JP5607951B2 - 燃料電池システムの停止状態維持方法 - Google Patents

燃料電池システムの停止状態維持方法 Download PDF

Info

Publication number
JP5607951B2
JP5607951B2 JP2010042875A JP2010042875A JP5607951B2 JP 5607951 B2 JP5607951 B2 JP 5607951B2 JP 2010042875 A JP2010042875 A JP 2010042875A JP 2010042875 A JP2010042875 A JP 2010042875A JP 5607951 B2 JP5607951 B2 JP 5607951B2
Authority
JP
Japan
Prior art keywords
gas
pressure
pressure holding
fuel cell
target range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010042875A
Other languages
English (en)
Other versions
JP2011181263A (ja
Inventor
幸嗣 桝本
誠作 東口
正美 濱走
義彦 小山
理生 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010042875A priority Critical patent/JP5607951B2/ja
Publication of JP2011181263A publication Critical patent/JP2011181263A/ja
Application granted granted Critical
Publication of JP5607951B2 publication Critical patent/JP5607951B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池システムの停止状態維持方法に関する。
燃料電池からの電力の出力を停止する停止状態にその燃料電池の運転を移行させる停止移行工程を実施した段階では、カソードには酸化剤ガスとしての空気(酸素)が残留している。そのため、燃料電池システムの停止状態維持方法として、カソードの酸化による劣化を防止することを目的として、カソードへ水素含有ガスを供給した上で、次に燃料電池が始動されるまでその停止状態を維持する停止状態維持工程を実施することが提案されている(例えば、特許文献1を参照)。具体的には、特許文献1に記載の方法では、アノード及びカソードのガス流路を連結するガス導通路を特別に装備したシステムにおいて、アノードに水素含有ガスを供給することでその水素含有ガスを上記ガス導通路を介してカソードにも供給している。そして、カソードに残留していた酸化剤ガスの全部又は一部を水素含有ガスで置換した後、遮断弁を閉じてアノード及びカソードを封止する停止状態維持工程を実施している。
特開2005−93115号公報(請求項1〜請求項4)
特許文献1に記載の方法では、残留している酸化剤ガスによるカソードの酸化を防止することを目的として、アノードからカソードへ水素含有ガスを供給している。従って、カソードへ水素含有ガスを供給するための特別な配管が必要になるため、装置の構成が複雑になり且つ装置のコストが高くなるという問題が生じる。加えて、通常の発電運転時には使用しない特別な配管を使用して、通常の発電運転時に使用しないガスをカソードに供給しようとすると、ガスの流路の切り換えや、ガスの入れ換えなどの煩雑な手順が必要になる。
他には、本願出願人が出願人である特願2008−225326号に、アノードへ供給される燃料ガスを改質器を用いて生成する燃料ガス生成装置と燃料電池のアノードとを一体で封止した状態で保管する燃料電池システムの停止状態維持方法が記載されている。具体的には、この停止状態維持方法は、燃料電池の運転を停止状態に維持し、且つ、燃料ガス生成装置からアノードへ通じるガス流通系統の改質器よりも上流側の第1閉止対象部位を閉止し、且つ、アノードからのガス排出路の途中の第2閉止対象部位を閉止し、且つ、燃料ガス生成装置とアノードとの間のガスの流通を許容した状態で燃料電池を保管する方法である。この停止状態維持方法を採用した場合、運転停止した時点で燃料ガス生成装置に多く存在している改質ガス(水素)を用いて、燃料ガス生成装置と燃料電池のアノードとを一体で封止できるという利点がある。
このように、燃料ガス生成装置と燃料電池のアノードとを一体で封止することで、燃料電池システムを停止させている間、燃料ガス生成装置(特に、改質器の改質触媒)の劣化とアノードの劣化とを併せて抑制することが可能となる。
更に、特願2008−225326号には、燃料電池システム内の温度低下に伴って圧力低下が発生したとき、燃料電池システム内にガスを供給して燃料電池システム内の圧力を上昇させる保圧処理についても記載されている。燃料ガス生成装置と燃料電池のアノードとを一体で封止している間にこのような保圧処理を適宜行うことで、その間の燃料電池システム内への酸素の侵入を回避できる。
尚、燃料電池システム内の温度変化及び圧力変化によって、燃料電池の電解質とアノード及びカソードとの間のシール部分に隙間が生じ、その隙間からのガス漏れが発生する可能性がある。更に、燃料ガス生成装置は、運転時には高温になり、停止時には周囲と同程度の低温になるというように、高温環境下と低温環境下とに繰り返し曝されることになる。そのため、燃料ガス生成装置の内部配管の接続箇所に溶接不良などの弱い部分があった場合、その部分にひび等が生じ、そのひび等からのガス漏れが発生する可能性がある。
燃料電池システムにガス漏れが発生するような問題が生じた場合、上述した保圧処理を中止することが好ましい。なぜならば、ガス漏れが発生するにも拘わらず保圧処理を行って燃料電池システム内の圧力を上昇させると、燃料電池システム内から更にガス(特に、残留している水素や炭化水素ガスなど)が漏れ出す虞があるからである。
但し、燃料電池システムを停止させている間、燃料ガス生成装置と燃料電池のアノードとを一体で封止し、且つ、燃料ガス生成装置と燃料電池のアノードとを一体で保圧処理するような燃料電池システムの停止状態維持方法において、ガス漏れが発生したときにその保圧処理を中止してしまうと、ガス漏れが発生していない正常な部分の保圧処理も同時に中止されるという問題がある。例えば、燃料電池において問題が生じることによりガス漏れが発生した場合、燃料ガス生成装置には問題が無いにも拘わらず、燃料ガス生成装置も保圧処理されなくなる。そのため、正常であるはずの燃料ガス生成装置内の触媒(例えば、改質触媒)が酸化されたり、残留している水蒸気によって濡れてしまうといった問題に至る可能性がある。そして、燃料電池からのガス漏れを修復するメンテナンスを行った後で燃料電池システムの運転を再開するとき、燃料ガス生成装置で改質ガスの生成が十分に行われないといった問題が生じる可能性がある。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、ガス漏れなどが発生しても、燃料電池システム内の少なくとも一部分の性能を維持できる燃料電池システムの停止状態維持方法を提供する点にある。
上記目的を達成するための本発明に係る燃料電池システムの停止状態維持方法の特徴構成は、水素を含む燃料ガスが供給されるアノードと酸化剤ガスが供給されるカソードとの間に電解質を設けて構成される燃料電池を備え、前記アノードへのガス供給路に、前記アノードへ供給される前記燃料ガスを改質器を用いて生成する燃料ガス生成装置が接続されている燃料電池システムの停止状態維持方法であって、
前記燃料電池からの電力の出力を停止する停止状態に前記燃料電池の運転を移行させる停止移行工程と、
前記停止移行工程の後に、前記燃料電池の運転を前記停止状態に維持し、且つ、前記燃料ガス生成装置から前記アノードへ通じるガス流通系統の前記改質器よりも上流側の第1閉止対象部位を閉止し、且つ、前記アノードからのガス排出路の途中の第2閉止対象部位を閉止し、且つ、前記燃料ガス生成装置と前記アノードとの間のガスの流通を許容した状態で、前記燃料電池を保管する停止状態維持工程とを有し、
前記停止状態維持工程を実施している間の設定保圧タイミングで、前記第1閉止対象部位と前記第2閉止対象部位との間を保圧対象範囲として当該保圧対象範囲の保圧処理を行うと共に、前記停止状態維持工程を実施している間に前記保圧対象範囲からのガス漏れを検出すると、前記第1閉止対象部位と、前記ガス流通系統の途中の前記燃料ガス生成装置及び前記アノードの間の第3閉止対象部位とを閉止して前記燃料ガス生成装置と前記アノードとの間のガスの流通を遮断することで前記保圧対象範囲を分離する保圧対象範囲分離処理を行い、
前記保圧対象範囲分離処理を行った後、前記保圧対象範囲の内の前記第1閉止対象部位と前記第3閉止対象部位との間の範囲からのガス漏れを検出すると前記保圧処理を中止する点にある。
上記特徴構成によれば、停止状態維持工程を実施している間の設定保圧タイミングで保圧対象範囲の保圧処理を実施することで、上記第1閉止対象部位から上記第2閉止対象部位に至る間の保圧対象範囲の圧力が保たれる。つまり、保圧対象範囲の圧力が保たれるので、停止状態維持工程を実施している間に燃料電池の内部温度の変化があったとしても、改質器へのガス(例えば、酸素など)の侵入や、燃料電池外部やカソードなどからアノードへのガス(例えば、酸素など)の侵入が発生し難くなる。よって、改質器の触媒やアノードの酸化が抑制される。
更に、停止状態維持工程を実施している間に保圧対象範囲からのガス漏れを検出すると、第1閉止対象部位と第3閉止対象部位とを閉止して燃料ガス生成装置とアノードとの間のガスの流通を遮断することで保圧対象範囲を分離する保圧対象範囲分離処理が実施される。つまり、第1閉止対象部位と第3閉止対象部位とを閉止する保圧対象範囲分離処理によって、全保圧対象範囲の内の第1閉止対象部位と第3閉止対象部位との間の範囲(即ち、燃料ガス生成装置の改質器などを含む範囲)を全保圧対象範囲から分離して選択的に隔離できる。その結果、ガス漏れが第3閉止対象部位と第2閉止対象部位との間(例えば、第3閉止対象部位と第2閉止対象部位との間にある燃料電池など)で発生していたとしても、第1閉止対象部位と第3閉止対象部位との間(即ち、第1閉止対象部位と第3閉止対象部位との間にある燃料ガス生成装置の改質器など)の圧力を維持できる。そして、燃料ガス生成装置の改質器などの酸化を抑制できるため、第3閉止対象部位と第2閉止対象部位との間で発生したガス漏れを修復するメンテナンスを行った後で燃料電池システムの運転を再開するとき、燃料ガス生成装置で改質ガスの生成が十分に行われないといった問題は生じない。
従って、ガス漏れなどが発生しても、燃料電池システム内の少なくとも一部分の性能を維持できる燃料電池システムの停止状態維持方法を提供できる。
ところで、ガス漏れが発生している状況で、保圧処理を行って保圧対象範囲の内部の圧力を上昇させると、ガス漏れが促進される可能性がある。
本特徴構成では、保圧対象範囲分離処理を行った後、保圧対象範囲の内の第1閉止対象部位と第3閉止対象部位との間の範囲からのガス漏れを検出すると保圧処理を中止するので、保圧対象範囲の外部へのガス漏れが抑制される。
本発明に係る燃料電池システムの停止状態維持方法の別の特徴構成は、前記保圧対象範囲分離処理において前記第2閉止対象部位を閉止する点にある。
上記特徴構成によれば、停止状態維持工程を実施している間に保圧対象範囲からのガス漏れを検出すると、第1閉止対象部位と第2閉止対象部位と第3閉止対象部位とを閉止して燃料ガス生成装置とアノードとの間のガスの流通を遮断することで保圧対象範囲を分離する保圧対象範囲分離処理が実施される。つまり、保圧対象範囲分離処理によって、全保圧対象範囲の内の第1閉止対象部位と第3閉止対象部位との間の範囲を個別に隔離でき、及び、全保圧対象範囲の内の第3閉止対象部位と第2閉止対象部位との間の範囲を個別に隔離できる。
その結果、ガス漏れが、アノード等を含む第3閉止対象部位と第2閉止対象部位との間の範囲、或いは、改質器等を含む第1閉止対象部位と第3閉止対象部位との間の範囲の何れで発生していたとしても、ガス漏れの発生していない方の範囲へ、酸素が侵入する等のガス漏れの影響が及ばないようにできる。
更に、ガス漏れが検出された後も第1閉止対象部位と第2閉止対象部位と第3閉止対象部位とを閉止し続けることで、即ち、ガス漏れが発生している箇所を、ガス漏れの発生していない無事な部位から確実に分離して封止し続けることで、ガス漏れが緩やかに進行するようにできる。
本発明に係る燃料電池システムの停止状態維持方法の更に別の特徴構成は、前記保圧処理は、前記第1閉止対象部位を開放して、前記第1閉止対象部位の上流側から前記保圧対象範囲にガスを供給することで前記保圧対象範囲の内部の圧力を上昇させる処理である点にある。
上記特徴構成によれば、第1閉止対象部位を開放してその第1閉止対象部位の上流側から保圧対象範囲にガスを供給することで、保圧対象範囲の内部の圧力を上昇させることができる。その結果、保圧対象範囲に外部から酸素などが侵入し難くなる。
本発明に係る燃料電池システムの停止状態維持方法の更に別の特徴構成は、前記保圧対象範囲分離処理を行ってから設定判定時間経過した後で前記第1閉止対象部位と前記第3閉止対象部位との間からのガス漏れを検出した場合には、前記保圧対象範囲分離処理の前に検出したガス漏れは前記第1閉止対象部位と前記第3閉止対象部位との間からのガス漏れであったと判定し、及び、ガス漏れを検出しない場合には、前記保圧対象範囲分離処理の前に検出したガス漏れは前記第3閉止対象部位と前記第2閉止対象部位との間からのガス漏れであったと判定する点にある。
上記特徴構成によれば、前記保圧対象範囲分離処理を行ってから設定判定時間経過した後で前記第1閉止対象部位と前記第3閉止対象部位との間からのガス漏れを検出した場合には、保圧対象範囲分離処理の前に発生したガス漏れが、第1閉止対象部位と第3閉止対象部位との間(即ち、第1閉止対象部位と第3閉止対象部位との間にある燃料ガス生成装置など)からのガス漏れであったと判定でき、及び、ガス漏れを検出しない場合には、保圧対象範囲分離処理の前に発生したガス漏れが、第3閉止対象部位と第2閉止対象部位との間(即ち、第3閉止対象部位と第2閉止対象部位との間にある燃料電池など)からのガス漏れであったと判定できる。これにより、メンテナンスを施すべき箇所が第1閉止対象部位と第3閉止対象部位との間であるのか、或いは、第3閉止対象部位と第2閉止対象部位との間であるのかを特定することが可能となる。
本発明に係る燃料電池システムの停止状態維持方法の更に別の特徴構成は、
前記燃料電池システムには前記ガス流通系統の内部の圧力を検出可能な圧力計が前記第1閉止対象部位と前記第3閉止対象部位との間に設けられ、
前記設定保圧タイミングは、前記圧力計によって検出される前記保圧対象範囲の内部の圧力が設定保圧圧力を下回ったタイミングである点にある。
停止状態維持工程中を実施している間、燃料電池や燃料ガス生成装置の内部温度が変化する可能性がある。燃料電池や燃料ガス生成装置の内部温度の変化が発生した場合、燃料電池のアノードや燃料ガス生成装置を含む保圧対象範囲の内部圧力が変化する。そして、保圧対象範囲の内部圧力が低下した場合には、保圧対象範囲に酸素(空気)が侵入する可能性がある。
本特徴構成では、第1閉止対象部位と第3閉止対象部位との間に設けられる圧力計によって検出される保圧対象範囲の内部の圧力が設定保圧圧力を下回ったときに上記保圧処理が行われるので、保圧対象範囲に酸素(空気)が侵入する可能性を低くできる。更に、保圧対象範囲の圧力を検出するための圧力計が第1閉止対象部位と第3閉止対象部位との間に設けられているので、上記保圧対象範囲分離処理が行われた後に第1閉止対象部位と第3閉止対象部位との間を保圧対象範囲とした場合にも、その第1閉止対象部位と第3閉止対象部位との間の保圧対象範囲の圧力を圧力計で検出して上記保圧処理を実行できる。
本発明に係る燃料電池システムの停止状態維持方法の更に別の特徴構成は、前記保圧処理の実施頻度が高いとき、又は、前記保圧処理において前記保圧対象範囲にガスを供給したときに前記保圧対象範囲の内部の圧力の上昇に要する時間が設定所要時間以上であるとき、又は、前記保圧対象範囲の内部の圧力の低下速度が設定低下速度以上のとき、ガス漏れが発生したと判定する点にある。
保圧処理の実施頻度が通常の頻度(基準頻度)よりも高いということは、保圧対象範囲の圧力低下(例えば、保圧対象範囲からのガスの流出)が大きいと見なすことができる。また、保圧処理において保圧対象範囲にガスを供給したときに保圧対象範囲の内部の圧力の上昇に要する時間が設定所要時間以上であるということは、保圧対象範囲からのガスの流出があるために保圧対象範囲の内部の圧力の上昇に長い時間を要していると見なすことができる。また或いは、保圧対象範囲の内部の圧力の低下速度が設定低下速度以上であるということは、保圧対象範囲からのガスの流出量が大きいと見なすことができる。
従って、本特徴構成のように、制御手段が、上記保圧処理の実施頻度、又は、保圧処理において保圧対象範囲にガスを供給したときに保圧対象範囲の内部の圧力の上昇に要する時間、又は、保圧対象範囲の内部の圧力の低下速度を監視することで、保圧対象範囲からのガス漏れの可能性を迅速に検出できる。
更に、保圧対象範囲の圧力を検出するための圧力計が第1閉止対象部位と第3閉止対象部位との間に設けられているので、保圧対象範囲分離処理が行われた後には、第1閉止対象部位と第3閉止対象部位との間の保圧対象範囲の圧力を選択的に検出できる。つまり、上記保圧対象範囲分離処理が行われた後には、第1閉止対象部位と第3閉止対象部位との間の保圧対象範囲からのガス漏れを選択的に検出できる。
本発明に係る燃料電池システムの停止状態維持方法の更に別の特徴構成は、監視対象ガスを検出可能なガス検出センサが、設定濃度以上の監視対象ガスを検出したとき、ガス漏れが発生したと判定する点にある。
上記特徴構成によれば、ガス検出センサを用いることで、監視対象ガスのガス漏れを正確に検出できる。
第1実施形態の燃料電池システムの停止状態維持方法が実施される燃料電池システムの構成を説明する図である。 燃料電池システムの作動状態を説明するタイミング図である。 保圧対象範囲分離処理を含む制御のフローチャートである。 第2実施形態の燃料電池システムの停止状態維持方法が実施される燃料電池システムの構成を説明する図である。
<第1実施形態>
以下に図面を参照して第1実施形態の燃料電池システムの停止状態維持方法について説明する。この停止状態維持方法は、以下に説明する停止状態維持工程を実施する方法である。
図1は、第1実施形態の燃料電池システムの停止状態維持方法が実施される燃料電池システムS1(S)の構成を説明する図である。この燃料電池システムS1は、燃料ガス生成装置1と燃料電池FCとを備える。後述する燃料電池システムS1の作動制御は、特に記載しない以外は制御手段Cによって行われる。燃料ガス生成装置1は、メタンなどの炭化水素を含む原料ガスを改質器1aにおいて水蒸気改質して、水素を主成分とする燃料ガスを生成する。燃料ガス生成装置1は、図1に示している改質器1aの他にも、原料ガス中に含まれる硫黄化合物を除去するための脱硫器、水蒸気発生器、水蒸気改質により得られるガス中に含まれる一酸化炭素を除去する一酸化炭素除去器などを備えるが、それらの説明は省略する。改質器1aには、改質器1aの圧力を検出する圧力センサP1、及び、改質器1aの温度を検出する温度センサT1が設けられている。尚、圧力センサP1は燃料ガス生成装置1の他の部位に設けてもよいし、弁V1から弁V3の間の配管上のどこかに設けてもよい。
燃料ガス生成装置1で生成された改質ガス(水素を主成分とするガス)は、ガス供給路3を介してアノード2aへ供給される。
燃料電池FCは、発電を行う燃料電池セル2を備える。燃料電池セル2は、水素を含む燃料ガスが供給されるアノード2aと酸化剤ガスが供給されるカソード2bとの間に電解質2cを設けて構成される。アノード2aへのガス供給路3には燃料ガス生成装置1が接続されている。燃料ガス生成装置1で生成された燃料ガスは、ガス供給路3を介して供給される。アノード2aには、アノード2aの圧力を検出する圧力センサP2、及び、アノード2aの温度を検出する温度センサT2が設けられている。
本発明の「ガス流通系統」は、原料ガスが燃料ガス生成装置1に供給されるガス流路と、燃料ガス生成装置1の内部のガス流路と、燃料ガス生成装置1からアノード2aへ至るガス流路(ガス供給路3)と、アノード2aの内部のガス流路と、アノード2aから排出されるガス流路を含むものとする。
アノード2aへのガス供給路3の途中には、燃料ガス用貯留水タンク4aを有する燃料ガス用加湿器4が設けられる。この燃料ガス用加湿器4は、燃料ガスが燃料ガス生成装置1からガス供給路3を通って燃料ガス用貯留水タンク4aに貯えられている貯留水の中に供給されて貯留水の表面に出てくる間に燃料ガスを貯留水に接触させて加湿する。燃料ガス用貯留水タンク4aの内部の貯留水表面上の空間はアノード2aと繋がっている。燃料ガス生成装置1からアノード2aへのガス供給路3の途中には、ガス供給路3におけるガスの流通を遮断又は許容する弁V3が設けられている。
アノード2aにおいて発電反応に用いられたガスは、ガス排出路7を介して燃料電池FCの外部に排出される。排出されたガスは、熱交換器(図示せず)において排熱回収された後、バーナ(図示せず)で燃焼するなどの排気処理に提供される。ガス排出路7の途中には、ガス排出路7におけるガスの流通を遮断又は許容する弁V2が設けられている。
カソード2bには、酸化剤ガスとしての空気がブロア9によってガス供給路5を介して供給される。ガス供給路5の途中には、酸化剤ガス用貯留水タンク6aを有する酸化剤ガス用加湿器6が設けられる。この酸化剤ガス用加湿器6は、ブロア9から供給される空気がガス供給路5を通って酸化剤ガス用貯留水タンク6aに貯えられている貯留水の中に供給されて貯留水の表面に出てくる間に酸化剤ガスを貯留水に接触させて加湿する。酸化剤ガス用貯留水タンク6aの内部の貯留水表面上の空間はカソード2bと繋がっている。ブロア9からカソード2bへのガス供給路5の途中には、ガス供給路5におけるガスの流通を遮断又は許容する弁V4が設けられている。
カソード2bにおいて発電反応に用いられたガスは、ガス排出路8を介して燃料電池FCの外部に排出される。排出されたガスは、熱交換器(図示せず)で排熱回収される。排出されたガスは、元々は周囲に存在する空気であるので、特別な排気処理は不要である。
以下に、燃料電池FCの運転工程(発電中)、燃料電池FCからの電力の出力を停止する停止状態に燃料電池FCの運転を移行させる停止移行工程、及び、停止移行工程の後でその停止状態を維持する停止状態維持工程のそれぞれについて、図2に示す燃料電池システムS1の作動状態を説明するタイミング図を参照して説明する。図2の縦軸は、改質触媒温度(℃)、電池温度(℃)、カソードエア流量(リットル/min)、セル電圧(V)、原料ガス流量(リットル/min)、改質器圧力(kPa)を表すが、それぞれについて意味する数値は異なる。具体的には、改質触媒温度(℃)は図2の縦軸の数値通りで表され、電池温度(℃)を10倍した値が図2の縦軸の数値で表され、カソードエア流量(リットル/min)を10倍した値が図2の縦軸の数値で表され、セル電圧(V)を10倍した値が図2の縦軸の数値で表され、原料ガス流量(リットル/min)を102倍した値が図2の縦軸の数値で表され、改質器圧力(kPa)を10倍した値が図2の縦軸の数値で表される。
〔運転工程(発電中)〕
燃料電池FCを発電運転するとき、燃料ガス生成装置1も運転する必要がある。よって、燃料ガス生成装置1への原料ガスの供給を可能とするように弁V1は開放されている。改質器1aでは、原料ガスである炭化水素を水素に改質する改質反応が行われ、それにより水素を含む燃料ガスが生成される。ガス供給路3に設けられている弁V3は開放されている。よって、燃料ガス生成装置1で生成された燃料ガスは燃料ガス用加湿器4を経由してアノード2aへ供給される。弁V2は開放され、アノード2aからの排ガスが燃料電池FCの外部に排出される。
ブロア9によって供給される空気(酸化剤ガス)がカソード2bへ到達するように、ガス供給路5に設けられた弁V4は開放されている。
図示していないが、燃料電池セル2に対して電気負荷又はインバータが電気的に接続されている。
以上のようにして、アノード2aに燃料ガスが供給され、カソード2bに空気が供給されることで、燃料電池セル2において発電反応が行われ、電気負荷又はインバータに電流が流れる。
〔停止移行工程〕
燃料電池FCの運転を停止する停止移行工程は、電気負荷又はインバータと燃料電池FCの燃料電池セル2との電気的な接続を解除して、燃料電池FCでの発電により得られた電力の出力を停止する工程である。そのため、燃料電池FCでの発電により得られた電力の出力を停止する前に、燃料電池FCへの原料ガスの供給量及び酸化剤ガス(カソードエア)の供給量を減少させる。その結果、改質器1aの内部で生成されるガス(水蒸気を含む)の量が減少し、改質器1aの圧力も低下する。また、燃料電池FCの温度(即ち、アノード2a及びカソード2bの温度)も徐々に低下する。
その後、ブロア9が停止されると共に、カソード2bへのガス供給路5に設けられた弁V4が閉止され、カソード2bへの空気の供給が停止される。このとき、原料ガスは燃料ガス生成装置1に供給されており、燃料ガス生成装置1からアノード2aへの燃料ガスの供給は継続されている。よって、燃料電池セル2では燃料ガスの供給量に比べて空気の供給量が非常に少ない状態になり、セル電圧が急激に減少する。つまり、ここでは、カソード2bへの空気の供給を停止した状態でカソード2bに残留している空気(酸素)とアノード2aに残留している燃料ガス(水素)とが反応する。そして、電気負荷又はインバータと燃料電池FCの燃料電池セル2との電気的な接続を解除して、燃料電池FCでの発電により得られた電力の出力を停止する。
〔停止状態維持工程〕
上記停止移行工程の後に後述する停止状態維持工程を実施する。但し、図2に示すように、停止移行工程が終了した時点では未だ改質器1aの内部の改質触媒の温度は低下しておらず、改質反応による水素の生成或いは水蒸気の発生などによる改質器1aの圧力の増加が見られる。よって、改質触媒の温度が高い状態で弁V3を開放していると、アノード2aにそれらのガス或いは水蒸気が供給されてアノード2aの圧力が増大し、空気の供給が停止されたカソード2bとの圧力差が大きくなってしまい、電解質2cが破損する可能性がある。そこで、改質触媒の温度が設定温度(図2に示す例では650℃)以下になるまで、弁V1を閉止し且つ弁V3を閉止する燃料ガス生成装置隔離処理を実施する。
具体的には、この燃料ガス生成装置隔離処理を実施している間、改質反応による水素の生成或いは水蒸気の発生などによる改質器1aの圧力の増加が見られる。よって、弁V1と弁V3との間の圧力が設定圧力を超えると、その弁V1と弁V3との間の圧力を低下させる圧力低下処理を実施する。具体的には、弁V1と弁V3との間に存在する改質器1aの圧力が設定圧力(例えば、6kPa)を超えると、弁V3を開放して燃料ガス生成装置1からアノード2aへガスを流入させることで弁V1と弁V3との間の圧力を低下させる。図2に示すように、この圧力低下処理により改質器1aの圧力の上昇と低下とが繰り返される間(図2において「圧力開放処理」と記載する)に改質触媒の温度が徐々に低下する。改質器1aの温度(つまり、改質触媒の温度)が設定温度(図2に示す例では250℃)以下になると、燃料ガス生成装置隔離処理を終了する。そして、燃料ガス生成装置1からアノード2aへ通じるガス流通系統の改質器1aよりも上流側の弁V1(本発明の「第1閉止対象部位」の一例)を閉止し、且つ、アノード2aからのガス排出路7の途中の弁V2(本発明の「第2閉止対象部位」の一例)を閉止し、且つ、燃料ガス生成装置1とアノード2aとの間のガスの流通を許容した状態(弁V3を開放した状態)にする停止状態維持工程を実施する。つまり、弁V1(第1閉止対象部位)と弁V2(第2閉止対象部位)との間を保圧対象範囲とする。
停止状態維持工程において上記燃料ガス生成装置隔離処理を終了した後は、改質器1aの圧力上昇は見られなくなり、逆に改質触媒の温度低下により保圧対象範囲の圧力低下が見られる。よって、上述した燃料ガス生成装置隔離処理の後、停止状態維持工程を継続して実施している間の設定保圧タイミングで、上記保圧対象範囲の保圧処理を行う。更に、停止状態維持工程を実施している間に保圧対象範囲からのガス漏れを検出すると、弁V1(第1閉止対象部位)と、ガス流通系統の途中の燃料ガス生成装置1及びアノード2aの間の弁V3(本発明の「第3閉止対象部位」の一例)とを閉止して燃料ガス生成装置1とアノード2aとの間のガスの流通を遮断することで保圧対象範囲を分離する保圧対象範囲分離処理を行う。
以下に、保圧処理及び保圧対象範囲分離処理について説明する。
〔保圧処理〕
本実施形態において、制御手段Cは、図2に示すように、改質器1a(「燃料ガス生成装置1の内部のアノード2aへ通じるガス流通系統の所定部位」の一例)の圧力が、燃料ガス生成装置1の温度低下による圧力低下と弁V1を開放して原料ガスを流入させることによる圧力上昇とを繰り返す。即ち、圧力センサP1で検出されるその改質器1aの圧力が低下傾向にあるとき、設定保圧圧力(図2に示す例では4kPa)を下回ると、上記設定保圧タイミングになったと判定する。そして、弁V1を設定時間だけ開放し、その間に原料ガスを燃料ガス生成装置1へ流入させる。つまり、保圧処理は、適当な設定保圧タイミングで繰り返し実施される。保圧処理により、保圧対象範囲の圧力が原料ガス及び残留している改質ガス(水素)で保たれる。その結果、改質器1a及びアノード2aへの外部からの空気の侵入を抑制できる。加えて、アノード2aへのカソード2bからの酸素の侵入があったとしても、侵入した酸素がアノード2aに供給した水素(残留している改質ガス)と反応して消費されて酸素濃度が低くなるため、その酸素によってアノード2aが酸化されることを抑制できる。
〔保圧対象範囲分離処理〕
加えて、制御手段Cは、停止状態維持工程を実施している間に保圧対象範囲からのガス漏れを検出すると、弁V1(本発明の「第1閉止対象部位」の一例)と、ガス流通系統の途中の燃料ガス生成装置1及びアノード2aの間の弁V3(本発明の「第3閉止対象部位」の一例)とを閉止して燃料ガス生成装置1とアノード2aとの間のガスの流通を遮断することで上記保圧対象範囲を分離する保圧対象範囲分離処理を行う。つまり、当初は、弁V1から弁V2の間で構成されていた保圧対象範囲を、弁V1と弁V3との間で構成される保圧対象範囲と、弁V3と弁V2との間で構成される保圧対象範囲とに分離する。そして、制御手段Cは、保圧対象範囲分離処理を行った後、弁V1と弁V3との間で構成される保圧対象範囲に対して上記保圧処理を継続して実施する。本実施形態では、圧力センサP1が弁V1と弁V3との間に設けられているので、上記保圧対象範囲分離処理が行われた後に弁V1と弁V3との間を保圧対象範囲とした場合にも、その弁V1と弁V3との間の保圧対象範囲の圧力を圧力センサP1で検出して上記保圧処理を実行できる。
つまり、この保圧対象範囲分離処理によって、全保圧対象範囲の内の弁V1と弁V3との間の範囲(即ち、燃料ガス生成装置1の改質器1aなどを含む範囲)を選択的に隔離できる。その結果、ガス漏れが弁V3と弁V2との間(例えば、弁V3と弁V2との間にある燃料電池セル2など)で発生していたとしても、弁V1と弁V3との間(即ち、弁V1と弁V3との間にある燃料ガス生成装置の改質器など)の圧力を維持できる。そして、燃料ガス生成装置1の改質器1aなどの酸化を抑制できる。
加えて、当初は、弁V1から弁V2の間で構成されていた保圧対象範囲を、弁V1と弁V3との間で構成される保圧対象範囲と、弁V3と弁V2との間で構成される保圧対象範囲とに分離することで、ガス漏れが、アノード2a等を含む弁V3と弁V2との間の範囲、或いは、改質器1a等を含む弁V1と弁V3との間の範囲の何れで発生していたとしても、ガス漏れの発生していない方の範囲へ、酸素が侵入する等のガス漏れの影響が及ばないようにできる。更に、ガス漏れが検出された後も弁V1と弁V3と弁V2とを閉止し続けることで、即ち、ガス漏れが発生している箇所を封止し続けることで、ガス漏れが緩やかに進行するようにできる
従って、ガス漏れなどが発生しても、燃料電池システムS1内の少なくとも一部分の性能を維持できる。
本実施形態において、制御手段Cは、上記保圧処理の実施頻度が高いとき、又は、保圧処理において保圧対象範囲にガスを供給したときに保圧対象範囲の内部の圧力の上昇に要する時間が設定所要時間以上であるとき、又は、保圧対象範囲の内部の圧力の低下速度が設定低下速度以上のとき、保圧対象範囲からのガス漏れが発生したと判定する。
つまり、保圧処理の実施頻度が通常の頻度(基準頻度)よりも高いということは、保圧対象範囲の圧力低下(例えば、保圧対象範囲からのガスの流出)が大きいと見なすことができる。また、保圧処理において保圧対象範囲にガスを供給したときに保圧対象範囲の内部の圧力の上昇に要する時間が設定所要時間以上であるということは、保圧対象範囲からのガスの流出があるために保圧対象範囲の内部の圧力の上昇に長い時間を要していると見なすことができる。また或いは、保圧対象範囲の内部の圧力の低下速度が設定低下速度以上であるということは、保圧対象範囲からのガスの流出量が大きいと見なすことができる。
以上のように、制御手段Cが、上記保圧処理の実施頻度、又は、保圧処理において保圧対象範囲にガスを供給したときに保圧対象範囲の内部の圧力の上昇に要する時間、又は、保圧対象範囲の内部の圧力の低下速度を監視することで、保圧対象範囲からのガス漏れの可能性を迅速に検出できる。特に、本実施形態では、保圧対象範囲の圧力を検出するための圧力センサP1が弁V1と弁V3との間(第1閉止対象部位と第3閉止対象部位との間)に設けられているので、上記保圧対象範囲分離処理が行われた後には、弁V1と弁V3との間の保圧対象範囲の圧力を選択的に検出できる。つまり、保圧対象範囲分離処理が行われた後には、弁V1と弁V3との間の保圧対象範囲からのガス漏れを選択的に検出できる。
更に、制御手段Cは、保圧対象範囲分離処理を行ってから設定判定時間経過した後でガス漏れを検出した場合(上述のように、弁V1と弁V3との間の保圧対象範囲からのガス漏れを検出した場合)には、保圧対象範囲分離処理の前に検出したガス漏れは弁V1(第1閉止対象部位)と弁V3(第3閉止対象部位)との間(即ち、弁V1と弁V3との間にある燃料ガス生成装置など)からのガス漏れであったと判定し、及び、ガス漏れを検出しない場合には弁V3(第3閉止対象部位)と弁V2(第2閉止対象部位)との間(即ち、弁V3と弁V2との間にある燃料電池など)からのガス漏れであったと判定する。
そして、制御手段Cは、保圧対象範囲分離処理を行った後、保圧対象範囲の内の第1閉止対象部位と第3閉止対象部位との間の範囲からのガス漏れを検出すると保圧処理を中止する。
図3は上述した保圧対象範囲分離処理を含む制御のフローチャートであり、以下に詳細に説明する。
図3の工程#10において制御手段は、弁V3が閉止されているか否かを判定する。つまり、制御手段は、保圧対象範囲分離処理が既に実施されているか否かを判定する。未だ弁V3が閉止されていない場合(図3の工程#10において「No」の場合)は、弁V1から弁V2の間の範囲を保圧対象範囲として保圧処理が行われている状況である。これに対して、既に弁V3が閉止されている場合(図3の工程#10において「Yes」の場合)は、弁V1と弁V3との間で構成される保圧対象範囲と、弁V3と弁V2との間で構成される保圧対象範囲とに分離され、弁V1と弁V3との間で構成される保圧対象範囲のみに保圧処理が実施されている(弁V3と弁V2との間の範囲は単なる封止処理が実施されている)状況である。
制御手段は、工程#10において未だ弁V3が閉止されていないと判定した場合、工程#12においてガス漏れが発生しているか否かを判定する。制御手段は、工程#12においてガス漏れが発生していると判定した場合、工程#14において弁V3を閉止して保圧対象範囲分離処理を実施し、弁V1と弁V3との間で構成される保圧対象範囲のみに保圧処理を実施する。つまり、ガス漏れが弁V3と弁V2との間(例えば、弁V3と弁V2との間にある燃料電池セル2など)で発生していたとしても、弁V1と弁V3との間(即ち、弁V1と弁V3との間にある燃料ガス生成装置1の改質器1aなど)の圧力を維持できる。そして、燃料ガス生成装置1の改質器1aなどの酸化を抑制できる。
これに対して、制御手段は、工程#12においてガス漏れが発生していないと判定した場合、弁V1から弁V2の間を保圧対象範囲として保圧処理を継続する。
制御手段は、工程#10において既に弁V3が閉止されていると判定した場合、工程#16においてガス漏れが発生しているか否かを判定する。制御手段は、工程#16においてガス漏れが発生していると判定した場合(即ち、弁V1と弁V3との間で構成される保圧対象範囲からガス漏れが発生していると判定した場合)、工程#18において保圧処理を中止する。つまり、保圧対象範囲からのガス漏れが発生している状況で保圧対象範囲の内部の圧力を上昇させると、ガス漏れが促進される可能性があるが、工程#18において保圧処理を中止することで、保圧対象範囲の外部へのガス漏れが抑制される。
これに対して、制御手段は、工程#16においてガス漏れが発生していないと判定した合、弁V1と弁V3との間で構成される保圧対象範囲の保圧処理を継続する。
<第2実施形態>
第2実施形態の燃料電池システムの停止状態維持方法は、第1実施形態とガス漏れの検出方法が異なる。以下に第2実施形態の燃料電池システムの停止状態維持方法について説明するが、第1実施形態と同様の構成については説明を省略する。
図4は、第2実施形態の燃料電池システムの停止状態維持方法が実施される燃料電池システムS2(S)の構成を説明する図である。この燃料電池システムS2は、燃料ガス用加湿器4及び酸化剤ガス用加湿器6を備えていない。加えて、燃料電池システムS2は、システム内で使用されるメタン等の原料ガス及び水素などの可燃性ガス(即ち、監視対象ガス)を検出可能なガスセンサ(ガス検出センサ)10を備えている。そして、制御手段は、ガスセンサ10によって設定濃度以上の監視対象ガスが検出されたとき、ガス漏れが発生していると判定する。つまり、本実施形態では、ガスセンサ10を用いることで、監視対象ガスのガス漏れを正確に検出できる。ガスセンサ10は、例えば、燃料電池システムSの内部であって、燃料電池システムS内を換気するための換気空気が燃料電池システムSから外に出る直前の部位などに設けられている。
<別実施形態>
<1>
上記実施形態において、保圧処理を行う設定保圧タイミングとして、改質器1aの圧力が低下傾向にあるときの設定保圧圧力になったタイミングを例示したが、他のタイミングを上記設定保圧タイミングとすることもできる。例えば、制御手段Cが、燃料ガス生成装置隔離処理を終了した後の経過時間を計測し、その経過時間が設定時間となる度に(例えば、燃料ガス生成装置隔離処理を終了した後の経過時間が、10分、30分、60分、120分・・・となる度に)上記設定保圧タイミングとなったと判定するように改変してもよい。
<2>
上記実施形態において、アノード2aの圧力及び温度を検出する必要がなければ、アノード2aの圧力を検出する圧力センサP2、及び、アノード2aの温度を検出する温度センサT2を設けなくてもよい。
或いは、上記第1実施形態では、制御手段Cが、ガス流通系統の内部(改質器1a)の圧力を検出する圧力センサP1を用いて、保圧対象範囲の内部の圧力が設定保圧圧力を下回ったか否かを判定する例を記載したが、ガス流通系統の内部としてのアノード2aの圧力を検出する圧力センサP2を用いて、保圧対象範囲の内部の圧力が設定保圧圧力を下回ったか否かを判定するように改変してもよい。
<3>
上記実施形態では、カソード2bへのガス供給路5に弁V4を設けたが、この弁V4を設けなくてもよい。
<4>
上記実施形態では、弁V1と弁V2との間を保圧対象範囲としている間にガス漏れを検出すると、弁V1、V2、V3の全てを閉止するような保圧対象範囲分離処理を行う例を示したが、他の形態の保圧対象範囲分離処理、例えば、弁V1及び弁V3を閉止し及び弁V2を開放するような保圧対象範囲分離処理を行ってもよい。つまり、弁V1と弁V3との間のみを保圧対象範囲とするような保圧対象範囲分離処理を行ってもよい。例えば、燃料電池FCからのガス漏れがあった場合には、燃料電池FCを新品に入れ換えるメンテナンスを行う必要があるようなシステムがある。そのような場合、ガス漏れが発生し、交換されるのを待っている燃料電池FCには空気が侵入しても構わないため、弁V2を閉止しておく必要はない。その結果、弁V2を閉止しておくための電力は不要となる。
本発明は、ガス漏れなどが発生しても、燃料電池システム内の少なくとも一部分の性能を維持するために利用できる。
1 燃料ガス生成装置
1a 改質器
2 燃料電池セル
2a アノード
2b カソード
3 ガス供給路(ガス流通系統)
7 ガス排出路
10 ガスセンサ(ガス検出センサ)
C 制御手段
FC 燃料電池
P1 圧力センサ(圧力計)
S(S1、S2) 燃料電池システム
V1 弁(第1閉止対象部位)
V2 弁(第2閉止対象部位)
V3 弁(第3閉止対象部位)

Claims (7)

  1. 水素を含む燃料ガスが供給されるアノードと酸化剤ガスが供給されるカソードとの間に電解質を設けて構成される燃料電池を備え、前記アノードへのガス供給路に、前記アノードへ供給される前記燃料ガスを改質器を用いて生成する燃料ガス生成装置が接続されている燃料電池システムの停止状態維持方法であって、
    前記燃料電池からの電力の出力を停止する停止状態に前記燃料電池の運転を移行させる停止移行工程と、
    前記停止移行工程の後に、前記燃料電池の運転を前記停止状態に維持し、且つ、前記燃料ガス生成装置から前記アノードへ通じるガス流通系統の前記改質器よりも上流側の第1閉止対象部位を閉止し、且つ、前記アノードからのガス排出路の途中の第2閉止対象部位を閉止し、且つ、前記燃料ガス生成装置と前記アノードとの間のガスの流通を許容した状態で、前記燃料電池を保管する停止状態維持工程とを有し、
    前記停止状態維持工程を実施している間の設定保圧タイミングで、前記第1閉止対象部位と前記第2閉止対象部位との間を保圧対象範囲として当該保圧対象範囲の保圧処理を行うと共に、前記停止状態維持工程を実施している間に前記保圧対象範囲からのガス漏れを検出すると、前記第1閉止対象部位と、前記ガス流通系統の途中の前記燃料ガス生成装置及び前記アノードの間の第3閉止対象部位とを閉止して前記燃料ガス生成装置と前記アノードとの間のガスの流通を遮断することで前記保圧対象範囲を分離する保圧対象範囲分離処理を行い、
    前記保圧対象範囲分離処理を行った後、前記保圧対象範囲の内の前記第1閉止対象部位と前記第3閉止対象部位との間の範囲からのガス漏れを検出すると前記保圧処理を中止する燃料電池システムの停止状態維持方法。
  2. 前記保圧対象範囲分離処理において前記第2閉止対象部位を閉止する請求項1記載の燃料電池システムの停止状態維持方法。
  3. 前記保圧処理は、前記第1閉止対象部位を開放して、前記第1閉止対象部位の上流側から前記保圧対象範囲にガスを供給することで前記保圧対象範囲の内部の圧力を上昇させる処理である請求項1又は2記載の燃料電池システムの停止状態維持方法。
  4. 前記保圧対象範囲分離処理を行ってから設定判定時間経過した後で前記第1閉止対象部位と前記第3閉止対象部位との間からのガス漏れを検出した場合には、前記保圧対象範囲分離処理の前に検出したガス漏れは前記第1閉止対象部位と前記第3閉止対象部位との間からのガス漏れであったと判定し、及び、ガス漏れを検出しない場合には、前記保圧対象範囲分離処理の前に検出したガス漏れは前記第3閉止対象部位と前記第2閉止対象部位との間からのガス漏れであったと判定する請求項1〜の何れか一項に記載の燃料電池システムの停止状態維持方法。
  5. 前記燃料電池システムには前記ガス流通系統の内部の圧力を検出可能な圧力計が前記第1閉止対象部位と前記第3閉止対象部位との間に設けられ、
    前記設定保圧タイミングは、前記圧力計によって検出される前記保圧対象範囲の内部の圧力が設定保圧圧力を下回ったタイミングである請求項1〜の何れか一項に記載の燃料電池システムの停止状態維持方法。
  6. 前記保圧処理の実施頻度が高いとき、又は、前記保圧処理において前記保圧対象範囲にガスを供給したときに前記保圧対象範囲の内部の圧力の上昇に要する時間が設定所要時間以上であるとき、又は、前記保圧対象範囲の内部の圧力の低下速度が設定低下速度以上のとき、ガス漏れが発生したと判定する請求項記載の燃料電池システムの停止状態維持方法。
  7. 監視対象ガスを検出可能なガス検出センサが、設定濃度以上の監視対象ガスを検出したとき、ガス漏れが発生したと判定する請求項1〜5の何れか一項に記載の燃料電池システムの停止状態維持方法。
JP2010042875A 2010-02-26 2010-02-26 燃料電池システムの停止状態維持方法 Expired - Fee Related JP5607951B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042875A JP5607951B2 (ja) 2010-02-26 2010-02-26 燃料電池システムの停止状態維持方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042875A JP5607951B2 (ja) 2010-02-26 2010-02-26 燃料電池システムの停止状態維持方法

Publications (2)

Publication Number Publication Date
JP2011181263A JP2011181263A (ja) 2011-09-15
JP5607951B2 true JP5607951B2 (ja) 2014-10-15

Family

ID=44692587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042875A Expired - Fee Related JP5607951B2 (ja) 2010-02-26 2010-02-26 燃料電池システムの停止状態維持方法

Country Status (1)

Country Link
JP (1) JP5607951B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113991A (ja) * 2010-11-25 2012-06-14 Jx Nippon Oil & Energy Corp 燃料電池システム
JP6784628B2 (ja) * 2017-03-27 2020-11-11 京セラ株式会社 発電装置、制御装置及び制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265669A (ja) * 2006-03-27 2007-10-11 Osaka Gas Co Ltd 燃料電池発電システムにおけるリーク検出方法
JP2008081369A (ja) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd 水素生成装置、水素生成装置の運転方法及び燃料電池システム
JP5019353B2 (ja) * 2006-10-23 2012-09-05 アイシン精機株式会社 燃料電池システム
JP5064785B2 (ja) * 2006-12-21 2012-10-31 株式会社荏原製作所 燃料電池システム
JP5255291B2 (ja) * 2008-02-05 2013-08-07 株式会社ティラド 改質器の停止方法
JP2009217951A (ja) * 2008-03-07 2009-09-24 Panasonic Corp 燃料電池システム

Also Published As

Publication number Publication date
JP2011181263A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5063340B2 (ja) 燃料電池システムおよびその運転方法
WO2009087973A1 (ja) 水素生成装置および燃料電池システム
JP2007035446A (ja) 燃料電池システムおよびガス漏れ検知装置
KR101240986B1 (ko) 주차 중 연료전지의 산소 제거 방법
JP5057295B2 (ja) 燃料電池装置
JP4687039B2 (ja) 固体高分子形燃料電池システム
JP5151010B2 (ja) 燃料電池システム及び該燃料電池システムのガス漏れ検出方法
JP5607951B2 (ja) 燃料電池システムの停止状態維持方法
JP5735606B2 (ja) 燃料電池システムの停止保管方法
JP2009093953A (ja) 燃料電池システムおよび燃料電池の起動方法
JP2011100610A (ja) 水素処理システム
JP5297156B2 (ja) 燃料電池システム
JP2007265669A (ja) 燃料電池発電システムにおけるリーク検出方法
JP5193722B2 (ja) 燃料電池発電システムおよびその故障原因推定方法
JP2010015808A (ja) 燃料電池発電装置のガス漏れ検出方法及び燃料電池発電装置
JP2005276669A (ja) 燃料電池システム
JP5248337B2 (ja) 燃料電池発電システムおよびその検査方法
JP2009259519A (ja) 燃料電池システム及びそれを用いたクロスリーク検出方法
JP5410766B2 (ja) 燃料電池システムおよび燃料電池システムのカソード圧制御方法
KR20100063994A (ko) 연료 전지 시스템 내부의 연결 장치 및 이를 구비한 연료 전지 시스템
JP2004342389A (ja) 燃料電池装置
JP2014116069A (ja) 燃料電池システム
WO2013145761A1 (ja) 発電システム及びその運転方法
EP3279992B1 (en) Fuel cell system
JP2013033673A (ja) 燃料電池システムおよびその残留ガスパージ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5607951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees