WO2013145761A1 - 発電システム及びその運転方法 - Google Patents

発電システム及びその運転方法 Download PDF

Info

Publication number
WO2013145761A1
WO2013145761A1 PCT/JP2013/002142 JP2013002142W WO2013145761A1 WO 2013145761 A1 WO2013145761 A1 WO 2013145761A1 JP 2013002142 W JP2013002142 W JP 2013002142W WO 2013145761 A1 WO2013145761 A1 WO 2013145761A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
exhaust heat
heat recovery
recovery unit
generation system
Prior art date
Application number
PCT/JP2013/002142
Other languages
English (en)
French (fr)
Inventor
楠村 浩一
宮内 伸二
英智 田窪
仁 大石
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013145761A1 publication Critical patent/WO2013145761A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0095Devices for preventing damage by freezing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/18Flue gas recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/19Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation system and an operation method thereof.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide a power generation system and a method for operating the same, in which a problem that occurs when the service life is stopped is reduced as compared with the prior art.
  • One aspect of the power generation system of the present invention is a power generation unit, an exhaust heat recovery unit including a hot water storage tank that stores exhaust heat from the power generation unit, a water supply channel that supplies water to the hot water storage tank from a water supply source having a water supply pressure, A circuit breaker that is provided in the water supply channel to manually shut off the communication between the water supply source and the hot water storage tank, and a control that performs freezing prevention operation of the exhaust heat recovery unit when the water temperature of the exhaust heat recovery unit decreases when the service life is stopped With a vessel.
  • One aspect of the operation method of the power generation system includes a step of generating power by a power generation unit, a step of storing waste heat from the power generation unit in a hot water storage tank, and a communication between a water supply source having a water supply pressure and the hot water storage tank.
  • the problem that occurs when the service life is stopped is reduced as compared with the prior art.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of the power generation system according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the operation of the power generation system of the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of the power generation system according to the second embodiment.
  • FIG. 4 is a flowchart illustrating an example of the operation of the power generation system according to the second embodiment.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the power generation system according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of the operation of the power generation system according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of the power generation system according to the second embodiment.
  • FIG. 8 is a flowchart illustrating an example of the operation of the power generation system according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of the power generation system according to the third embodiment.
  • FIG. 10 is a flowchart illustrating an example of the operation of the power generation system according to the third embodiment.
  • FIG. 11 is a flowchart illustrating an example of the operation of the power generation system according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of the power generation system according to the fifth embodiment.
  • FIG. 13 is a flowchart illustrating an example of the operation of the power generation system according to the fifth embodiment.
  • the power generation system of each of the following embodiments solves the above-described conventional problems, and provides a power generation system and a method for operating the power generation system in which a problem that occurs when the service life is stopped is reduced as compared with the conventional power generation system.
  • the power generation system includes a power generation unit, a waste heat recovery unit including a hot water storage tank that stores waste heat from the power generation unit, a water supply channel that supplies water to the hot water storage tank from a water supply source having a water supply pressure, and a life span
  • the controller includes a controller that performs the freeze prevention operation of the exhaust heat recovery unit.
  • the operation method of the power generation system includes a step of generating power with a power generation unit, a step of storing exhaust heat from the power generation unit in a hot water storage tank, and a water temperature of the exhaust heat recovery unit including the hot water storage tank when the life is stopped Then, the step of executing the freeze prevention operation of the exhaust heat recovery unit is provided.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a power generation system 100 according to the first embodiment.
  • the power generation system 100 of the present embodiment includes a power generation unit 1, a hot water storage tank 2, a first pump 3, a first circulation path 5, a heat exchanger 6, and a fluid flow path 7. And a water supply channel 11 and a controller 20.
  • the power generation unit 1 is a unit including a generator that generates power using raw fuel, and specifically includes a fuel cell unit, a gas engine power generation unit, and the like.
  • the hot water storage tank 2 stores the exhaust heat from the power generation unit 1. Hot water stored in the hot water storage tank 2 is supplied to a hot water supply load such as a bath or shower.
  • the first pump 3 is provided in the first circulation path 5.
  • the heat exchanger 6 exchanges heat between the fluid flowing through the fluid flow path 7 and the water flowing through the first circulation path 5.
  • the fluid flow path 7 is a flow path through which a fluid having exhaust heat in the power generation unit 1 flows.
  • examples of the fluid include exhaust gas that has not been used for power generation of the power generation unit 1, combustion exhaust gas, refrigerant that has cooled the power generation unit 1, and the like.
  • the power generation unit 1 is a fuel cell unit
  • the fluid includes a fuel gas discharged from the fuel cell, an oxidant gas, a combustion exhaust gas obtained by burning the fuel gas, and a refrigerant that has cooled the fuel cell. Illustrated.
  • the power generation unit 1 is a gas engine power generation unit
  • examples of the fluid include combustion exhaust gas discharged from the gas engine and a refrigerant that has cooled the gas engine.
  • the water supply channel 11 supplies water to the hot water storage tank from a water supply source having a water supply pressure.
  • the controller 20 performs the freeze prevention operation of the exhaust heat recovery unit when the water temperature of the exhaust heat recovery unit decreases at the time of the life stop.
  • the controller 20 only needs to have a control function, and includes an arithmetic processing unit (not shown) and a storage unit (not shown) that stores a control program. Examples of the arithmetic processing unit include an MPU and a CPU. An example of the storage unit is a memory.
  • the controller may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other.
  • the exhaust heat recovery unit includes the hot water storage tank 2, the first pump 3, the first circulation path 5, and the heat exchanger 6.
  • the exhaust heat recovery unit is not limited to this example, and any configuration may be employed as long as it includes the hot water storage tank 2 and is configured to recover the exhaust heat in the power generation unit 1.
  • FIG. 2 is a flowchart showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature decreases when the life of the power generation system stops, the temperature of the water in the exhaust heat recovery unit decreases (step S101). If there is a risk of freezing of the water in the exhaust heat recovery unit due to a decrease in the temperature of the water in the exhaust heat recovery unit, the freeze prevention operation is started (step S102).
  • the first pump 3 operates, the hot water in the hot water storage tank 2 circulates through the first circulation path 5, and the freezing of the water in the exhaust heat recovery unit is suppressed.
  • the temperature of the water in the exhaust heat recovery unit is detected using a detector that directly or indirectly detects the water temperature in the exhaust heat recovery unit.
  • a detector that indirectly detects the water temperature in the exhaust heat recovery unit is a detector that detects a physical quantity that correlates with the water temperature in the exhaust heat recovery unit. For example, the water temperature and the outside air temperature of the water path outside the exhaust heat recovery unit And a detector that detects the above.
  • the detector may be either an electric detector or a mechanical detector.
  • Examples of the electric detector include a thermistor and a thermocouple.
  • Examples of the mechanical detector include bimetal and shape memory alloy.
  • the controller 20 determines that the detected value of the detector is a value that may cause the water in the exhaust heat recovery unit to freeze, the controller 20 performs the freeze prevention operation. Execute. Specifically, when the water temperature detected by the detector is equal to or lower than a predetermined threshold, the controller 20 operates the first pump 3.
  • the predetermined threshold is set as a value at which water in the exhaust heat recovery unit may freeze, and specifically, a temperature higher than the freezing point (for example, 5 ° C.) is set.
  • the detector is a mechanical detector
  • the mechanical switch is turned on and the freeze prevention operation is executed. Specifically, when the water temperature in the exhaust heat recovery unit reaches a temperature that may cause freezing, the mechanical switch is turned on and the first pump 3 is activated.
  • the controller 20 controls the power to be supplied to the first pump from a power supply circuit (not shown) in the power generation system 100.
  • the first pump 3 is operated as the freeze prevention operation, but the freeze prevention operation is not limited to this.
  • a heater (not shown) for heating the exhaust heat recovery unit may be provided, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • an electric heater or a combustor is used as the heater.
  • a power generation system includes a power generation unit, a waste heat recovery unit including a hot water storage tank that stores waste heat from the power generation unit, a water supply channel that supplies water to the hot water storage tank from a water supply source having a water supply pressure, A circuit breaker that is provided on the road and manually shuts off the communication between the water supply source and the hot water storage tank, and a control that executes the freeze prevention operation of the exhaust heat recovery unit when the water temperature of the exhaust heat recovery unit decreases when the service life is stopped.
  • a waste heat recovery unit including a hot water storage tank that stores waste heat from the power generation unit, a water supply channel that supplies water to the hot water storage tank from a water supply source having a water supply pressure, A circuit breaker that is provided on the road and manually shuts off the communication between the water supply source and the hot water storage tank, and a control that executes the freeze prevention operation of the exhaust heat recovery unit when the water temperature of the exhaust heat recovery unit decreases when the service life is stopped.
  • the step of generating power in the power generation unit, the step of storing the exhaust heat from the power generation unit in the hot water storage tank, and the communication between the water supply source having the water pressure and the hot water storage tank are in the water supply channel.
  • a step of manually operating a provided circuit breaker, and a step of performing a freeze prevention operation of the exhaust heat recovery unit when the water temperature of the exhaust heat recovery unit including the hot water storage tank decreases when the life is stopped.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of the power generation system 100 according to the second embodiment.
  • the power generation system 100 of the present embodiment includes a power generation unit 1, a hot water storage tank 2, a first pump 3, a first circulation path 5, a heat exchanger 6, and a fluid flow path 7. And a circuit breaker 8, a water supply channel 11, and a controller 20.
  • the power generation unit 1 is a unit including a generator that generates power using raw fuel, and specifically includes a fuel cell unit, a gas engine power generation unit, and the like.
  • the hot water storage tank 2 stores the exhaust heat from the power generation unit 1. Hot water stored in the hot water storage tank 2 is supplied to a hot water supply load such as a bath or shower.
  • the first pump 3 is provided in the first circulation path 5.
  • the heat exchanger 6 exchanges heat between the fluid flowing through the fluid flow path 7 and the water flowing through the first circulation path 5.
  • the fluid flow path 7 is a flow path through which a fluid having exhaust heat in the power generation unit 1 flows.
  • examples of the fluid include exhaust gas that has not been used for power generation of the power generation unit 1, combustion exhaust gas, refrigerant that has cooled the power generation unit 1, and the like.
  • the power generation unit 1 is a fuel cell unit
  • the fluid includes a fuel gas discharged from the fuel cell, an oxidant gas, a combustion exhaust gas obtained by burning the fuel gas, and a refrigerant that has cooled the fuel cell. Illustrated.
  • the power generation unit 1 is a gas engine power generation unit
  • examples of the fluid include combustion exhaust gas discharged from the gas engine and a refrigerant that has cooled the gas engine.
  • the circuit breaker 8 is provided in the water supply path 11, and interrupts
  • an on-off valve is used, but any configuration may be used as long as communication between the water supply source and the hot water storage tank 2 can be interrupted.
  • the water supply channel 11 supplies water to the hot water storage tank from a water supply source having a water supply pressure.
  • the controller 20 performs the freeze prevention operation of the exhaust heat recovery unit when the water temperature of the exhaust heat recovery unit decreases at the time of the life stop.
  • the controller 20 only needs to have a control function, and includes an arithmetic processing unit (not shown) and a storage unit (not shown) that stores a control program. Examples of the arithmetic processing unit include an MPU and a CPU. An example of the storage unit is a memory.
  • the controller may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other.
  • the exhaust heat recovery unit includes the hot water storage tank 2, the first pump 3, the first circulation path 5, and the heat exchanger 6.
  • the exhaust heat recovery unit is not limited to this example, and any configuration may be employed as long as it includes the hot water storage tank 2 and is configured to recover the exhaust heat in the power generation unit 1.
  • FIG. 4 is a flowchart showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature decreases when the life of the power generation system stops, the temperature of the water in the exhaust heat recovery unit decreases (step S101). If there is a risk of freezing of the water in the exhaust heat recovery unit due to a decrease in the temperature of the water in the exhaust heat recovery unit, the freeze prevention operation is started (step S102).
  • the first pump 3 operates, the hot water in the hot water storage tank 2 circulates through the first circulation path 5, and the freezing of the water in the exhaust heat recovery unit is suppressed.
  • the temperature of the water in the exhaust heat recovery unit is detected using a detector that directly or indirectly detects the water temperature in the exhaust heat recovery unit.
  • a detector that indirectly detects the water temperature in the exhaust heat recovery unit is a detector that detects a physical quantity that correlates with the water temperature in the exhaust heat recovery unit. For example, the water temperature and the outside air temperature of the water path outside the exhaust heat recovery unit And a detector that detects the above.
  • the detector may be either an electric detector or a mechanical detector.
  • Examples of the electric detector include a thermistor and a thermocouple.
  • Examples of the mechanical detector include bimetal and shape memory alloy.
  • the controller 20 determines that the detected value of the detector is a value that may cause the water in the exhaust heat recovery unit to freeze, the controller 20 performs the freeze prevention operation. Execute. Specifically, when the water temperature detected by the detector is equal to or lower than a predetermined threshold, the controller 20 operates the first pump 3.
  • the predetermined threshold is set as a value at which water in the exhaust heat recovery unit may freeze, and specifically, a temperature higher than the freezing point (for example, 5 ° C.) is set.
  • the detector is a mechanical detector
  • the mechanical switch is turned on and the freeze prevention operation is executed. Specifically, when the water temperature in the exhaust heat recovery unit reaches a temperature that may cause freezing, the mechanical switch is turned on and the first pump 3 is activated.
  • the controller 20 controls the power to be supplied to the first pump from a power supply circuit (not shown) in the power generation system 100.
  • the first pump 3 is operated as the freeze prevention operation, but the freeze prevention operation is not limited to this.
  • a heater (not shown) for heating the exhaust heat recovery unit may be provided, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • an electric heater or a combustor is used as the heater.
  • the power generation system according to the third embodiment is the same as the power generation system according to the second embodiment, and the controller does not execute a protection operation of the power generation system different from the freeze prevention operation of the exhaust heat recovery unit when the life is stopped.
  • the operation method of the power generation system of the third embodiment does not execute the protection operation of the power generation system different from the freeze prevention operation of the exhaust heat recovery unit when the life is stopped in the operation method of the power generation system of the second embodiment.
  • not performing the protection operation of the power generation system different from the freeze prevention operation means that at least one of the protection operations of the power generation system different from the freeze prevention operation is not executed.
  • the power generation system of the present embodiment may be configured in the same manner as the power generation system of the second embodiment except for the above features.
  • the power generation system of Example 1 includes the independent water path that is not connected to the water supply source having the water supply pressure in the power generation system of Embodiment 3 described above, and the protection operation different from the freeze prevention operation of the exhaust heat recovery unit is independent. This is a freeze prevention operation for the water route.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit in the operation method of the power generation system of Embodiment 3 described above is independent of being not connected to a water supply source having a water supply pressure.
  • This is a freeze prevention operation for the water route.
  • the exhaust heat recovery unit includes a hot water storage tank connected to a water supply source having a water supply pressure, but the independent water path is not connected to a water supply source having a water supply pressure. Therefore, even if a pipe in the independent water path is cracked due to freezing, the amount of water leakage is limited to the amount of water in the independent water path, and there is no risk of the water leakage amount expanding without limitation.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit includes the freeze prevention operation of the independent water path that is not connected to the water supply source having the supply water pressure.
  • the independent water path may be, for example, a pipe, a tank, or a combination thereof.
  • Examples of the independent water path include a condensed water tank that stores water condensed from exhaust gas in the fuel cell system.
  • Examples of the exhaust gas include at least one of a fuel gas discharged from the fuel cell, an oxidant gas, and a combustion exhaust gas discharged from the combustor.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the power generation system 100 according to the first embodiment.
  • the power generation system 100 includes an independent water path 14.
  • the independent water path 14 is not connected to a water supply source having a water supply pressure.
  • An example of the independent water path 14 is a condensed water tank.
  • FIG. 6 is a flowchart showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature decreases when the life of the power generation system 100 stops, the temperature of the water in the independent water path and the exhaust heat recovery unit decreases (step S101).
  • Step S103 when the temperature of the water in the exhaust heat recovery unit decreases due to the risk of freezing of the water in the exhaust heat recovery unit, the freeze prevention operation of the exhaust heat recovery unit is started.
  • the first pump 3 operates, the hot water in the hot water storage tank 2 circulates through the first circulation path 5, and the water in the exhaust heat recovery unit is frozen. It is suppressed.
  • a heater (not shown) may be provided in the exhaust heat recovery unit, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • the detector for detecting the temperature of the water in the exhaust heat recovery unit and the method for executing the freeze prevention operation using this detector are the same as those in the second embodiment, and thus the description thereof is omitted.
  • the freeze prevention operation of the independent water path is not executed when the power generation system 100 is stopped, but the freeze prevention operation of the independent water path is executed when the power generation is stopped before the lifetime stop.
  • the power generation system of Example 2 includes a primary exhaust heat recovery unit that recovers exhaust heat of the power generation unit in the power generation system of Embodiment 3 described above, and the exhaust heat recovery unit generates heat from the primary exhaust heat recovery unit.
  • the secondary exhaust heat recovery unit to be recovered and the protection operation different from the freeze prevention operation of the exhaust heat recovery unit is the freeze prevention operation of the primary exhaust heat recovery unit.
  • the operation method of the power generation system of Example 2 includes the step of recovering the exhaust heat of the power generation unit by the primary exhaust heat recovery unit in the operation method of the power generation system of Embodiment 3 described above.
  • the secondary exhaust heat recovery unit recovers heat from the secondary exhaust heat recovery unit, and the protection operation different from the freeze prevention operation of the exhaust heat recovery unit is the freeze prevention operation of the primary exhaust heat recovery unit.
  • the secondary exhaust heat recovery unit includes a hot water storage tank connected to a water supply source having a water supply pressure, but the primary exhaust heat recovery unit is not connected to a water supply source having a water supply pressure. That is, the primary exhaust heat recovery unit is an example of the independent water path of the first embodiment. Therefore, even if a pipe in the primary exhaust heat recovery unit is cracked due to freezing, the amount of water leakage is limited to the amount of water in the primary exhaust heat recovery unit, and the amount of water leakage may increase without limitation. Absent.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit includes the freeze prevention operation of the primary exhaust heat recovery unit that is not connected to the water supply source having the supply water pressure.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of the power generation system 100 according to the second embodiment.
  • the power generation system 100 includes a second circulation path 12 and a second pump 13.
  • the refrigerant that has recovered the exhaust heat of the power generation unit 1 circulates.
  • the refrigerant include cooling water and antifreeze.
  • the second pump 13 is provided in the second circulation path 12 and circulates the refrigerant.
  • the primary exhaust heat recovery unit includes the second circulation path 12 and the second pump 13.
  • the primary exhaust heat recovery unit is not limited to this example, and may be in any form as long as the exhaust heat of the power generation unit 1 can be recovered.
  • the secondary exhaust heat recovery unit includes the hot water storage tank 2, the first pump 3, the first circulation path 5, and the heat exchanger 6.
  • the secondary exhaust heat recovery unit is not limited to this example, and any form may be employed as long as it has a hot water storage tank 2 and is configured to recover heat from the primary exhaust heat recovery unit. Absent. [Operation] Next, an example of operation
  • FIG. 8 is a flowchart showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature is lowered when the power generation system 100 is stopped, the temperature of the water in the primary exhaust heat recovery unit and the secondary exhaust heat recovery unit is decreased (step S101).
  • Step S103 Freezing prevention operation of the primary exhaust heat recovery unit is not executed even if there is a risk of water freezing in the primary exhaust heat recovery unit due to a decrease in the temperature of the water in the primary exhaust heat recovery unit.
  • the freeze prevention operation of the secondary exhaust heat recovery unit is started. (Step S103).
  • the first pump 3 operates, the hot water in the hot water storage tank 2 circulates through the first circulation path 5, and the water in the exhaust heat recovery unit is circulated. Freezing is suppressed.
  • a heater (not shown) may be provided in the secondary exhaust heat recovery unit, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • the detector for detecting the temperature of the water in each exhaust heat recovery unit and the method for executing the freeze prevention operation using this detector are the same as those in the second embodiment, and thus the description thereof is omitted.
  • the freeze prevention operation of the primary exhaust heat recovery unit is not executed when the life of the power generation system 100 is stopped, but the freeze prevention operation of the primary exhaust heat recovery unit is executed when the power generation is stopped before the life stop.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit in the operation method of the power generation system of Embodiment 3 is a process of heat sterilizing the water in the hot water storage tank. .
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of the power generation system 100 according to the third embodiment.
  • the power generation system 100 includes a heater 10.
  • the heater 10 heats the water in the hot water storage tank 2.
  • the heater 10 may be provided in any location as long as the water in the hot water storage tank 2 can be heated. In this example, it is provided in the first circulation path 5, but it may be provided in the hot water storage tank 2 and on the fluid flow path for supplying the heating fluid to the heat exchanger provided on the first circulation path 5. May be provided.
  • the heater 10 may have any configuration as long as the water in the hot water storage tank 2 can be heated.
  • Examples of the heater 10 include an electric heater and a combustor.
  • FIG 4 and 10 are flowcharts showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature decreases when the life of the power generation system 100 stops, the temperature of the water in the exhaust heat recovery unit decreases.
  • the freeze prevention operation is started. (Step S102).
  • a heater (not shown) may be provided in the exhaust heat recovery unit, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • the detector for detecting the temperature of the water in the exhaust heat recovery unit and the method for executing the freeze prevention operation using this detector are the same as those in the second embodiment, and thus the description thereof is omitted.
  • step S201 when the hot water in the hot water storage tank 2 is not used for a long period of time when the power generation system 100 is stopped (step S201), The heat sterilization process of the water in the hot water storage tank 2 is not executed (step S202).
  • the power generation system 100 when the power generation system 100 is before the end of its life, when the hot water in the hot water storage tank 2 is not used for a long time, the heat sterilization treatment of the hot water in the hot water storage tank 2 is executed. Specifically, the heater 10 and the first pump 3 are operated.
  • the non-use of hot water in the hot water storage tank 2 includes the case where the amount of hot water used in the hot water storage tank 2 is small and substantially unused.
  • the term “long term” refers to a period in which heat sterilization of the water in the hot water storage tank 2 is necessary, and the period is appropriately set depending on the capacity of the hot water storage tank 2 and the quality of the water in the hot water storage tank 2.
  • the power generation system of Example 4 in the power generation system of Embodiment 3 above includes a circulation path through which water returns to the hot water storage tank after being taken out from the hot water storage tank, and a pump provided in the circulation path.
  • the protection operation different from the freeze prevention operation of the heat recovery unit is a process of operating the pump when the pump stop period becomes longer.
  • the operation method of the power generation system of Example 4 is the operation method of the power generation system of Embodiment 3 described above, in which the exhaust heat recovery unit is a circulation path through which water returns to the hot water storage tank after being taken out from the hot water storage tank;
  • a protection operation that includes a pump provided in the circulation path and is different from the freeze prevention operation of the exhaust heat recovery unit is a process of operating the pump when the pump stop period becomes longer.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of the power generation system 100 of the present embodiment.
  • FIGS. 4 and 11 are flowcharts showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature decreases when the life of the power generation system 100 stops, the temperature of the water in the exhaust heat recovery unit decreases.
  • the freeze prevention operation is started. (Step S102).
  • a heater (not shown) may be provided in the exhaust heat recovery unit, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • the detector for detecting the temperature of the water in the exhaust heat recovery unit and the method for executing the freeze prevention operation using this detector are the same as those in the second embodiment, and thus the description thereof is omitted.
  • step S301 when the operation stop of the first pump 3 is continued for a long time (step S301), the process of operating the first pump 3 even if there is a possibility of water decay in the first circulation path 5. Is not executed (step S302).
  • the hot water storage tank 2 is supplied with city water each time hot water is used and is fresher than the water in the first circulation path 5. Therefore, by operating the first pump 3 and substituting the water in the first circulation path 5 with the water in the hot water storage tank 2, the decay of the water in the first circulation path 5 is suppressed.
  • the operation stop of the first pump 3 may be determined, for example, as the power generation stop of the power generation system 100 corresponds to this. Further, the long term is a period in which the water in the hot water storage tank 2 needs to be replaced before the water in the first circulation path 5 decays and the first circulation path 5 is clogged. It is appropriately set depending on the capacity of the circulation path 5 and the water quality of the water in the first circulation path 5.
  • the power generation system of Example 5 is the power generation system of Embodiment 3 described above, and the power generation unit includes a reformer that generates a hydrogen-containing gas from a raw material, and a fuel cell that generates power using the hydrogen-containing gas.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit is an operation of replenishing the raw material as the internal pressure of the gas flow path in the fuel cell unit decreases.
  • the operation method of the power generation system of Example 5 is the same as the operation method of the power generation system of Embodiment 3 described above, in which the power generation unit includes a reformer that generates hydrogen-containing gas from the raw material, and fuel that generates power using the hydrogen-containing gas.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit, which is a fuel cell unit including a battery, is an operation of replenishing the raw material as the internal pressure of the gas flow path in the fuel cell unit decreases.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of the power generation system 100 of the present embodiment.
  • the power generation system 100 of this embodiment includes a reformer 15 and a fuel cell 16.
  • the reformer 15 generates a hydrogen-containing gas from the raw material. Specifically, in the reformer 15, the raw material undergoes a reforming reaction to generate a hydrogen-containing gas.
  • the reforming reaction may take any form, and examples thereof include a steam reforming reaction, an autothermal reaction, and a partial oxidation reaction.
  • equipment required for each reforming reaction is appropriately provided. For example, if the reforming reaction is a steam reforming reaction, a combustor that heats the reformer, an evaporator that generates steam, and a water supplier that supplies water to the evaporator are provided.
  • the reforming reaction is an autothermal reaction, an air supply device (not shown) for supplying air to the reformer is further provided.
  • the raw material is a gas containing an organic compound composed of at least carbon and hydrogen, such as city gas mainly composed of methane, natural gas, and LPG.
  • a CO reducer for reducing carbon monoxide in the hydrogen-containing gas produced by the reformer 15 may be provided downstream of the reformer 15.
  • the CO reducer includes at least one of a transformer that reduces carbon monoxide by a shift reaction and a CO remover that reduces carbon monoxide by at least one of an oxidation reaction and a methanation reaction.
  • the fuel cell 16 generates power using a hydrogen-containing gas.
  • the fuel cell may be of any type, and examples include a polymer electrolyte fuel cell, a solid oxide fuel cell, and a phosphoric acid fuel cell.
  • the reformer and the fuel cell are built in one container (hot module).
  • the power generation unit 1 is a fuel cell unit.
  • FIGS. 4 and 13 are flowcharts showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature decreases when the life of the power generation system 100 stops, the temperature of the water in the exhaust heat recovery unit decreases.
  • the freeze prevention operation is started. (Step S102).
  • a heater (not shown) may be provided in the exhaust heat recovery unit, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • the detector for detecting the temperature of the water in the exhaust heat recovery unit and the method for executing the freeze prevention operation using this detector are the same as those in the second embodiment, and thus the description thereof is omitted.
  • step S501 when the life of the power generation system 100 is stopped, the generation of the hydrogen-containing gas in the reformer 15 is stopped, and the temperature of the reformer 15 is lowered (step S501).
  • the gas flow path downstream of the reformer 15 is blocked by a circuit breaker (not shown), and the space including the reformer 15 is sealed. Yes. Therefore, the internal pressure of the reformer 15 decreases as the temperature of the reformer 15 decreases.
  • step S502 Even if the internal pressure of the reformer 15 decreases, the operation of replenishing the raw material is not executed (step S502).
  • the raw material supplier includes at least a switch for opening and closing a raw material supply path (not shown). Since the raw material supply path is connected to a raw material source having a supply pressure, the raw material is supplied to the reformer 15 by opening the raw material supply path with this switch.
  • the internal pressure of the reformer 15 is detected by a detector that detects the pressure inside the reformer 15 directly or indirectly.
  • the detector that indirectly detects the pressure inside the reformer 15 is a temperature detector that detects the temperature of the reformer 15, and measures the time since the generation of the hydrogen-containing gas in the reformer 15 is stopped. A timer and the like are exemplified.
  • the raw material is supplied to the reformer 15 when it falls below a predetermined threshold set for the detection value of the detector.
  • the predetermined threshold is appropriately determined in consideration of the pressure resistance performance of the reformer 15 and the like. Is set.
  • the power generation system of Example 6 in the power generation system of Embodiment 3 is a fuel cell unit including a reformer that generates a hydrogen-containing gas from a raw material, and a fuel cell that generates power using the hydrogen-containing gas.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit is an operation of replenishing the raw material as the gas flow path in the fuel cell unit contracts.
  • the operation method of the power generation system of Example 6 is the same as the operation method of the power generation system of Embodiment 3, in which the power generation unit generates a hydrogen-containing gas from the raw material, and a fuel cell that generates power using the hydrogen-containing gas.
  • the protection operation different from the freeze prevention operation of the exhaust heat recovery unit is an operation of replenishing the raw material with gas contraction of the gas flow path in the fuel cell unit.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of the power generation system 100 of the present embodiment.
  • FIGS. 4 and 13 are flowcharts showing an example of the operation of the power generation system 100 of the present embodiment.
  • step S101 when the outside air temperature is lowered when the life of the power generation system 100 is stopped, the temperature of the water in the exhaust heat recovery unit is lowered (step S101).
  • the freeze prevention operation is started. (Step S102).
  • a heater (not shown) may be provided in the exhaust heat recovery unit, and not only the first pump 3 but also the heater may be operated in the freeze prevention operation.
  • the detector for detecting the temperature of the water in the exhaust heat recovery unit and the method for executing the freeze prevention operation using this detector are the same as those in the second embodiment, and thus the description thereof is omitted.
  • step S501 when the life of the power generation system 100 is stopped, the generation of the hydrogen-containing gas in the reformer 15 is stopped, and the temperature of the reformer 15 is lowered (step S501).
  • the gas flow path downstream of the reformer 15 is open to the atmosphere when the production of the hydrogen-containing gas in the reformer 15 is stopped. Therefore, as the temperature of the reformer 15 decreases, the gas in the reformer 15 contracts and outside air flows from the gas flow path downstream of the reformer 15.
  • step S502 Even if the gas in the reformer 15 contracts, the operation of replenishing the raw material is not executed (step S502).
  • the gas contraction of the reformer 15 is detected by a detector that indirectly detects this. Specifically, a temperature detector that detects the temperature of the reformer 15, a timer that measures the time after the generation of the hydrogen-containing gas in the reformer 15 is stopped, and the like are exemplified.
  • the raw material is supplied to the reformer 15 when it falls below a predetermined threshold set with respect to the detection value of the detector, but the outside air flows into the reforming catalyst and the electrode catalyst of the fuel cell at the predetermined threshold. It is set as appropriate so that the raw material is replenished before starting.
  • problems that occur when the service life is stopped are reduced as compared with the conventional technology, and the system is useful as a power generation system such as a gas engine power generation system and a fuel cell system and its operation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 発電システム(100)は、発電ユニット(1)と、発電ユニット(1)からの排熱を蓄える貯湯タンク(2)を含む排熱回収ユニットと、給水圧を有する給水源より貯湯タンク2に水を供給する給水路(11)と、寿命停止時に、排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行する制御器(20)とを備える。

Description

発電システム及びその運転方法
 本発明は、発電システム及びその運転方法に関する。
 従来、寿命を迎えると、発電運転中であれば、運転を継続し、運転停止後は起動しない燃料電池システムが提案されている(例えば、特許文献1参照)。
特開2010-244749号公報
 上記燃料電池システムを含む発電システムが寿命を迎え停止したとき、その後、発電システムを使用することはないので、その全機能が停止されるのが一般的である。しかしながら、寿命停止時に全機能を停止することで発生する問題については、従来検討されていない。
 本発明は、上記従来の課題を解決するもので、寿命停止時に発生する問題が、従来よりも低減される発電システム及びその運転方法を提供することを目的とする。
 本発明の発電システムの一態様は、発電ユニットと、発電ユニットからの排熱を蓄える貯湯タンクを含む排熱回収ユニットと、給水圧を有する給水源より貯湯タンクに水を供給する給水路と、給水路に設けられ、給水源と貯湯タンクとの連絡を手動操作により遮断する遮断器と、寿命停止時に、排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行する制御器とを備える。
 本発明の発電システムの運転方法の一態様は、発電ユニットで発電するステップと、発電ユニットからの排熱を貯湯タンクに蓄えるステップと、給水圧を有する給水源と貯湯タンクとの連絡が給水路に設けられた遮断器を手動操作して遮断されるステップと、寿命停止時に、貯湯タンクを含む排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行するステップとを備える。
 本発明の一態様によれば、寿命停止時に発生する問題が、従来よりも低減される。
図1は、実施の形態1の発電システムの概略構成の一例を示す図である。 図2は、実施の形態1の発電システムの動作の一例を示すフロー図である。 図3は、実施の形態2の発電システムの概略構成の一例を示す図である。 図4は、実施の形態2の発電システムの動作の一例を示すフロー図である。 図5は、実施例1の発電システムの概略構成の一例を示す図である。 図6は、実施例1の発電システムの動作の一例を示すフロー図である。 図7は、実施例2の発電システムの概略構成の一例を示す図である。 図8は、実施例2の発電システムの動作の一例を示すフロー図である。 図9は、実施例3の発電システムの概略構成の一例を示す図である。 図10は、実施例3の発電システムの動作の一例を示すフロー図である。 図11は、実施例4の発電システムの動作の一例を示すフロー図である。 図12は、実施例5の発電システムの概略構成の一例を示す図である。 図13は、実施例5の発電システムの動作の一例を示すフロー図である。
 燃料電池システムを含む発電システムが寿命を迎え停止したとき、その後、発電システムを使用することはないので、その全機能が停止されるのが一般的である。しかしながら、寿命停止時に全機能を停止することで発生する問題については、従来検討されていない。
 以下の各実施形態の発電システムは、上記従来の課題を解決するもので、寿命停止時に発生する問題が、従来よりも低減される発電システム及びその運転方法を提供する。
 (実施の形態1)
 実施の形態1の発電システムは、発電ユニットと、発電ユニットからの排熱を蓄える貯湯タンクを含む排熱回収ユニットと、給水圧を有する給水源より貯湯タンクに水を供給する給水路と、寿命停止時に、排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行する制御器とを備える。
 実施の形態1の発電システムの運転方法は、発電ユニットで発電するステップと、発電ユニットからの排熱を貯湯タンクに蓄えるステップと、寿命停止時に、貯湯タンクを含む排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行するステップとを備える。
 例えば、給水路に設けられ、給水源と貯湯タンクとの連絡を自動および手動の少なくともいずれか一方で遮断する遮断器がある場合を考える。このとき、寿命停止時に、自動で遮断する遮断器が故障により動作しなかったり、使用者が遮断器を手動操作して給水源と貯湯タンクとの連絡を遮断するのを忘れたりすることが起こりうる。そうすると、排熱回収ユニットの温度が低下して、例えば配管等に亀裂等が生じたときにも、排熱回収ユニットに給水源からの給水圧が継続的にかかる。その結果、亀裂から水が漏れ続けることになる。排熱回収ユニットが凍結により破損した場合に際限のない水漏れが生じうるという問題は、給水源と貯湯タンクとの連絡を遮断する遮断器が設けられていない場合にも生じうる。
 ここで、上記構成により、寿命停止時に排熱回収ユニットで凍結が発生し、水が漏れ続けるという問題が発生する可能性が低減する。
 なお、寿命停止とは、発電システムが耐用年数を迎えたため、発電システムの停止後、発電システムの継続的な使用ができない発電システムの停止を意味する。
[構成]
 図1は、実施の形態1における発電システム100の概略構成の一例を示す図である。
 図1に示すように、本実施の形態の発電システム100は、発電ユニット1と、貯湯タンク2と、第1ポンプ3と、第1循環路5と、熱交換器6と、流体流路7と、給水路11と、制御器20とを備える。
 発電ユニット1は、原燃料を用いて発電する発電機を備えるユニットであり、具体的には、燃料電池ユニット、ガスエンジン発電ユニット等が例示される。
 貯湯タンク2は、発電ユニット1からの排熱を蓄える。貯湯タンク2に貯えられた湯は、風呂、シャワー等の給湯負荷に供給される。
 第1ポンプ3は、第1循環路5に設けられている。
 第1循環路5は、貯湯タンク2内から取り出された後、貯湯タンク2に戻る水が流れる。
 熱交換器6は、流体流路7を流れる流体と第1循環路5を流れる水との間で熱交換する。
 流体流路7は、発電ユニット1における排熱を有する流体が流れる流路である。ここで、上記流体としては、例えば、発電ユニット1の発電に利用されなかった排ガス、燃焼排ガス、発電ユニット1を冷却した冷媒等が挙げられる。発電ユニット1が、燃料電池ユニットであるとき、上記流体としては、燃料電池から排出される燃料ガス、酸化剤ガス、燃料ガスを燃焼処理して得られる燃焼排ガス、及び燃料電池を冷却した冷媒が例示される。発電ユニット1が、ガスエンジン発電ユニットであるとき、上記流体としては、ガスエンジンから排出される燃焼排ガス及びガスエンジンを冷却した冷媒が例示される。
 給水路11は、給水圧を有する給水源より貯湯タンクに水を供給する。
 制御器20は、寿命停止時に、排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行する。制御器20は、制御機能を有するものであればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリーが例示される。制御器は、集中制御を行う単独の制御器で構成されていてもよく、互いに協働して分散制御を行う複数の制御器で構成されていてもよい。
 上記例において、排熱回収ユニットは、貯湯タンク2、第1ポンプ3、第1循環路5及び熱交換器6で構成される。排熱回収ユニットは、本例に限定されるものではなく、貯湯タンク2を備え、発電ユニット1における排熱を回収するよう構成されていれば、いずれの形態であっても構わない。
[動作]
 次に、本実施の形態の発電システム100の動作の一例について説明する。
 図2は、本実施の形態の発電システム100の動作の一例を示すフロー図である。
 図2に示すように、発電システムの寿命停止時に、外気温が低下すると排熱回収ユニット内の水の温度が低下する(ステップS101)。排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、凍結予防運転が開始される(ステップS102)。
 ここで、凍結予防運転として、第1ポンプ3が動作し、貯湯タンク2内の湯が第1循環路5内を介して循環し、排熱回収ユニット内の水の凍結が抑制される。
 なお、排熱回収ユニット内の水の温度は、排熱回収ユニット内の水温を直接または間接的に検知する検知器を用いて検知される。排熱回収ユニット内の水温を間接的に検知する検知器は、排熱回収ユニット内の水温と相関する物理量を検知する検知器で、例えば、排熱回収ユニット外の水経路の水温、外気温等を検知する検知器が挙げられる。
 検知器は、電気式検知器及び機械式検知器のいずれであってもよい。電気式検知器としては、サーミスタ、熱電対等が例示される。機械式検知器としては、バイメタル、形状記憶合金等が例示される。
 検知器が、電気式検知器であるとき、制御器20が検出器の検出値が排熱回収ユニット内の水の凍結の恐れがある値であると判定すると、制御器20は、凍結予防運転を実行する。具体的には、検出器で検知された水温が、所定の閾値以下であるとき、制御器20は、第1ポンプ3を作動させる。ここで、上記所定の閾値は、排熱回収ユニット内の水が凍結の恐れがある値として設定され、具体的には、氷点よりも高い温度(例えば、5℃)が設定される。
 検知器が、機械式検知器であるとき、排熱回収ユニット内の水温が、凍結の恐れがある温度になると、機械式スイッチがONされ、凍結予防運転が実行される。具体的には、排熱回収ユニット内の水温が、凍結の恐れがある温度になると、機械式スイッチがONされ、第1ポンプ3が作動する。この時、制御器20は、発電システム100内の電源回路(図示せず)より第1ポンプに電力が供給されるようこれを制御している。
 なお、上記動作例においては、凍結予防運転として、第1ポンプ3を動作させているが、凍結予防運転は、これに限定されるものではない。例えば、排熱回収ユニットを加熱する加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。加熱器は、例えば、電気ヒータ、燃焼器等が用いられる。
 (実施の形態2)
 実施の形態2の発電システムは、発電ユニットと、発電ユニットからの排熱を蓄える貯湯タンクを含む排熱回収ユニットと、給水圧を有する給水源より貯湯タンクに水を供給する給水路と、給水路に設けられ、前記給水源と貯湯タンクとの連絡を手動操作により遮断する遮断器と、寿命停止時に、排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行する制御器とを備える。
 実施の形態2の発電システムの運転方法は、発電ユニットで発電するステップと、発電ユニットからの排熱を貯湯タンクに蓄えるステップと、給水圧を有する給水源と貯湯タンクとの連絡が給水路に設けられた遮断器を手動操作して遮断されるステップと、寿命停止時に、貯湯タンクを含む排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行するステップとを備える。
 寿命停止時に使用者が遮断器を手動操作して給水源と貯湯タンクとの連絡を遮断しないと、排熱回収ユニットの温度が低下し、配管に亀裂等が生じたときに排熱回収ユニットに給水源からの給水圧が継続的にかかるため、亀裂から水が漏れ続けることになる。
 ここで、上記構成により、寿命停止時に排熱回収ユニットで凍結が発生し、水が漏れ続けるという問題が発生する可能性が低減する。
[構成]
 図3は、実施の形態2における発電システム100の概略構成の一例を示す図である。
 図3に示すように、本実施の形態の発電システム100は、発電ユニット1と、貯湯タンク2と、第1ポンプ3と、第1循環路5と、熱交換器6と、流体流路7と、遮断器8と、給水路11と、制御器20とを備える。
 発電ユニット1は、原燃料を用いて発電する発電機を備えるユニットであり、具体的には、燃料電池ユニット、ガスエンジン発電ユニット等が例示される。
 貯湯タンク2は、発電ユニット1からの排熱を蓄える。貯湯タンク2に貯えられた湯は、風呂、シャワー等の給湯負荷に供給される。
 第1ポンプ3は、第1循環路5に設けられている。
 第1循環路5は、貯湯タンク2内から取り出された後、貯湯タンク2に戻る水が流れる。
 熱交換器6は、流体流路7を流れる流体と第1循環路5を流れる水との間で熱交換する。
 流体流路7は、発電ユニット1における排熱を有する流体が流れる流路である。ここで、上記流体としては、例えば、発電ユニット1の発電に利用されなかった排ガス、燃焼排ガス、発電ユニット1を冷却した冷媒等が挙げられる。発電ユニット1が、燃料電池ユニットであるとき、上記流体としては、燃料電池から排出される燃料ガス、酸化剤ガス、燃料ガスを燃焼処理して得られる燃焼排ガス、及び燃料電池を冷却した冷媒が例示される。発電ユニット1が、ガスエンジン発電ユニットであるとき、上記流体としては、ガスエンジンから排出される燃焼排ガス及びガスエンジンを冷却した冷媒が例示される。
 遮断器8は、給水路11に設けられ、給水源と貯湯タンク2との連絡を手動操作により遮断する。遮断器8としては、例えば、開閉弁が用いられるが、給水源と貯湯タンク2との連絡を遮断可能であれば、いずれの構成であってもよい。
 給水路11は、給水圧を有する給水源より貯湯タンクに水を供給する。
 制御器20は、寿命停止時に、排熱回収ユニットの水温が低下すると、排熱回収ユニットの凍結予防運転を実行する。制御器20は、制御機能を有するものであればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリーが例示される。制御器は、集中制御を行う単独の制御器で構成されていてもよく、互いに協働して分散制御を行う複数の制御器で構成されていてもよい。
 上記例において、排熱回収ユニットは、貯湯タンク2、第1ポンプ3、第1循環路5及び熱交換器6で構成される。排熱回収ユニットは、本例に限定されるものではなく、貯湯タンク2を備え、発電ユニット1における排熱を回収するよう構成されていれば、いずれの形態であっても構わない。
[動作]
 次に、本実施の形態の発電システム100の動作の一例について説明する。
 図4は、本実施の形態の発電システム100の動作の一例を示すフロー図である。
 図4に示すように、発電システムの寿命停止時に、外気温が低下すると排熱回収ユニット内の水の温度が低下する(ステップS101)。排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、凍結予防運転が開始される(ステップS102)。
 ここで、凍結予防運転として、第1ポンプ3が動作し、貯湯タンク2内の湯が第1循環路5内を介して循環し、排熱回収ユニット内の水の凍結が抑制される。
 なお、排熱回収ユニット内の水の温度は、排熱回収ユニット内の水温を直接または間接的に検知する検知器を用いて検知される。排熱回収ユニット内の水温を間接的に検知する検知器は、排熱回収ユニット内の水温と相関する物理量を検知する検知器で、例えば、排熱回収ユニット外の水経路の水温、外気温等を検知する検知器が挙げられる。
 検知器は、電気式検知器及び機械式検知器のいずれであってもよい。電気式検知器としては、サーミスタ、熱電対等が例示される。機械式検知器としては、バイメタル、形状記憶合金等が例示される。
 検知器が、電気式検知器であるとき、制御器20が検出器の検出値が排熱回収ユニット内の水の凍結の恐れがある値であると判定すると、制御器20は、凍結予防運転を実行する。具体的には、検出器で検知された水温が、所定の閾値以下であるとき、制御器20は、第1ポンプ3を作動させる。ここで、上記所定の閾値は、排熱回収ユニット内の水が凍結の恐れがある値として設定され、具体的には、氷点よりも高い温度(例えば、5℃)が設定される。
 検知器が、機械式検知器であるとき、排熱回収ユニット内の水温が、凍結の恐れがある温度になると、機械式スイッチがONされ、凍結予防運転が実行される。具体的には、排熱回収ユニット内の水温が、凍結の恐れがある温度になると、機械式スイッチがONされ、第1ポンプ3が作動する。この時、制御器20は、発電システム100内の電源回路(図示せず)より第1ポンプに電力が供給されるようこれを制御している。
 なお、上記動作例においては、凍結予防運転として、第1ポンプ3を動作させているが、凍結予防運転は、これに限定されるものではない。例えば、排熱回収ユニットを加熱する加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。加熱器は、例えば、電気ヒータ、燃焼器等が用いられる。
(実施の形態3)
 実施の形態3の発電システムは、実施の形態2の発電システムにおいて、制御器は、寿命停止時に、排熱回収ユニットの凍結予防運転と異なる発電システムの保護動作を実行しない。
 実施の形態3の発電システムの運転方法は、実施の形態2の発電システムの運転方法において、寿命停止時に、排熱回収ユニットの凍結予防運転と異なる発電システムの保護動作を実行しない。
 かかる構成により、排熱回収ユニットの凍結予防運転と異なる保護動作を実行する場合に比べ、排熱回収ユニットの凍結予防運転と異なる保護動作に消費される電力が低減される。
 ここで、凍結予防運転と異なる発電システムの保護動作を実行しないとは、凍結予防運転と異なる発電システムの保護動作のうち少なくとも一つの保護動作を実行しないことを意味する。
 本実施の形態の発電システムは、上記特徴以外は、実施の形態2の発電システムと同様に構成してもよい。
[実施例1]
 実施例1の発電システムは、上記実施の形態3の発電システムにおいて、給水圧を有する給水源と接続されていない独立水経路を備え、排熱回収ユニットの凍結予防運転と異なる保護動作は、独立水経路の凍結予防運転である。
 実施例1の発電システムの運転方法は、上記実施の形態3の発電システムの運転方法において、排熱回収ユニットの凍結予防運転と異なる保護動作は、給水圧を有する給水源と接続されていない独立水経路の凍結予防運転である。 排熱回収ユニットは、給水圧を有する給水源と接続された貯湯タンクを備えるが、独立水経路は、給水圧を有する給水源と接続されていない。従って、仮に、凍結により独立水経路内の配管に亀裂が生じても、水漏れ量は、独立水経路内の水量に限定され、水漏れ量が制限なく拡大する恐れがない。
 すなわち、排熱回収ユニットの凍結予防運転と異なる保護動作は、給水圧を有する給水源と接続されていない独立水経路の凍結予防運転を含む。
 なお、独立水経路は、例えば、配管であってもよいし、タンクであってもよいし、それらの組合せであってもよい。独立水経路は、例えば、燃料電池システムにおける排ガスから凝縮した水を貯える凝縮水タンクが例示される。上記排ガスとしては、燃料電池から排出された燃料ガス、酸化剤ガス、及び燃焼器から排出される燃焼排ガスの少なくともいずれか一つが例示される。
 ここで、上記構成により、凍結に伴う水漏れを制限しながら、独立水経路の凍結予防運転も実行する場合に比べ、凍結予防運転に消費されるエネルギーを低減し得る。
[構成]
 図5は、実施例1における発電システム100の概略構成の一例を示す図である。
 発電システム100は、独立水経路14を備える。
 その他、図1と同様の符号を付した構成は、実施の形態2と同様であるので、その説明を省略する。
 独立水経路14は、給水圧を有する給水源と接続されていない。独立水経路14としては、凝縮水タンク等が例示される。
[動作]
 次に、本実施例の発電システム100の動作の一例について説明する。
 図6は、本実施例の発電システム100の動作の一例を示すフロー図である。
 図6に示すように、発電システム100の寿命停止時に、外気温が低下すると独立水経路及び排熱回収ユニット内の水の温度が低下する(ステップS101)。
 独立水経路内の水の温度の低下により、独立水経路内の水の凍結の恐れが生じても、独立水経路の凍結予防運転は実行されない。一方、排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、排熱回収ユニットの凍結予防運転が開始される。(ステップS103)。
 ここで、排熱回収ユニットの凍結予防運転として、第1ポンプ3が動作し、貯湯タンク2内の湯が第1循環路5内を介して循環し、排熱回収ユニット内の水の凍結が抑制される。なお、実施の形態2と同様に、排熱回収ユニットに加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。
 また、排熱回収ユニット内の水の温度を検知する検知器及びこの検知器を用いた凍結予防運転の実行方法については、実施の形態2と同様であるので、その説明を省略する。
 なお、発電システム100の寿命停止時においては、独立水経路の凍結予防運転は実行されないが、寿命停止前の発電停止時においては、独立水経路の凍結予防運転が実行される。
[実施例2]
 実施例2の発電システムは、上記実施の形態3の発電システムにおいて、発電ユニットの排熱を回収する1次排熱回収ユニットを備え、排熱回収ユニットは、1次排熱回収ユニットより熱を回収する2次排熱回収ユニットであり、排熱回収ユニットの凍結予防運転と異なる保護動作は、1次排熱回収ユニットの凍結予防運転である。
 実施例2の発電システムの運転方法は、上記実施の形態3の発電システムの運転方法において、発電ユニットの排熱を1次排熱回収ユニットで回収するステップを備え、排熱回収ユニットは、1次排熱回収ユニットより熱を回収する2次排熱回収ユニットであり、排熱回収ユニットの凍結予防運転と異なる保護動作は、1次排熱回収ユニットの凍結予防運転である。
 2次排熱回収ユニットは、給水圧を有する給水源と接続された貯湯タンクを備えるが、1次排熱回収ユニットは、給水圧を有する給水源と接続されていない。つまり、1次排熱回収ユニットは、実施例1の独立水経路の一例である。従って、仮に、凍結により1次排熱回収ユニット内の配管に亀裂が生じても、水漏れ量は、1次排熱回収ユニット内の水量に限定され、水漏れ量が制限なく拡大する恐れがない。
 すなわち、排熱回収ユニットの凍結予防運転と異なる保護動作は、給水圧を有する給水源と接続されていない1次排熱回収ユニットの凍結予防運転を含む。
 ここで、上記構成により、凍結に伴う水漏れを制限しながら、1次排熱回収ユニットの凍結予防運転も実行する場合に比べ、凍結予防運転に消費されるエネルギーを低減し得る。
[構成]
 図7は、実施例2における発電システム100の概略構成の一例を示す図である。
 発電システム100は、第2循環路12と、第2ポンプ13とを備える。
 その他、図1と同様の符号を付した構成は、実施の形態2と同様であるので、その説明を省略する。
 第2循環路12は、発電ユニット1の排熱を回収した冷媒が循環する。上記冷媒としては、冷却水、不凍液等が例示される。
 第2ポンプ13は、第2循環路12に設けられ、冷媒を循環させる。
 上記例において、1次排熱回収ユニットは、第2循環路12及び第2ポンプ13で構成される。1次排熱回収ユニットは、本例に限定されるものではなく、発電ユニット1の排熱を回収可能であれば、いずれの形態であっても構わない。
 上記例において、2次排熱回収ユニットは、貯湯タンク2、第1ポンプ3、第1循環路5及び熱交換器6で構成される。2次排熱回収ユニットは、本例に限定されるものではなく、貯湯タンク2を備え、1次排熱回収ユニットより熱を回収するよう構成されていれば、いずれの形態であっても構わない。
[動作]
 次に、本実施例の発電システム100の動作の一例について説明する。
 図8は、本実施例の発電システム100の動作の一例を示すフロー図である。
 図8に示すように、発電システム100の寿命停止時に、外気温が低下すると1次排熱回収ユニット及び2次排熱回収ユニット内の水の温度が低下する(ステップS101)。
 1次排熱回収ユニット内の水の温度の低下により、1次排熱回収ユニット内の水の凍結の恐れが生じても、1次排熱回収ユニットの凍結予防運転は実行されない。一方、2次排熱回収ユニット内の水の温度の低下により、2次排熱回収ユニット内の水の凍結の恐れが生じると、2次排熱回収ユニットの凍結予防運転が開始される。(ステップS103)。
 ここで、2次排熱回収ユニットの凍結予防運転として、第1ポンプ3が動作し、貯湯タンク2内の湯が第1循環路5内を介して循環し、排熱回収ユニット内の水の凍結が抑制される。なお、実施の形態2と同様に、2次排熱回収ユニットに加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。
 また、各排熱回収ユニット内の水の温度を検知する検知器及びこの検知器を用いた凍結予防運転の実行方法については、実施の形態2と同様であるので、その説明を省略する。
 なお、発電システム100の寿命停止時においては、1次排熱回収ユニットの凍結予防運転は実行されないが、寿命停止前の発電停止時においては、1次排熱回収ユニットの凍結予防運転が実行される。
[実施例3]
 実施例3の発電システムは、上記実施の形態3の発電システムにおいて、排熱回収ユニットの凍結予防運転と異なる保護動作は、貯湯タンク内の水を加熱殺菌する処理である。
 実施例3の発電システムの運転方法は、上記実施の形態3の発電システムの運転方法において、排熱回収ユニットの凍結予防運転と異なる保護動作は、貯湯タンク内の水を加熱殺菌する処理である。
 かかる構成により、加熱殺菌処理を行う場合に比べ、寿命停止時に、消費エネルギーを低減しつつ、排熱回収ユニットより、水が漏れ続けるという問題が発生する可能性が低減される。
[構成]
 図9は、実施例3における発電システム100の概略構成の一例を示す図である。
 発電システム100は、加熱器10を備える。
 その他、図1と同様の符号を付した構成は、実施の形態2と同様であるので、その説明を省略する。
 加熱器10は、貯湯タンク2内の水を加熱する。加熱器10は、貯湯タンク2内の水を加熱できれば、いずれの箇所に設けられていてもよい。本例では、第1循環路5に設けられているが、貯湯タンク2内に設けられていてもよく、第1循環路5上に設けられた熱交換器に加熱流体を供給する流体流路上に設けられていてもよい。
 また、加熱器10は、貯湯タンク2内の水を加熱可能であれば、その構成も任意である。加熱器10は、電気ヒータ、燃焼器等が例示される。
[動作]
 次に、本実施例の発電システム100の動作の一例について説明する。
 図4及び図10は、本実施例の発電システム100の動作の一例を示すフロー図である。
 図4に示すように、発電システム100の寿命停止時に、外気温が低下すると排熱回収ユニット内の水の温度が低下する(ステップS101)。排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、凍結予防運転が開始される。(ステップS102)。
 なお、実施の形態2と同様に、排熱回収ユニットに加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。
 また、排熱回収ユニット内の水の温度を検知する検知器及びこの検知器を用いた凍結予防運転の実行方法については、実施の形態2と同様であるので、その説明を省略する。
 一方、図10に示すように、発電システム100の寿命停止時に、貯湯タンク2の湯の不使用が長期に継続すると(ステップS201)、貯湯タンク2内の水の腐敗の恐れがあっても、貯湯タンク2内の水の加熱殺菌処理を実行しない(ステップS202)。
 一方、発電システム100が寿命停止前である時、貯湯タンク2の湯の不使用が長期に継続した時、貯湯タンク2の水の加熱殺菌処理は実行される。具体的には、加熱器10及び第1ポンプ3を動作させる。
 貯湯タンク2の湯の不使用とは、貯湯タンク2内の湯の使用量が少なく、実質的に不使用である場合も含む。また、長期とは、貯湯タンク2の水の加熱殺菌が必要となる期間であり、その期間は、貯湯タンク2の容量及び貯湯タンク2内の水の水質等により適宜設定される。
[実施例4]
 実施例4の発電システムは、上記実施の形態3の発電システムにおいて、貯湯タンク内から取り出された後、貯湯タンクに戻る水が流れる循環路と、循環路に設けられたポンプとを備え、排熱回収ユニットの凍結予防運転と異なる保護動作は、ポンプの停止期間が長くなるとポンプを動作させる処理である。
 実施例4の発電システムの運転方法は、上記実施の形態3の発電システムの運転方法において、排熱回収ユニットは、貯湯タンク内から取り出された後、貯湯タンクに戻る水が流れる循環路と、循環路に設けられたポンプとを備え、排熱回収ユニットの凍結予防運転と異なる保護動作は、ポンプの停止期間が長くなるとポンプを動作させる処理である。
 かかる構成により、ポンプを動作させる処理を実行する場合に比べ、寿命停止時に、消費エネルギーを低減しつつ、排熱回収ユニットより、水が漏れ続けるという問題が発生する可能性が低減される。
[構成]
 図3は、本実施例の発電システム100の概略構成の一例を示す図である。
 本実施例の発電システム100の具体的構成は、実施の形態2と同様であるので、その詳細な説明は省略する。
[動作]
 次に、本実施例の発電システム100の動作の一例について説明する。
 図4及び図11は、本実施例の発電システム100の動作の一例を示すフロー図である。
 図4に示すように、発電システム100の寿命停止時に、外気温が低下すると排熱回収ユニット内の水の温度が低下する(ステップS101)。排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、凍結予防運転が開始される。(ステップS102)。
 なお、実施の形態2と同様に、排熱回収ユニットに加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。
 また、排熱回収ユニット内の水の温度を検知する検知器及びこの検知器を用いた凍結予防運転の実行方法については、実施の形態2と同様であるので、その説明を省略する。
 図11に示すように、第1ポンプ3の動作停止が長期に継続すると(ステップS301)、第1循環路5内の水の腐敗の可能性があっても、第1ポンプ3を動作させる処理を実行しない(ステップS302)。
 一方、発電システム100が寿命停止前であるときに、第1ポンプ3の動作停止が長期に継続すると、第1ポンプ3を動作させる処理は実行される。
 第1ポンプ3が長期に停止しても、貯湯タンク2は、給湯利用の度に市水が供給され、第1循環路5内の水に比べ新鮮である。そこで、第1ポンプ3を動作させ、貯湯タンク2内の水で第1循環路5内の水を置換することで、第1循環路5内の水の腐敗が抑制される。
 第1ポンプ3の動作停止は、例えば、発電システム100の発電停止が、これに相当するとして判断してもよい。また、長期とは、第1循環路5の水が腐敗して第1循環路5に閉塞が生じる前に貯湯タンク2内の水で置換する必要が生じる期間であり、その期間は、第1循環路5の容量及び第1循環路5内の水の水質等により適宜設定される。
[実施例5]
 実施例5の発電システムは、上記実施の形態3の発電システムにおいて、発電ユニットは、原料から水素含有ガスを生成する改質器、及び水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、排熱回収ユニットの凍結予防運転と異なる保護動作は、燃料電池ユニット内のガス流路の内圧低下に伴い原料を補給する動作である。
 実施例5の発電システムの運転方法は、上記実施の形態3の発電システムの運転方法において、発電ユニットは、原料から水素含有ガスを生成する改質器、及び水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、排熱回収ユニットの凍結予防運転と異なる保護動作は、燃料電池ユニット内のガス流路の内圧低下に伴い原料を補給する動作である。
 かかる構成により、燃料電池ユニット内のガス流路の内圧低下に伴い原料を補給する動作を実行する場合に比べ、寿命停止時に、消費エネルギーを低減しつつ、排熱回収ユニットより、水が漏れ続けるという問題が発生する可能性が低減される。
[構成]
 図12は、本実施例の発電システム100の概略構成の一例を示す図である。
 図12に示すように、本実施例の発電システム100は、改質器15と、燃料電池16とを備える。
 改質器15は、原料から水素含有ガスを生成する。具体的には、改質器15において、原料が改質反応して、水素含有ガスが生成される。改質反応は、いずれの形態であってもよく、例えば、水蒸気改質反応、オートサーマル反応及び部分酸化反応等が挙げられる。図12には示されていないが、各改質反応において必要となる機器は適宜設けられる。例えば、改質反応が水蒸気改質反応であれば、改質器を加熱する燃焼器、水蒸気を生成する蒸発器、及び蒸発器に水を供給する水供給器が設けられる。改質反応がオートサーマル反応であれば、さらに、改質器に空気を供給する空気供給器(図示せず)が設けられる。なお、原料は、メタンを主成分とする都市ガス、天然ガス、LPG等の少なくとも炭素及び水素から構成される有機化合物を含むガスである。
 なお、改質器15の下流に改質器15で生成された水素含有ガス中の一酸化炭素を低減するためのCO低減器を設けてもよい。CO低減器は、シフト反応により一酸化炭素を低減させる変成器と、酸化反応及びメタン化反応の少なくともいずれか一方により一酸化炭素を低減させるCO除去器との少なくともいずれか一方を備える。
 燃料電池16は、水素含有ガスを用いて発電する。燃料電池としては、いずれの種類であっても良く、高分子電解質形燃料電池、固体酸化物形燃料電池、及び燐酸形燃料電池等が例示される。なお、燃料電池が、固体酸化物形燃料電池の場合は、改質器と燃料電池とが1つの容器(ホットモジュール)内に内蔵されるよう構成される。
 なお、本実施例の発電システム100において、発電ユニット1は、燃料電池ユニットである。
[動作]
 次に、本実施例の発電システム100の動作の一例について説明する。
 図4及び図13は、本実施例の発電システム100の動作の一例を示すフロー図である。
 図4に示すように、発電システム100の寿命停止時に、外気温が低下すると排熱回収ユニット内の水の温度が低下する(ステップS101)。排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、凍結予防運転が開始される。(ステップS102)。
 なお、実施の形態2と同様に、排熱回収ユニットに加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。
 また、排熱回収ユニット内の水の温度を検知する検知器及びこの検知器を用いた凍結予防運転の実行方法については、実施の形態2と同様であるので、その説明を省略する。
 図13に示すように、発電システム100の寿命停止時には、改質器15での水素含有ガスの生成が停止され、改質器15の温度が低下する(ステップS501)。
 改質器15での水素含有ガスの生成停止時に、改質器15の下流のガス流路は、遮断器(図示せず)で遮断され、改質器15を含む空間は、封止されている。従って、改質器15の温度低下に伴い改質器15の内圧が低下する。
 改質器15の内圧が低下しても原料を補給する動作を実行しない(ステップS502)。
 一方、発電システム100が寿命停止前の発電停止時においては、改質器15の内圧が低下すると原料供給器(図示せず)より改質器15の原料を補給する。これにより、改質器15が過度に負圧になり改質器15が変形することが抑制される。ここで、上記原料供給器は、少なくとも原料供給路(図示せず)を開閉する開閉器を備える。原料供給路は、供給圧を有する原料源に接続されているので、この開閉器により原料供給路を開放することで、改質器15に原料が補給される。
 改質器15の内圧は、改質器15内部の圧力を直接または間接的に検知する検知器により検知される。改質器15内部の圧力を間接的に検知する検知器は、改質器15の温度を検知する温度検知器、改質器15での水素含有ガスの生成を停止してからの時間を計測する計時器等が例示される。
 上記検知器の検出値に対して設定された所定の閾値以下になると、改質器15に原料が補給されるが、上記所定の閾値は、改質器15の耐圧性能等を考慮して適宜設定される。
[実施例6]
 実施例6の発電システムは、実施の形態3の発電システムにおいて、発電ユニットは、原料から水素含有ガスを生成する改質器、及び水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、排熱回収ユニットの凍結予防運転と異なる保護動作は、燃料電池ユニット内のガス流路のガス収縮に伴い原料を補給する動作である。
 実施例6の発電システムの運転方法は、実施の形態3の発電システムの運転方法において、発電ユニットは、原料から水素含有ガスを生成する改質器、及び水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、排熱回収ユニットの凍結予防運転と異なる保護動作は、燃料電池ユニット内のガス流路のガス収縮に伴い原料を補給する動作である。
 かかる構成により、燃料電池ユニット内のガス流路のガス収縮に伴い原料を補給する動作を実行する場合に比べ、寿命停止時に、消費エネルギーを低減しつつ、排熱回収ユニットより、水が漏れ続けるという問題が発生する可能性が低減される。
[構成]
 図12は、本実施例の発電システム100の概略構成の一例を示す図である。
 本実施例の発電システム100の具体的構成は、実施例5と同様であるので、その詳細な説明は省略する。
[動作]
 次に、本実施例の発電システム100の動作の一例について説明する。
 図4及び図13は、本実施例の発電システム100の動作の一例を示すフロー図である。
 図4に示すように、発電システム100の寿命停止時に、外気温が低下すると排熱回収ユニット内の水の温度が低下する(ステップS101)。排熱回収ユニット内の水の温度の低下により、排熱回収ユニット内の水の凍結の恐れが生じると、凍結予防運転が開始される。(ステップS102)。
 なお、実施の形態2と同様に、排熱回収ユニットに加熱器(図示せず)を設け、凍結予防運転において、第1ポンプ3だけでなく加熱器を作動させてもよい。
 また、排熱回収ユニット内の水の温度を検知する検知器及びこの検知器を用いた凍結予防運転の実行方法については、実施の形態2と同様であるので、その説明を省略する。
 図13に示すように、発電システム100の寿命停止時には、改質器15での水素含有ガスの生成が停止され、改質器15の温度が低下する(ステップS501)。
 実施例5と異なり、本実施例の発電システム100は、改質器15での水素含有ガスの生成停止時に、改質器15の下流のガス流路は、大気へ開放されている。従って、改質器15の温度低下に伴い改質器15内のガスが収縮するとともに、改質器15の下流のガス流路より外気が流入する。
 改質器15内のガスが収縮しても原料を補給する動作を実行しない(ステップS502)。
 一方、発電システム100が寿命停止前の発電停止時においては、改質器15内のガスが収縮すると原料供給器(図示せず)より改質器15の原料を補給する。これにより、改質器15の下流のガス流路より流入した外気により改質触媒、燃料電池の電極触媒等が劣化することが抑制される。改質器15の下流にCO低減器を備える場合は、CO低減器内の触媒が外気により劣化することも抑制される。
 上記原料供給器の具体的構成及びこれを用いた改質器15への原料の補給動作については、実施例5と同様であるので、その説明を省略する。
 改質器15のガス収縮は、これを間接的に検知する検知器により検知される。具体的には、改質器15の温度を検知する温度検知器、改質器15での水素含有ガスの生成を停止してからの時間を計測する計時器等が例示される。
 上記検知器の検出値に対して設定された所定の閾値以下になると、改質器15に原料が補給されるが、上記所定の閾値は、外気が改質触媒、燃料電池の電極触媒に流入する前に原料が補給されるよう適宜設定される。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の一態様によれば、寿命停止時に発生する問題が、従来よりも低減され、ガスエンジン発電システム、燃料電池システム等の発電システム及びその運転方法として有用である。
 1 発電ユニット
 2 貯湯タンク
 3 第1ポンプ
 5 第1循環路
 6 熱交換器
 7 流体流路
 8 遮断器
 10 加熱器
 11 給水路
 12 第2循環路
 13 第2ポンプ
 14 独立水経路
 15 改質器
 16 燃料電池
 20 制御器
 100 発電システム

Claims (18)

  1.  発電ユニットと、前記発電ユニットからの排熱を蓄える貯湯タンクを含む排熱回収ユニットと、給水圧を有する給水源より前記貯湯タンクに水を供給する給水路と、寿命停止時に、排熱回収ユニットの水温が低下すると、前記排熱回収ユニットの凍結予防運転を実行する制御器とを備える発電システム。
  2.  さらに、給水路に設けられ、前記給水源と貯湯タンクとの連絡を手動操作により遮断する遮断器を備える、請求項1記載の発電システム。
  3.  前記制御器は、寿命停止時に、前記排熱回収ユニットの凍結予防運転と異なる前記発電システムの保護動作を実行しない、請求項1または2記載の発電システム。
  4.  給水圧を有する給水源と接続されていない独立水経路を備え、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記独立水経路の凍結予防運転である、請求項3記載の発電システム。
  5.  前記発電ユニットの排熱を回収する1次排熱回収ユニットを備え、前記排熱回収ユニットは、前記1次排熱回収ユニットより熱を回収する2次排熱回収ユニットであり、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記1次排熱回収ユニットの凍結予防運転である、請求項3記載の発電システム。
  6.  前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記貯湯タンク内の水を加熱殺菌する処理である、請求項3記載の発電システム。
  7.  前記排熱回収ユニットは、前記貯湯タンク内から取り出された後、前記貯湯タンクに戻る水が流れる循環路と、前記循環路に設けられたポンプとを備え、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記ポンプの停止期間が長くなると前記ポンプを動作させる処理である、請求項3記載の発電システム。
  8.  前記発電ユニットは、原料から水素含有ガスを生成する改質器、及び前記水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記燃料電池ユニット内のガス流路の内圧低下に伴い原料を補給する動作である、請求項3記載の発電システム。
  9.  前記発電ユニットは、原料から水素含有ガスを生成する改質器、及び前記水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記燃料電池ユニット内のガス流路のガス収縮に伴い原料を補給する動作である、請求項3記載の発電システム。
  10.  発電ユニットで発電するステップと、前記発電ユニットからの排熱を貯湯タンクに蓄えるステップと、寿命停止時に、前記貯湯タンクを含む排熱回収ユニットの水温が低下すると、前記排熱回収ユニットの凍結予防運転を実行するステップとを備える発電システムの運転方法。
  11.  さらに、給水圧を有する給水源と貯湯タンクとの連絡が給水路に設けられた遮断器を手動操作して遮断されるステップを備える、請求項10記載の発電システムの運転方法。
  12.  寿命停止時に、前記排熱回収ユニットの凍結予防運転と異なる前記発電システムの保護動作を実行しない、請求項10または11記載の発電システムの運転方法。
  13.  前記排熱回収ユニットの凍結予防運転と異なる保護動作は、給水圧を有する給水源と接続されていない独立水経路の凍結予防運転である、請求項12記載の燃料電池システムの運転方法。
  14.  前記発電ユニットの排熱を前記1次排熱回収ユニットで回収するステップを備え、前記排熱回収ユニットは、前記1次排熱回収ユニットより熱を回収する2次排熱回収ユニットであり、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記1次排熱回収ユニットの凍結予防運転である、請求項12記載の発電システムの運転方法。
  15.  前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記貯湯タンク内の水を加熱殺菌する処理である、請求項12記載の発電システムの運転方法。
  16.  前記排熱回収ユニットは、前記貯湯タンク内から取り出された後、前記貯湯タンクに戻る水が流れる循環路と、前記循環路に設けられたポンプとを備え、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記ポンプの停止期間が長くなると前記ポンプを動作させる処理である、請求項12記載の発電システムの運転方法。
  17.  前記発電ユニットは、原料から水素含有ガスを生成する改質器、及び前記水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記燃料電池ユニット内のガス流路の内圧低下に伴い原料を補給する動作である、請求項12記載の発電システムの運転方法。
  18.  前記発電ユニットは、原料から水素含有ガスを生成する改質器、及び前記水素含有ガスを用いて発電する燃料電池を備える燃料電池ユニットであり、前記排熱回収ユニットの凍結予防運転と異なる保護動作は、前記燃料電池ユニット内のガス流路のガス収縮に伴い原料を補給する動作である、請求項12記載の発電システムの運転方法。
PCT/JP2013/002142 2012-03-29 2013-03-28 発電システム及びその運転方法 WO2013145761A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-075756 2012-03-29
JP2012075756A JP2015111013A (ja) 2012-03-29 2012-03-29 発電システム及びその運転方法

Publications (1)

Publication Number Publication Date
WO2013145761A1 true WO2013145761A1 (ja) 2013-10-03

Family

ID=49259056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002142 WO2013145761A1 (ja) 2012-03-29 2013-03-28 発電システム及びその運転方法

Country Status (2)

Country Link
JP (1) JP2015111013A (ja)
WO (1) WO2013145761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106320425A (zh) * 2016-09-18 2017-01-11 上海展华电子有限公司 一种冰水机组热能回收利用系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452757B2 (ja) * 2017-05-17 2019-01-16 東京瓦斯株式会社 燃料電池システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275337A (ja) * 2005-03-28 2006-10-12 Rinnai Corp 貯湯式給湯システム
JP2006286249A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 燃料電池発電システムにおける燃料改質装置のガスパージ機構
JP2007165341A (ja) * 2007-03-09 2007-06-28 Toyota Motor Corp 燃料電池発電システムおよびその運転方法
JP2007294186A (ja) * 2006-04-24 2007-11-08 Aisin Seiki Co Ltd 燃料電池システムの凍結防止装置
JP2008159318A (ja) * 2006-12-21 2008-07-10 Ebara Ballard Corp 燃料電池システム
JP2009140782A (ja) * 2007-12-07 2009-06-25 Kyocera Corp 燃料電池装置
WO2010029744A1 (ja) * 2008-09-12 2010-03-18 パナソニック株式会社 発電装置
JP2010151377A (ja) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp 貯湯式給湯装置
JP2010205631A (ja) * 2009-03-05 2010-09-16 Toshiba Fuel Cell Power Systems Corp 燃料電池システム
WO2010113519A1 (ja) * 2009-04-01 2010-10-07 パナソニック株式会社 燃料電池システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275337A (ja) * 2005-03-28 2006-10-12 Rinnai Corp 貯湯式給湯システム
JP2006286249A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 燃料電池発電システムにおける燃料改質装置のガスパージ機構
JP2007294186A (ja) * 2006-04-24 2007-11-08 Aisin Seiki Co Ltd 燃料電池システムの凍結防止装置
JP2008159318A (ja) * 2006-12-21 2008-07-10 Ebara Ballard Corp 燃料電池システム
JP2007165341A (ja) * 2007-03-09 2007-06-28 Toyota Motor Corp 燃料電池発電システムおよびその運転方法
JP2009140782A (ja) * 2007-12-07 2009-06-25 Kyocera Corp 燃料電池装置
WO2010029744A1 (ja) * 2008-09-12 2010-03-18 パナソニック株式会社 発電装置
JP2010151377A (ja) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp 貯湯式給湯装置
JP2010205631A (ja) * 2009-03-05 2010-09-16 Toshiba Fuel Cell Power Systems Corp 燃料電池システム
WO2010113519A1 (ja) * 2009-04-01 2010-10-07 パナソニック株式会社 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106320425A (zh) * 2016-09-18 2017-01-11 上海展华电子有限公司 一种冰水机组热能回收利用系统

Also Published As

Publication number Publication date
JP2015111013A (ja) 2015-06-18

Similar Documents

Publication Publication Date Title
US9252436B2 (en) Fuel cell system
US9083014B2 (en) Fuel cell system for performing normal and abnormal shut-down processes
US8747498B2 (en) Hydrogen generator and fuel cell system comprising the same
JP5008613B2 (ja) 燃料電池システム
JP5490102B2 (ja) 水素生成装置、燃料電池システム、水素生成装置の運転方法
US20110269041A1 (en) Fuel cell cogeneration system
JP5469503B2 (ja) 燃料電池システム
WO2008016257A1 (en) Fuel cell system and operating method
JP5180413B2 (ja) 燃料電池システム及びその運転方法
JP5830667B2 (ja) 燃料電池システム及びその運転方法
JP2017068913A (ja) 燃料電池システム
US20120021320A1 (en) Fuel cell system and method for operating fuel cell system
JP6552372B2 (ja) エネルギ供給システム
WO2013145761A1 (ja) 発電システム及びその運転方法
JP2016192269A (ja) 燃料電池システム及びその運転方法
JP6771356B2 (ja) エネルギ供給システム
JP6703926B2 (ja) エネルギ供給システム
JP5796227B2 (ja) 燃料電池発電システム及び燃料電池発電システムの運転停止方法
JP2017079196A (ja) エネルギ供給システム
JP2014089890A (ja) 燃料電池式発電装置及びコージェネレーションシステム
JP2018081848A (ja) エネルギ供給システム
JP6521824B2 (ja) エネルギ供給システム
JP6124598B2 (ja) コージェネレーションシステム及びコージェネレーションシステムの運転方法
JP6731833B2 (ja) エネルギ供給システム
JP2013206776A (ja) 発電システムの運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP