(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、
(C)オルガノハイドロジェンポリシロキサン、
(D)白金族金属系触媒、
(E)アルミニウム系硬化触媒、
(F)エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,3−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルから選ばれる非環式低粘度液状エポキシ樹脂
を必須成分とすることを特徴とするエポキシ・シリコーン混成樹脂組成物。
(A ′) an organosilicon compound having one or more aliphatic unsaturated monovalent hydrocarbon groups in one molecule and having at least one silicon atom-bonded hydroxyl group,
(B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin in which an aromatic ring is partially or completely hydrogenated,
(C) organohydrogenpolysiloxane,
(D) a platinum group metal catalyst,
(E) an aluminum-based curing catalyst,
(F) ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerol di An epoxy-silicone hybrid resin composition comprising an acyclic low-viscosity liquid epoxy resin selected from glycidyl ether and glycerol triglycidyl ether as an essential component.
発光半導体素子封止用である請求項1記載のエポキシ・シリコーン混成樹脂組成物。   2. The epoxy / silicone hybrid resin composition according to claim 1, which is used for sealing a light emitting semiconductor element. 請求項1に記載の(B)成分と(F)成分を均一に混合した後、(A’)成分と(C)成分及び(D)成分と(E)成分を加えて均一に混合することを特徴とするエポキシ・シリコーン混成樹脂組成物の製造方法。   After (B) component and (F) component of Claim 1 are mixed uniformly, (A ') component, (C) component, (D) component, and (E) component are added and mixed uniformly. A method for producing an epoxy-silicone hybrid resin composition characterized by the above. 発光半導体素子が請求項1又は2記載のエポキシ・シリコーン混成樹脂組成物の透明硬化物で封止保護された発光半導体装置。   A light emitting semiconductor device, wherein the light emitting semiconductor element is sealed and protected with a transparent cured product of the epoxy / silicone hybrid resin composition according to claim 1. 発光半導体素子が、
(A)一分子中に1個以上のケイ素原子結合水酸基をもつ有機ケイ素化合物、
(B)エポキシ当量250以上の芳香族エポキシ樹脂、もしくは芳香環を一部又は完全に水添した水添型エポキシ樹脂、
(E)アルミニウム系硬化触媒、
(F)エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,3−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルから選ばれる非環式低粘度液状エポキシ樹脂
を必須成分とするエポキシ・シリコーン混成樹脂組成物の透明硬化物で封止保護された発光半導体装置。
The light emitting semiconductor element is
(A) an organosilicon compound having one or more silicon atom-bonded hydroxyl groups in one molecule;
(B) an aromatic epoxy resin having an epoxy equivalent of 250 or more, or a hydrogenated epoxy resin in which an aromatic ring is partially or completely hydrogenated,
(E) an aluminum-based curing catalyst,
(F) ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerol di A light-emitting semiconductor device sealed and protected with a transparent cured product of an epoxy / silicone hybrid resin composition comprising an acyclic low-viscosity liquid epoxy resin selected from glycidyl ether and glycerol triglycidyl ether as an essential component.
エポキシ・シリコーン混成樹脂組成物が、(B)成分と(F)成分を均一に混合した後、(A)成分及び(E)成分を加えて均一に混合することによって得られたものである請求項5記載の発光半導体装置。   The epoxy-silicone hybrid resin composition is obtained by uniformly mixing (B) component and (F) component, and then adding (A) component and (E) component and mixing uniformly. Item 6. A light emitting semiconductor device according to Item 5.
JP2005081054A 2005-03-22 2005-03-22 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device Active JP4614075B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005081054A JP4614075B2 (en) 2005-03-22 2005-03-22 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
KR1020060025617A KR101252301B1 (en) 2005-03-22 2006-03-21 Epoxy-silicone hybrid resin composition, process for the preparation thereof and light-emitting semiconductor device
TW095109697A TWI418591B (en) 2005-03-22 2006-03-21 Epoxy. Polysiloxane mixed resin composition and its manufacturing method and light emitting semiconductor device
CN2006100682631A CN1837284B (en) 2005-03-22 2006-03-22 Epoxy-organosilicon mixed resin composition and method for preparing same, and light-emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081054A JP4614075B2 (en) 2005-03-22 2005-03-22 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device

Publications (2)

Publication Number Publication Date
JP2006265274A JP2006265274A (en) 2006-10-05
JP4614075B2 true JP4614075B2 (en) 2011-01-19

Family

ID=37014798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081054A Active JP4614075B2 (en) 2005-03-22 2005-03-22 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device

Country Status (4)

Country Link
JP (1) JP4614075B2 (en)
KR (1) KR101252301B1 (en)
CN (1) CN1837284B (en)
TW (1) TWI418591B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844732B2 (en) * 2005-05-24 2011-12-28 信越化学工業株式会社 Light emitting semiconductor device
JP2007191697A (en) * 2005-12-19 2007-08-02 Shin Etsu Chem Co Ltd Epoxy/silicone hybrid resin composition and photosemiconductor device
JP5010247B2 (en) * 2006-11-20 2012-08-29 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
JP5608955B2 (en) * 2007-02-06 2014-10-22 日亜化学工業株式会社 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MOLDED BODY
KR101530103B1 (en) * 2007-09-27 2015-06-18 미츠비시 가스 가가쿠 가부시키가이샤 Epoxy resin composition, cured object obtained therefrom, and light emitting diode
JP2010248385A (en) * 2009-04-16 2010-11-04 Jsr Corp Composition, cured product and optical semiconductor sealing material
JP5373696B2 (en) * 2010-05-07 2013-12-18 信越化学工業株式会社 Novel silphenylene skeleton-containing silicone polymer compound and method for producing the same
JP2012049519A (en) * 2010-07-26 2012-03-08 Mitsubishi Chemicals Corp Package for semiconductor light-emitting device, and light-emitting device
JP6232714B2 (en) * 2013-03-08 2017-11-22 日本ゼオン株式会社 Epoxy resin composition, sealing material, and optical semiconductor device
CN103694478B (en) * 2013-12-10 2016-01-13 广东聚合有机硅材料有限公司 A kind of synthetic method of polysiloxane
US10658554B2 (en) 2014-06-19 2020-05-19 Inkron Oy LED lamp with siloxane particle material
JP5972433B1 (en) 2015-07-21 2016-08-17 古河電気工業株式会社 Curable hygroscopic resin composition for electronic device sealing, resin cured product, and electronic device
JP6010210B2 (en) * 2015-12-10 2016-10-19 株式会社カネカ Resin molded body for surface mount type light emitting device and light emitting device using the same
TWI784922B (en) * 2015-12-18 2022-12-01 香港商英克倫股份有限公司 Led lamp, method of making led lamp, and method for encapsulating led device
CN116925624B (en) * 2023-08-24 2024-02-23 湖南庆润新材料有限公司 Self-cleaning anti-reflection coating, coating and preparation method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133120A (en) * 1981-02-12 1982-08-17 Toshiba Corp Manufacturing of cast epoxy resin
JPS6189221A (en) * 1984-10-08 1986-05-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPH03294331A (en) * 1990-04-11 1991-12-25 Toshiba Silicone Co Ltd Epoxy resin composition for sealing and production thereof
JPH08224833A (en) * 1994-11-17 1996-09-03 Shin Etsu Chem Co Ltd Composite of silicone rubber and silicone epoxy resin, and manufacture thereof
JPH10135522A (en) * 1996-10-29 1998-05-22 Nippon Perunotsukusu Kk Light emitting diode device
JP2000248182A (en) * 1999-03-02 2000-09-12 Dow Corning Toray Silicone Co Ltd Additive for resin, curable resin composition, and cured resin
JP2004289102A (en) * 2003-01-29 2004-10-14 Asahi Kasei Chemicals Corp Thermosetting composition for sealing light emitting element, and light emitting diode
JP2004292714A (en) * 2003-03-28 2004-10-21 Kanegafuchi Chem Ind Co Ltd Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product
JP2004292807A (en) * 2003-03-12 2004-10-21 Shin Etsu Chem Co Ltd Covering protective material for light-emitting semiconductor and light-emitting semiconductor device
JP2005158766A (en) * 2003-11-20 2005-06-16 Shin Etsu Chem Co Ltd Epoxy/silicone hybrid resin composition and light-emitting semiconductor device
JP4300418B2 (en) * 2004-04-30 2009-07-22 信越化学工業株式会社 Epoxy / silicone hybrid resin composition and light emitting semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618984A (en) * 1994-06-24 1997-04-08 Mitsui Toatsu Chemicals, Inc. Phenol aralkyl resins, preparation process thereof and epoxy resin compositions
CN1155562A (en) * 1995-10-11 1997-07-30 陶氏康宁公司 Curable organopolysiloxane compositions with improved adhesion
CA2236391A1 (en) * 1997-05-02 1998-11-02 Bayer Aktiengesellschaft Addition crosslinking silicone rubber mixtures, a process for the preparation thereof, a process for the preparation of composite molded parts and the use thereof
FR2775481B1 (en) * 1998-02-27 2003-10-24 Rhodia Chimie Sa CROSS-LINKABLE ADHESIVE SILICONE COMPOSITION AND USE THEREOF FOR BONDING VARIOUS SUBSTRATES

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133120A (en) * 1981-02-12 1982-08-17 Toshiba Corp Manufacturing of cast epoxy resin
JPS6189221A (en) * 1984-10-08 1986-05-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPH03294331A (en) * 1990-04-11 1991-12-25 Toshiba Silicone Co Ltd Epoxy resin composition for sealing and production thereof
JPH08224833A (en) * 1994-11-17 1996-09-03 Shin Etsu Chem Co Ltd Composite of silicone rubber and silicone epoxy resin, and manufacture thereof
JPH10135522A (en) * 1996-10-29 1998-05-22 Nippon Perunotsukusu Kk Light emitting diode device
JP2000248182A (en) * 1999-03-02 2000-09-12 Dow Corning Toray Silicone Co Ltd Additive for resin, curable resin composition, and cured resin
JP2004289102A (en) * 2003-01-29 2004-10-14 Asahi Kasei Chemicals Corp Thermosetting composition for sealing light emitting element, and light emitting diode
JP2004292807A (en) * 2003-03-12 2004-10-21 Shin Etsu Chem Co Ltd Covering protective material for light-emitting semiconductor and light-emitting semiconductor device
JP2004292714A (en) * 2003-03-28 2004-10-21 Kanegafuchi Chem Ind Co Ltd Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product
JP2005158766A (en) * 2003-11-20 2005-06-16 Shin Etsu Chem Co Ltd Epoxy/silicone hybrid resin composition and light-emitting semiconductor device
JP4300418B2 (en) * 2004-04-30 2009-07-22 信越化学工業株式会社 Epoxy / silicone hybrid resin composition and light emitting semiconductor device

Also Published As

Publication number Publication date
TW200706592A (en) 2007-02-16
KR101252301B1 (en) 2013-04-08
JP2006265274A (en) 2006-10-05
TWI418591B (en) 2013-12-11
KR20060102287A (en) 2006-09-27
CN1837284B (en) 2010-10-06
CN1837284A (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP4803339B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
JP4300418B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
JP4614075B2 (en) Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP4586967B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
KR100848861B1 (en) Silicone rubber composition, light-emitting semiconductor embedding/protecting material and light-emitting semiconductor device
JP5814175B2 (en) Thermosetting silicone resin composition for LED reflector, LED reflector and optical semiconductor device using the same
JP4636242B2 (en) Optical semiconductor element sealing material and optical semiconductor element
KR101722089B1 (en) Curable organopolysiloxane composition and optical semiconductor device
KR101722123B1 (en) Curable organopolysiloxane composition and optical semiconductor device
JP4479882B2 (en) Cannonball type light emitting semiconductor device
US7592399B2 (en) Epoxy/silicone hybrid resin composition and optical semiconductor device
JP2017031141A (en) Hydrosilyl group-containing organopolysiloxane, method for producing the same and addition-curable silicone composition
JP4844732B2 (en) Light emitting semiconductor device
KR101775476B1 (en) Curable resin composition
JP4822001B2 (en) Epoxy / silicone hybrid resin composition and cured product thereof
US20060270808A1 (en) Epoxy-silicone mixed resin composition, cured article thereof, and light-emitting semiconductor device
JP2007191697A (en) Epoxy/silicone hybrid resin composition and photosemiconductor device
JP4479883B2 (en) Light emitting semiconductor device
US20070142573A1 (en) Epoxy/silicone hybrid resin composition and cured part
JP2020070324A (en) Addition-curable silicone resin composition, cured product of the same, and optical semiconductor device
WO2019026754A1 (en) Curable silicone composition and optical semiconductor device
TW202043421A (en) Silicone resin composition for die-bonding, cured product and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4614075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3