WO2016186480A1 - 초음파 광역학 치료용 내시경 프로브 - Google Patents

초음파 광역학 치료용 내시경 프로브 Download PDF

Info

Publication number
WO2016186480A1
WO2016186480A1 PCT/KR2016/005444 KR2016005444W WO2016186480A1 WO 2016186480 A1 WO2016186480 A1 WO 2016186480A1 KR 2016005444 W KR2016005444 W KR 2016005444W WO 2016186480 A1 WO2016186480 A1 WO 2016186480A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
probe
photodynamic therapy
endoscope
endoscope probe
Prior art date
Application number
PCT/KR2016/005444
Other languages
English (en)
French (fr)
Inventor
박도현
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority claimed from KR1020160062699A external-priority patent/KR101814280B1/ko
Publication of WO2016186480A1 publication Critical patent/WO2016186480A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present invention relates to an endoscopic probe for ultrasound photodynamic therapy, and more particularly, after injection of a photosensitive agent (chlorin6) into a corresponding affected area where cells to be removed are concentrated, the light and the ultrasound of the corresponding intensity for a specified time.
  • a photosensitive agent chlorin6
  • the present invention relates to an endoscopic probe for ultrasonic photodynamic therapy, which selectively releases a photosensitive agent into the affected area to induce necrosis of cells.
  • photodynamic therapy refers to a technique for treating incurable diseases such as cancer without surgery using a photosensitizer.
  • the PDT has been tried since 1400 BC, and active research has been conducted in the early 20th century.To date, the diagnosis and treatment of cancer, autologous bone marrow transplantation, antibiotics, AIDS treatment, skin transplant surgery, arthritis, etc. It is being used to increase immunity in the treatment of medicinal products, and its application range is gradually expanding.
  • PDT used in the treatment of cancer irradiates light with a photosensitive agent (chlorin6), thereby changing oxygen molecules to singlet oxygen, creating new radicals, or creating new chemical species to selectively select only those cells. Necrosis with.
  • peripheral technology of photodynamic therapy can be found in Korean Patent Publication No. 10-2013-0011162 (January 30, 2013) or Korean Patent Publication No. 10-2013-0008575 (2013.01.22).
  • porphyrin derivatives chlorin, bacteriochlorin, phthalocyanine and the like are known as photosensitive agents.
  • the first generation of photosensitizers exhibited photosensitivity for 4-6 weeks, during which time the patient had to avoid direct sunlight, with tumor cell penetration depth of up to 4-6 mm.
  • the second-generation sensitizers (Radachlorin, Npe6; Photolon, chlorin e6) are photosensitive, which is only about 2 days, which makes them much more convenient than the first generation. There was this.
  • optical shear probes are optical-fibers made of quartz, and during use, they have a high hardness of the probe itself during the procedure, which causes cracks or breaks in the probe. It is not used in photodynamic therapy.
  • the present invention can be simultaneously performed ultrasound and photodynamic therapy in the abdominal cavity, the object of the present invention is to provide an endoscopic probe for ultrasound photodynamic therapy with high curvature for ultrasound photodynamic therapy in the abdominal cavity.
  • the endoscope probe for ultrasonic photodynamic therapy includes an endoscope probe having a plurality of hollows formed in a longitudinal direction at a distal end thereof, and integrally provided at an outer periphery of the distal end of the endoscope probe to emit ultrasonic waves toward the affected part.
  • a drug injection needle is provided along one of the ultrasonic member and the hollow of the endoscope probe, and the tip penetrates the affected part while appearing as the tip of the endoscope probe by a user's selective manipulation, and injects a hypersensitivity agent into the affected part.
  • an optical probe for irradiating light of a corresponding wavelength to the affected part and an optical probe for irradiating light of a corresponding wavelength to an affected part, and provided along one of the hollows of the endoscope probe.
  • the first ultrasonic member according to the present invention is a frequency 15 ⁇ 19 kHz for diagnostic purposes, emits an ultrasonic wave of 0.25 ⁇ 0.36W / cm2, the second ultrasonic member is treated using the cavitation (Cavitation) phenomenon It is preferable to emit an ultrasonic wave having a frequency of 1 to 2 MHz and an intensity of 0.5 to 10 W / cm 2.
  • the optical probe according to the present invention has a length along the longitudinal direction of the endoscope probe, the inner core having a light emitting means at its distal end, the outer core covered in a form surrounding the inner core from the outside of the inner core
  • the optical probe has a length along the longitudinal direction of the endoscope probe, the inner core for transmitting the light received at the rear end to the front end, the outer core covered with a form surrounding the inner core outside It may include an outer core.
  • the optical probe and the ultrasonic probe according to the present invention have a length of 3 m or more and a diameter of 0.39 to 0.45 ⁇ m.
  • the material of the inner core according to the present invention is made of any one material of carbon nanotube, graphene and graphene and a polymer mixed
  • the material of the outer core is a hydrophilic polymer (hydrophilic polymer) It is preferable to coat the surface of the outer core with fluorine.
  • the display portion is preferably made of a metal piece with dimpled on the surface.
  • Ultrasonic photodynamic therapy endoscope probe according to the present invention has the following effects.
  • the inner core emitting light of a specific wavelength is made of any one of carbon nanotubes, graphene, and a mixture of graphene and polymer, not quartz, and has a relatively higher bending rate (minimum bending). Radius 13mm or more) can be secured, and when transmitting optical energy through the inside, the loss of optical energy does not occur (90% or more of light transmission force).
  • the front end of the probe is provided with a display unit displayed on the ultrasound endoscope, the target treatment has the effect possible.
  • FIG. 1 is an exemplary view showing the configuration of the endoscope probe for ultrasound photodynamic therapy according to an embodiment of the present invention.
  • Figure 2 is an exemplary view showing an example of the use of the endoscope probe for ultrasound photodynamic therapy according to the present invention.
  • Figure 3 is an exemplary view showing another embodiment of the optical probe according to the present invention.
  • the present invention is provided with an endoscope probe having a plurality of hollows, a first ultrasonic member for emitting ultrasonic waves from the distal end of the endoscope probe toward the affected area, and the hollow of the endoscope probe, selectively appearing a hypersensitivity to the affected area Injecting the drug injection needle, and the hollow of the endoscope probe, the front end is provided with an optical probe for irradiating the light of the wavelength to the affected part and the second ultrasonic member disposed at the periphery of the optical probe, Ultrasound and photodynamic therapy are simultaneously performed inside the abdominal cavity, including an ultrasound probe that emits ultrasound into the affected area.
  • the present invention solves the above problems, and injected a photosensitive agent (chlorin e6) in the affected area where the cells to be removed are dense, and then the affected area in which the light and the intensity of the ultrasound is injected over a specified time
  • the present invention relates to an endoscopic probe for ultrasonic photodynamic therapy that can be selectively released to necrotic cells to be removed.
  • Figure 1 is an exemplary view showing the configuration of the endoscope probe for ultrasound photodynamic therapy according to an embodiment of the present invention.
  • the endoscope probe for ultrasound photodynamic therapy specifies a standard suitable for photodynamic therapy, and uses graphene and carbon nanotubes which are not used as a conventional probe in a material, to photodynamic therapy. The most important factor is to improve light and thermal conductivity and to increase flexibility.
  • the endoscope probe according to an embodiment of the present invention is preferably manufactured based on the 3D printer.
  • Ultrasonic photodynamic therapy probe includes an endoscope probe 10, the injection needle 20, the optical probe 30, and the ultrasonic probe 40, the endoscope probe ( 10) is in the form of a tube having a long length as in a conventional endoscope probe, there is formed a plurality of hollows inside the rear end to pass through each other.
  • the first ultrasonic member 11 is integrally provided on the outer periphery of the distal end of the endoscope probe 10 to emit ultrasonic waves toward the affected part.
  • the ultrasonic waves emitted at this time have a frequency of 15 to 19 kHz, and the intensity is 0.25. 0.36 W / cm 2.
  • the diagnostic ultrasound receives an ultrasonic signal reflected by a receiving means provided separately from the first ultrasonic member 11 on one side of the endoscope probe 10, and processes the received ultrasonic signal to image the processed image.
  • the external environment and the affected part of the tip of the endoscope probe 10 may be diagnosed.
  • the front end of the probe body 10 is provided with a display unit 12 that is exposed to the ultrasonic endoscope.
  • the display portion 12 is made of a metal piece with a dimpled on the surface, the end portion of the endoscope probe 10 is clearly expressed on the ultrasonic endoscope, it is easy to determine the position of the probe in the body.
  • the medicine injection needle 20 is provided along one of the hollows of the endoscope probe 10, wherein the medicine injection needle 20 is distal to the end of the endoscope probe 10 by a user's selective manipulation. While appearing as the end penetrates the affected part, the photosensitive agent is injected into the affected part.
  • optical probe 30 is provided along any one of the hollows of the endoscope probe 10, and the tip portion of the optical probe 30 receives light of a corresponding wavelength by a user's selective manipulation.
  • the ultrasonic probe 40 is also provided along any one of the hollows of the endoscope probe 10 around the optical probe 30, and the second ultrasonic member 41 at the tip of the ultrasonic probe 40 ) To emit ultrasonic waves to the affected area by a user's selective operation.
  • the second ultrasonic member 41 emits an ultrasonic wave having a frequency of 1 to 2 MHz and an intensity of 0.5 to 10 W / cm 2 to the affected part for treatment, and when the ultrasonic wave is emitted to the microbubble present in the affected part, the micro Cavitation of bubbles induces cell necrosis to remove cells.
  • the optical probe 30 and the ultrasonic probe 40 has a length of 3m or more, the diameter is 0.39 ⁇ 0.45 ⁇ m.
  • the diameters of the optical probe 30 and the ultrasonic probe 40 are limited to 0.45 ⁇ m so that when the endoscope probe 10 is inserted into the body, the optical probe 30 is inserted into a hollow needle provided in the endoscope and guided into the body. In this case, there is a problem in that it is not easily inserted into the commonly used 19 gauge needle.
  • the optical probe 30 has an inner core 31 having a length along the longitudinal direction of the endoscope probe 10, and the inner core (3) outside the inner core 31; 31, which includes an outer core 32 coated in a form surrounding the inner core 31, wherein the front end portion of the inner core 31 is provided with an LED emitting light of a corresponding wavelength or a light emitting means 33 emitting a laser of the corresponding wavelength.
  • the inner core 31 is made of one of carbon nanotubes, graphene, and any material in which graphene and a polymer are mixed, so that the bending rate is improved and cracks are significantly lower than those of a conventional quartz-containing probe. Safe clinical practice is possible.
  • the outer core 32 is provided on the outside of the inner core 31 to cover the inner core 31.
  • the material of the outer core 32 is preferably made of a hydrophilic polymer.
  • the surface of the outer core 32 is preferably coated with fluorine to have an antimicrobial property to form a fluorine coating layer (not shown).
  • optical probe 30 may be provided with an inner core 31 for transmitting the light received at the rear end in the longitudinal direction to the front end.
  • the rear end of the inner core 31 of the above configuration is provided with a light emitting means 33 for emitting light to be irradiated to the affected part through the inner core 31 separately.
  • the light emitting unit 33 includes a light source unit 34 for emitting light
  • the light source unit 34 includes a light source for emitting only light of a specific band (wavelength) such as laser, infrared rays, ultraviolet rays, and the like. It is preferable.
  • a splitter 35 is disposed on the light beam in which light is emitted and splits and transmits a part of the light to the other side.
  • the splitter 35 provides a part of the light split by the splitter 35 to the detector 36. It provides a source that can determine the intensity of the light emitted.
  • a lens is used as the light collecting part 37 so that the light passing through the dividing part 35 is collected by the light collecting part 37 to the rear end of the optical probe 30.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Endoscopes (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명은 복수 개의 중공을 형성한 내시경 프로브와, 상기 내시경 프로브의 선단부에서 환부를 향해 초음파를 방출하는 제1초음파부재와, 상기 내시경 프로브의 중공에 구비되어, 선택적으로 출현하면서 환부에 과민제를 주입하는 약제주입니들와, 상기 내시경 프로브의 중공에 구비되어, 선단부에는 해당 파장의 광(光)을 환부로 조사하는 광프로브 및 상기 광프로브의 주변에 배치되며, 선단에 구비된 제2초음파부재가 환부로 초음파를 방출하는 초음파프로브를 포함하여, 복강 내에 초음파 및 광역학 치료를 동시에 실시하고, 복강 내의 초음파 광역학 치료를 위해 굴곡률이 높은 초음파 광역학 치료용 내시경 프로브를 제공한다.

Description

초음파 광역학 치료용 내시경 프로브
본 발명은 초음파 광역학 치료용 내시경 프로브에 관한 것으로, 더욱 상세하게는 제거하고자 하는 세포가 밀집된 해당 환부에 광과민제(chlorin6)를 주입한 후, 지정 시간을 두고 광(光)과 해당 세기의 초음파를 광과민제가 주입된 해당 환부에 선택적으로 방출하여 세포의 괴사를 유도해 제거할 수 있도록 한 초음파 광역학 치료용 내시경 프로브에 관한 것이다.
일반적으로 광역학 치료법(photodynamic therapy: PDT)이라 함은 광과민제(photosensitizer)을 이용하여 수술 없이 암 등의 난치병을 치료하는 기술을 일컫는다.
이러한, 광역학 치료법(PDT)은 BC 1400년경부터 시도되어 20세기 초에 활발한 연구가 진행되었고, 현재에 이르러는 암의 진단과 치료, 자가 골수이식, 항생제, AIDS 치료, 피부이식 수술이나 관절염 등의 치료에 면역성을 높이기 위해 사용되고 있어 그 응용 범위는 점차 확대되고 있다.
특히, 암 치료에 사용되는 PDT는 광과민제(chlorin6)에 빛을 조사하여 그로 인해 산소분자를 활성산소(singlet oxygen)로 변화시키거나, 새로운 라디칼을 만들거나 또는 새로운 화학 종을 만들어 해당 세포만을 선택적으로 괴사시킨다.
상기한, 광역학 치료의 주변 기술로는 특허공개 제10-2013-0011162호(2013.01.30) 또는 공개특허 제10-2013-0008575호(2013.01.22)에서 확인할 수 있다.
현재, 광과민제로는 포르피린(porphyrin) 유도체, 크로린(chlorin), 박테리오크로린(bacteriochlorin), 프탈로시아닌(phthalocyanine) 등이 알려져 있다.
광역학 치료의 여러 가지 장점에도 불구하고 초기의 1세대 광과민제는 4-6주간의 광과민성을 보이고, 이 기간 동안 환자가 직사광선을 피해야 하는 단점이 있었으며, 종양세포 침투 깊이가 최대 4~6mm로 표재성암 만을 치료 가능하였으나, 2세대 광증감제(Radachlorin ,Npe6; Photolon, chlorin e6)는 2일 정도만 광과민성이 나타나 1세대보다 훨씬 편리할 뿐 아니라, 종양을 12mm 정도로 깊이 투사되어 치료 영역이 넓다는 장점이 있었다.
종래의 광 전단 프로브는 석영을 이용한 옵틱-화이바(optic-fiber)로, 이를 사용시 시술 도중, 프로브 그 자체 경도가 높아 프로브에 크랙이 발생하거나 또는 부러지는 경우가 많아 높은 굴곡률을 요구하는 복강 내의 광역학 치료에서는 사용되지 않고 있다.
또한, 근래에는 광역학 치료와 더불어 초음파를 함께 조사할 경우, 더 높은 치료 효율을 확인할 수 있었다.
본 발명은 복강 내에 초음파 및 광역학 치료를 동시에 실시할 수 있고, 복강 내의 초음파 광역학 치료를 위해 굴곡률이 높은 초음파 광역학 치료용 내시경 프로브를 제공하는 것을 그 목적으로 한다.
본 발명에 따른 초음파 광역학 치료용 내시경 프로브는 내부에는 선단부에서 길이방향을 따라 복수 개의 중공을 형성한 내시경 프로브와, 상기 내시경 프로브의 선단부 외주에 일체로 구비되어, 환부를 향해 초음파를 방출하는 제1초음파부재와, 상기 내시경 프로브의 중공 중 어느 한 중공을 따라 구비되고, 사용자의 선택적인 조작으로 상기 내시경 프로브의 선단으로 출현하면서 끝단이 환부에 침투하여, 환부에 과민제를 주입하는 약제주입니들과, 상기 내시경 프로브의 중공 중 어느 한 중공을 따라 구비되고, 선단부에는 해당 파장의 광(光)을 환부로 조사하는 광프로브, 및 상기 내시경 프로브의 중공 중 어느 한 중공을 따라 구비되고, 상기 광프로브의 주변에 배치되며, 선단에 구비된 제2초음파부재가 환부로 초음파를 방출하는 초음파프로브를 포함한다.
이때, 본 발명에 따른 상기 제1초음파부재는 진단용으로 주파수가 15~19㎐이고, 세기는 0.25~0.36W/㎠인 초음파를 방출하고, 상기 제2초음파부재는 캐비테이션(Cavitation)현상을 이용한 치료용으로 주파수가 1~2㎒이고, 세기는 0.5~10W/㎠인 초음파를 방출하는 것이 바람직하다.
그리고, 본 발명에 따른 상기 광프로브는 상기 내시경 프로브의 길이방향을 따라 길이를 갖고, 그 선단부에 발광수단을 구비한 내측코어, 상기 내측코어의 외부에서 상기 내측코어를 둘러싼 형태로 피복한 외측코어를 포함하거나, 또는 상기 광프로브는 상기 내시경 프로브의 길이방향을 따라 길이를 갖고, 후단부에서 수신된 광을 선단부로 전송하는 내측코어, 상기 내측코어의 외부에서 상기 내측코어를 둘러싼 형태로 피복한 외측코어를 포함할 수 있다.
또한, 본 발명에 따른 상기 광프로브 및 초음파프로브는 그 길이가 3m 이상이고, 직경은 0.39~0.45㎛으로 구비하는 것이 바람직하다.
더불어, 본 발명에 따른 상기 내측코어의 재질은 탄소나노튜브, 그래핀 및 그래핀과 폴리머가 혼합된 것 중 어느 하나의 재질로 이루어지고, 상기 외측코어의 재질은 하이드로필릭 폴리머(hydrophilic polymer)로 이루어지며, 상기 외측코어의 표면에는 불소를 코팅하는 것이 바람직하다.
그리고 본 발명에 따른 상기 내시경 프로브의 선단에 구비되고, 초음파에 의해 표출되는 표시부를 구비하고, 상기 표시부는 표면에 딤플링을 형성한 금속편으로 이루어지는 것이 바람직하다.
본 발명에 따른 초음파 광역학 치료용 내시경 프로브는 다음과 같은 효과를 가진다.
첫째, 제거하고자 하는 세포가 밀집된 해당 환부에 광과민제(chlorin e6)를 주입한 후, 지정 시간을 두고 광(光)과 해당 세기의 초음파를 광과민제가 주입된 해당 환부에 선택적으로 방출하여 세포의 괴사를 유도해 제거하는 효과를 가진다.
둘째, 특정 파장의 광(光)을 발하는 내측코어를 석영이 아닌, 탄소나노튜브, 그래핀 및 그래핀과 폴리머가 혼합된 것 중 어느 하나의 재질로 이루어져, 종래보다 비교적 높은 굴곡률(최소 굽힙 반경 13mm 이상)을 확보할 수 있고, 내부를 통해 광에너지를 전송할 시, 광에너지의 손실이 발생(빛 전달력 90% 이상)하지 않는 효과를 가진다.
셋째, 프로브의 전단에 초음파내시경에 표출되는 표시부를 구비하여, 표적치료가 가능한 효과를 가진다.
도 1은 본 발명의 일 실시 예에 따른 초음파 광역학 치료용 내시경 프로브의 구성보인 예시도이다.
도 2는 본 발명 에 따른 초음파 광역학 치료용 내시경 프로브의 사용 예시를 보인 예시도이다.
도 3은 본 발명에 따른 광프로브의 다른 실시 상태를 보인 예시도이다.
본 발명은 복수 개의 중공을 형성한 내시경 프로브와, 상기 내시경 프로브의 선단부에서 환부를 향해 초음파를 방출하는 제1초음파부재와, 상기 내시경 프로브의 중공에 구비되어, 선택적으로 출현하면서 환부에 과민제를 주입하는 약제주입니들와, 상기 내시경 프로브의 중공에 구비되어, 선단부에는 해당 파장의 광(光)을 환부로 조사하는 광프로브 및 상기 광프로브의 주변에 배치되며, 선단에 구비된 제2초음파부재가 환부로 초음파를 방출하는 초음파프로브를 포함하여, 복강 내부에서 초음파 및 광역학 치료를 동시에 실시한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.
종래의 폴리머는 유연성을 높이기는 하나, 그 자체로 빛 투과율이 떨어져 치료에 적합하지 않을 수 있는데, 이는 췌장, 담도, 간암 등의 치료를 위해서 복강 내 위치하는 장기에 초음파 광역학 치료를 적용할 경우, 미흡한 결과를 초래할 수 있다.
현재 폴리머와 석영을 이용한 프로브는 종괴 파괴율이 50% 정도 되었는데(80W 이상이 되어야 치료에 적합하나, 폴리머로 만 만드는 경우 에너지가 50W에 불과함), 이를 위해 석영 추가가 필요하나 출력(W)를 높이기 위해 석영 비중을 높이면 프로브가 부러져 시술 중 사용상에 어려운 문제가 있었다.
본 발명은 상기한 문제점을 해소하고, 제거하고자 하는 세포가 밀집된 해당 환부에 광과민제(chlorin e6)를 주입한 후, 지정 시간을 두고 광(光)과 해당 세기의 초음파를 광과민제가 주입된 해당 환부에 선택적으로 방출하여 세포를 괴사시켜 제거할 수 있도록 한 초음파 광역학 치료용 내시경 프로브에 관한 것으로, 도면을 참조하여 살펴보면 다음과 같다.
도 1은 본 발명의 일 실시예에 따른 초음파 광역학 치료용 내시경 프로브의 구성을 보인 예시도이다.
본 발명의 일 실시 예에 따른 초음파 광역학 치료용 내시경 프로브는 광역학 치료에 적합한 규격을 특정하고, 소재에 있어서 종래의 프로브로 사용하지 않았던 그래핀과, 탄소나노튜브를 사용하여 광역학 치료에 가장 중요한 요소인 빛, 열 전도도를 향상시키고 유연성을 향상시키고자 한다.
이를 위해 본 발명의 일 실시 예에 따른 내시경 프로브는 3D프린터를 기반으로 제조되는 것이 바람직하다.
본 발명의 일 실시예에 따른 초음파 광역학 치료용 프로브는 내시경 프로브(10)와, 약제주입니들(20), 광프로브(30), 및 초음파프로브(40)을 포함하는데, 상기 내시경 프로브(10)는 통상의 내시경 프로브와 같이 긴 길이를 갖는 관(tube) 형태로, 내부에는 선단부에서 후단부를 서로 통하게 하는 복수 개의 중공을 형성한다.
그리고 상기 내시경 프로브(10)의 선단부 외주에는 제1초음파부재(11)가 일체로 구비하여, 환부를 향해 초음파를 방출하는데, 이때 방출되는 초음파는 진단용으로 주파수가 15~19㎐이고, 세기는 0.25~0.36W/㎠이다.
따라서, 상기한 진단용 초음파는 상기 내시경 프로브(10)의 일측에 제1초음파부재(11)와는 별도로 구비된 수신수단으로 반사된 초음파신호를 수신하여, 수신된 초음파신호를 이미지 처리하고, 처리된 이미지로 내시경 프로브(10) 선단부의 외부 환경 및 환부를 진단할 수 있다.
또한, 상기 프로브본체(10)의 전단에는 초음파내시경에 표출되는 표시부(12)를 구비한다.
이때, 상기 표시부(12)는 표면에 딤플링을 형성한 금속편으로 이루어져, 상기 내시경 프로브(10)의 선단부가 초음파내시경에 선명하게 표출되어, 신체 내에서 상기 프로브에 대한 위치의 가늠이 용이한다.
그리고, 상기 내시경 프로브(10)의 중공 중 어느 한 중공을 따라 약제주입니들(20)을 구비하는데, 상기 약제주입니들(20)은 사용자의 선택적인 조작으로 상기 내시경 프로브(10)의 선단으로 출현하면서 끝단이 환부에 침투한 후, 환부에 광과민제를 주입한다.
더불어, 상기 내시경 프로브(10)의 중공 중 어느 한 중공을 따라 광프로브(30)를 구비하는데, 상기 광프로브(30)의 그 선단부에는 사용자의 선택적인 조작으로 해당 파장의 광(光)을 환부로 조사한다.
그리고, 상기 초음파프로브(40) 역시, 상기 광프로브(30) 주변의 상기 내시경 프로브(10)의 중공 중 어느 한 중공을 따라 구비하고, 상기 초음파프로브(40)의 선단에는 제2초음파부재(41)를 구비하여 사용자의 선택적인 조작으로 환부에 초음파를 방출한다.
이때, 상기 제2초음파부재(41)는 치료용으로 주파수가 1~2㎒이고, 세기는 0.5~10W/㎠인 초음파를 환부로 방출하여, 환부에 존재하는 마이크로버블에 초음파가 방출되면, 마이크로버블의 캐비테이션(Cavitation) 현상으로 세포의 괴사를 유도해 세포를 제거하도록 한다.
상기 광프로브(30) 및 초음파프로브(40)를 보다 상세하게 살펴보면, 상기 광프로브(30), 및 초음파프로브(40)는 그 길이가 3m 이상이고, 직경은 0.39~0.45㎛이다.
이때, 상기 광프로브(30), 및 초음파프로브(40)의 직경을 0.45㎛으로 제한한 것은 상기 내시경 프로브(10)가 신체 내로 삽입될 시, 내시경 내에 구비되는 중공의 니들에 삽입되어 신체 내로 안내되는데에, 이때 일반적으로 사용되는 19게이지 니들에 용이하게 삽입되지 않는 문제점이 발생한다.
그리고, 본 발명의 일 실시에 따른 상기 광프로브(30)는 상기 내시경 프로브(10)의 길이방향을 따라 길이를 갖는 내측코어(31)와, 상기 내측코어(31)의 외부에서 상기 내측코어(31)를 둘러싼 형태로 피복한 외측코어(32)를 포함하는데, 상기 내측코어(31)의 선단부에는 해당 파장의 빛을 발하는 LED 또는 해당 파장의 레이저를 발하는 발광수단(33)을 구비한다.
상기한 내측코어(31)는 탄소나노튜브, 그래핀 및 그래핀과 폴리머가 혼합된 것 중 어느 하나의 재질로 이루어져, 종래의 석영이 포함된 프로브보다 굴곡률이 향상되고, 크랙 발생이 현저히 낮아 안전한 임상을 실시할 수 있다.
또한, 상기 내측코어(31)의 외부에는 상기 내측코어(31)를 둘러싼 형태로 피복한 외측코어(32)를 구비한다.
이때, 상기 외측코어(32)의 재질은 하이드로필릭 폴리머(hydrophilic polymer)로 이루어지는 것이 바람직하다.
그리고, 상기 외측코어(32)의 표면에는 항균성을 갖도록 불소가 코팅되어, 불소코팅층(도시하지 않음)을 이루는 것이 바람직하다.
그리고, 상기 광프로브(30)의 다른 실시 예로는 길이방향을 따라 후단부에서 수신된 빛을 선단부로 전송하는 내측코어(31)를 구비할 수도 있다.
이때, 상기한 구성의 상기 내측코어(31) 후단부에는 상기 내측코어(31)를 통해 환부로 조사될 광(光)을 발광하는 발광수단(33)을 별도로 구비한다.
이때, 발광수단(33)은 광(光)을 발하는 광원부(34)을 포함하는데, 상기 광원부(34)는 레이저, 적외선, 자외선 등과 같이 해당 특정 대역(파장)의 빛만을 발광하는 광원으로 구성하는 것이 바람직하다.
그리고, 광이 발광되는 광선 상에 위치하여 빛의 일부를 타측으로 분할하여 전송하는 분할부(35)를 포함하는데, 상기 분할부(35)에 의해 분할된 빛의 일부는 검출부(36)로 제공되어, 발광되는 빛의 세기를 판단할 수 있는 소스를 제공한다.
또한, 상기 분할부(35)를 통과한 빛은 집광부(37)에 의해 상기 광프로브(30)의 후단부로 집광되도록, 상기 집광부(37)는 렌즈가 이용되는 것이 바람직하다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (11)

  1. 내부에는 선단부에서 길이방향을 따라 복수 개의 중공을 형성한 내시경 프로브;
    상기 내시경 프로브의 선단부 외주에 일체로 구비되어, 환부를 향해 초음파를 방출하는 제1초음파부재;
    상기 내시경 프로브의 중공 중 어느 한 중공을 따라 구비되고, 사용자의 선택적인 조작으로 상기 내시경 프로브의 선단으로 출현하면서 끝단이 환부에 침투하여, 환부에 과민제를 주입하는 약제주입니들;
    상기 내시경 프로브의 중공 중 어느 한 중공을 따라 구비되고, 선단부에는 해당 파장의 광(光)을 환부로 조사하는 광프로브; 및
    상기 내시경 프로브의 중공 중 어느 한 중공을 따라 구비되고, 상기 광프로브의 주변에 배치되며, 선단에 구비된 제2초음파부재가 환부로 초음파를 방출하는 초음파프로브;를 포함하는 초음파 광역학 치료용 내시경 프로브.
  2. 청구항 1에 있어서,
    상기 제1초음파부재는
    진단용으로 주파수가 15~19㎐이고, 세기는 0.25~0.36W/㎠인 초음파를 방출하는 초음파 광역학 치료용 내시경 프로브.
  3. 청구항 1에 있어서,
    상기 제2초음파부재는
    캐비테이션(Cavitation)현상을 이용한 치료용으로 주파수가 1~2㎒이고, 세기는 0.5~10W/㎠인 초음파를 방출하는 초음파 광역학 치료용 내시경 프로브.
  4. 청구항 1에 있어서,
    상기 광프로브는
    상기 내시경 프로브의 길이방향을 따라 길이를 갖고, 그 선단부에 발광수단을 구비한 내측코어;
    상기 내측코어의 외부에서 상기 내측코어를 둘러싼 형태로 피복한 외측코어를 포함하는 초음파 광역학 치료용 내시경 프로브.
  5. 청구항 1에 있어서,
    상기 광프로브는
    상기 내시경 프로브의 길이방향을 따라 길이를 갖고, 후단부에서 수신된 광을 선단부로 전송하는 내측코어;
    상기 내측코어의 외부에서 상기 내측코어를 둘러싼 형태로 피복한 외측코어를 포함하는 초음파 광역학 치료용 내시경 프로브.
  6. 청구항 1에 있어서,
    상기 광프로브 및 초음파프로브는
    그 길이가 3m 이상이고, 직경은 0.39~0.45㎛인 초음파광역학 치료용 내시경 프로브.
  7. 청구항 4 및 청구항 5 중 어느 한 항에 있어서,
    상기 내측코어의 재질은
    탄소나노튜브, 그래핀 및 그래핀과 폴리머가 혼합된 것 중 어느 하나의 재질로 이루어진 초음파 광역학 치료용 내시경 프로브.
  8. 청구항 4 및 청구항 5 중 어느 한 항에 있어서,
    상기 외측코어의 재질은
    하이드로필릭 폴리머(hydrophilic polymer)로 이루어진 초음파 광역학 치료용 내시경 프로브.
  9. 청구항 4 및 청구항 5 중 어느 한 항에 있어서,
    상기 외측코어의 표면에는 불소가 코팅된 초음파 광역학 치료용 내시경 프로브.
  10. 청구항 1에 있어서,
    상기 내시경 프로브의 선단에 구비되고, 초음파에 의해 표출되는 표시부를 구비한 것을 특징으로 하는 초음파 광역학 치료용 내시경 프로브.
  11. 청구항 8에 있어서,
    상기 표시부는
    표면에 딤플링을 형성한 금속편으로 이루어지는 초음파 광역학 치료용 내시경 프로브.
PCT/KR2016/005444 2015-05-21 2016-05-23 초음파 광역학 치료용 내시경 프로브 WO2016186480A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150070895 2015-05-21
KR10-2015-0070895 2015-05-21
KR1020160062699A KR101814280B1 (ko) 2015-05-21 2016-05-23 초음파 광역학 치료용 내시경 프로브
KR10-2016-0062699 2016-05-23

Publications (1)

Publication Number Publication Date
WO2016186480A1 true WO2016186480A1 (ko) 2016-11-24

Family

ID=57320606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005444 WO2016186480A1 (ko) 2015-05-21 2016-05-23 초음파 광역학 치료용 내시경 프로브

Country Status (1)

Country Link
WO (1) WO2016186480A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924544A (zh) * 2021-01-25 2021-06-08 江西志浩电子科技有限公司 一种超声波处理效果检测装置及电路板生产方法
CN113384298A (zh) * 2021-06-25 2021-09-14 中日友好医院(中日友好临床医学研究所) 一种双腔超声内窥镜导管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238386B1 (en) * 1992-07-20 2001-05-29 Gerhard Müller Method and arrangement for invasive or endoscopic therapy by utilizing ultrasound and laser
US20080221647A1 (en) * 2007-02-23 2008-09-11 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
US20110040170A1 (en) * 2008-01-28 2011-02-17 Yeda Research And Development Co., Ltd. Endoscopic imaging photodynamic therapy system and methods of use
US20120000691A1 (en) * 2010-01-15 2012-01-05 Applied Nanostructured Solutions, Llc Cnt-infused fiber as a self shielding wire for enhanced power transmission line
KR20130008575A (ko) * 2010-02-26 2013-01-22 각고호우징 게이오기주크 광화학 반응에 의해 심근 조직의 광선역학적 어블레이션을 행하는 카테터
US20140079360A1 (en) * 2012-09-17 2014-03-20 Tyson York Winarski Nanotube fiber optic cable
US20140221820A1 (en) * 2013-02-05 2014-08-07 Muffin Incorporated Temporal echogenic markers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238386B1 (en) * 1992-07-20 2001-05-29 Gerhard Müller Method and arrangement for invasive or endoscopic therapy by utilizing ultrasound and laser
US20080221647A1 (en) * 2007-02-23 2008-09-11 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
US20110040170A1 (en) * 2008-01-28 2011-02-17 Yeda Research And Development Co., Ltd. Endoscopic imaging photodynamic therapy system and methods of use
US20120000691A1 (en) * 2010-01-15 2012-01-05 Applied Nanostructured Solutions, Llc Cnt-infused fiber as a self shielding wire for enhanced power transmission line
KR20130008575A (ko) * 2010-02-26 2013-01-22 각고호우징 게이오기주크 광화학 반응에 의해 심근 조직의 광선역학적 어블레이션을 행하는 카테터
US20140079360A1 (en) * 2012-09-17 2014-03-20 Tyson York Winarski Nanotube fiber optic cable
US20140221820A1 (en) * 2013-02-05 2014-08-07 Muffin Incorporated Temporal echogenic markers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924544A (zh) * 2021-01-25 2021-06-08 江西志浩电子科技有限公司 一种超声波处理效果检测装置及电路板生产方法
CN113384298A (zh) * 2021-06-25 2021-09-14 中日友好医院(中日友好临床医学研究所) 一种双腔超声内窥镜导管

Similar Documents

Publication Publication Date Title
KR101814280B1 (ko) 초음파 광역학 치료용 내시경 프로브
US8679103B2 (en) Two step mammalian biofilm treatment processes and systems
WO2005002671A1 (en) Therapeutic probe, method and system
US5999847A (en) Apparatus and method for delivery of surgical and therapeutic agents
CN1173670C (zh) 气囊导管
AU2017361183B2 (en) Light radiating probe for photodynamic therapy employing endoscope
US20100097822A1 (en) Light diffusing device
WO2011027282A1 (en) Fibre optic light delivery device with a glass fibre and a plastic fibre at its distal part
US20090297455A1 (en) Device for and a method of activating a physiologically effective substance by ultrasonic waves, and a capsule
WO2016186480A1 (ko) 초음파 광역학 치료용 내시경 프로브
Shi et al. A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution
JP2023524078A (ja) 遠隔病原菌除菌
US20160000504A1 (en) Method for training immune cells using millimeter wave therapy
Li et al. Internal-illumination photoacoustic tomography enhanced by a graded-scattering fiber diffuser
JP5702529B2 (ja) 医療用光照射装置
CN112107801A (zh) 激光治疗光纤探头
WO2020019306A1 (zh) 一种光纤穿刺针管及其应用
KR101441792B1 (ko) 자성을 이용한 광 및 초음파 역학 치료용 캡슐 내시경
KR102182630B1 (ko) 친환경 스마트 광감작제 및 이를 포함하는 광줄기세포 치료제
US12121597B2 (en) High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers
WO2020105800A1 (ko) 체외충격파를 이용한 표적물질 전달 장치
CN118465925B (zh) 用于肿瘤内部照射的光纤装置及其制备方法和照射设备
WO2023211207A1 (ko) 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치, 초음파 제어방법 및 그 나노약물 전달체
ter Haar et al. Where Physics Meets Biology: Quantifying the Biological Effects of Combination Treatments of Focused Ultrasound Mediated Heating and Radiotherapy
Mertz Ultrasound and Microbubbles Combine for Drug Delivery, Detecting Biomarkers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796807

Country of ref document: EP

Kind code of ref document: A1