JP5598935B2 - 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル - Google Patents

光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル Download PDF

Info

Publication number
JP5598935B2
JP5598935B2 JP2012501915A JP2012501915A JP5598935B2 JP 5598935 B2 JP5598935 B2 JP 5598935B2 JP 2012501915 A JP2012501915 A JP 2012501915A JP 2012501915 A JP2012501915 A JP 2012501915A JP 5598935 B2 JP5598935 B2 JP 5598935B2
Authority
JP
Japan
Prior art keywords
catheter
light
site
light beam
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012501915A
Other languages
English (en)
Other versions
JPWO2011105631A1 (ja
Inventor
恒憲 荒井
亜莉沙 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2012501915A priority Critical patent/JP5598935B2/ja
Publication of JPWO2011105631A1 publication Critical patent/JPWO2011105631A1/ja
Application granted granted Critical
Publication of JP5598935B2 publication Critical patent/JP5598935B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)
  • Surgical Instruments (AREA)

Description

本発明は細胞の異常電気伝導や異常興奮発生による心房細動等の不整脈の治療及び光線力学的治療の分野に関し、光化学反応により心筋組織の光線力学的アブレーションを行うカテーテルに関する。
現在の心筋組織の電気伝導遮断形成手段は高周波アブレーション、クライオアブレーション、レーザアブレーションなどであり、いずれも熱的に組織傷害を引き起こすことで伝導遮断を達成している。このような手法は心不整脈として知られる異常な電気信号による心臓の不規則な拍動を治療する手段として用いられている。
頻脈性不整脈(tachyarrhythmia)とは、異常興奮の正常な心筋組織への伝達によって、若しくは心筋組織内に電気的興奮の旋回回路(リエントリー回路)が形成されることにより、発生する不整脈である。通常、心臓の興奮は洞房結節からの興奮によって正常なレート(洞調律)にコントロールされているが、頻脈性不整脈の場合、一部の心臓組織からの異常興奮によって心拍が洞調律よりも速いレートで持続する。リエントリー回路とは心筋組織に伝達障害部位が存在することなどにより、正常な電気興奮伝達が行われず回路状に興奮が旋回している部分を指す。このリエントリー回路は頻脈性不整脈の持続に関わっており、一方で異常興奮発生と伝達は頻脈性不整脈の発作原因となる。例えば房室結節リエントリー性頻拍(Atrioventricular Nodal Reentry Tachycardia:AVNRT)は心房期外収縮を発作原因とし、房室結節と心房の一部にリエントリー回路が形成されることで維持される不整脈である。この場合、根治療法としてリエントリー回路の一部をカテーテルアブレーションなどによって遮断する方法がある。また、発作原因が特定部位に存在することが判明しており、発作を止めるための根治療法が行われる頻脈性不整脈としては心房細動(Atiral Fibrillation:AF)等がある。
例えば、心房細動(Atiral Fibrillation:AF)とは、心不整脈の一種であり、不規則な心房興奮による不整脈をいい、脳梗塞などの血栓閉塞症の原因となる。心房細動が発作的な発生は、心筋組織における左心房(LA)から肺静脈(PV)への電気信号の迷入の存在が原因となる。心房細動時、房室結節は、洞房結節からだけではなく、心房全体の多数の箇所から電気インパルスを受け取る。房室結節はこれを処理しきれず、不規則で速い心拍を生み出すようになる。その結果、心房に血液が貯留し、血栓が形成されるリスクが高くなる。心房細動の主なリスク因子としては、年齢、冠動脈疾患、リウマチ性心疾患、高血圧、糖尿病、甲状腺中毒症などがある。
心房細動は不整脈全体の約1/3を占める非常に患者数の多い疾患である。患者数は現在推定で73万人程度であり、加齢に伴い患者数が増加する傾向にある。60歳以下では全人口の1%以下であるが、60歳代では数%、70歳代では5%、80歳以上では10%以上の人に心房細動があると言われている。薬物療法は保存的療法であり根治することができず、慢性心房細動の場合には薬物療法が効果を発揮しない場合が多い。心房細動は時間が経つにつれ発作性から慢性心房細動へと移行し、心不全や脳梗塞などを引き起こす大きなリスクファクターとなる。
薬剤治療に変わる根治療法として、カテーテルアブレーションがある(特許文献1及び非特許文献1〜4等を参照)。2008年の欧米の学会(ACC/AHA/ESC)が共同で出したガイドラインでは、心房細動に対するカテーテルアブレーションは薬剤治療に続くSecond−line Therapyとして正式に位置づけられた。現行のカテーテルアブレーションは、カテーテル先端の電極でピンポイントに焼灼するタイプであり、肺静脈隔離術を行う場合、肺静脈を囲むように連続した焼灼ラインを作るためには非常に多くの通電を行わなければならない。完全に連続した焼灼ラインを引くことは難しく、その隙間(ギャップ)が再伝導の原因となる。また、この方法は、組織内温度のコントロールが難しく、実際に設定している温度よりも心筋内深部の温度が上昇しポッピング現象を起こし、そのため形成されるCHAR(血の塊)によって塞栓症を引き起こす危険性がある。組織内の温度を把握できないため、焼灼深度をコントロールできず引き起こされる食道穿孔や横隔膜障害といった重篤な合併症も報告されている。
従って、心房組織及び周辺組織へのダメージが少なく、心房組織に対する熱的なダメージを制御する貫壁性の治療方法が望まれていた。
一般には、光線力学的治療は癌治療等に利用されている。光線力学的治療(Photodynamic Therapy:PDT、光化学治療ともいう)は、早期癌の内視鏡下治療の他、種々の治療への適用が検討されている(特許文献2及び3等を参照)。PDTとは、ある種のポルフィリン誘導体等の光増感剤を静脈注射等の方法により投与し、癌組織等の病変が認められ、治療を施そうとする組織病変部に選択的に吸収・集積させた後に、レーザ光等の光線を照射することにより該組織を破壊する治療法であり、光増感剤が病変部へ選択的に集積するという性質と光により増感されるという性質を利用したものである。ただし、現在は集積性を利用しない治療方法も散見される。光線照射により病変部に取り込まれた光増感剤が励起され、増感剤のエネルギーが病変部内に存在する酸素に移乗して活性な一重項酸素を生成し、該活性酸素が病変部の細胞をアポトーシス若しくはネクロシスにより死滅させるというメカニズムによる。
また、バルーンカテーテルを用い、薬剤として脂溶性のポルフィリンを用いた、光線力学的治療を用いて不整脈を治療する方法についても報告されていたが(特許文献4)、治療の条件等についての詳細は報告されていなかった。
従って、心房組織及び周辺組織へのダメージが少なく、心房組織に対する熱的なダメージを制御する貫壁性の治療方法が望まれていた。
PDTを利用して心筋組織のアブレーションを行い、不整脈を治療する装置について報告されていた(特許文献5)。PDTを利用した心筋組織のアブレーションは、熱によって焼灼するものではなく、薬剤と光と酸素の3要素間の光化学反応により発生する活性酸素(一重項酸素)が細胞を傷害することによって心筋組織を壊死させるものであり、体内で自由に操作できる光カテーテルを用いる。現行のカテーテルアブレーションの問題となる温度制御困難に伴う合併症を引き起こす危険性はほぼないと言える。しかしながら、該装置においては、治療効果を確実にモニタすることはできなかった。
特開2004−130095号公報 特許第2961074号公報 特公平7−53733号公報 米国特許出願公開第US2002/0095197号明細書 国際公開第WO2008/066206号パンフレット
Carlo Pappone et al.,Circulation 2000;102;2619−2628 Mathaniel M.Fried et al.,Lasers in Surgery and Medicine 28:197−203(2001) Kazushi Tanaka et al.,Journal of American College of Cardiology,Vol.38,No.7.December 2001,2079−2086 WALID SALIBA et al.,Journal of Cardiovascular Electrophysiology,Volume 13,No.10,October 2002,957−961
本発明は、光線力学的治療を利用して心筋における異常伝導を遮断することで不整脈を治療するためのカテーテルであって、治療効果を評価判定することができるカテーテル及び方法の提供を目的とする。
本発明者らは、光照射による光線力学的治療を利用することにより、アブレーションを行なうべき標的領域を周囲組織にダメージを与えることなく、正確に光線力学的治療によるアブレーションを行なうことができることを見出し、光線力学的治療薬剤を静脈注射等により投与して用いることにより、薬剤が治療部位に投与後短期間で治療部位の細胞外に分布し、投与後長時間を有することなく治療を開始できることを見出し、先に光線力学治療のための装置を開発した(国際公開第PCT/JP2007/073628号パンフレット)。本発明者らは、光線力学的治療によるアブレーションを「光線力学的アブレーション」と呼ぶ。
さらに、本発明者らは光線力学的アブレーションが適切に行われ、心筋組織の標的部位が壊死したかどうかをモニタするためには、2点間の電位の伝播の有無又は時間を測定すればよいことを見出した。本発明者らは、光線力学的アブレーションを行うカテーテルの光線が出射される光出射ウィンドウの周囲に少なくとも2つの電位測定用電極を設けることにより、心筋組織の標的部位を挟む2点間の電位差を測定することができ、標的部位を電気が伝播しているか否かを判断することができ、最終的に標的部位が光線力学的アブレーションにより壊死したかどうかを判断することができることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
[1] 光化学反応により心筋組織の光線力学的アブレーションを行うための、血管内又は心臓内腔で用いるカテーテルであって、光ファイバーを通して伝送された光線を心筋組織の標的部位に対して照射するための光出射ウィンドウ及び光出射ウィンドウの周囲に少なくとも2つの電位測定用電極を有する、カテーテル。
[2] 先端が自由に屈曲する構造を有する、[1]のカテーテル。
[3] 光出射ウィンドウの周囲に2つの電位測定用電極が光出射ウィンドウを挟んで設けられている、[1]又は[2]のカテーテル。
[4] 光出射ウィンドウ及び光出射ウィンドウの周囲の少なくとも2つの電位測定用電極が、カテーテル先端から、第1の電位測定用電極、カテーテルの側方に光を照射し得る光出射ウィンドウ及び第2の電位測定用電極の順で設けられている、光線がカテーテルの側方に照射される、[1]〜[3]のいずれかのカテーテル。
[5] 第1の電位測定用電極がドーム形状を有し、第2の電位測定用電極がリング形状を有している、[4]のカテーテル。
[6] 光出射ウィンドウがリング形状又は円筒形状を有している、[4]又は[5]のカテーテル。
[7] カテーテル内部に光ファイバーにより伝送された光線を側方に反射させるための、光を任意の方向に反射させる構造体を単独で又は組み合わせで有する、[4]〜[6]のいずれかのカテーテル。
[8] 光を任意の方向に反射させる構造体が、ミラー、プリズム若しくはレンズ、又はそれら少なくとも2つの組み合わせである、[7]のカテーテル。
[9] 先端が球形である円筒形状の光出射ウィンドウがカテーテル先端部に存在し、光ファイバーを伝送された光線が光出射ウィンドウを通してカテーテルの長軸方向に対して同軸に照射され、光出射ウィンドウの周囲に少なくとも2つの面形状の電位測定用電極を有する、光線がカテーテルの長軸に対して同軸方向に照射される、[1]〜[3]のいずれかのカテーテル。
[10] さらに、光線の照射方向を生体外からモニタするためのマーカーがカテーテル遠位端付近に少なくとも1つ設けられており、該マーカーの位置又は形状とカテーテルからの光線の照射の方向が関連付けられている、[1]〜[9]のいずれかのカテーテル。
[11] マーカーがカテーテルの長軸に対して非対称に配置されている、[10]のカテーテル。
[12] 光線の照射方向を生体外からモニタするためのマーカーが、線状、リボン状又はリング状であり、カテーテルの遠位端部の外周に沿って、カテーテルの長軸と交差するように取り付けられている、[10]又は[11]のカテーテル。
[13] 光線の照射方向を生体外からモニタするためのマーカーが、X線不透視マーカーである、[10]〜[12]のいずれかのカテーテル。
[14] 光線の照射方向を生体外からモニタするためのマーカーが、電位測定用電極を兼ねる、[10]〜[13]のいずれかのカテーテル。
[15] 光線がレーザ光又はLED光である、[1]〜[14]のいずれかのカテーテル。
[16] [1]〜[15]のいずれかのカテーテル、該異常電気伝導部位又は異常興奮発生部位に照射するための光線を発生する手段及び光線を前記異常電気伝導部位に伝送する手段を含む、光線力学的治療薬剤を用い、光線として該光線力学的治療薬剤の励起波長の光線を用いる、光線力学的治療を利用した心筋の異常電気伝導を遮断するカテーテル光線力学的アブレーション装置。
本発明の光線力学的治療を利用した治療装置を用いた場合、熱ではなくて活性酸素により組織細胞を壊死させる光化学的反応により、心筋の異常電気伝導部位又は異常興奮発生部位に対して光線力学的アブレーションを行い、心筋の異常伝導部を遮断するので、心筋組織及びその周辺組織に対するダメージが少なくなる。また、心房細動の治療のため肺静脈付近に使用した場合、熱による周辺組織の破壊を原因とする狭窄等の副作用も減じることができる。特に本発明の装置は、光線力学的治療薬剤を適用した被験体を対象とする。光線力学的治療薬剤は、投与後短期間では心筋の治療部位の細胞外間質に分布するため薬剤投与後短時間で治療を開始することができる。さらに、本発明の装置を用いた場合、従来の不整脈治療用高周波カテーテルアブレーション法では熱により標的部位を焼灼していたので、熱の伝導により標的部位の周囲の正常組織まで焼灼してしまい、治療部位を標的部位のみに限局するのは不可能であった。しかしながら、本発明の装置では、伝導し得る熱を用いず、到達領域を制限可能な光線を用いた光化学反応により光線力学的アブレーションを行なうので、治療部位の限局が可能になる。例えば、心房細動の治療に使用した場合、周辺組織である食道などの穿孔等の副作用を減じることができる。また、発熱による疼痛の回避も可能である。さらに、熱により焼灼する場合に比べて、連続的な光線力学的アブレーションが可能であるため、術時間の短縮化を図ることができる。
さらに、光線を出射するウィンドウの周囲に少なくとも2つの電位測定用電極を設けることにより、光線を照射した標的部位において、光線力学的アブレーションにより心筋組織細胞が壊死するに至ったかを判断することができ、カテーテルを用いた光化学反応による光線力学的アブレーションの効果を判定することができる。
本明細書は本願の優先権の基礎である日本国特許出願2010−042669号の明細書および/または図面に記載される内容を包含する。
図1は、同軸照射タイプカテーテルの遠位端部を示す図である。図1Aは正面図を示し、図1Bは側面図を示す。
図2は、同軸照射タイプカテーテルの遠位端部の断面図である。
図3は、側方照射タイプカテーテルの遠位端部の側面図である。
図4は、ミラーを含む側方照射タイプカテーテルの遠位端部の断面図である。電極がミラーを兼ねていてもよい。
図5は、プリズムを含む側方照射タイプカテーテルの遠位端部の断面図である。図中、光出射ウィンドウ2、電極3及びプリズム6aに囲まれた部分に空間を有し、空気が含まれている。
図6は、GRINレンズを含む側方照射タイプカテーテルの遠位端部の断面図である。
図7は、レーザ光照射方向モニタ用マーカーの形態を示す図である。図7A〜図7Cは、2つのマーカー7がカテーテルの軸方向に対して斜めに取り付けられたカテーテルを示し、図7Dは2つのマーカー7がカテーテルの軸方向に対して略垂直に取り付けられたカテーテルを示し、図7Eは2つのマーカー7が側方から見た場合に非対称に取り付けられたカテーテルを示す。
図8は、本発明のカテーテル全体を示す図である。図8Aはカテーテル先端が延びた状態を示し、図8Bはカテーテル先端が屈曲した状態を示す。図8A中のA−Aは断面図を示す。
図9は、本発明のカテーテルを含む、心筋組織の光線力学的アブレーション装置の概要を示す図である。
図10は、ラット摘出心筋組織を用いた光化学治療(PDT)による心筋電気伝導ブロック実験の実験系を示す図である。
図11は、ラット摘出心筋組織を用いた光化学治療(PDT)による心筋電気伝導ブロック実験における、電気刺激部位、測定電極及びレーザ光照射部位の位置関係を示す図である。
図12は、ラット摘出心筋組織を用いた光化学治療(PDT)による心筋電気伝導ブロック実験において得られた測定電極A及びBにおいて測定された伝搬刺激波形を示す図である。図12(a)はPDTを行う前の波形を示し、図12(b)はPDT施行5分後の波形を示す。
図13は、ブタを用いた即時的伝導ブロック実証実験の実験系を示す図である。
図14は、ブタを用いた即時的伝導ブロック実証実験における、心筋組織のレーザ光照射部位と電極配置を示す図である。
図15は、ブタを用いた即時的伝導ブロック実証実験における、レーザ光照射前後の電極Bにおける細胞外電位波形を示す図である。
図16は、電極が照射部位に含まれる場合の各電極における電位波形から予想される治療効果を示す図である。
図17は、電極が照射部位に含まれない場合の各電極における電位波形から予想される治療効果を示す図である。
以下、本発明を詳細に説明する。
本発明のPDTを用いて心筋組織の光線力学的アブレーションを行うためのカテーテルは、心筋組織の異常電気伝導の恒久的遮断をすることが可能である。例えば頻脈性の不整脈や心房細動の治療においては、該組織の異常電気伝導(電気進入)を恒久的に止めることにより治療する。
ここで、PDT(光線力学的治療、光化学治療)とは、光増感剤(PDT薬剤、光線力学的治療薬剤)とPDT薬剤を励起できる光線の存在により、病変部を障害・壊滅させる光化学反応を利用した治療法をいう。
本発明のカテーテルは、光照射部位を有し、該光照射部位から光線を出射できるカテーテルであり、カテーテルを主要な静脈又は動脈を介して、心臓まで挿入し、光増感剤を投与した標的となる心筋組織の一部にレーザを照射し、該組織を死滅させる。本発明のカテーテルは、血管内又は心臓内腔で用い、運用することができる。血管は好ましくは心臓の血管である。
ここで、「カテーテル」とは血管内に挿入し得る細管をいい、本発明のカテーテルにおいては、該細管中に光伝送手段が内挿され、又は光伝送手段が内部に備え付けられている。
本発明において、心筋組織における「異常電気伝導」とは心筋において生じる電気的興奮が一方向性ではなく旋回するように起こるリエントリー(興奮旋回)を含む。リエントリーには心臓組織の特定の構造に起因する解剖学的リエントリーと、局所における心筋伝導性の低下と不応期(心筋細胞の電気興奮が一度起こったのち電気的刺激が流入しても反応しない時間)の不均一性の増大によって心臓上のいずれの場所の心筋組織でも起こりうる機能的リエントリーがある。
前者の例として、房室結節において速伝導路と遅伝導路を有する場合に起こり、房室結節リエントリー性頻拍(Atrioventricular Nodal Reentry Tachycardia:AVNRT)を維持するリエントリーがある。また、Wolff−Parkinson−White症候群(WPW症候群)の原因である心房−心室間に本来の伝導路とは異なるKent束を通る副伝導路が存在することによって生じるリエントリーも代表的な解剖学的リエントリーである。
後者の例としては、心房細動が持続する場合の原因となり、心房上のあらゆる位置で生じるものがある。また異常な電気興奮には、例えば異常自動能とtriggered activityがある。心房、心室の心筋細胞(作業心筋)は元々自発的興奮機能(自動能)を有しているが、通常はより上位の洞房結節、房室結節(これらは特殊心筋という)によってその電気興奮を制御されている。なんらかの原因で静止電位が浅くなった場合には、作業心筋において自動能が発生してしまう場合がある。これを異常自動能という。活動電位(心筋細胞の膜電位が脱分極によって静止電位より高い電位になったときの電位)の再分極(活動電位を示した後元の静止電位に落ち着くこと)の途中におこる膜電位変化(早期後脱分極:EAD)、再分極終了後に起こる膜電位変化(遅延後脱分極:DAD)によって異常なタイミングで電気興奮が発生する現象をtriggered activityという。これら異常電気興奮は様々な不整脈の発生原因となりうる。心房細動の主な発作原因と言われている左心房から肺静脈の入口部での異常興奮は異常自動能、triggered activityのいずれとも考えられているが、まとめてfocal activity(局所巣状興奮)と呼ばれる。
本発明のカテーテルを用いて、心筋の異常電気伝導部位を光線力学的アブレーションにより治療することができる。心筋の異常電気伝導部位を光線力学的アブレーションにより治療することを、異常電気伝導を遮断(ブロック)する、異常電気伝導路を遮断(ブロック)する、リエントリー(副伝導路)を遮断(ブロック)する、異常電気伝導ブロックを作成する、のようにいう場合がある。また、上記の自動能が洞房結節、房室結節以外の部位に形成された場合、該部位を異常興奮発生部位、又は異常自動能を持った部位ということがある。異常興奮発生部位は、刺激伝達系に余分な電気信号を発生させる部位でもある。本発明のカテーテルを用いて、このような異常興奮発生部位を持った部位を光線力学的アブレーションにより壊死させることができ、この場合、異常興奮発生部位を壊死させることにより、心筋における異常電気伝導を遮断することになるので、この場合も異常電気伝導を遮断するということがある。
本発明のカテーテルを用いて治療し得る疾患は、上記の異常電気伝導部位又は異常興奮発生部位の存在に起因する不整脈、特に頻脈性不整脈である。このような、頻脈性不整脈として、房室回帰性頻拍(AtrioVentricular Reentrant Tachycardia,AVRT:WPW症候群)、房室結節回帰性頻拍(AtrioVentricular Nodal Reentrant Tachycardia,AVNRT)等の発作性上室性頻拍(Paroxysmal SupraVentricular Tachycardia,PSVT)、心房粗動、心房頻拍、心房細動(AF)(以上、上室性の頻脈性不整脈)や心室頻拍等の心室性の頻脈性不整脈が挙げられる。
房室回帰性頻拍においては、房室結節やヒス束以外に、心室と心房とを結ぶ副伝導路があるために、一度心室へ伝わった電気信号が再び心房へ戻ってきてしまう。房室結節回帰性頻拍においては、副伝導路は存在しないが、1つの房室結節の内部で電気信号の伝わる速さに差があるために、速い経路と遅い経路でループ状の電気信号の伝導路を形成する。電気信号が房室結節内を回り続けて心房と心室を交互に刺激するため、やはり頻脈性不整脈に陥る。心房粗動は、右心房を円形に電気信号が回り続ける異常な電気活動が原因となる。心房頻拍は、心房中に異常興奮発生部位が存在する。心房細動においては、左心房−肺静脈接合部の異常興奮伝導が原因となる。心室頻拍は、心筋梗塞などで障害を受けた心臓の筋肉の周囲に生じるループ状の異常な電気信号伝達による。
なお、アブレーションの適用範囲は日本循環器学会で定められており(循環器病の診断と治療に関するガイドライン,不整脈の非薬物療法ガイドライン.Jpn Circulation J 65(Suppl V):1127,2001)、該規定に基づいて対象となる治療を選択することもできる。
従って、本発明のカテーテルを用いて光線力学的アブレーションする部位は、上記の不整脈の原因となる心筋の異常電気伝導部位又は異常興奮発生部位であり、心筋の一部であり、心房中隔等の心房、心室、心房壁、心室壁の一部や管静脈洞、上・下大静脈の一部や静脈と心筋の連結部付近等である。光線力学的アブレーションする部位は、不整脈の種類により適宜決定することができ、また不整脈の原因となる異常電気伝導部位又は異常興奮発生部位をマッピングにより決定し、その部位に対して光線力学的アブレーションを行なえばよい。光線力学的アブレーションは、線状に行っても、点状に行なってもよく、光線力学的アブレーションの対象部位により適宜決定することができる。
例えば、標的となる異常な左心房の一部組織は、心房細動の発作原因となる電気的興奮を左心房に伝導させる領域にある組織である。このような領域として、肺静脈(PV)及び心臓の左心房間の連結部の心筋部の近傍等が挙げられる。肺静脈及び左心房の連結部の心筋部は、肺静脈の入り口付近に相当する。好ましくは、肺静脈及び心臓の左心房間の連結部の近傍である。例えば、肺静脈及び心臓の左心房間の連結部の近傍組織を死滅させた場合、左心房と肺静脈間の電気的連結が消滅し、すなわち伝導ブロックが形成され、電気的に肺静脈が隔離され興奮が伝導されなくなり、心房細動の原因となる肺静脈を起源とする心房性期外収縮が消失する。この際、肺静脈及び心臓の左心房間の連結部の一部を死滅させてもよいが、好ましくは全周を本発明の装置を用いて治療し、組織の周方向領域の相当多くの部分を死滅させる。また、上下肺静脈の2本の肺静脈と左心房の連結部の組織を個別に死滅させてもよいし、2本を一括して取り囲むように死滅させてもよい。さらに、4本の肺静脈と左心房の連結部の組織を一括して取り囲むように死滅させてもよい。肺静脈の隔離を行う場合は、線状に連続的に組織を死滅させることが好ましい。本発明のPDTを用いる光線力学的アブレーション用カテーテルは、線状の連続的光線力学的アブレーションに適している。
さらに、心房細動の治療のためには、肺静脈の隔離に加え、左心房天蓋部と僧帽弁輪間峡部を線上に死滅させてもよい。
本発明において、上記の肺静脈から左心房への電気伝導を止めることを、「左心房と肺静脈間に伝導ブロックを作成する」ということがあり、また、「電気的肺静脈(PV)隔離光線力学的アブレーションを行なう」ということがある。なお、上記の4本の肺静脈と左心房の連結部の組織を一括して取り囲むように死滅させることをBox隔離術ということがある。
本発明のカテーテルは、光線をカテーテル遠位端部に伝送するための光線伝送手段としての光線伝送路を有し、さらに、カテーテル遠位端部には、光線伝送手段により伝送された光線を標的部位に照射するための光透過可能な光出射用ウィンドウを有する。本発明において、光出射用ウィンドウを光出射部位ということがある。さらに、本発明のカテーテルは、遠位端部に少なくとも2つの電極を有する。
本発明のカテーテルの太さは、5〜9Frであり、好ましくは6〜8Frである。光伝送路は、組織に直接接触しないようカテーテル内に配置され、光伝送路を通った光線は、光出射ウィンドウから出射され標的部位である心筋組織に照射される。本発明のカテーテル先端は自由に屈曲する構造をとっていてもよい。このためには、例えばカテーテル中にテンションワイヤーを配設し、テンションワイヤーの牽引操作により先端部を屈曲させることができる。さらに、先端部をあらかじめ治療部位の形状に適合させるように曲げておいてもよい。カテーテルは、通常心臓カテーテルとして用いられているものを使用することができる。本発明のカテーテルはカテーテルを標的部位に挿入進行させるためのガイドシースやガイドワイヤーを含んでいてもよい。
光線伝送路の先端から照射された光線は光出射ウィンドウを通ってカテーテル外に出射され、標的部位に照射される。光出射ウィンドウは、カテーテルの遠位端部付近に設けられる。ここで、「遠位端部付近」とは、光線発生装置と連結された端部(近位端部)の反対側の端部に近い部分を意味し、先端である遠位端部及び遠位端部から数十mm程度の部分を指す。例えば、上記光出射ウィンドウは、カテーテルの先端部に設けられ、あるいはカテーテルの遠位端部付近の側面に設けられる。光出射ウィンドウがカテーテルの先端部に設けられる場合、光はカテーテルと同軸方向に照射され、光出射ウィンドウがカテーテルの遠端部付近の側面に設けられる場合、光はカテーテルの同軸方向に対して側方に照射される。側方照射の場合、照射される方向(角度)は限定されず、カテーテルの長軸方向に対して垂直に照射される場合も、斜め前方に照射される場合も含む。通常、カテーテルの長軸方向を角度の基準(0)とした場合に、0〜90℃の範囲の角度で照射する場合、側方照射という。ここで出射方向とはレーザビームの中心軸の方向すなわち光束の向きをいう。前者を同軸照射タイプカテーテル、後者を側方照射タイプカテーテルという。本発明のカテーテルは、同軸照射と側方照射の両方の照射ができるカテーテルであってもよい。光出射ウィンドウがカテーテルの先端部と遠位端部付近の両方に存在していてもよい。光出射ウィンドウは、光線が透過可能な材質でできており、このような材質として石英ガラス、サファイヤガラス、BK7(ホウケイ酸クラウン光学ガラス)などのガラス、透明樹脂等が挙げられる。本発明において、該光出射ウィンドウを光学ウィンドウということがある。該光出射ウィンドウは、レーザ伝送路の先端から照射された光を集光し、散光し、又は出射方向を変える機能を有していてもよい。光線出射ウィンドウの形状は、カテーテル内部に配設された光線伝送路から出射された光線が透過してカテーテル外部に出射される形状であるならば限定されず、板状、レンズ状、立方体状、円筒状(円柱状)等の形状をとり得る。具体的には、凹レンズ、凸レンズなどの光学レンズ、GRINレンズなどの屈折率分布を持つレンズ、プリズム、ミラー等の光学素子、あるいは液状マテリアル等からなる。光出射ウィンドウの表面は、屈折率界面反射を抑える物質又は構造を有する。屈折率界面反射を抑える物質として、インデックスマッチングマテリアルが挙げられ、具体的には、マッチングオイルやARコーティングなどの反射防止膜が挙げられる。また、反射を抑制する構造としては光の波長より小さいナノ構造形成等が挙げられる。具体的な光出射ウィンドウとして、図1及び図3に例示するカテーテルが有する光出射ウィンドウが挙げられる。図1に示すカテーテルが有する光出射ウィンドウは、円筒形状を有しており、先端部が球面となっている。図1に示すカテーテルは同軸照射タイプカテーテルである。図1Bがカテーテル先端側を正面とした場合の側面図であり、図1Aが正面図である。また、図2は断面図である。図3に示すカテーテルは側方照射タイプカテーテルであり、リング状の光出射ウィンドウを有するカテーテルである。リング状の光出射ウィンドウを有するカテーテル遠位端部の断面図を図4に示す。また、板状の光出射ウィンドウを用いることもできる。該板状の光出射ウィンドウはカテーテルの曲面に対応して、一定の曲率を有する板状であってもよい。一定の曲率を有する板状の光出射ウィンドウがカテーテル周囲全体を覆う場合、リング状の光出射ウィンドウとなる。
本発明のカテーテルは、少なくとも2つの電極を有している。該電極は少なくとも電位測定用電極として機能する。また、本発明のカテーテルは通電用電極を有していてもよい。前記の電位測定用電極が通電用電極を兼ねていてもよいし、通電のみに用いられる通電用電極を電位測定にのみ用いられる電位測定用電極とは別個に設けてもよい。電極に関する本発明のカテーテルの要件は、少なくとも2つの電位測定用電極を有していることである。
通電用電極は、その電極が接触している部位に電流を通すことができる電極をいい、該通電用電極は、カテーテル内部に配設されたリード線に接続され、該リード線を介して電源装置に接続される。通電用電極は、標的部位に通電し、加熱し、その部位を壊死させるのに用いることができる。本発明のカテーテルは光化学反応により心筋組織に対して光線力学的アブレーションを行うが、補助的に通電用電極を用いて加熱によるアブレーションをも行うことができる。
電位測定用電極は、電極が接触する標的部位の電位を測定するのに用いることができる。電位測定用電極は、少なくとも2つ存在し、光出射ウィンドウから出射された光線で焼却した心筋組織部位の両側の部位の電位を測定し、それらの部位の電位差を測定できるような位置に存在する。すなわち、光出射ウィンドウの周囲に少なくとも2つの電位測定用電極が光出射ウィンドウを挟む位置に存在するように設けられる。ここで、光出射ウィンドウの周囲に設けられるとは、光出射ウィンドウに接触する状態で設けられてもよいし、光出射ウィンドウに近接するが光出射ウィンドウに直接接触しない状態で設けられていてもよい。近接して設けられるとは、例えば、光出射ウィンドウから5mm以内、好ましくは1mm以内の距離離れて設けられていることをいう。また、光出射ウィンドウを挟む位置とは、複数の電位測定用電極において、1つの電極と他の電極を結ぶ線上に光出射ウィンドウが存在することをいう。上記光出射ウィンドウは、カテーテルに光出射ウィンドウを取り付けるためのウィンドウ枠を設けてもよく、ウィンドウ枠を設けた場合、電位測定用電極をウィンドウ枠に設けてもよい。また、電位測定用電極がウィンドウ枠を兼ねていてもよい。上記のように、少なくとも2つ存在するとは、例えば、2つ、3つ、4つ、5つ又はそれ以上存在することをいい、好ましくは2つである。また、光出射ウィンドウの周囲以外に電位測定用電極を設けてもよく、例えば、カテーテル遠位端部位の外側に複数の電極を設ければよい。この場合、これらの電極として、例えば、リング形状を有しておりカテーテル周囲をリング状に覆うリング電極を用いることができ、該リング電極が複数設けられる場合、リング電極間の距離は、10mm以内、好ましくは5mm以内程度である。また、電極の形状は上述の形状に限定されず、直線形状の線材としたり、または面形状、リボン状、円筒形状、ドーム形状等の形状とすることもできる。面形状は、平面形状も曲面形状も含む。例えば、図1に示す同軸照射タイプのカテーテルは、カテーテル先端部の外側円周上に2つの面形状の電極を有している。この場合、2つの電極を第1の電極、及び第2の電極という。また、図3に示す側方照射タイプのカテーテルは、好ましくは遠位端部付近、さらに好ましくは先端部であって光出射ウィンドウよりも先端側に先が丸くなった円筒状(ドーム形状)の電極を有し、さらに光出射ウィンドウよりも手元側にリング形状の電極を有している。この場合、好ましくは遠位端部付近、さらに好ましくは先端部の電極を第1の電極、手元側のリング形状の電極を第2の電極という。電極の材質としては、SUS材であってもよいが、生体に悪影響を及ぼさないもの、例えば、金、銀、白金、タングステン、パラジウムまたはこれらの合金や、Ni−Ti合金、チタン合金等を使用することが好ましい。
電位測定用電極は、リード線を介して電位測定器に接続し、電位を測定することができる。この際、2つの電極を用いる場合、一方の電極を対極とし、2つの電極の電位差を測定すればよい。また、参照電極を別途、被験体の外部皮膚表面等の他の部位に置き、該参照電極に対する電位を測定してもよい。少なくとも2つの電位測定用電極を用いることにより、光化学反応により光線力学的アブレーションを行った部位を挟む、心筋組織の2点間の電位差を測定することができる。
光線力学的アブレーションにより心筋組織が壊死した場合、壊死した部位は電気が伝導しにくくなるか、又は完全に伝導しなくなる。図16及び17に基づいて、電位測定部位が光線力学的アブレーション部位を含む場合と含まない場合の2通りで各電極における電位波形から予想される心筋組織の電気伝導性変化を説明する。ここでは、簡単に2つの電極を用いる場合を考える。
まず、電極が照射部位に含まれる場合について説明する。2つの電極A及びBがある場合に、ある伝搬速度で伝わる電気信号は電極A、Bの順番で測定される。光線力学的アブレーション前において電気信号は心筋組織内を図16(a)のように伝搬する。光線力学的アブレーションにより電極近傍で電気伝導性が消失し始めると、図16(b)のように電極A及びBの電位波形の振幅は減少する。図16(c)のように心筋組織の電気伝導性が完全に消失すると、電気信号は伝搬しないので、電位波形の振幅は消失する。次いで、電極が照射部位に含まれない場合について説明する。光線力学的アブレーション前において電気信号は心筋組織内を図17(a)のように伝搬する。光線力学的アブレーションにより2つの電極間の領域で電気伝導性が消失し始めると、図17(b)のように電気伝導性消失部位を迂回して電気信号は伝搬するので、光線力学的アブレーション前と比較して電極Bにおいて電位波形に時間差(遅れ)が生じる。図17(c)のように心筋組織壁全層にわたって電気伝導性が消失すると、電気信号は伝搬しないので、電極Bでは電気信号は測定されない。
このように、少なくとも2つの電位測定用電極を用いて電位を測定することにより、光化学反応により光線力学的アブレーションを行った部位の光線力学的アブレーションの効果を判断することができる。電位測定用電極が3つ以上有る場合、任意の3点以上の間の電位波形の振幅や電気伝搬の遅れを測定することができ、より詳細に光線力学的アブレーションの効果を判断することができる。
さらに、光化学反応による光線力学的アブレーションを行う場合、標的部位に光線が照射されるように、光線を出射する際に、カテーテルの先端部を曲げることが望ましいが、曲げた際にカテーテル先端が心筋組織に接触した場合、電位測定用電極による測定電位の変化が生じ、接触の有無を判断することができる。接触の有無を判断することにより、カテーテル先端が標的部位に対して正しい方向を向いているか否かも判断することができる。
カテーテル内に配設される光伝送手段としては、好ましくは光ファイバーが用いられ、光線伝送率が90%以上である光ファイバーを用いる。好ましくは、石英光ファイバー又はプラスチックファイバーが用いられる。光ファイバーは、カテーテル内に配設され、1本以上の光ファーバーを用いる。複数本の光ファイバーを用いる場合は、同機能を有する複数の光ファイバー、あるいは光感受性色素の励起光用の光ファイバーとその戻り光あるいは蛍光を受光する光ファイバー、あるいは光線出射方向が同軸方向用の光ファイバーと側方用の光ファイバーと斜め方向用の光ファイバー、あるいは波長が異なる光線を伝搬する光ファイバーとする。用いる光ファイバーの外径は、100μm〜400μm、好ましくは、200μm〜300μmである。光ファイバーのコア径は、50μm〜300μm、好ましくは、100μm〜200μmである。光ファイバーの開口数(NA)は、0.1〜1、好ましくは0.2〜0.5である。カテーテル先端部でのウィンドウ表面におけるレーザビーム出射直径は0.2mm〜3mm、好ましくは、1mm〜2.5mmである。光出射ウィンドウから出射された光が標的部位に達するまで通る媒体が心筋組織、血液、生理食塩水、高分子デキストラン又は造影剤とした場合に、カテーテル先端部でのレーザビーム出射立体角度は3°〜60°、好ましくは、5°〜45°である。光ファイバーは、その一端で光線発生装置と連結しており、該光線発生装置で発生した光線を標的部位まで伝送することができる。
光ファイバーと光出射ウィンドウは接触していても、接触していなくてもよい。例えば光出射ウィンドウがカテーテル先端部位に設けられ、光ファイバーから伝送された光線が、レンズからなる光出射ウィンドウを通ってカテーテルの軸方向に出射する場合、あるいは伝送された光線をプリズムからなる光出射ウィンドウを通してカテーテルの長軸方向ではなく側方方向に出射させる場合、光ファイバーと光出射ウィンドウを接触させることにより、拡散や反射による光の損失を少なくすることができる。光ファイバーと光出射ウィンドウが接触している場合、その突き合わせ面は、平面対平面、曲面対曲面、平面対曲面、凸面対凹面のいずれかの形状を有する。光ファイバーと光出射ウィンドウの突き合わせ面に、屈折率界面反射を抑える物質あるいは構造を有する。反射を抑制する物質として具体的には、インデックスマッチングマテリアルが挙げられ、具体的には、マッチングオイルやARコーティングなどの反射防止膜が挙げられる。また、反射を抑制する構造としては光の波長より小さいナノ構造形成等が挙げられる。一方、カテーテル内に配設される光ファイバーから伝送された光線をミラーを用いて、カテーテルの長軸方向ではなく、側方方向に照射する場合、光ファイバーから出射された光線がミラーに当たり反射して光出射ウィンドウを通って標的部位に照射されるので、光ファイバーと光出射ウィンドウは必ずしも接触する必要はない。側方照射させる場合、図4に示すように、カテーテル遠位端部内部にミラーを一定の角度で固定されるように設けて、光ファイバー先端から照射された光線がミラーに反射して光出射ウィンドウを通って外部に照射されるようにすればよい。この場合、電極とミラーが一体であっても、すなわち、電極がミラーを兼ねていてもよい。ミラーの取り付け角度を調節することにより任意の角度で光線を側方照射することができる。また、図4においては、ミラーを用いているが、カテーテル内部に光を任意の方向に反射させることができる光学部品、光学素子等の構造体を含んでいればよい。例えば、ミラーの代わりにプリズムを用いてもよく(図5)、プリズムの光反射面にミラーを付けてもよい。また、GRINレンズ等の屈折率分布のあるレンズを用いることにより(図6)、光線を側方に照射することもできる。さらに、ミラー、プリズム及びレンズを組合せて用いてもよい。組合せることにより、例えば2段階で光線の出射方向を変えることができる。この場合、同じものを組合せてもよいし、ミラーとプリズム、ミラーとレンズ、レンズとプリズム、ミラーとプリズムとレンズのように異なるものを組み合わせてもよい。さらに、光ファイバー先端から照射された光線が反射して側方の光出射ウィンドウに達するまでの光路上において界面の影響を少なくするために、光出射ウィンドウ自体を容器状にし、その容器中にミラーを設け、内部に液体等の液状マテリアルを入れてもよい。さらに、光出射ウィンドウ自体を、中にミラーを包埋した透明固体としてもよい。この場合、ウィンドウを透明樹脂で作製し、作製するときに内部に光線を反射させるためのミラーを包埋させればよい。さらに、カテーテル内部構造を光が反射するように設計してもよく、光ファイバーに斜め研磨等の加工を加えて屈折面を形成させて、光線を反射させてもよい。
以下、図1〜6を参照に本発明のカテーテルについて説明する。ここで、説明するカテーテルは例示であり、本発明のカテーテルは図1〜6に示すカテーテルに限定されない。
図1及び2に示すカテーテル1は、内部に光ファイバー4が配設され、先端部に円筒状の光素子からなる光出射ウィンドウ2が設けられている。図1及び2のカテーテル1においては、光線はカテーテル1の長軸方向に出射される。光ファイバー4と光出射ウィンドウ2は接触しており、光ファイバー4を伝送された光線は反射や散乱による損失を抑えて光出射ウィンドウ2を通って、外部に照射される。光出射ウィンドウ2の周囲はウィンドウ枠で覆われている。該ウィンドウ枠はカテーテルと連結され、該枠により光出射ウィンドウ2がカテーテル1に固定される。光ファイバー4から出射された光線が光ウィンドウ2内を通る際、光線の一部は光出射ウィンドウ2の側面を覆うウィンドウ枠に当たる。このとき、ウィンドウ枠が光線を吸収してしまうと標的部位への光線の照射効率が低下してしまう。このため、光出射ウィンドウ2を覆うウィンドウ枠は、光線を反射する物質でできているか、又は内側が光線を反射する物質でコーティングされていることが好ましい。好ましくは、600〜700nmの波長の光に対する光反射率が90%以上の物質を用いる。例えば、このような物質として例えば、金、銀、アルミニウム、銅、又は誘電体などが挙げられる。金、銀、アルミニウム、及び銅の700nmの波長の光に対する光反射率は、それぞれ95.5%、98.3%、90.3%、及び96.6%である。コーティングは、例えば、これらの金属薄膜を表面に形成させればよく、メッキ、スパッタリング、蒸着等の方法により行うことができる。ウィンドウ枠の内側表面は、光が鏡面反射するように光沢を有するように処理してもよいし、光が拡散反射するように表面に粗さが残るように処理してもよいが、鏡面反射するように処理することが好ましい。また、側方照射タイプのカテーテルにおいて、ミラーを用いて光線を反射させる場合、ミラー表面を上記の高反射率を有する物質でコーティングするのが好ましい。
さらに、上記のウィンドウ枠に少なくとも2つの電位測定用電極3が設けられる。電位測定用電極3は、例えば、図1Aに示すように、2つの電極3をウィンドウ枠の外側を部分的に覆うように、光出射ウィンドウ2の両側に向かい合うように設ければよい。電位測定用電極3は、心筋組織の標的部位付近の電位を測定するのに用いるため、心筋組織の標的部位付近と接触させる必要があり、このためカテーテルの先端部まで延伸して設けられる。該電極3はリード線に接続され、このリード線にて電位測定器に接続され、電位測定用電極3が接触した標的部位の電位を測定することができる。
図3〜6のカテーテルは、内部に光ファイバー4が配設され、カテーテル遠位端部の側方に光素子からなる光出射ウィンドウ2が設けられている、側方照射タイプカテーテルである。図4に示すカテーテルにおいては、光ファイバーから出射された光線がミラー5に反射して、光出射ウィンドウ2を通って外部に照射され、図5に示すカテーテルにおいては、光ファイバーから出射された光線はプリズム6aにより進路が変わり、光出射ウィンドウを通って外部に照射される。また、図6に示すカテーテルにおいては、光ファイバーから出射された光線はGRINレンズ6bにより進路が変わり、光出射ウィンドウ2を通って外部に照射される。これらの側方照射タイプカテーテルの場合も、光出射ウィンドウ2の周囲に該光出射ウィンドウ2を挟むように少なくとも2つの電位測定用電極3が設けられ、心筋組織の2点の電位を測定することができる。図3の側方照射タイプカテーテルにおいては、カテーテル先端部にドーム型の電極3が存在し、光出射ウィンドウ2を挟んで、光出射ウィンドウ2よりも手元側にリング状の電極3が存在する。
さらに、本発明のカテーテルは、光線の出射方向を生体外からモニタするための手段を含んでいてもよい。該手段は、カテーテルを生体内に挿入したときに外部から検出できる手段である。該手段として、例えば、光線が出射される方向、すなわち光出射ウィンドウの位置がわかるように、カテーテル遠位端部付近に取り付けられたX線不透視マーカーが挙げられる。好ましくは、該マーカーは、線状、板状、リボン状、リング状であり、カテーテル遠位端部の外周に沿って取り付けられる。この際、マーカーをカテーテルの長軸に対して交差するように取り付ければよい。また、好ましくはカテーテルの長軸方向に対して一定の角度で斜めに取り付ければよい。さらに、カテーテル遠位端部付近に取り付けられたマーカーを側方から見た場合に、非対称な形となるように取り付けてもよい。図7にカテーテル遠位端部に取り付けたマーカーの例を示す。図7A〜図7Cは、2つのマーカー7がカテーテルの軸方向に対して斜めに取り付けられたカテーテルを示し、図7Dは2つのマーカー7がカテーテルの軸方向に対して略垂直に取り付けられたカテーテルを示し、図7Eは2つのマーカー7が側方から見た場合に非対称に取り付けられたカテーテルを示す。これらのカテーテルにおいて、マーカー7の形状と光が出射されるウィンドウの位置とが関連付けられ、マーカーを観察することにより光線の照射方向を知ることができる。例えば、図7A〜図7Cに示すカテーテルは、側方照射タイプのカテーテルであり、2つのマーカー7がカテーテルの長軸方向に対して斜めに取り付けられている。該カテーテルにおいては、斜め前方に光線8が照射され、斜めに取り付けられたマーカー7の直線方向に向かって光線8が照射される。また、図7Dに示すカテーテルは側方照射タイプのカテーテルであり、2つのマーカー7がカテーテルの長軸方向に対して略垂直に取り付けられている。該カテーテルにおいては、マーカー7の長辺方向に光線8が照射される。図7Eは2つのマーカー7が側方から観察した場合に、非対称になっており、カテーテルの長軸方向におけるマーカー7の太さが異なっている。光線8はマーカー7の太くなった方向へ側方照射される。このような光線照射の方向をモニタするマーカーを取り付けた場合に、該照射方向を治療部位に位置させることが可能になる。X線不透視マーカーとしては、X線に不透過性の金属を用いることができ、生体への親和性という観点から白金、金、イリジウム等やこれらの合金が好ましい。X線不透視マーカーは、本発明の装置がカテーテルを含む場合は、例えばカテーテルの遠位端部に1個以上、例えば、2個、3個又はそれ以上設ければよい。また、マーカーは電位測定用電極を兼ねていてもよい。複数のマーカーが存在する場合、マーカーのうちの少なくとも1つが電位測定用電極としても作用する。
図8に本発明のカテーテル全体図を示す。
本発明のカテーテルは、経血管的に心臓内に挿入され、心臓内腔において、血液存在下で利用することができる。この場合、カテーテルから出射された光線は血液内を短距離通り、標的部位に到達する。また、この際、カテーテル先端から生理的食塩水、高分子デキストラン、造影剤、人工赤血球入り液体等を心臓血管中に注入し、これらの液体を媒体として、光線を照射してもよい。
PDTを行なう場合、増感剤(PDT薬剤、光感受性色素)を投与する必要があるが、本発明の装置と組合せるPDT薬剤は限定されず公知のPDT薬剤をその吸収波長の光線と組合せて用いることができ、PDT薬剤と光線種を適宜選択すればよい。用いるPDT薬剤も630nm付近に吸収波長を有する薬剤から、より長波長側に吸収波長を有する薬剤のいずれも用いることができる。不整脈の治療には心筋の細胞からの排泄性の高い薬剤を用いるのが好ましい。また、光線照射は、薬剤が細胞内に取り込まれる前に行うことが望ましいので、細胞外の細胞間質に存在する時間が長い薬剤を用いるのが好ましい。従って、不整脈の治療には水溶性のPDT薬剤が適している。このようなPDT薬剤として、例えば、クロリン骨格を有するクロリン系薬剤であるATX−S10(670nm)(Iminochlorin aspartic acid誘導体、(東洋薄荷工業株式会社、平成12年株式会社光ケミカル研究所に権利譲渡、特開平6−80671号公報)、NPe6(664nm)(タラポルフィンナトリウム、レザフィリン(登録商標)、mono−L−aspartyl chlorin e6、特許第2961074号公報)、mTHPC(652nm)、SnET2(660nm)(tin etiopurpurin、ミラバント・メディカル・テクノロジーズ)、AIPcS(675nm)(chloro aluminium sulphonated phthalocyanine)、BPD−MA(690nm)(benzoporphyrin derivative monoacid ring A、QLT社)、Lu−tex(732nm)(Lutetium Texaphyrin)等が挙げられる。この中でもタラポルフィンナトリウムが好ましい。これらのPDT薬剤の投与は、薬剤をリン酸緩衝塩溶液等の適当な緩衝液に溶解させ、必要に応じて医薬的に許容できる添加物を添加する。添加物としては、有機溶媒等の溶解補助剤、酸、塩基等のpH調整剤、アスコルビン酸等の安定剤、グルコース等の賦形剤、塩化ナトリウム等の等張化剤などが挙げられる。
PDTを行なうためのPDT薬剤は、あらかじめ静脈注射により治療を受けようとする被験体に投与することが好ましいが、特定の血管、例えば冠状動脈に留置したカテーテルから高濃度の薬剤を心筋に供給することにより投与してもよい。この場合、本発明の装置はPDT薬剤供給手段(PDT薬剤供給装置)を含む。該PDT薬剤供給手段は、例えばPDT薬剤を貯める手段、PDT薬剤を標的部位に送液する手段及びPDT薬剤を標的部位に投与する手段を含む。このようにして、PDT薬剤を投与することにより、標的部位にPDT薬剤が存在するようになり、該標的部位に光線を照射することにより異常電気伝導部位又は異常興奮発生部位を壊死等により障害を与えることができる。
PDT薬剤の投与量は限定されず、例えば数μg/ml〜数mg/ml、好ましくは10mg/ml〜100mg/mlに調製した薬剤を数μl〜数ml、好ましくは1ml〜10mlを静脈注射により投与する。体重当たりの投与量は、0.1mg/kg〜10mg/kg、好ましくは0.5mg/kg〜5mg/kgである。また、直接標的部位に注入等により投与してもよい。
PDT薬剤投与後、直ぐに又は短時間で光線照射を開始することが可能である。例えば、投与後0.5時間〜投与後10時間以内、好ましくは投与後0.5時間〜投与後6時間以内、さらに好ましくは投与後0.5時間〜投与後5時間以内、さらに好ましくは投与後0.5時間〜投与後3時間以内に治療部位にPDT薬剤が均一に分布し、光線照射を開始することができる。この際、治療部位に治療に適した薬剤が集積したか否かを血液中の薬剤濃度を指標に決定することもできる。例えば、ヒトに1mg/kgの量を投与した場合、血漿中濃度が5μg/ml〜50μg/ml、好ましくは10μg/ml〜30μg/ml、さらに好ましくは15μg/ml〜25μg/mlのときに光線を照射して治療を行えばよい。本発明においては、PDT薬剤投与から短時間で、PDTによる光線力学的アブレーション治療を開始することができる。
ヒトにおいてPDTによる光線力学的アブレーション治療を行う場合、上記のPDT薬剤の投与量、PDT薬剤を投与してから光線を照射するまでの時間は、ブタ、ラット、マウス等の動物を用いて決定した条件に基づいて決定することができる。
PDT薬剤を投与し、その後に光線を照射する光線力学的治療において、細胞の障害は活性酸素により起こる。光線力学的治療では、熱を発生せず、また局所的な治療が可能になる。従って、熱によるタンパク質の変性が生じず、標的部位及び標的部位の周辺組織の壊死が起こらないので、標的部位のみを確実に障害させることができる。なお、PDT薬剤を用いず、レーザ等の光線のみを用いた場合、レーザを照射した部位において熱が発生し得るので、周辺組織も障害され得る。従って、本発明の光線力学的治療を利用した方法及び装置は、PDT薬剤を用いることなくレーザのみを照射する方法又は装置に対しても優れた効果を有する。
本発明の装置において治療のために照射する光線の種類は限定されないが、連続光線を用いることができる。照射する波長は600nmから800nmであり、用いるPDT薬剤の吸収波長に近い波長の光線を用いればよい。
本発明の装置で用いる光線は、好ましくは連続レーザかつ半導体レーザである。また、LED(Light Emitting Diode)発光源から発生する光(LED光)を用いることもできる。
PDT薬剤としてタラポルフィンナトリウムを用いる場合、波長650〜690nm、好ましくは660〜670nm、好ましくは波長664±2nmの半導体レーザを用いることが好ましい。また、LED発光源を用いる場合は、波長が660nm前後の赤色LEDが好ましい。
照射する光線の強度は、ピーク強度をいい、単位はW/cmで表される。さらに、光線を照射してPDT治療を行う場合、総エネルギー密度(照射量、J/cm)もPDT治療の成否を決めるが、強度又は総エネルギー密度は、治療すべき異常部の大きさ等により適宜決定することができる。照射する光線の強度において、高強度の範囲及び低強度の範囲は限定されず、光線の種類、治療しようとする異常部の深度等により適宜決定することができる。照射光線の強度として、1mW/cm〜100W/cm、好ましくは1W/cm〜50W/cm、さらに好ましくは2W/cm〜30W/cmの範囲が挙げられる。照射時間は、10秒〜1000秒、好ましくは50秒〜500秒、さらに好ましくは50秒〜200秒である。総エネルギー密度として、照射部位の表面において1〜10000J/cm、好ましくは10〜2000J/cm、さら好ましくは50〜2000J/cm、さらに好ましくは100〜1000J/cmが例示できる。なお、心筋組織の血液を人工赤血球入り液体に置換した場合、光の吸収係数を小さくすることができる。この場合、10〜500J/cmが好ましい。
光線力学的アブレーションにおいては、光を照射する位置から深さ3〜5mmまでの部位の心筋をターゲットとする。
ヒトにおいてPDTによる光線力学的アブレーション治療を行う場合、上記の光線照射条件は、ブタ、ラット、マウス等の動物を用いて決定した条件に基づいて決定することができる。
熱を用いて標的部位を壊死させる方法においては、熱が伝導することにより標的部位の周辺組織も障害を受け得る。一方、本発明の方法又はカテーテルにおいては、伝導し得る熱を用いず、到達領域を制限可能な光線を用いるので、限局的な治療が可能である。例えば、心筋の異常電気伝導部位又は異常興奮発生部位の領域が小さい場合でも、周辺の正常組織に障害を与えることなく限局的な治療が可能である。本発明の方法又はカテーテルを用いる治療においては、標的部位の光線照射前から照射後の温度上昇変化は、20℃以内、好ましくは10℃以内、さらに好ましくは5℃以内であり、最高温度は、60℃以内、好ましくは50℃以内、さらに好ましくは45℃以内である。
また、光線を照射した場合、光線の一部がカテーテル先端に吸収され、カテーテルの遠位端部付近の温度も上昇し得る。本発明のカテーテルにおいては、前述のようにカテーテルの内側において光線の反射率が高い材質を用いているので、血管中でのカテーテルの遠位端部付近の温度上昇は、10℃以内に抑えられる。このため温度上昇により組織傷害をもたらすことはない。
本発明のカテーテルを含む装置
本発明は、本発明の光化学反応により心筋組織の光線力学的アブレーションを行うカテーテルを含む、PDTを用いた心筋の異常電気伝導遮断装置、不整脈治療装置又は心房細動治療用装置をも包含する。該装置は、少なくとも光伝送手段を含み、光出射ウィンドウと該ウィンドウ周囲に少なくとも2つの電位測定用電極を含むカテーテル、及び光線発生手段(光線発生装置)を含む。前記カテーテルはさらに、通電用電極を有していてもよく、さらに、光線出射ウィンドウの周囲以外の部位に1つ又は複数の電位測定用電極を有していてもよい。また、本発明の装置は、電位測定用電極とリード線により接続された、電位測定器や通電用電極とリード線により接続された電源を備えていてもよい。該装置の一例を図9に示す。光線発生装置10で発生した光線は、光ファイバー4を通ってカテーテル1の遠位端部に達し、光出射ウィンドウ2から照射される。照射部付近の電位を2つの電位測定用電極3で測定する、電位測定用電極はリード線により電位測定器11と連結している。さらにこれらの手段に加えて、本発明の装置は、光線照射条件を決定するための異常電気伝導部位又は異常興奮発生部位に集積したPDT薬剤量、異常部の酸素濃度をモニタし得る手段を有していてもよい。さらに、PDT薬剤を異常電気伝導部位又は異常興奮発生部位に供給するための手段を備えていてもよい。本発明の装置はバルーンを有さず拡散ファイバーやベアファイバーのみを有するので、バルーンを有する装置では治療不可能な狭い部位や複雑な部位も治療することができる。
光線発生手段は、上述の光線を発生し得る光線発生装置を用いることができる。
なお、光線発生装置と光ファイバーの間又は光ファイバーの中間には、装置に含まれ得るモニタ装置等に対して情報を伝送するために適宜ビームスプリッターフィルター等を設けてもよい。
光出射ウィンドウ2は、異常電気伝導部位又は異常興奮発生部位に光線を照射するためのものであり、光ファイバー4内を伝送されてきた光線が異常電気伝導部位又は異常興奮発生部位に向けて照射され、その部位の細胞を壊死させる。例えば、心房細動の治療のために、肺静脈と左心房間の連結部の近傍組織を標的とする場合、全周にわたって、細胞を死滅させることが望ましい。すなわち、肺静脈の周囲に線状に連続的に光線を照射する。このためには、光線を照射しながらカテーテル先端を線状に動かせばよい。光ファイバー4の遠位端部付近から照射された光線が異常電気伝導部位又は異常興奮発生部位を照射する面積範囲は、0.5cm〜3cmが好ましい。また、照射範囲が局所的で狭くても、異常電気伝導部位又は異常興奮発生部位の大きさに応じてカテーテル1を回転させるなどして、照射の向きを変えて異常電気伝導部位又は異當興奮発生部位に複数回照射を行うことにより、標的組織を完全に死滅させることができる。また、光線を照射する際、高強度の光線を照射するか、又は低強度の光線を長時間照射することにより、深い部位の細胞まで壊死させることができる。本発明のカテーテルを含む装置は、貫壁性を有している。ここで、貫壁性とは、心房筋を内側から外側まで処理できることをいう。心房筋の内側から外側までの距離は、3〜5mm程度である。例えば、心房細動の治療の場合、異常電気伝導部位又は異常興奮発生部位を3〜5mmの深さで壊死させればよい。
異常電気伝導部位又は異常興奮発生部位に存在するPDT薬剤及び酸素濃度をモニタし得る手段は、異常電気伝導部位又は異常興奮発生部位のPDT薬剤由来の蛍光、りん光や酸素由来の蛍光をモニタする装置である。これらの蛍光又はりん光は光伝送ファイバー中を逆送する。この際、蛍光又はりん光をモニタするためのファイバーはレーザを伝送したファイバーを用いてもよいし、別途モニタ専用のファイバーをカテーテル1内に設けてもよい。蛍光又はりん光モニタ用ファイバーが光線伝送用ファイバーと共通の場合、光線発生装置と光線照射部の間に設けられたビームスプリッターにより蛍光又はりん光は進路を変え、適当なフィルターを通り所望の波長の光のみ選択され検出器に到達する。また、蛍光又はりん光モニタ用ファイバーが光伝送用ファイバーと独立して存在する場合は、蛍光又はりん光モニタ用ファイバーは直接検出器と連結しており、蛍光又はりん光がファイバーを通って、検出器に到達する。検出器により蛍光又はりん光を分析することにより、PDT薬剤量及び酸素濃度をモニタすることができる。例えば、PDT薬剤のポルフィリン環は励起されると蛍光を発生するので、該蛍光を計測することによりPDT薬剤の量が測定できる。また、酸素濃度に応じてりん光が消光するので、りん光を計測することにより酸素濃度も測定できる。また、活性酸素により蛍光強度が増加する酸化蛍光指示薬を用いたり、ルテニウム錯体を光ファイバーに固定し、酸素濃度によりルテニウム錯体の蛍光反応が消光する現象を利用してもよい。局所的な酸素分圧の計測は、J.M.Vanderkooi et al.,The Journal of Biological Chemistry,Vol.262,No.12,Issue of April 25,pp.5476−5482,1987、日本化学会編、実験化学講座(分光II),pp.275−194,1998及びLichini M et al.,Chem.Commun.,19,pp.1943−1944,1999等の記載に従って行うことができる。検出器は光線発生手段と電子的に連結しており、検出手段により蓄積したPDT薬剤量及び酸素量がフィードバックされ必要に応じて光線強度、照射時間等の光線照射条件を変えてリアルタイムに制御することが可能である。
本発明のカテーテルの使用
カテーテルは、定法により、大腿動脈や上腕動脈から体内に挿入すればよい。また、大腿静脈から挿入し、右心房に到達、左心組織へはBrockenbrough法により経心房中隔的に到達する方法も一般的に行なわれている。カテーテル1を大腿動脈、大腿静脈、上腕動脈や上腕静脈から心臓又はその近傍に挿入し光線照射部を異常電気伝導部位又は異常興奮発生部位まで運び、そこで光線を照射することにより行なうことができる。また、開胸手術又は腹腔鏡手術を行い、本発明のカテーテルを用いて異常電気伝導部位又は異常興奮発生部位に光線を照射することもできる。本発明のカテーテルを治療に使用する方法は、例えば、静脈又は動脈にカテーテルを挿入する段階、その静脈又は動脈を介した適切な操作により心房までカテーテルを導く段階、標的とする領域までカテーテルを導く段階、標的領域に装置を配置する段階、及び、装置から標的領域に光線を照射しエネルギーを放出する段階、測定用電極を用いて標的部位の電位を測定する段階等を含んでいる。カテーテル1の挿入は公知の方法によって行なうことができ、この際、適当なガイドシースやガイドワイヤーを用いてもよい。この際、治療を行う被験体にはあらかじめ上記の水溶性のPDT薬剤を静脈注射等により投与しておくことにより、異常部にあらかじめPDT薬剤を存在させておく。標的部位に光線を照射することにより、該組織部位を障害させることができる。
光線は、異常部位に線状に連続して照射してもよいし、点状に照射してもよい。この際、カテーテルの先端を標的部位に向くように曲げた場合に、カテーテル先端が曲がった方向に照射するのが好ましい。また、側方照射タイプカテーテルの場合、カテーテルの先端が屈曲した方向、すなわちカテーテルの内側側面から照射するのが好ましい。心房細動の治療を行う場合は、線状に連続して照射し、電気的肺静脈(PV)隔離光線力学的アブレーションを行うのが好ましい。
光線を光出射ウィンドウを通して心筋組織の標的部位に照射した後、光出射ウィンドウの周囲に設けられた少なくとも2つの電位測定用電極により、光線力学的アブレーション部位を行った部位の周囲の少なくとも2点の電位を測定し、任意の点間の電位差を測定する。電位差の測定により、光線力学的アブレーションを行った部位の新規組織細胞が壊死しているか否か、すなわち光線力学的アブレーションが効果的に行われたかを判断することができる。
本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
ラット摘出心筋組織を用いた早期光化学治療(PDT)による心筋電気伝導ブロック(EX VIVO)
サンプルは、Wistarラットの摘出右心室組織を用いた。光感受性色素はタラポルフィンナトリウム(Talaporfin sodium)を用いた、灌流液に4.3μg/mlで溶解して用いた。灌流液は、タイロード(Tyrode)液(95% CO;5% O,37℃)を用いた。励起光源は、中心波長670.8nmの半導体レーザを用い、照射条件は、150mW/cm、3.5J/cmであった。
心筋電気伝導ブロック実験は以下の手順で行った。
1. 深麻酔下で心臓を摘出し、右心室壁を切り出した。
2. 切り出した組織をタラポルフィンナトリウムを溶解したタイロード液に2時間灌流した。
3. 心筋組織に双極電極を3つ設置した。1つは電気刺激用(通電用)として用い、残り2つは電位測定用(A及びB)として用いた。
4. 電位測定用電極間にレーザ光を帯状に照射してPDTを施行した。
5. レーザ照射中の電位測定用電極A及びBの電位を測定した。
図10に、ex vivo実験系を示す。また、図11にラット摘出心筋組織における電気刺激部位と電位測定用電極及び光照射部位の位置関係を示す。
図12(a)及び12(b)に、それぞれPDT施行前及びPDT施行5分後の領域A及びBにおいて測定した伝搬刺激波形を示す。図に示す結果より以下のことが判明した。PDT施行前は、電気刺激は部位AからBへ伝導した。一方、PDT後は、光照射部位で心筋組織の電気伝導性が消失したため、部位Aと部位Bが電気的に隔離され、部位Bでは電気信号が測定されなくなった。
ブタ急性実験(開胸):即時的伝導ブロックの実証
サンプルとして、ブタ(体重15.4kg)の左心耳組織を用いた。光感受性色素はタラポルフィンナトリウム(Talaporfin sodium)を用い、10mg/kg体重で静脈投与によりブタに投与した。光感受性色素を投与してから光照射までのインターバルを30分とした。中心波長663nmの半導体レーザを用い、照射条件は、パワー密度が5.2W/cm、エネルギー密度が208J/cmとし、スポットサイズ7mmΦで照射した。
図13にブタを用いた実験系を示す。
ブタを用いた即時的伝導ブロックの実証実験は以下の手順で行った。
1. 深麻酔下で開胸し、左心耳を露出した。
2. 左心耳に心筋組織に双極電極を3つ設置した。1つは電気刺激用(通電用)として用い、残り2つは電位測定用(A及びB)として用いた。
3. タラポルフィンナトリウム10mg/kgを静脈投与した。
4. 投薬から30分後に電位測定用電極間に1点ずつレーザ光を帯状に照射してPDTを施行した。
5. レーザ照射中の電位測定用電極Bにおける電位を測定した。
6. 電気シグナルの伝導遅延から伝導性消失を確認した。
図14に照射部位と電極の配置を示す。図中、A及びBは1つの電位測定用電極、Sは刺激用電極(通電用電極)を示す。1〜7はレーザ光を照射した領域を示し、領域1〜7の順にレーザ光を照射した。照射領域の長さは約30mmであった。
図15に結果を示す。最上部の線は、照射前の測定用電極Bにおける電位波形を示し、以下上から順に領域1から7を照射した後の測定用電極Bにおける電位波形を示す。電位波形は電極Aを対極として測定している。刺激用電極Sから伝導した電気が伝搬し、電極Bで電位波形の変化として測定することができる。レーザ光照射前は刺激用電極Sと測定用電極Bの間の心筋組織は光線力学的アブレーションにより壊死しておらず、電気は刺激用電極Sから測定用電極Bへ直線状に伝導する。しかし、刺激用電極Sと測定用電極Bの間の心筋組織がレーザ光照射による光線力学的アブレーションにより壊死するとその壊死領域は電気が伝導しない。そのため、壊死領域が拡大するにつれ、電気は、壊死領域の外側を迂回して伝導するようになるので、測定用電極Bにおける電気伝導に遅延が認められるようになる。図に示すように、電極レーザ光照射前は約30mmの照射ラインによって、約35.5msの電気伝導遅延が得られ、急性でのPDTによる電気伝導性消失が実証できた。
本発明のカテーテルは、心房細動等の不整脈の治療に用いることができる。
1 カテーテル
2 光出射ウィンドウ
3 電極
4 光ファイバー
5 ミラー
6a プリズム
6b GRINレンズ
7 照射方向モニタ用マーカー
8 レーザ光
9 カテーテル装置
10 レーザ光発生装置
11 電位測定器
12 電位測定用電極
13 刺激電極(通電用電極)
14 増幅器
15 オシロスコープ
16 スティミュレータ
17 心筋組織
18 シグナル記録計
19 コンピュータ
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (14)

  1. 光化学反応により心筋組織の光線力学的アブレーションを行うための、血管内又は心臓内腔で用いるカテーテルであって、
    光ファイバーを通して伝送された光線を心筋組織の標的部位に対して照射するための光出射ウィンドウ、及び
    光出射ウィンドウの周囲に2つの電位測定用電極A及びBが設けられ、
    該2つの電位測定用電極は、光出射ウィンドウから出射された光線で焼却した心筋組織部位の両側の部位の電位を測定し、それらの部位の電位差を測定できるように、光出射ウィンドウを挟んで設けられ、
    電位測定用電極A、Bの順番で電位を測定した場合の電極Bにおける光線力学的アブレーション前と比較した電気の心筋組織の壊死領域の外側を迂回しての伝導による電気伝導の遅延の程度が光線力学的アブレーションによる心筋組織の壊死領域の拡大を示し、電極Bにおける電位の消失が電極A及びBの間の心筋組織壁全層にわたる壊死を示す、カテーテル。
  2. 先端が自由に屈曲する構造を有する、請求項1記載のカテーテル。
  3. 光出射ウィンドウ及び光出射ウィンドウの周囲の2つの電位測定用電極A及びBが、カテーテル先端から、第1の電位測定用電極A、カテーテルの側方に光を照射し得る光出射ウィンドウ及び第2の電位測定用電極Bの順で設けられている、光線がカテーテルの側方に照射される、請求項1又は2に記載のカテーテル。
  4. 第1の電位測定用電極Aがドーム形状を有し、第2の電位測定用電極Bがリング形状を有している、請求項3記載のカテーテル。
  5. 光出射ウィンドウがリング形状又は円筒形状を有している、請求項3又は4に記載のカテーテル。
  6. カテーテル内部に光ファイバーにより伝送された光線を側方に反射させるための、光を任意の方向に反射させる構造体を、単独で又は組合せで有する、請求項3〜5のいずれか1項に記載のカテーテル。
  7. 光を任意の方向に反射させる構造体が、ミラー、プリズム若しくはレンズ、又はそれら少なくとも2つの組み合わせである、請求項6記載のカテーテル。
  8. 先端が球形である円筒形状の光出射ウィンドウがカテーテル先端部に存在し、光ファイバーを伝送された光線が光出射ウィンドウを通してカテーテルの長軸方向に対して同軸に照射され、光出射ウィンドウの周囲に2つの面形状の電位測定用電極A及びBを有する、光線がカテーテルの長軸に対して同軸方向に照射される、請求項1又は2に記載のカテーテル。
  9. さらに、光線の照射方向を生体外からモニタするためのマーカーがカテーテル遠位端付近に少なくとも1つ設けられており、該マーカーの位置又は形状とカテーテルからの光線の照射の方向が関連付けられている、請求項1〜8のいずれか1項に記載のカテーテル。
  10. マーカーがカテーテルの長軸に対して非対称に配置されている、請求項9記載のカテーテル。
  11. 光線の照射方向を生体外からモニタするためのマーカーが、線状、リボン状又はリング状であり、カテーテルの遠位端部の外周に沿って、カテーテルの長軸と交差するように取り付けられている、請求項9又は10に記載のカテーテル。
  12. 光線の照射方向を生体外からモニタするためのマーカーが、X線不透視マーカーである、請求項9〜11のいずれか1項に記載のカテーテル。
  13. 光線がレーザ光又はLED光である、請求項1〜12のいずれか1項に記載のカテーテル。
  14. 請求項1〜13のいずれか1項に記載のカテーテル、該異常電気伝導部位又は異常興奮発生部位に照射するための光線を発生する手段及び光線を前記異常電気伝導部位に伝送する手段を含む、光線力学的治療薬剤を用い、光線として該光線力学的治療薬剤の励起波長の光線を用いる、光線力学的治療を利用した心筋の異常電気伝導を遮断するカテーテル光線力学的アブレーション装置。
JP2012501915A 2010-02-26 2011-02-25 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル Expired - Fee Related JP5598935B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012501915A JP5598935B2 (ja) 2010-02-26 2011-02-25 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010042669 2010-02-26
JP2010042669 2010-02-26
PCT/JP2011/055004 WO2011105631A1 (ja) 2010-02-26 2011-02-25 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル
JP2012501915A JP5598935B2 (ja) 2010-02-26 2011-02-25 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル

Publications (2)

Publication Number Publication Date
JPWO2011105631A1 JPWO2011105631A1 (ja) 2013-06-20
JP5598935B2 true JP5598935B2 (ja) 2014-10-01

Family

ID=44507022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501915A Expired - Fee Related JP5598935B2 (ja) 2010-02-26 2011-02-25 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル

Country Status (6)

Country Link
US (2) US20120330293A1 (ja)
EP (1) EP2540247B1 (ja)
JP (1) JP5598935B2 (ja)
KR (1) KR20130008575A (ja)
CN (1) CN103108601A (ja)
WO (1) WO2011105631A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230517A1 (ja) * 2019-05-16 2020-11-19 朝日インテック株式会社 光照射デバイス、及び、光照射システム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608871B2 (ja) * 2010-03-09 2014-10-15 学校法人慶應義塾 レーザカテーテル出射部の血液焦げ付き防止システム
JP2013244042A (ja) * 2012-05-23 2013-12-09 Olympus Corp アブレーションカテーテル
US8715199B1 (en) 2013-03-15 2014-05-06 Topera, Inc. System and method to define a rotational source associated with a biological rhythm disorder
US20140276707A1 (en) * 2013-03-15 2014-09-18 Boston Scientific Neuromodulation Corporation System and method of using evoked compound action potentials to minimize vessel trauma during nerve ablation
CN110420057B (zh) * 2013-10-15 2022-10-14 尼普洛株式会社 消融系统及消融设备
JP2015089489A (ja) * 2013-11-07 2015-05-11 株式会社アライ・メッドフォトン研究所 医療用具及び光線治療装置
JP2015097664A (ja) * 2013-11-19 2015-05-28 株式会社アライ・メッドフォトン研究所 医療用具及び光線治療装置
JP6350042B2 (ja) * 2014-07-04 2018-07-04 住友電気工業株式会社 光プローブ
JP6350043B2 (ja) * 2014-07-04 2018-07-04 住友電気工業株式会社 光プローブ
US20160113711A1 (en) * 2014-10-22 2016-04-28 Oscor Inc. Ablation catheter and method of forming a circular lesion
WO2016186480A1 (ko) * 2015-05-21 2016-11-24 울산대학교 산학협력단 초음파 광역학 치료용 내시경 프로브
FR3045390B1 (fr) * 2015-12-16 2018-02-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif pour la stimulation optique du cerveau au moyen d'une fibre optique
KR101957219B1 (ko) 2016-10-27 2019-03-12 한국과학기술연구원 렌즈를 이용해 레이저를 조향 가능한 레이저 수술 장치
KR20190131670A (ko) 2018-05-17 2019-11-27 한국광기술원 체내 삽입형 광역학 치료장치
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
JP7340174B2 (ja) * 2019-05-16 2023-09-07 朝日インテック株式会社 光照射システム
JP7326020B2 (ja) * 2019-05-16 2023-08-15 朝日インテック株式会社 光照射システム、カテーテル、及び、光照射デバイス
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US20200406009A1 (en) 2019-06-26 2020-12-31 Boston Scientific Scimed, Inc. Focusing element for plasma system to disrupt vascular lesions
CN113017825A (zh) * 2019-12-31 2021-06-25 华科精准(北京)医疗科技有限公司 用于激光间质热疗系统的装置
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US20220054194A1 (en) * 2020-08-19 2022-02-24 Bolt Medical, Inc. Faster rise time pulse shaping of plasma generated pressure waves for disruption of vascular calcium
US12016610B2 (en) 2020-12-11 2024-06-25 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US20220369968A1 (en) * 2021-05-19 2022-11-24 Biosense Webster (Israel) Ltd. Catheter with blood o2/co2 concentration measurement
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
KR102592248B1 (ko) * 2021-08-13 2023-10-23 서울대학교병원 인체에 삽입되는 튜브에 장착 가능한 절개선 가이드 장치, 이를 포함하는 삽입 튜브 및 이를 포함하는 매니퓰레이터
EP4393541A1 (en) * 2021-08-27 2024-07-03 Furukawa Electric Co., Ltd. Irradiation probe
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
WO2023189215A1 (ja) * 2022-03-28 2023-10-05 テルモ株式会社 医療器具及び治療方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332876A (ja) * 1998-05-22 1999-12-07 Terumo Corp レーザ光照射装置
JP2006263027A (ja) * 2005-03-23 2006-10-05 Inter Noba Kk カテーテル
WO2008066206A1 (fr) * 2006-11-30 2008-06-05 Keio University Appareil de blocage d'une conduction électrique anormale par thérapie photodynamique (tpd)
JP2008148951A (ja) * 2006-12-18 2008-07-03 Keio Gijuku 光線力学的治療装置およびその使用方法
JP2008534216A (ja) * 2005-04-05 2008-08-28 イーエル イーエヌ エス・ピー・エー レーザ脂肪分解システムおよび方法
JP2009018176A (ja) * 1998-04-06 2009-01-29 Kyphon Inc 内部身体領域で空洞を作製するための構造体
JP4348338B2 (ja) * 1995-10-13 2009-10-21 メドトロニック バスキュラー インコーポレイテッド 組織貫通用カテーテルシステム
JP2009537024A (ja) * 2006-02-01 2009-10-22 ザ ジェネラル ホスピタル コーポレイション 少なくとも一つのファイバの少なくとも二つの部位の少なくとも一つを制御する装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785815A (en) * 1985-10-23 1988-11-22 Cordis Corporation Apparatus for locating and ablating cardiac conduction pathways
US4860743A (en) * 1986-10-27 1989-08-29 University Of Florida Laser method and apparatus for the recanalization of vessels and the treatment of other cardiac conditions
US5004811A (en) 1987-12-24 1991-04-02 Nippon Petrochemicals Company, Ltd. Tetrapyrrole aminocarboxylic acids
US5281213A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
WO1994002077A2 (en) * 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
JPH0680671A (ja) 1992-09-03 1994-03-22 Toyo Hatsuka Kogyo Kk ポルフィリン二量体とその用途
US5782824A (en) * 1993-09-20 1998-07-21 Abela Laser Systems, Inc. Cardiac catheter anchoring
WO1995020348A1 (en) * 1994-01-28 1995-08-03 Ep Technologies, Inc. Matching electrical characteristics and propagation velocities to locate ablation sites
CA2199384C (en) * 1994-09-09 2006-06-06 Edward L. Sinofsky Phototherapeutic apparatus
US6572609B1 (en) * 1999-07-14 2003-06-03 Cardiofocus, Inc. Phototherapeutic waveguide apparatus
US5824005A (en) * 1995-08-22 1998-10-20 Board Of Regents, The University Of Texas System Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias
JP2961074B2 (ja) 1995-09-06 1999-10-12 明治製菓株式会社 光化学療法用の新生血管閉塞剤
JP2000504594A (ja) * 1996-02-02 2000-04-18 トランスバスキュラー インコーポレイテッド 血管内の流れを遮断する方法及び装置
US6013053A (en) * 1996-05-17 2000-01-11 Qlt Photo Therapeutics Inc. Balloon catheter for photodynamic therapy
US6285903B1 (en) * 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
US20020095197A1 (en) 2000-07-11 2002-07-18 Lardo Albert C. Application of photochemotherapy for the treatment of cardiac arrhythmias
US7588568B2 (en) 2002-07-19 2009-09-15 Biosense Webster, Inc. Atrial ablation catheter and method for treating atrial fibrillation
CN1537646A (zh) * 2003-10-22 2004-10-20 高春平 肿瘤局部综合治疗方法和装置
EP1876985B1 (en) * 2005-05-05 2016-08-31 Boston Scientific Scimed, Inc. System for graphically reconstructing pulmonary vein ostia with preshaped localization catheter
JP4409499B2 (ja) * 2005-10-25 2010-02-03 国立大学法人浜松医科大学 血栓溶解装置
CN101400313B (zh) * 2006-02-01 2011-06-08 通用医疗公司 用于对至少一个光纤的至少两个部分中的至少一个部分进行控制的装置
JP5543360B2 (ja) * 2007-12-06 2014-07-09 コーニンクレッカ フィリップス エヌ ヴェ 対象にエネルギーを印加する装置、方法及びコンピュータプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348338B2 (ja) * 1995-10-13 2009-10-21 メドトロニック バスキュラー インコーポレイテッド 組織貫通用カテーテルシステム
JP2009018176A (ja) * 1998-04-06 2009-01-29 Kyphon Inc 内部身体領域で空洞を作製するための構造体
JPH11332876A (ja) * 1998-05-22 1999-12-07 Terumo Corp レーザ光照射装置
JP2006263027A (ja) * 2005-03-23 2006-10-05 Inter Noba Kk カテーテル
JP2008534216A (ja) * 2005-04-05 2008-08-28 イーエル イーエヌ エス・ピー・エー レーザ脂肪分解システムおよび方法
JP2009537024A (ja) * 2006-02-01 2009-10-22 ザ ジェネラル ホスピタル コーポレイション 少なくとも一つのファイバの少なくとも二つの部位の少なくとも一つを制御する装置
WO2008066206A1 (fr) * 2006-11-30 2008-06-05 Keio University Appareil de blocage d'une conduction électrique anormale par thérapie photodynamique (tpd)
JP2008148951A (ja) * 2006-12-18 2008-07-03 Keio Gijuku 光線力学的治療装置およびその使用方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230517A1 (ja) * 2019-05-16 2020-11-19 朝日インテック株式会社 光照射デバイス、及び、光照射システム
JP2020185259A (ja) * 2019-05-16 2020-11-19 朝日インテック株式会社 光照射デバイス、及び、光照射システム
JP7326021B2 (ja) 2019-05-16 2023-08-15 朝日インテック株式会社 光照射デバイス、及び、光照射システム

Also Published As

Publication number Publication date
US20140330261A1 (en) 2014-11-06
CN103108601A (zh) 2013-05-15
WO2011105631A1 (ja) 2011-09-01
EP2540247A1 (en) 2013-01-02
KR20130008575A (ko) 2013-01-22
EP2540247A4 (en) 2013-07-24
US20120330293A1 (en) 2012-12-27
JPWO2011105631A1 (ja) 2013-06-20
EP2540247B1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5598935B2 (ja) 光化学反応により心筋組織の光線力学的アブレーションを行うカテーテル
US9724537B2 (en) Abnormal electrical conduction blocking apparatus using photodynamic therapy (PDT)
US6811562B1 (en) Procedures for photodynamic cardiac ablation therapy and devices for those procedures
US7344528B1 (en) Optic fiber probe
US20020095197A1 (en) Application of photochemotherapy for the treatment of cardiac arrhythmias
JP5719159B2 (ja) 評価装置
KR20090015024A (ko) 레이저 유도 광 브레이크다운(liob)을 이용한 심장 절제 시스템 및 방법
JP4966640B2 (ja) 光線力学的治療装置およびその使用方法
US20140088418A1 (en) Functional-imaging-based ablation monitoring
JP2008520364A (ja) 組織焼灼のリアルタイム評価装置
WO2014185372A1 (ja) 治療進行度モニタ装置及びその方法
Weber et al. Laser versus radiofrequency catheter ablation of ventricular myocardium in dogs: a comparative test
WO2015068758A1 (ja) 医療用具及び光線治療装置
JP5736116B2 (ja) 算出装置
Basij et al. Development of an integrated photoacoustic-guided laser ablation intracardiac theranostic system
Wagshall et al. A novel catheter design for laser photocoagulation of the myocardium to ablate ventricular tachycardia
RU2807133C1 (ru) Устройство для спектрально-флуоресцентного контроля состояния биологических тканей в процессе фотодинамического воздействия с применением фотосенсибилизаторов на основе хлорина e6
Oeff et al. Transcatheter laser photocoagulation for treatment of cardiac arrhythmias
WO2023198724A1 (en) System and method for combined thermal and photodynamic therapy of malignant tumors
Ito et al. Non-thermal ablation technology for arrhythmia therapy: acute and chronic electrical conduction block with photosensitization reaction
Svenson et al. 24. LASER MODIFICATION OF THE MYOCARDIUM FOR THE TREATMENT OF CARDIAC ARRHYTHMIAS: BACKGROUND
Curtis et al. Laser catheter ablation of arrhythmias
Splinter et al. Optical anomalies in biological media: using naturally occurring birefringence and radiance-dependent nonlinear optics to our advantage in the laser treatment of arrhythmias
Barbieri What have We Learned about the Atherosclerotic Plaque Using Laser Radiation?
Esmaeili Electrochemotherapy–What is it? What is it used for? What is needed? What are alternative IGP approaches? What needs to be done to make it applicable for other applications?

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5598935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees