JP5297156B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5297156B2
JP5297156B2 JP2008291919A JP2008291919A JP5297156B2 JP 5297156 B2 JP5297156 B2 JP 5297156B2 JP 2008291919 A JP2008291919 A JP 2008291919A JP 2008291919 A JP2008291919 A JP 2008291919A JP 5297156 B2 JP5297156 B2 JP 5297156B2
Authority
JP
Japan
Prior art keywords
fuel cell
anode
cathode
scavenging
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008291919A
Other languages
English (en)
Other versions
JP2010118289A (ja
Inventor
裕嗣 松本
健一郎 上田
順司 上原
幸一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008291919A priority Critical patent/JP5297156B2/ja
Publication of JP2010118289A publication Critical patent/JP2010118289A/ja
Application granted granted Critical
Publication of JP5297156B2 publication Critical patent/JP5297156B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、発電停止後に掃気を実施する燃料電池システムに関する。
燃料電池システムでは、燃料電池のカソードの出入口に開閉バルブを設けて、燃料電池の発電停止後に各開閉バルブを閉じる技術が提案されている。これは、アノードにおいて酸化剤(酸素)と燃料(水素)との反応によりOHラジカルが発生し、OHラジカルによって電極触媒層が酸化するのを防止するためである。例えば、開閉バルブが故障した場合にはカソードにエアが供給されるので、開閉バルブが故障していると判断した場合には、アノードに燃料を投入して、相対的に燃料が不足している状態を解消して、酸化による燃料電池の劣化を抑制する技術が提案されている(例えば、特許文献1参照)。
特開2008−153079号公報(段落0074、図1および図2)
しかしながら、従来の燃料電池システムのように、水素不足を解消するためにアノードに燃料(水素)を投入すると、燃料が膜を介してカソードに透過(クロスリーク)して車外に高濃度の燃料が排出されるという問題がある。また、アノードへの燃料投入により、燃料電池が高電位となってしまい、前記酸化とは別要因での劣化が発生するという問題もある。
本発明は、前記従来の課題を解決するものであり、燃料電池の劣化を抑えることができ、しかも高濃度の燃料が排出されることのない燃料電池システムを提供することを目的とする。
本発明は、アノードに燃料ガスが供給され、カソードに酸化剤ガスが供給される燃料電池と、前記酸化剤ガスを前記燃料電池に供給し、前記燃料電池から排出する酸化剤ガス流路と、前記酸化剤ガス流路の供給側に設けられた第1の開閉バルブと、前記酸化剤ガス流路の排出側に設けられた第2の開閉バルブと前記アノードに前記酸化剤ガスを供給して前記アノードを掃気するアノード掃気手段と、前記燃料電池の発電停止中に前記第1の開閉バルブと前記第2の開閉バルブとを閉状態として前記カソードを封鎖するカソード封鎖手段と、を備えた燃料電池システムにおいて、前記燃料ガスと前記酸化剤ガスの供給を停止して前記燃料電池と接続される外部負荷との電気的な接続を遮断した状態である前記燃料電池の発電停止後前記カソードを封鎖した場合、前記アノード掃気手段により前記アノードを掃気することが原因で生じる、発電停止時間と前記燃料電池の劣化度合いとが関係付けられた前記燃料電池の第1劣化特性に基づいて予め定められる第1所定時間が経過したか否かを判定する第1経過時間判定手段を備え、前記燃料電池の発電停止後、前記カソード封鎖手段を作動させて前記カソードを封鎖した後、前記第1経過時間判定手段により前記第1所定時間が経過したと判定されたときに、前記アノード掃気手段を作動させて前記アノードを掃気することを特徴とする。
これによれば、第1の開閉バルブと第2の開閉バルブが正常に動作した場合には、劣化の度合いが最も低くなる第1所定時間が経過したときにアノードを掃気するので、燃料電池の劣化を最小限に抑えることが可能になる。つまり、第1の開閉バルブと第2の開閉バルブが正常に動作している場合には、カソードからアノードに酸化剤ガスが透過することがないので酸化による劣化は発生しない。しかも燃料ガスをアノードに供給することもないので、クロスリークによって高濃度の燃料ガスが燃料電池システム外に排出されることもない。
また、前記カソード封鎖手段の故障を判断する封鎖故障判断手段と、前記燃料電池の発電停止後に前記カソードを封鎖しない場合、前記アノード掃気手段により前記アノードを掃気しないことが原因で生じる、前記発電停止時間と前記燃料電池の劣化度合いとが関係付けられた前記燃料電池の第2劣化特性と、前記第1劣化特性との双方に基づいて予め定められる第2所定時間が経過したか否かを判定する第2経過時間判定手段と、を備え、前記封鎖故障判断手段により前記カソード封鎖手段の故障が判断された場合には、前記燃料電池の発電停止後、前記第2経過時間判定手段により前記第2所定時間が経過したと判定されたときに、前記アノード掃気手段を作動させて前記アノードを掃気することを特徴とする。
これによれば、封鎖故障判断手段によって第1の開閉バルブと第2の開閉バルブが開故障(閉弁しなくなる故障)していると判断された場合には、第1所定時間よりも早いタイミングでアノードを掃気することにより、故障時における燃料電池の劣化を最小限に抑えることが可能になる。
また、アノードに燃料ガスが供給され、カソードに酸化剤ガスが供給される燃料電池と、前記酸化剤ガスを前記燃料電池に供給し、前記燃料電池から排出する酸化剤ガス流路と、前記酸化剤ガス流路の供給側に設けられた第1の開閉バルブと、前記酸化剤ガス流路の排出側に設けられた第2の開閉バルブと、前記燃料電池の温度を検出する燃料電池温度検出手段と、前記アノードに前記酸化剤ガスを供給して前記アノードを掃気するアノード掃気手段と、前記燃料電池の発電停止中に前記第1の開閉バルブと前記第2の開閉バルブとを閉状態として前記カソードを封鎖するカソード封鎖手段と、を備えた燃料電池システムにおいて、前記燃料ガスと前記酸化剤ガスの供給を停止して前記燃料電池と接続される外部負荷との電気的な接続を遮断した状態である前記燃料電池の発電停止後に前記カソードを封鎖した場合、前記アノード掃気手段により前記アノードを掃気することが原因で生じる、前記燃料電池の温度と前記燃料電池の劣化度合いとが関係付けられた前記燃料電池の第3劣化特性に基づいて予め定められる所定温度まで、前記燃料電池の温度が低下したか否かを判定する温度判定手段を備え、前記燃料電池の発電停止後、前記カソード封鎖手段を作動させて前記カソードを封鎖した後、前記温度判定手段により前記所定温度まで低下したと判定されたときに、前記アノード掃気手段を作動させて前記アノードを掃気することを特徴とする。
本発明によれば、燃料電池の劣化を抑えることができ、しかも高濃度の燃料が排出されることのない燃料電池システムを提供できる。
図1は本実施形態の燃料電池システムを示す全体構成図、図2は掃気制御を示すフローチャートである。なお、本実施形態では、燃料電池自動車を例に挙げて説明するが、自動車に限定されるものではなく、船舶や航空機など、あるいは業務用や家庭用の定置式のものなど、電気を必要とするあらゆるものに適用できる。
図1に示すように、本実施形態の燃料電池システム1は、燃料電池10、アノード系20、カソード系30、アノード掃気系(アノード掃気手段)40、制御系50などで構成されている。
燃料電池10は、固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)であり、MEA(Membrane Electrode Assembly、膜電極接合体)をセパレータ(図示しない)で挟持してなる単セルが複数積層されて構成されている。MEAは、電解質膜(固体高分子膜)、これを挟持するカソード及びアノードなどを備えている。カソードおよびアノードは、白金等の触媒がカーボンブラック等の触媒担体に担持された電極触媒層である。また、各セパレータには、溝や貫通孔からなるアノード流路11及びカソード流路12が形成されている。
このような燃料電池10では、アノードに水素(反応ガス、燃料ガス)が供給され、カソードに酸素を含む空気(反応ガス、酸化剤ガス)が供給されると、アノード及びカソードに含まれる触媒上で電極反応が起こり、燃料電池10が発電可能な状態となる。燃料電池10は、図示しない外部負荷と電気的に接続され、電流が取り出されると、燃料電池10が発電するようになっている。なお、外部負荷とは、走行用のモータ、バッテリやキャパシタなどの蓄電装置、後記するエアポンプ31などである。
アノード系20は、水素タンク21、遮断弁22、パージ弁23、配管a1〜a5などで構成されている。
水素タンク21は、高純度の水素を高圧で圧縮したものであり、配管a1を介して遮断弁22と接続されている。遮断弁22は、例えば電磁作動式のものであり、配管a2を介して燃料電池10のアノード流路11の入口と接続されている。パージ弁23は、例えば電磁作動式のものであり、配管a3を介して燃料電池10のアノード流路11の出口と接続されている。また、配管a2と配管a3には、燃料電池10のアノードの出口から排出された未反応の水素をアノードの入口側に戻す配管a4がそれぞれ接続されている。なお、配管a4から配管a2への合流部にはエゼクタが設けられ、水素タンク21からの流れによって生じる負圧によって配管a4から戻るガス(水素)を吸引するように構成されている。また、パージ弁23は、配管a5を介して後記する希釈器35と接続されている。
カソード系30は、エアポンプ31、開閉バルブ32(第1の開閉バルブ)、開閉バルブ33(第2の開閉バルブ)、背圧弁34、希釈器35、配管c1〜c5などで構成されている。なお、配管c1〜c5によって、酸化剤ガス流路が構成されている。
エアポンプ31は、例えばモータで駆動される機械式の過給器であり、取り込んだ外気を圧縮して燃料電池10に供給する。開閉バルブ32は、酸化剤ガス流路の供給側に設けられ、配管c1を介してエアポンプ31と接続され、配管c2を介して燃料電池10のカソード流路12の入口と接続されている。開閉バルブ33は、酸化剤ガス流路の排出側に設けられ、配管c3を介して燃料電池10のカソード流路12の出口と接続され、配管c4を介して背圧弁34と接続されている。
背圧弁34は、燃料電池10のカソードの圧力を調節する機能を有し、開度調節が可能なバタフライ弁(常開型)などで構成されている。また、背圧弁34は、配管c5を介して希釈器35と接続されている。
希釈器35は、パージ弁23から排出された未消費の水素を、カソードから排出されたカソードオフガスによって希釈して車外に排出する。なお、図示していないが、カソード系30には、エアポンプ31から供給された空気を加湿する加湿器が配管c1に設けられている。
アノード掃気系40は、エア導入配管41、エア導入弁42、エア導出配管43、エア導出弁44などで構成されている。なお、本実施形態では、エア導入配管41とエア導入弁42とエア導出配管43とエア導出弁44とでアノード掃気手段が構成されている。
エア導入配管41は、エアポンプ31からのエア(掃気ガス、酸化剤ガス)をアノードに導入する流路を構成し、上流側の端部が配管c1と接続され、下流側の端部が配管a2と接続されている。エア導入弁42は、エア導入配管41の流路上に設けられ、燃料電池10の発電停止後のアノード掃気時にECU51によって開弁される。
エア導出配管43は、アノードから排出されたエア(掃気ガス)をカソード系30に戻す流路を構成し、上流側の端部が配管a3と接続され、下流側の端部が背圧弁34の下流の配管c5と接続されている。エア導出弁44は、エア導出配管43の流路上に設けられ、アノード掃気時にECU51によって開弁される。
制御系50は、ECU(Electronic Control Unit)51、燃料電池10の温度を検出する温度センサ52(燃料電池温度検出手段)、タイマ53、セル電圧センサ54などで構成されている。
ECU51は、CPU(CentralProcessing Unit)、掃気制御プログラムを記憶したROM(Read Only Memory)、RAM(Random Access Memory)などで構成され、カソード封鎖手段、第1経過時間判定手段、封鎖故障判断手段、第2経過時間判定手段を備えている。また、ECU51は、遮断弁22、パージ弁23、開閉バルブ32,33、エア導入弁42、エア導出弁44を開閉制御し、エアポンプ31のモータの回転速度を制御し、背圧弁34の開度を調節する。また、ECU51は、温度センサ52によって燃料電池10の温度(燃料電池温度、FC温度)を監視し、タイマ53によって燃料電池10の発電停止(IG−OFF)からの経過時間(発電停止時間)などを計測し、セル電圧センサ54によって燃料電池10の各単セルの電圧(セル電圧)を監視する。
次に、本実施形態の燃料電池システム1の動作について図2を参照(適宜、図1を参照)して説明する。まず、運転者によって燃料電池自動車のイグニッションスイッチがオン(IG−ON)されており、燃料電池システム1が運転中である場合には、ECU51によって、開閉バルブ32,33が開弁され、エア導入弁42およびエア導出弁44が閉弁された状態で、遮断弁22が開弁されて水素タンク21からアノードに水素が供給され、エアポンプ31が駆動されてカソードにエア(空気)が供給されて、発電が行われている。なお、運転中において、パージ弁23は、適宜開弁されて、配管a2,a3,a4およびアノード流路11からなるアノード循環系に蓄積した窒素などの不純物や生成水を排出する。窒素や生成水は、電解質膜を介してカソードからアノードに透過したものである。
そして、ECU51は、運転者によってイグニッションスイッチがオフ(IG−OFF)されたことを検知すると、エアポンプ31を駆動はそのままで、カソード側にエアを例えば所定時間供給する。これにより、カソードから排出されたカソードオフガスによって希釈器35内に残留している水素が希釈されて車外(外部)に排出される。また、このときカソードに残留している水分(液滴)も車外に排出される。そして、ECU51は、遮断弁22を閉じて、アノードへの水素の供給を停止するとともに、エアポンプ31を停止して、カソードへのエアの供給を停止して、燃料電池10の発電を停止する。また、ECU51は、燃料電池10と外部負荷との電気的な接続を遮断する。
そして、ステップS10において、ECU51は、開閉バルブ32と開閉バルブ33の双方を閉じる制御信号を送信して、開閉バルブ32,33を閉じる制御を行う(カソード封鎖手段)。このとき、開閉バルブ32,33が正常に動作(閉弁)している場合には、燃料電池10のカソードが封鎖され、カソードへのエア供給が停止する。なお、開閉バルブ32,33は、例えば高圧バッテリとは別に設けられた低圧バッテリの電力により閉弁駆動される。
ステップS20において、ECU51は、セル電圧センサ54によって検出されたセル電圧のうちの最高セル電圧が所定値を超えたか否かを判断する(封鎖故障判断手段)。なお、最高セル電圧を監視することにより、開閉バルブ32,33が故障しているか否かを迅速に判断することができる。開閉バルブ32および/または開閉バルブ33が閉じることなく開いたままの状態(開故障の状態)である場合には、開閉バルブ32の上流に残留するエアや、開閉バルブ33の下流に残留するエアがカソードに供給され続け、セル電圧が所定値を超えて高くなることによって、開閉バルブ32,33が開故障していると判断できる。なお、所定値は、予め実験等によって決められた電圧値に設定される。また、開閉バルブ32,33の故障判断を行なう場合のパラメータとしては、最高セル電圧に限定されるものではなく、すべての単セルのセル電圧の合計を全単セルの枚数で除した平均セル電圧などを用いて判断してもよい。
ステップS20において、ECU51は、最高セル電圧が所定値を超えていないと判断した場合には(No)、開閉バルブ32,33は正常に動作してカソードが封鎖されていると判断して、ステップS30に進む。カソードの封鎖が正常に行われることにより、カソードに空気が供給されることがないので、ラジカル反応によって燃料電池10が劣化することはない。なお、ラジカル反応による劣化とは、カソードに残留する酸素が電解質膜を介してアノードに透過してアノード側において水素と酸素とが触媒の作用によってHOラジカル(ヒドロキシラジカル)が発生し、またアノードに残留する水素が電解質膜を介してカソードに透過して、カソード側において水素と酸素とが触媒の作用によってHOラジカルが発生し、このHOラジカルによってアノードやカソードの電極触媒層に含まれるカーボンなどを劣化(酸化)させる現象をいう。
ステップS30において、ECU51は、発電停止後からアノード掃気を開始する時間を第1所定時間に設定する(第1経過時間判定手段)。この第1所定時間は、発電停止時間に基づく燃料電池10の劣化度合い(劣化特性)に基づいて設定される。なお、燃料電池10の温度(FC温度)に基づく燃料電池10の劣化度合い(劣化特性)に基づいて掃気タイミングを設定してもよい。それぞれの劣化特性は、発電停止時間が長くなると、またFC温度が低くなると、それぞれ低下する特性を有している。そして、ECU51は、第1所定時間を設定後、ステップS50に進む。
また、ステップS20において、ECU51は、最高セル電圧が所定値を超えていると判断した場合には(Yes)、開閉バルブ32,33が故障しており、カソードが封鎖されていないと判断して、ステップS40に進む。
ステップS40において、ECU51は、発電停止後からアノード掃気を開始する時間を第2所定時間に設定する(第2経過時間判定手段)。この第2所定時間は、第1所定時間以下の時間に設定され、発電停止時間に基づく燃料電池10の劣化度合い(劣化特性)と、ラジカル反応による劣化度合い(開閉バルブ32,33が封鎖しない場合の劣化特性)とに基づいて設定される。そして、ECU51は、第2所定時間を設定後、ステップS50に進む。
ちなみに、ラジカル反応による劣化(劣化の度合い)は、発電停止時間が長くなるにしたがって高くなる。つまり、ラジカル反応による劣化度合いと前記した発電停止時間やFC温度による劣化度合いとを考慮して、劣化度合い(劣化量)が最も低くなる時間に設定される。開閉バルブ32,33が開故障している場合には(S20,Yes)、開閉バルブ32の上流側では、外気と連通するエアポンプ31を通ってカソードにエアが継続して供給され、また開閉バルブ33の下流側では、外気と連通する背圧弁34および希釈器35を通ってカソードにエアが継続して供給される。しかし、本実施形態では、HOラジカル反応による劣化度合いが低く設定されるので、アノードやカソードのカーボンなどが劣化(酸化)するのを最小限に抑えることができる。
そして、ステップS50において、ECU51は、発電停止時間が掃気時間(掃気を開始する時間)以上となったか否かを判断する。すなわち、ECU51は、開閉バルブ32,33が正常である場合には、発電停止時間が第1所定時間経過したかどうかを判断し、開閉バルブ32,33が故障している場合には、発電停止期間が第2所定時間経過したかどうかを判断する。ECU51は、予め設定された第1所定時間または第2所定時間経過していないと判断した場合には(S50,No)、ステップS60に進む。
ステップS60において、ECU51は、ステップS20で開閉バルブ32,33の故障検出を開始してから所定時間が経過したかを判断する。なお、所定時間は、故障検出を行う間隔であり、任意の時間に設定される。ステップS60において、ECU51は、故障検出から所定時間が経過していないと判断した場合には(No)、ステップS60の処理を繰り返し、故障検出から所定時間が経過したと判断した場合には(Yes)、ステップS20に戻り、開閉バルブ32,33の故障判定を再び行う。発電停止時間が、第1所定時間または第2所定時間経過するまで、ステップS20〜ステップS60の処理が繰り返される。
ステップS50において、ECU51は、発電停止時間が掃気を開始する時間経過したと判断した場合には(Yes)、ステップS70に進み、アノード掃気を実施する。アノード掃気とは、開閉バルブ32,33とエア導入弁42とエア導出弁44とを開弁し、エアポンプ31を駆動して主にアノード側にエアを供給することである。なお、例えば、エアポンプ31は、図示しない高圧バッテリの電力によって駆動され、エア導入弁42,44は、低圧バッテリの電力により開弁駆動される。
このアノード掃気により、エアポンプ31からのエアは、エア導入配管41を通ってアノード流路11に供給され、アノード流路11から排出されたエアは、エア導出配管43を通り、希釈器35に導入される。これにより、アノード側の水素がエアで置換され、またアノード流路11などに残留する生成水が車外に排出される。なお、アノード掃気時には、ECU51によって背圧弁34(例えば、開度小)が開かれており、エアポンプ31からのエアは、カソード側にも供給され、背圧弁34を通って希釈器35に導入される。アノードから希釈器35に導入された水素は、カソードから排出されたエアによって希釈され、車外に排出される。なお、背圧弁34の開度は、水素を所定の水素濃度以下に希釈できる開度に設定される。
なお、開閉バルブ32,33が正常に動作している場合においてアノード掃気が終了したときには(S70)、ECU51は、エア導入弁42およびエア導出弁44を閉弁して、一連の処理を終了する。なお、アノード掃気後は、アノードおよびカソード共にエアに置換されるのでラジカル反応による劣化や、燃料電池10が高電位になることによる劣化は発生しない。ちなみに、開閉バルブ32,33を常開型のものとすることにより、アノード掃気後に開閉バルブ32,33を開弁しておくことで無駄なエネルギが消費されることがない。また、アノード掃気後に開閉バルブ32,33を開弁しておくことで、燃料電池システム1を次回起動する際に、開閉バルブ32,33の開弁処理にかかる時間を削減でき、起動処理を迅速に行うことが可能になる。
なお、図示していないが、図2に示すフロー(処理)と並行して、IG−OFF(燃料電池システム1の停止)後に、燃料電池10内などに残留する水分(液滴)が凍結するのを防止する液滴除去掃気が必要に応じて実施される。この液滴除去掃気とは、所定時間毎に燃料電池システム1を起動し、燃料電池温度(FC温度)や外気温度等を継続して監視し、FC温度等が所定温度(例えば、0〜5℃)以下となった際に水分(液滴)が凍結するおそれがあるとして、エアポンプ31を駆動し、アノードおよびカソードにエアを供給して、アノードおよびカソード等に残留する水分(液滴)を吹き飛ばして車外に排出する処理である。ちなみに、FC温度等が所定温度以下に設定されることにより、燃料電池10の温度が低下して結露が促進され、エア供給によって結露水(液滴)が車外に排出される。また、この液滴除去掃気が行われる場合には、開閉バルブ32,33によるカソードの封鎖は解除され、液滴除去掃気終了後は、カソードは開放されたままとする。
また、前記した液滴除去掃気より先にアノード掃気が行われた場合には(S70)、アノード掃気が実施された後も、所定時間毎のFC温度等の監視は継続して行われ、所定条件を満たしたときに液滴除去掃気が実施される。また、外部環境(FC温度など)によっては、アノード掃気よりも先に液滴除去掃気が行われる。例えば、外気がマイナス20℃の極低温の場合等には、アノード掃気が行われる前にFC温度等が前記所定温度以下となり、凍結防止対策として、液滴除去掃気の方がアノード掃気よりも優先して実施される。なお、液滴除去掃気がアノード掃気よりも先に実施された場合には、液滴除去掃気によってアノード側の水素が既にエアに置換されているので、その後アノード掃気が実施されることはない。
さらに、燃料電池システム1の動作について図3および図4を参照して説明する。図3は開閉バルブが正常時の掃気タイミングを示すマップおよびタイムチャート、図4は開閉バルブが故障時のタイミングを示すマップおよびタイムチャートである。
図3に示すように、開閉バルブ32,33が正常に動作している場合に設定される第1所定時間は、発電停止時間と劣化度合い(劣化量)との関係(劣化特性)に基づいて設定される。なお、FC温度と劣化度合い(劣化量)との関係(劣化特性)に基づいて掃気タイミングを設定してもよい。いずれの関係も同様な変化を示すものであり、発電停止時間が長い場合には劣化度合いは低くなり、FC温度が低い場合には劣化度合いは低くなる。よって、開閉バルブ32,33が正常に動作していると判断されて(S20,No)、カソードが封鎖している場合には、劣化度合いが最も低く、かつ、最も早いタイミング(第1所定時間経過後)でアノード掃気(S70)が行われる。これにより、燃料電池10の劣化量を最小限にした状態でアノード掃気を行うことができる。
なお、劣化度合いについては、発電停止時間またはFC温度に基づいて判断してもよく、あるいは発電停止時間とFC温度の双方に基づいて判断してもよい。
図4に示すように、開閉バルブ32,33が故障している場合に設定される第2所定時間は、発電停止時間に基づく劣化度合いを示すマップA(劣化特性)、ラジカル反応に基づく劣化度合いを示すマップB(劣化特性)によって設定される。図4において、マップA+Bが、マップAとマップBの双方を加味(加算)した劣化度合いを示し、マップA+Bにおいて、劣化度合いが最も低くなるとき、つまり発電停止後から第2所定時間経過したときにアノード掃気(S70)が行われる。これにより、劣化量を最小限に(少なく)した状態でアノード掃気を行うことができる。
以上説明したように、本実施形態の燃料電池システム1によれば、カソードを封鎖する開閉バルブ32,33が正常に動作していると判断された場合には、発電停止時間に基づいて劣化度合いが最も低くなる第1所定時間を設定し、発電停止後から第1所定時間が経過した後にアノード掃気を実施することで、燃料電池10の劣化を最小限に抑えることが可能になる。しかも、従来のようにアノードに水素を供給することがないので、クロスリークによって水素がアノードからカソードに透過することがないので、車外に高濃度の水素が排出されることもない。さらに、劣化が最も低く、かつ、最も早いタイミングである第1所定時間経過時にアノード掃気を実施することで、燃料電池システム1の次回起動時に水が無い状態で起動が行われ、ストイキ不足(水素不足)発電にはならず劣化が抑制される。このように早いタイミングでアノード掃気を実施することで、水がない状態での起動頻度を増やすことができる。すなわち、起動時に残留水によりアノードへの水素の供給が阻害された状態で過度に発電が行われるのを防止することができ、燃料電池10の劣化を抑制できる。また、アノード掃気終了後に低温環境下に曝されたとしてもアノードの残留水が凍結することがない。
さらに、本実施形態の燃料電池システム1によれば、カソードを封鎖する開閉バルブ32,33が開故障していると判断された場合には、発電停止時間に基づく劣化度合いと、ラジカル反応による劣化度合いとによって決められる劣化度合いが最も低くなるように第2所定時間を設定し、発電停止後から第2所定時間が経過したときにアノード掃気を実施することで、燃料電池10の劣化を最小限に抑えることが可能になる。さらに、開閉バルブ32,33が故障した場合であっても、アノード掃気終了後に燃料電池システム1が低温環境下に曝されたとしても、アノードに残留する水が凍結することがない。
本実施形態の燃料電池システムを示す全体構成図である。 掃気制御を示すフローチャートである。 開閉バルブが正常時の掃気タイミングを示すマップおよびタイムチャートである。 開閉バルブが故障時のタイミングを示すマップおよびタイムチャートである。
符号の説明
1 燃料電池システム
31 エアポンプ
32 開閉バルブ(第1の開閉バルブ)
33 開閉バルブ(第2の開閉バルブ)
41 エア導入配管
42 エア導入弁
43 エア導出配管
44 エア導出弁
51 ECU(カソード封鎖手段、第1経過時間判定手段、封鎖故障判断手段、第2経過時間判定手段)
52 温度センサ(燃料電池温度検出手段)
53 セル電圧センサ
54 タイマ
c1〜c5 配管(酸化剤ガス流路)

Claims (3)

  1. アノードに燃料ガスが供給され、カソードに酸化剤ガスが供給される燃料電池と、
    前記酸化剤ガスを前記燃料電池に供給し、前記燃料電池から排出する酸化剤ガス流路と、
    前記酸化剤ガス流路の供給側に設けられた第1の開閉バルブと、
    前記酸化剤ガス流路の排出側に設けられた第2の開閉バルブと
    前記アノードに前記酸化剤ガスを供給して前記アノードを掃気するアノード掃気手段と、
    前記燃料電池の発電停止中に前記第1の開閉バルブと前記第2の開閉バルブとを閉状態として前記カソードを封鎖するカソード封鎖手段と、
    を備えた燃料電池システムにおいて、
    前記燃料ガスと前記酸化剤ガスの供給を停止して前記燃料電池と接続される外部負荷との電気的な接続を遮断した状態である前記燃料電池の発電停止後前記カソードを封鎖した場合、前記アノード掃気手段により前記アノードを掃気することが原因で生じる、発電停止時間と前記燃料電池の劣化度合いとが関係付けられた前記燃料電池の第1劣化特性に基づいて予め定められる第1所定時間が経過したか否かを判定する第1経過時間判定手段を備え、
    前記燃料電池の発電停止後、前記カソード封鎖手段を作動させて前記カソードを封鎖した後、前記第1経過時間判定手段により前記第1所定時間が経過したと判定されたときに、前記アノード掃気手段を作動させて前記アノードを掃気することを特徴とする燃料電池システム。
  2. 前記カソード封鎖手段の故障を判断する封鎖故障判断手段と、
    前記燃料電池の発電停止後前記カソードを封鎖しない場合、前記アノード掃気手段により前記アノードを掃気しないことが原因で生じる、前記発電停止時間と前記燃料電池の劣化度合いとが関係付けられた前記燃料電池の第2劣化特性と、前記第1劣化特性との双方に基づいて予め定められる第2所定時間が経過したか否かを判定する第2経過時間判定手段と、を備え、
    前記封鎖故障判断手段により前記カソード封鎖手段の故障が判断された場合には、前記燃料電池の発電停止後、前記第2経過時間判定手段により前記第2所定時間が経過したと判定されたときに、前記アノード掃気手段を作動させて前記アノードを掃気することを特徴とする請求項1に記載の燃料電池システム。
  3. アノードに燃料ガスが供給され、カソードに酸化剤ガスが供給される燃料電池と、
    前記酸化剤ガスを前記燃料電池に供給し、前記燃料電池から排出する酸化剤ガス流路と、
    前記酸化剤ガス流路の供給側に設けられた第1の開閉バルブと、
    前記酸化剤ガス流路の排出側に設けられた第2の開閉バルブと、
    前記燃料電池の温度を検出する燃料電池温度検出手段と、
    前記アノードに前記酸化剤ガスを供給して前記アノードを掃気するアノード掃気手段と、
    前記燃料電池の発電停止中に前記第1の開閉バルブと前記第2の開閉バルブとを閉状態として前記カソードを封鎖するカソード封鎖手段と、
    を備えた燃料電池システムにおいて、
    前記燃料ガスと前記酸化剤ガスの供給を停止して前記燃料電池と接続される外部負荷との電気的な接続を遮断した状態である前記燃料電池の発電停止後前記カソードを封鎖した場合、前記アノード掃気手段により前記アノードを掃気することが原因で生じる、前記燃料電池の温度と前記燃料電池の劣化度合いとが関係付けられた前記燃料電池の第3劣化特性に基づいて予め定められる所定温度まで、前記燃料電池の温度が低下したか否かを判定する温度判定手段を備え、
    前記燃料電池の発電停止後、前記カソード封鎖手段を作動させて前記カソードを封鎖した後、前記温度判定手段により前記所定温度まで低下したと判定されたときに、前記アノード掃気手段を作動させて前記アノードを掃気することを特徴とする燃料電池システム。
JP2008291919A 2008-11-14 2008-11-14 燃料電池システム Expired - Fee Related JP5297156B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291919A JP5297156B2 (ja) 2008-11-14 2008-11-14 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291919A JP5297156B2 (ja) 2008-11-14 2008-11-14 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010118289A JP2010118289A (ja) 2010-05-27
JP5297156B2 true JP5297156B2 (ja) 2013-09-25

Family

ID=42305831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291919A Expired - Fee Related JP5297156B2 (ja) 2008-11-14 2008-11-14 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5297156B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711010B2 (ja) * 2011-03-04 2015-04-30 本田技研工業株式会社 燃料電池システムの運転停止方法
JP5647079B2 (ja) * 2011-08-03 2014-12-24 本田技研工業株式会社 燃料電池システム
JP5757230B2 (ja) * 2011-12-26 2015-07-29 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
JP5503773B2 (ja) * 2013-04-11 2014-05-28 株式会社大都技研 遊技台

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228678A (ja) * 2005-02-21 2006-08-31 Toyota Motor Corp 燃料電池システム、燃料電池用セパレータ、及びこれらを用いた車両
US8501359B2 (en) * 2005-07-14 2013-08-06 Nissan Motor Co., Ltd. Fuel cell power plant and control method thereof
JP2007035389A (ja) * 2005-07-26 2007-02-08 Honda Motor Co Ltd 燃料電池システムおよびその制御方法
JP4644064B2 (ja) * 2005-07-28 2011-03-02 本田技研工業株式会社 燃料電池システム
JP4856428B2 (ja) * 2006-01-17 2012-01-18 本田技研工業株式会社 燃料電池システムおよびその運転方法
JP2008153079A (ja) * 2006-12-18 2008-07-03 Toyota Motor Corp 燃料電池システム

Also Published As

Publication number Publication date
JP2010118289A (ja) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4806953B2 (ja) 燃料電池システムとその運転方法、及び燃料電池車両
JP5221908B2 (ja) 燃料電池システム及びその運転方法
JP5231750B2 (ja) 燃料電池システム
JP4917796B2 (ja) 燃料電池システム
US9985304B2 (en) Method for shutting down a system containing a fuel cell stack and system comprising a fuel cell stack
JP4603427B2 (ja) 燃料電池システム
JP2015056387A (ja) 燃料電池システム及びその運転方法
JP5297156B2 (ja) 燃料電池システム
JP2019129062A (ja) 燃料電池の制御装置及び制御方法
JP2010244778A (ja) 燃料電池システム
JP6183414B2 (ja) 燃料電池システム
JP2012212617A (ja) 燃料電池システムの起動制御方法
JP4504896B2 (ja) 燃料電池システム
JP5358085B2 (ja) 燃料電池システム及び燃料電池の低温下起動方法
US9373858B2 (en) Method for starting fuel cell system and starting apparatus for fuel cell system
JP2008181768A (ja) 燃料電池システム
US8691459B2 (en) Fuel cell system and scavenging method therefor
JP2009076261A (ja) 燃料電池システム及びその起動方法
JP5211875B2 (ja) 燃料電池システムおよび燃料電池システムの異常診断方法
JP2011204447A (ja) 燃料電池システム
JP5410766B2 (ja) 燃料電池システムおよび燃料電池システムのカソード圧制御方法
US20240097164A1 (en) Fuel cell system
JP2007059067A (ja) 燃料電池システム
JP5185740B2 (ja) 燃料電池システム
JP2009140860A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Ref document number: 5297156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees