WO2020019306A1 - 一种光纤穿刺针管及其应用 - Google Patents

一种光纤穿刺针管及其应用 Download PDF

Info

Publication number
WO2020019306A1
WO2020019306A1 PCT/CN2018/097461 CN2018097461W WO2020019306A1 WO 2020019306 A1 WO2020019306 A1 WO 2020019306A1 CN 2018097461 W CN2018097461 W CN 2018097461W WO 2020019306 A1 WO2020019306 A1 WO 2020019306A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
puncture needle
head
jacket
tube
Prior art date
Application number
PCT/CN2018/097461
Other languages
English (en)
French (fr)
Inventor
尚华
Original Assignee
尚华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚华 filed Critical 尚华
Priority to PCT/CN2018/097461 priority Critical patent/WO2020019306A1/zh
Priority to US16/373,306 priority patent/US10758742B2/en
Publication of WO2020019306A1 publication Critical patent/WO2020019306A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B2017/3454Details of tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0612Apparatus for use inside the body using probes penetrating tissue; interstitial probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres

Definitions

  • the invention relates to the technical field of medical instruments, in particular to an optical fiber puncture needle tube and application thereof.
  • Photodynamic therapy is a new technology that uses photodynamic effects to diagnose and treat diseases. Its function is based on the photodynamic effect. This is a photosensitizing reaction accompanied by biological effects involving aerobic molecules. The process is that the photosensitizer absorbed by the tissue is excited by laser irradiation with a specific wavelength, and the excited photosensitizer transfers energy to the surrounding oxygen to generate highly active singlet oxygen, singlet oxygen and adjacent organisms. The macromolecules undergo an oxidative reaction, which produces a cytotoxic effect, which in turn causes cell damage and even death. Compared with traditional therapies, photodynamic therapy has the advantages of less trauma, better targeting, no drug resistance and toxic side effects.
  • the main wavelength of photodynamic therapy is concentrated in the red light band of more than 600 nanometers, this band has a large absorption loss in the human body. Generally, it can only transmit a few millimeters to several tens of millimeters. For some deep tumors, it cannot play an effective light. Power therapy effect. With the help of fiber optics, endoscopes, and other interventional techniques, the laser can be guided deep into the body for treatment, avoiding the trauma and pain caused by open chest and laparotomy.
  • a puncture needle containing an optical fiber can be used to introduce light into the body, but because the light needs to be led out of the optical fiber, the needle tip needs to have a hole of sufficient size to allow the light to pass through, increasing the diameter of the needle.
  • the optical fiber is wrapped by a hard metal material, and the needle tube is relatively thick.
  • a large pressure is required to puncture it, which is likely to cause large trauma and damage normal blood vessel tissues and cause bleeding. Therefore, in view of this series of problems, the present application studies an optical fiber puncture needle tube.
  • the object of the present invention is to provide an optical fiber puncture needle tube and its application, which solves the defects existing in the prior art.
  • An optical fiber puncture needle tube includes an optical fiber, the optical fiber includes a main body portion and a head, the head includes a straight head and a tapered head, and a foremost end or a free end of the tapered head is formed by a tapered process.
  • a tapered tail with a tapered diameter a body tube is wrapped around the periphery of the main body; a metal jacket is wrapped around the straight head; a polymer jacket is wrapped around the outer periphery of the tapered head; the metal jacket One end of the polymer casing is fixedly connected to the main body tube, and the other end is fixedly connected to the polymer casing.
  • the place corresponding to the tapered tail end is a tapered structure with a decreasing diameter in sequence;
  • the tooth-like structure or the reverse slit structure makes the resistance small when advancing and large resistance when retreating, thereby effectively reducing the thrust required for puncture.
  • the metal jacket is tightly wrapped around the periphery of the optical fiber straight head to connect the optical fiber and the metal jacket as a whole; the metal jacket is a spiral structure formed by laser cutting on a metal tube to form a helical slit to have a certain The strength also increases a certain degree of flexibility.
  • the main body tube is a spiral tube including a plurality of spiral turns
  • the slit of the spiral tube is a spiral structure formed by laser cutting to form a spiral slit.
  • the main body of the optical fiber is coated with a main body cladding that prevents light in the optical fiber from exiting from the side;
  • the refractive index of the optical fiber taper head and the polymer jacket is 1.45-1.55.
  • the taper angle ⁇ of the taper head 2 is 7-25 °.
  • the inverted tooth structure outside the polymer jacket is composed of a plurality of circular truncated structures with a small front end diameter and a large rear end diameter, so that the optical fiber puncture needle can be more easily walked forward and not easily retreated.
  • the structure of the undercut outside the polymer jacket is a wedge-shaped undercut formed by laser cutting on the outer surface of the metal tube.
  • the inclination of the undercut is inclined backward and the width of the undercut is defined by the outer side. Lower from one end to the end near the inner side.
  • the thickness of the front end of the circular truncated structure is 50-70 ⁇ m
  • the thickness of the rear end of the circular truncated structure is 90-110 ⁇ m
  • the thickness difference between the front end and the rear end is 30-50 ⁇ m.
  • one end of the optical fiber puncture needle that is left outside is connected with a power device capable of vibrating back and forth so that it can apply a forward pressure to the optical fiber puncture needle while vibrating.
  • the power device is a sonic vibration motor
  • the front-rear vibration amplitude of the power device is 10um-500um
  • the vibration frequency is 10Hz-1000Hz.
  • the optical fiber straight head outside the slit of the metal jacket has no cladding or the refractive index of the cladding is slightly smaller than that of the optical fiber straight head, so that a part of the light passes through the slit of the spiral jacket to emit light.
  • the length of the head is 7-10 mm, wherein the length of the polymer jacket is 2.5-4 mm; the length of the metal jacket is 4.5-6 mm.
  • the width of the slit is 0.1-0.2 mm, and the width of the metal sheet constituting the spiral structure of the metal jacket is 0.2-1 mm.
  • the thickness of the main body tube is 0.05-0.1 mm
  • the width of the slit forming the spiral structure is 0.02-0.2 mm
  • the width of the spiral piece constituting the spiral structure is 0.5-3 mm.
  • the diameter of the tip of the tapered tail end is 10-50 ⁇ m.
  • the length of the main body tube is 1-2m; the main body tube is a biomedical metal material, including but not limited to one of stainless steel, synthetic fiber, carbon fiber, titanium alloy, gold, and silver.
  • An application of an optical fiber puncture needle which is used for walking in long blood vessels, puncture of blood vessel walls, etc., photodynamic oncology, and irradiation of blood vessels, tissues or organs deep in the human body.
  • the present invention provides an optical fiber puncture needle tube and its application.
  • the main beneficial effect is that the puncture needle tube can achieve the purpose of transmitting in a long blood vessel quickly through the mutual cooperation of various components, such as being able to pass through smoothly.
  • the blood vessel length is nearly 2 meters; and it can achieve high light extraction efficiency and treatment effect, which has important application value and significance in photodynamic tumor treatment.
  • the puncture needle can also be applied in other fields, such as removing vascular obstructions or performing vascular puncture.
  • the present invention cleverly uses a tapered process to form a tapered tapered head with a tapered diameter, which greatly improves the effective radiation rate of light, facilitates the effective combination of light and photosensitizer, and reduces waste of light or photosensitizer. , Thereby increasing the treatment effect and reducing costs. More importantly, by controlling the specifications of the taper head, the refractive index, the angle of the taper head or the end of the taper, and the refractive index of the polymer jacket, the main light on the taper head can be focused to a certain point directly in front of it. Within the range of the angle, the irradiation efficiency and treatment effect can be significantly increased, so that the waste rate of light and photosensitizer is less and the efficiency is higher.
  • the straight head is used for auxiliary irradiation on the epitaxial part.
  • the spiral metal jacket wrapped by the straight head not only plays an important role in the flexibility and strength of the head of the puncture needle, more importantly, its length, spiral slit, spiral sheet or metal sheet.
  • the width and the like have very important auxiliary treatment effects on the photodynamic tumor treatment. That is, when the taper head emits light, it can also emit a small amount of light from the metal jacket incision at the same time.
  • the auxiliary taper head can achieve the entire tumor and other parts. Effective treatment.
  • the taper head is thinner, which increases its flexibility and reduces brittleness, which is not easy to occur.
  • the inverted tooth structure or the incision slit structure on the polymer jacket makes the resistance small when advancing and large resistance when retreating, thereby effectively reducing the thrust required for puncture, making the forward movement of the puncture needle tube in the blood vessel smoother, and reducing surgery. Difficulty and operation time. More importantly, the polymer jacket can also protect the optical fiber, so that the tapered head is not easy to break. Even if the tapered head is broken, it will be protected by the polymer jacket so as not to damage the blood vessels, etc. Inside the body.
  • the setting of the vibration motor can regularly cause slight deformation of the puncture needle tube, and the pitch of the spiral portion shrinks, which helps to advance in the blood vessel, and the polymer jacket can prevent its backward movement, which greatly increases the transmission effect.
  • FIG. 1 is a schematic diagram of an overall structure of an optical fiber puncture needle tube according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective structural view of an optical fiber puncture needle tube according to an embodiment of the present invention.
  • FIG. 3 is a schematic sectional structural view of a head end according to an embodiment of the present invention.
  • FIG. 4 is a schematic perspective structural view of a head end according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a thickness structure of a polymer jacket according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a metal jacket according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a fiber optic puncture needle tube traveling process driven by a vibration motor according to an embodiment of the present invention
  • FIG. 8 is another schematic structural diagram of the optical fiber puncture needle tube driven by a vibration motor according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a main body pipe according to an embodiment of the present invention (viewed from the inside to the outside);
  • FIG. 10 is a schematic cross-sectional structure diagram of a main body tube wound around an outer portion of an optical fiber main body according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a range of light emitted from a taper head or a polymer jacket according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of an exiting light spot of a taper head according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an outer surface of a metal jacket according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic structural diagram of an outer surface of a metal jacket according to Embodiment 4 of the present invention.
  • straight head-1 taper head-2, polymer jacket-3, metal jacket-4, main body-8, main tube-9, tapered tail-21, Conical structure-31, inverted tooth structure-32, reverse cut seam-33, main casing-106, hydrophilic coating-107.
  • An optical fiber puncture needle tube shown in 1-4, includes an optical fiber.
  • the optical fiber includes a main body portion 8 and a head portion.
  • the head portion includes a straight head 1 and a taper head 2.
  • the front end or free end is a tapered tail end 21 with a tapered diameter formed by a taper process.
  • One end of the straight head 1 is integrally connected with the main body 8 or fixedly formed, and the other end is connected to the large diameter end of the taper head. Fixed connection or integral molding.
  • a body tube 9 is wrapped on the periphery of the main body portion 8, and a metal jacket 4 is wrapped on the straight head 1.
  • the metal jacket 4 is tightly wrapped on the periphery of the straight head 1 to make the straight head 1 and the metal of the optical fiber.
  • the outer sleeve 4 is connected as a whole; the outer periphery of the taper head 2 is covered with a polymer outer sleeve 3; one end of the metal outer sleeve 4 is fixedly connected or integrated with the polymer outer sleeve 3, and one end of the metal outer sleeve is fixedly connected or integrated with the main body tube.
  • Connect as shown in Figure 1-2; the head of the fiber and the metal jacket 4 and polymer jacket 3 outside the head can be collectively referred to as the head end.
  • the polymer jacket 3 is transparent.
  • a tapered structure 31 having a diameter decreasing in order is provided on the outer side of the tapered tail end 21 corresponding to the optical fiber.
  • the shape of the tail end 21 is consistent, as shown in Figure 2-4.
  • the material of the polymer jacket 3 may be polyamide or polypropylene.
  • the polymer jacket 3 is provided with an inverted tooth structure or an inverted slit structure, as shown in Figure 1-4. This structure has a small resistance when moving forward and a large resistance when moving backward, so that it can apply a small impact.
  • the puncture is performed in a progressive manner, which effectively reduces the pressure required for puncture.
  • the inverted tooth structure 32 outside the polymer jacket 3 is composed of a plurality of circular truncated structures with a small front diameter and a large rear diameter, that is, a plurality of circular truncated structures surround the pull cone end to end The periphery of the head to make it easier for the fiber puncture needle to walk forward and not to retreat.
  • the thickness c of the front end of the circular truncated structure is 50-70 ⁇ m
  • the thickness d of the rear end of the circular truncated structure is 90-110 ⁇ m
  • the thicknesses of the front and rear ends are different. It is 30-50 ⁇ m. This thickness control is more important for effective and smooth transmission. If the thickness difference is too large, it will either increase the outer diameter of the metal jacket or reduce the inner diameter of the metal jacket, which will have a greater impact on the overall puncture needle tube, and the thickness difference will be large.
  • the larger diameter of the rear side of the circular truncated structure increases the overall forward resistance, and for small blood vessels, it also increases the degree of damage to the inner wall of the blood vessel. If the thickness difference is too small, it will not be the most useful for advancing and preventing backwards; therefore, the thickness of the above-mentioned indented structure 32 and the thickness difference between the front and back ends of the circular truncated structure will contribute to the overall advancement of the fiber puncture needle tube. Very important.
  • the metal casing 4 is a spiral metal casing, and the metal casing 4 is a spiral structure formed by laser cutting on a metal pipe to form a spiral slit. Has a certain strength while increasing a certain flexibility.
  • the width a of the slit is 0.1-0.5 mm, such as 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, etc., to form the metal jacket 4 spiral.
  • the width b of the metal sheet of the structure is 0.2-1mm, such as 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1mm, etc.
  • the data of the width a of the slit and the width b of the metal sheet directly affect the relationship between the two. Whether it can pass through the blood vessel and the smoothness of the blood vessel, but also affects the penetration strength of the puncture from one blood vessel to the other.
  • the width a and width b are too wide or too narrow, which will affect its flexibility and strength. If the strength is too strong, it will not pass through the bend of the blood vessel, and it will cause great damage to the inner wall of the blood vessel. Long blood vessels, the length of less than 1 meter is easier, but blood vessels of more than 1 meter are difficult to penetrate, and the user does not control the strength and direction outside the body. When piercing from one blood vessel to another, the strength is too low. It is also difficult to pierce. Therefore, too strong and flexible too strong cannot be achieved in blood vessels or organs that reach the depth of the human body, such as liver tumors. Only a suitable width a combined with a suitable width b can achieve good results.
  • a power device capable of vibrating back and forth is connected to an end of the fiber puncture needle tube that is left outside the body so that it can apply a forward pressure to the fiber puncture needle tube while vibrating.
  • the power device is preferably a sonic vibration motor, that is, a vibration motor.
  • the power device has a front-to-back vibration amplitude of 10um-500um and a vibration frequency of 10Hz-1000Hz.
  • a puncture needle tube is connected to a sonic vibration motor, and the vibration frequency is 100 Hz and the vibration amplitude is 50 um.
  • the vibration frequency is 100 Hz and the vibration amplitude is 50 um.
  • the sonic vibration motor vibrates forward, the entire structure of the puncture needle tube undergoes deformation-conducting vibration.
  • the puncture needle undergoes slight deformation, including the bending of the puncture needle tube and the metal
  • the elastic deformation causes the needle tip to move forward and puncture forward against the resistance.
  • the vibration is backward, as shown in FIG. 8, because the polymer jacket 3 has an inverted tooth structure, the friction force is far greater than the forward movement.
  • the length of the head is 7-10 mm, wherein the length L of the polymer jacket 3 is 2.5-4 mm, such as 3 mm; and the length 1 of the metal jacket 4 or straight head 1 It is 4.5-6mm, such as 5mm, as shown in Figure 3.
  • the length of the polymer jacket 3 or the taper head 2 is too long, which is easy to cause damage to the blood vessels, and is not conducive to walking in the small bends of the blood vessels. If it is too short, it cannot achieve puncture, and it cannot be performed smoothly and quickly with the cooperation of a vibration motor Walking in blood vessels.
  • the metal jacket 4 is too long or too short, it is not conducive to walking in the blood vessel or it is impossible to achieve a good operation such as assisting the taper head 2 to pierce the blood vessel wall. More importantly, a certain light can be emitted in the spiral slit of the metal jacket 4 , It can achieve auxiliary treatment, so the width of the slit and the metal sheet, the length of the metal jacket 4 and so on have an important effect on the treatment effect. Therefore, only in the case of a proper length, can it pass through the blood vessel well, and complete the operation of good transmission and puncture, which has a synergistic effect on the puncture needle tube.
  • the length of the main body tube 9 is 1-2 m, such as 1.8 m.
  • the length of the main body tube 8 and the main body tube 9 are the same.
  • the main body tube is tightly wrapped around the main body portion 8 of the optical fiber so that the two become one for easy transmission.
  • the diameter of the main body portion 8 and the straight head 1 of the optical fiber may be 400 ⁇ m, which may be a quartz optical fiber.
  • the diameter of the tip of the tapered tail is 10-50 ⁇ m, such as 20 ⁇ m, 30 ⁇ m, 40 ⁇ m.
  • the fineness will increase the flexibility of the optical fiber and reduce its brittleness;
  • the outer diameter of the metal jacket 4 and the main tube 9 may be 600 ⁇ m, and the inner diameter may be 400 ⁇ m.
  • the head end of the puncture needle tube when used, is first penetrated into the blood vessel, and then transmitted in the blood vessel.
  • the external end of the puncture needle tube can be connected to a vibration motor to assist the puncture needle tube to reach a predetermined site through the blood vessel, such as the body.
  • Tumors such as liver tumors
  • Tumors are medium, then connect the laser to the fiber puncture needle tube, turn on the laser to transmit the light to the main tube of the optical fiber, and then to the taper head, and finally shoot the photosensitizer to the tumor through the polymer jacket .
  • the main body tube 9 is a spiral tube containing a plurality of spiral turns, and the slit of the spiral tube is a spiral structure formed by laser cutting to form a spiral slit.
  • FIG. 9 is a schematic cross-sectional view of the main body pipe 9 and is a view viewed from the inside of the main body pipe 9.
  • the width a of the slit is 0.02-0.2 mm, such as 0.05, 0.08mm, 0.1mm, 0.15mm, etc.
  • the width d of the spiral piece constituting the spiral structure in the main body tube 9 is 0.5-3mm, such as 1mm
  • the thickness is 0.05-0.1mm, such as 0.08mm.
  • the length of the main body tube 9 is almost 2 meters. It usually penetrates into the human body at 1-1.8m, and the thickness of the human blood vessels varies, and there is a certain degree of curvature.
  • the main body tube 9 is a biomedical metal material, including but not limited to one of stainless steel, synthetic fiber, carbon fiber, titanium alloy, gold and silver, preferably stainless steel. As a whole, the main body tube is actually made of a stainless steel The wire is wound around the wire wound layer of the main body portion 8 of the optical fiber and spirally wound. Of course, two or more wires may be wound.
  • the main pipe 9 is provided with a main pipe jacket 106 to increase the sealing and reduce the resistance of the main pipe 9; the material of the main pipe jacket 106 may be polyamide or polypropylene, etc. Everything is fine.
  • a hydrophilic coating 107 is applied to the outside of the main casing 106 to increase blood compatibility.
  • the hydrophilic coating 107 is made of chemically stable materials, including but not limited to polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorocarbon polymers, and polyurethane.
  • the hydrophilic coating is applied to reduce the resistance in the blood vessels and can pass through the long blood vessels with complicated internal environment.
  • the hydrophilic coating 107 in this embodiment may be replaced with a hydrophobic coating.
  • the refractive index of the tapered tip 2 of the optical fiber is 1.45-1.55, preferably 1.5
  • the refractive index of the polymer jacket 3 is 1.45-1.55, such as 1.45, 1.5, 1.55, etc.
  • the taper angle ⁇ of the middle tapered tail end 21 is 7-25 °.
  • the taper angle of the tapered structure in the polymer jacket 3 is basically the same as that of the tapered tail end 21, which can basically guarantee the taper.
  • the light from the head emits light in the range of 60-120 °, and its angle is shown as ⁇ in FIG. 11.
  • the cone angle ⁇ is 22 °
  • the light divergence angle ⁇ is within 120 °
  • the cone angle ⁇ is 7.6 °
  • the light divergence angle ⁇ is within 60 °. Therefore, when the taper angle ⁇ of the taper head 2 is 7-25 °, the light on the taper head can be effectively directed to the target position. For example, on a tumor containing a photosensitizer, the light energy can be effectively used, which greatly increases the light output. rate.
  • the refractive index of the entire optical fiber may be 1.5, however, it is preferable that the optical fiber main body portion 8 is coated with a cladding, and the refractive index of the cladding is lower than that of the optical fiber, such as 1.2, 1.3, etc.
  • the light will not be emitted from the main body, restricting the light, so that the light can only come out from the taper hair, and directly irradiate the tumor containing the photosensitizer through the polymer jacket 3.
  • the optical fiber at the spiral metal jacket 4 is the optical fiber straight head 1 at the slit of the metal jacket 4 without a cladding or the refractive index of the cladding is slightly smaller than that of the optical fiber straight head 1.
  • the light is emitted through the slit of the spiral jacket to realize the irradiation of other auxiliary parts, so that the cone head can be directly irradiated to the key parts for effective irradiation, and the straight head 1 is irradiated to the epitaxial parts to achieve the entire area to be irradiated.
  • Effective irradiation such as irradiating tumor tissues containing photosensitizers, can effectively increase the efficacy of photosensitizers and ultimately increase the therapeutic effect.
  • the input optical fiber wavelength is 650nm and the input power is 1W
  • the output light power from the fiber taper head is 0.94W
  • the output power is very high
  • its divergence angle is about 60 degrees, which can be targeted at key parts Perform effective irradiation or treatment; the spot shape is shown in Figure 12.
  • the polymer jacket 3 may also be provided with a plurality of undercut slits 33 on its outer surface, as shown in FIG. 13-14, that is, laser cutting on the outer surface of the metal tube
  • the wedge-shaped undercut seam 33 that is, the inclination direction of the undercut seam 33 is inclined backward.
  • the width of the undercut seam 33 is from the outer side end to the inner side end, and its thickness decreases in order.
  • the polymer jacket 3 in this embodiment may have a structure in which the diameter decreases sequentially from the tail end to the front end, that is, from back to front, so as to facilitate the forward movement, as shown in FIGS. 13-14.
  • the reverse slit structure makes the resistance small when advancing and large resistance when retreating, thereby effectively reducing the thrust required for puncture, making the forward movement of the puncture needle tube in the blood vessel smoother, and reducing the difficulty and time of the operation.
  • the optical fiber puncture needle tube can smoothly pass through long blood vessels, and can effectively puncture blood vessel walls or obstructions, and can also irradiate light to blood vessels, tissues or organs deep in the human body Therefore, the puncture needle can be effectively applied in photodynamic oncology, and can also be used to clear obstructions in blood vessels and to clear or treat blood clots or blood clots in tissues.
  • the fiberoptic puncture needle is used in photodynamic tumor treatment
  • the interventional treatment is liver tumor
  • the fiberoptic puncture needle is inserted into the hepatic artery through the femoral artery, and finally enters the blood vessels in the liver tumor.
  • the laser is turned on and the light reaches the fiber
  • the tapered tip of the end of the optical fiber is then emitted through the polymer jacket, and the light is irradiated to the tumor tumor body that has been injected with a photosensitive drug (such as PHOTOFRINR). Tumor necrosis and apoptosis, so as to achieve the purpose of treating tumors.
  • a photosensitive drug such as PHOTOFRINR
  • the invention has high light emitting efficiency, good light emitting effect and high treatment efficiency.
  • the applicant studied from the latitude and length of the blood vessel to be penetrated, the transit time, the strength of the tip, the irradiation effect, the treatment efficiency, and the puncture accuracy. .
  • a liver tumor sampling biopsy Take a liver tumor sampling biopsy as an example: through the Seldinger arterial puncture technique, guided by radiography, a fiberoptic puncture needle is inserted into the femoral artery, with the help of a vibration motor, it enters the hepatic artery through the femoral artery, and then Hepatic arteries enter the liver blood vessels, and finally enter the blood vessels inside the tumor; the tumor tissue added with photosensitizer is irradiated and treated.
  • Length of blood vessels passing through 1.6 meters.
  • the puncture needle tubes in Examples 2 and 3 were tested as experimental groups 1 and 2, respectively.
  • Comparative Example 2 The structure without a tapered head, the diameter of the head of the optical fiber is the same as elsewhere, and the others are consistent with the embodiment 2.
  • Comparative Example 3 The metal casing 4 without a spiral shape, that is, the taper head is directly connected to the main body portion 8, and the others are consistent with the embodiment 2.
  • Comparative Example 4 The main body tube in Example 2 was changed to a spring.
  • Comparative Example 5 The metal casing 4 in Example 2 was changed to a spring.
  • the time to reach the tumor vessel refers to the time required to walk in the vessel before reaching the tumor vessel.
  • the light output efficiency of the optical fiber refers to the percentage of the light actually irradiated on the tumor photosensitizer and the light on the head of the optical fiber as normal light irradiated onto the photosensitizer.
  • the irradiation efficiency of the optical fiber refers to the effective amount of light irradiated onto the tumor photosensitizer, which is directly proportional to the light absorption efficiency of the photosensitizer;
  • the tip strength at the time of penetration refers to the penetration into the inner wall of the tumor blood vessel. The force of the puncture needle head.
  • Experimental group 2 It is easy to walk in a blood vessel, and the light output rate, the optical fiber irradiation efficiency, the puncture effect, and the treatment effect are all better.
  • Comparative Example 1 Because there is no polymer jacket and no inverted tooth structure, the walking time in blood vessels will be greatly increased, and because the taper head is exposed, it has a certain degree of brittleness, so you need to be careful when walking, and it will also affect the Transit time in blood vessels. Because the taper head is exposed, during the transmission process, the internal environment of the blood vessel has a certain effect on it, and during walking, it is also easy to attach substances that affect the refractive index and the light output of the light, so it is in the target position. The light output efficiency of the optical fiber is low. Because of its low light output efficiency, it greatly affects the irradiation efficiency of its optical fiber, that is, the effective light on the photosensitizer is reduced. Its tip strength is significantly reduced during puncture.
  • Comparative Example 2 Because there is no tapered head, the strength of the tapered structure 31 of the polymer jacket is insufficient, which affects walking in the blood vessel, and its tip strength is very weak, and it is difficult to achieve the purpose of piercing the blood vessel wall.
  • the light output is not targeted so that some of the light cannot be effectively irradiated onto the photosensitizer, and there may be places where the amount of light is not large, but more light is emitted, and the key light is required. On the contrary, there is less irradiation in the place, so its irradiation is more blind, and the irradiation efficiency of the optical fiber is low, which greatly affects its treatment efficiency.
  • Comparative Example 3 Metal jacket 4 without spiral structure, the light is only emitted from the taper head, so its popularization area is small, it can only reach some important places, and there is almost no light for other auxiliary places, which greatly affects its The overall irradiation efficiency greatly affects its treatment efficiency. It also has a certain effect on tip strength and walking time.
  • Comparative Example 4 The spring does not control the strength and direction, so it greatly affects the total travel time. Because the strength is not controlled, the strength of the piercing effect at a certain point is significantly reduced.
  • Comparative Example 5 If a spring with the same strength as that of the metal jacket is selected, its flexibility, elasticity, etc. are different from the metal jacket of the present invention, and its direction is not well controlled, resulting in the strength shown by its overall tip being less than the experimental group .
  • a tumor rat model was established, and rats with substantially the same tumor size were used as experimental objects.
  • the control group was only treated with photosensitizer, the experimental group was added with photosensitizer and the method of the present invention was used for illumination.
  • the comparison group 1-3 is the comparison group 1-3 in Example 6, and the laser irradiation method is the same as the experimental group.
  • the light extraction efficiency and the light efficiency have a direct impact on the final treatment effect.
  • the treatment effect of the experimental group of the present invention is significantly higher than that of the comparison group.

Abstract

一种光纤穿刺针管及其应用,其包括光纤,光纤包括主体部(8)和头部,头部包括直型头(1)和拉锥头(2),拉锥头(2)的最前端为采用拉锥工艺形成的锥形尾端(21);主体部(8)的外围包裹有主体管(9),直型头(1)外包裹有金属外套(4),拉锥头(2)的外围包裹有聚合物外套(3);聚合物外套(3)中,对应于锥形尾端(21)的地方为直径依次减小的锥形结构(31);聚合物外套(3)外设有倒齿状结构(32)或倒切缝(33)结构。该穿刺针管通过各个部件的相互协同作用,能够实现较快的在长血管中进行传输的目的;并能够实现较高的出光效率和治疗效果,在光动力肿瘤治疗中具有重要的应用价值和意义。并且该穿刺针管还能够应用在其它领域,如消除血管阻塞物或进行血管穿刺等。

Description

一种光纤穿刺针管及其应用 技术领域
本发明涉及一种医疗器械技术领域,具体涉及一种光纤穿刺针管及其应用。
背景技术
光动力疗法(Photodynamic Therapy,PDT)是利用光动力效应进行疾病诊断和治疗的一种新技术。其作用基础是光动力效应。这是一种有氧分子参与的伴随生物效应的光敏化反应。其过程是,特定波长的激光照射使组织吸收的光敏剂受到激发,而激发态的光敏剂又把能量传递给周围的氧,生成活性很强的单态氧,单态氧和相邻的生物大分子发生氧化反应,产生细胞毒性作用,进而导致细胞受损乃至死亡。相比传统疗法,光动力疗法具有创伤小、靶向性好、无耐药和毒副作用的优点。但是由于光动力疗法主要波长集中于600多纳米的红光波段,此波段在人体内吸收损耗大,一般只能传输几毫米至数十毫米量级,对于一些深层肿瘤,无法起到有效的光动力治疗作用。借助光纤、内窥镜和其他介入技术,可将激光引导到体内深部进行治疗,避免了开胸、开腹等手术造成的创伤和痛苦。目前采用含有光纤的穿刺针可以将光引入体内,但是由于需要将光从光纤中导出,针尖需要具有足够大小的孔洞以使光透出,增加了针头的直径。为克服穿刺阻力,光纤由坚硬的金属材料包裹,针管较粗,在穿刺过程中需要采用很大的压力使其穿刺,容易造成较大的创伤,破坏正常血管组织造成出血。因此,针对这一系列问题,本申请研究了一种光纤穿刺针管。
发明内容
有鉴于此,本发明的目的是提供一种光纤穿刺针管及其应用,解决了现有技术中存在的不足。
本发明的目的是通过以下技术方案来实现:
一种光纤穿刺针管,其包括光纤,所述光纤包括主体部和头部,所述头部包括直型头和拉锥头,所述拉锥头的最前端或自由端为采用拉锥工艺形成的直径逐渐变细的锥形尾端;所述主体部的外围包裹有主体管,所述直型头外包裹有金属外套,所述拉锥头的外围包裹有聚合物外套,所述金属外套的一端与主体管固定连接,另一端与聚合物外套固定连接;所述聚合物外套中,对应于锥形尾端的地方为直径依次减小的锥形结构;所述聚合物外套外设有倒齿状结构或倒切缝结构以使其前进时阻力小后退时阻力大,从而有效减小了穿刺需要的推力。
进一步地,所述金属外套紧密包裹在光纤直型头的外围以使光纤和金属外套连接为一体;该金属外套为在金属管上进行激光切割形成螺旋状切缝的螺旋结构以使其具有一定强度同时增加一定的柔韧性。
进一步地,所述主体管为含有多个螺旋圈的螺旋管,螺旋管的切缝为采用激光切割形成螺旋状切缝的螺旋结构。
进一步地,所述光纤的主体部外涂覆有防止光纤中的光从侧面射出的主体部包层;光纤拉锥头和聚合物外套的折射率为1.45-1.55。
进一步地,拉锥头2的锥角β为7-25°。
进一步地,所述聚合物外套外的倒齿状结构为由多个前端直径小后端直径大的圆台形结构构成,以使光纤穿刺针管更容易向前行走且不容易后退。
进一步地,所述聚合物外套外的倒切缝结构为在金属管的外表面激光切割形成楔形的倒切缝,倒切缝的倾斜方向为向后倾斜,倒切缝的宽度为由外侧面一端至靠近内侧面一端依次降低。
进一步地,在该倒齿状结构中,圆台形结构的前端厚度为50-70μm,圆台形结构的后端的厚度为90-110μm,且前端和后端的厚度差为30-50μm。
进一步地,所述光纤穿刺针留在体外的一端连接有能够进行前后振 动的动力装置以使其在震动的同时能够给光纤穿刺针一个向前的压力。
进一步地,所述动力装置为声波振动马达,该动力装置的前后振动幅度为10um-500um,振动频率为10Hz-1000Hz。
进一步地,所述金属外套的切缝处的光纤直型头外没有包裹包层或包层的折射率比光纤直型头略小以使一部分的光通过螺旋外套的切缝处进行出光。
进一步地,所述头部的长度为7-10mm,其中,所述聚合物外套的长度为2.5-4mm;所述金属外套的长度为4.5-6mm。
进一步地,在金属外套中,切缝的宽度为0.1-0.2mm,构成金属外套螺旋结构的金属片的宽度为0.2-1mm。
进一步地,所述主体管中,其厚度为0.05-0.1mm,构成螺旋结构的切缝的宽度为0.02-0.2mm,构成螺旋结构的螺旋片的宽度为0.5-3mm。
进一步地,所述拉锥头中,锥形尾端的最尖端的直径为10-50μm。
进一步地,所述主体管的长度为1-2m;所述主体管为生物医用金属材料,包括但不限于不锈钢、合成纤维、碳纤维、钛合金、金和银中的一种。
一种光纤穿刺针管的应用,所述光纤穿刺针管在长血管中行走、血管壁等的穿刺、光动力肿瘤学以及人体深处的血管、组织或器官的照射等中的应用。
本发明提供了一种光纤穿刺针管及其应用,其主要的有益效果为:该穿刺针管通过各个部件的相互协同作用,能够实现较快的在长血管中进行传输的目的,如能顺利的穿行将近2米的血管长度;并能够实现较高的出光效率和治疗效果,在光动力肿瘤治疗中具有重要的应用价值和意义。并且该穿刺针管还能够应用在其它领域,如消除血管阻塞物或进行血管穿刺等。
本发明巧妙的通过将光纤头部采用拉锥工艺形成直径越来越细的拉锥头,使得光的有效照射率大大提升,有利于光照与光敏剂的有效配合, 减少光或光敏剂的浪费,从而增加治疗效果,降低成本。更重要的是,通过控制拉锥头的规格、折射率、拉锥头或锥形尾端的角度以及聚合物外套的折射率,实现了拉锥头上的主要出光能够重点照射至其正前方一定角度的范围内,则能够显著增加照射效率与治疗效果,使得光、光敏剂浪费率更少、有效率更高。
直型头对外延部位进行辅助照射,其外包裹的螺旋状金属外套不仅对穿刺针管头部的柔韧性和强度具有重要作用,更重要的是,其长度、螺旋切缝、螺旋片或金属片的宽度等都对光动力肿瘤治疗方面具有极其重要的辅助治疗效果,即在拉锥头出光的同时还能够从金属外套切缝中进行同时少量出光,则辅助拉锥头实现对整个肿瘤等部位的有效治疗。
拉锥头较细,使其柔韧性增加,脆性降低,不容易发生这断等情况。聚合物外套上的倒齿状结构或倒切缝结构使得前进时阻力小后退时阻力大,从而有效减小了穿刺需要的推力,使穿刺针管在血管中的前行更顺畅,减小了手术难度与手术时间。更重要的是,聚合物外套还能够保护光纤,使拉锥头不容易折断,即使拉锥头有折断等现象,也会有聚合物外套的保护从而不会损伤血管等也不会遗落在身体内。
本发明通过在聚合物外套外设计倒齿状结构或倒切缝结构,然后配合振动马达,实现了前进方便、不容易后退的有效传输,有利于在血管中顺利行走。
振动马达的设置可使穿刺针管有规律的发生微小形变,且螺旋部分的螺距收缩,有助于在血管中前行,而聚合物外套又能够防止其后退,故大大增加了传输效果。
整体而言,临床的应用效果好,实用性强,具有较大的推广应用价值。
附图说明
图1是本发明实施例所述的光纤穿刺针管的整体结构示意图;
图2是本发明实施例所述的光纤穿刺针管的透视结构示意图;
图3是本发明实施例所述的头部端的剖面结构示意图;
图4是本发明实施例所述的头部端的透视结构示意图;
图5是本发明实施例所述的聚合物外套的厚度结构示意图;
图6是本发明实施例所述的金属外套的结构示意图;
图7是本发明实施例所述的在振动马达驱动下的光纤穿刺针管行进过程的结构示意图;
图8是本发明实施例所述的在振动马达驱动下的光纤穿刺针管行进过程中的另一个结构示意图;
图9是本发明实施例所述的主体管的切面结构示意图(从内向外看);
图10是本发明实施例中所述的缠绕在光纤主体部外的主体管的横截面结构示意图;
图11是本发明实施例3所述的拉锥头或聚合物外套上的光射出的范围示意图;
图12是本发明实施例所述的拉锥头的出射光斑示意图;
图13是本发明实施例4所述的金属外套的外表面的结构示意图;
图14是本发明实施例4所述的金属外套的外表面的结构示意图。
图中,直型头--1,拉锥头--2,聚合物外套--3,金属外套--4,主体部--8,主体管--9,锥形尾端--21,锥形结构--31,倒齿状结构--32,倒切缝--33,主管外套--106,亲水涂层--107。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。以下提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通方法人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种光纤穿刺针管,1-4所示,其包括光纤,所述光纤包括主体部8和头部,所述头部包括直型头1和拉锥头2,所述拉锥头2的最前端或自由端为采用拉锥工艺形成的直径逐渐变细的锥形尾端21,直型头1的一端与主体部8一体连接固定连接或一体成型,另一端与拉锥头的大直径端固定连接或一体成型。
所述主体部8的外围包裹有主体管9,所述直型头1外包裹有金属外套4,所述金属外套4紧密包裹在直型头1的外围以使光纤的直型头1和金属外套4连接为一体;所述拉锥头2的外围包裹有聚合物外套3;所述金属外套4的一端与聚合物外套3固定连接或一体连接,金属外套的一端与主体管固定连接或一体连接;如图1-2所示;光纤的头部与头部外的金属外套4和聚合物外套3可合称为头部端。
所述聚合物外套3为透明的,在该聚合物外套3中,对应于光纤的锥形尾端21的外侧设有直径依次减小的锥形结构31,则其与拉锥头2的锥形尾端21结构一致,如图2-4所示。
所述聚合物外套3的材料可为聚酰胺或聚丙烯。聚合物外套3外设有倒齿状结构或倒切缝结构,如图1-4所示,此种结构在前进时具有很小阻力,在后退时阻力较大,从而能够以施加微小冲击方式,以递进方式进行穿刺,有效减小了穿刺需要的压力。
作为进一步优选的实施方式,所述聚合物外套3外的倒齿状结构32为由多个前端直径小后端直径大的圆台形结构构成,即多个圆台形结构首尾相接环绕在拉锥头的外围,以使光纤穿刺针管更容易向前行走且不容易后退。
具体地,如图5所示,在该倒齿状结构32中,圆台形结构的前端厚度c为50-70μm,圆台形结构的后端的厚度d为90-110μm,且前端和后端的厚度差为30-50μm。该厚度的把控对于有效顺畅的传输前进比较重要,厚度差太大则要么会增加金属外套外径,要么需要减小金属外套的内径,则对整体穿刺针管的影响较大,而且厚度差大,圆台形结构后 侧面的直径增加较大,反而会增加整体的前进阻力,且对于细小血管而言,还会增加对血管内壁的损伤程度。若厚度差太小的话,则起不到有助于前进、防止倒退的最用;因此,上述倒齿状结构32的厚度以及圆台形结构前后两端的厚度差等对于光纤穿刺针管的整体前行非常重要。
作为进一步优选的实施方式,如图2-4所示,所述金属外套4为螺旋状的金属外套,该金属外套4为在金属管上进行激光切割形成螺旋状切缝的螺旋结构以使其具有一定强度同时增加一定的柔韧性。
更优选地,在金属外套4中,如图6所示,切缝的宽度a为0.1-0.5mm,如0.1mm、0.2mm、0.3mm、0.4mm、0.5mm等等,构成金属外套4螺旋结构的金属片的宽度b为0.2-1mm,如0.2mm、0.4mm、0.6mm、0.8mm、1mm等等;切缝的宽度a与金属片的宽度b的数据以及二者的配合关系直接影响着能否穿过血管以及穿过血管的顺畅性,而且还影响着从一个血管刺穿进入另一个血管的刺入强度。宽度a和宽度b的太宽太窄都会影响着其柔韧性和强度,强度太强则无法通过血管的弯曲处,且对血管内壁的损伤度很大;柔性太强,则无法穿过长度较长的血管,1米以内的长度较容易,但1米以上的血管很难穿过,且使用者在体外不好控制力度和方向,从一个血管刺穿进入另一个血管时,由于强度太低也不好刺穿,因此,强度太强和柔性太强度无法实现达到人体内深度的血管或器官中,如肝脏肿瘤中。只有合适的宽度a配合合适的宽度b方可实现良好的效果。
作为进一步优选的实施方式,所述光纤穿刺针管留在体外的一端连接有能够进行前后振动的动力装置以使其在震动的同时能够给光纤穿刺针管一个向前的压力。
所述动力装置优选为声波振动马达,即振动马达,该动力装置的前后振动幅度为10um-500um,振动频率为10Hz-1000Hz。
如:在穿刺时,将穿刺针管连接声波振动马达,其振动频率为100Hz,振动幅度为50um。如图7-8所示,在声波振动马达向前振动时,穿刺针管整体结构发生形变传导振动,如图7所示,当振动向前时穿刺针发生 微小形变,包括穿刺针管的弯曲及金属外套4中螺距的收缩,该弹性形变促使针尖向前运动,克服阻力向前穿刺。当振动向后时,如图8所示,由于聚合物外套3具有倒齿状结构,摩擦力远大于向前运动,故在声波振动马达向后振动时,针尖倾向于不动而拉动穿刺针管整体向前运动。在多次振动同时施加额外压力的作用下,穿刺针管持续向前穿刺。此种穿刺方式所需施加压力小于传统穿刺针,因此允许光纤穿刺针更细更为柔软,同时能够完成穿刺效果。
作为进一步优选的实施方式,所述头部的长度为7-10mm,其中,所述聚合物外套3的长度L为2.5-4mm,如3mm;所述金属外套4或直型头1的长度l为4.5-6mm,如5mm,如图3所示。聚合物外套3或拉锥头2的长度太长容易对血管造成损伤,且不利于在血管微小弯曲处的行走,太短无法实现穿刺作用,且无法在振动马达的配合下进行顺畅、快速的血管中行走。金属外套4太长或太短也均不利于血管中行走或无法实现良好的辅助拉锥头2刺穿血管壁等操作,更重要的是,金属外套4的螺旋切缝中可射出一定的光,则可实现辅助治疗,故切缝和金属片的宽度、金属外套4的长度等均对治疗效果具有重要作用。因此,只有在合适长度的情况下,方能很好的穿过血管,并完成良好的传输、刺入等操作,对于穿刺针管具有增效作用。
作为进一步优选的实施方式,所述主体管9的长度为1-2m,如1.8m,光纤主体部8与主体管9的长度一致,主体管紧密包裹在光纤的主体部8外以使二者成为一体,方便传输。
光纤的主体部8和直型头1的直径可为400μm,其可为石英光纤,所述拉锥头中,锥形尾端的最尖端的直径为10-50μm,如20μm、30μm、40μm,该细度反而会增加光纤的柔韧性,降低其脆性;所述金属外套4和主体管9的外径可为600μm,内径可为400μm。
在本实施例中,使用时,将穿刺针管的头部一端首先刺入血管中,然后在血管中传输,穿刺针管的体外一端可连接振动马达,协助穿刺针管通过血管达到预定部位,如体内的肿瘤(如肝脏肿瘤)中等,然后将激 光器与光纤穿刺针管连接,打开激光器使光传到光纤的主体管中,再传至拉锥头,最后经过聚合物外套射向加有光敏剂的肿瘤上。
实施例2
在实施例1的基础上,所述主体管9为含有多个螺旋圈的螺旋管,螺旋管的切缝为采用激光切割形成螺旋状切缝的螺旋结构。
如图9所示,该图9为主体管9的切面示意图,且为从主体管9内向外看的视图;所述主体管9中,切缝的宽度a为0.02-0.2mm,如0.05、0.08mm、0.1mm、0.15mm等,主体管9中构成螺旋结构的螺旋片的宽度d为0.5-3mm,如1mm,厚度为0.05-0.1mm,如0.08mm。主体管9的长度将近2米,其穿入人体通常就有1-1.8m,且人体血管粗细不一、还有一定的弯曲度,如此长的距离、如此特殊的血管环境,对其强度和柔韧性要求很高,故切缝的宽度a、螺旋片的宽度d以及其厚度的数据以及配合关系直接影响着能否穿过血管以及穿过血管的顺畅性,甚至还影响着头部刺入肿瘤血管壁的强度。宽度a和宽度d的太宽太窄都会影响着其柔韧性和强度,只有合适的宽度a配合合适的宽度d方可实现良好的效果。
所述主体管9为生物医用金属材料,包括但不限于不锈钢、合成纤维、碳纤维、钛合金、金和银中的一种,优选不锈钢,从整体上看,该主体管其实是通过一根不锈钢丝包裹并螺旋缠绕于光纤的主体部8外围的绕丝层,当然,也可为两根或多根绕丝缠绕。
如图9-10所示,所述主体管9外设有主管外套106以增加主体管9的密封性和减小阻力;主管外套106的材料可为聚酰胺或聚丙烯等等,其它很多聚合物都可以。所述主管外套106的外侧涂敷有亲水涂层107以增加血液相容性。所述亲水涂层107为采用化学稳定的材料制成,包括但不限于聚四氟乙烯、硅橡胶、聚乙烯、聚氯乙烯、氟碳聚合物和聚氨酯。涂覆亲水涂层,减小在血管中的阻力,能够通过内环境复杂的长血管。
本实施例中的亲水涂层107可采用疏水涂层替代。
实施例3
在实施例2的基础上,光纤的拉锥头2的折射率为1.45-1.55,优选1.5,聚合物外套3的折射率为1.45-1.55,如1.45、1.5、1.55等,然后拉锥头2中锥形尾端21的锥角β为7-25°,如图5所示,聚合物外套3中的锥形结构的锥角也基本与锥形尾端21一致,则基本能够保证拉锥头的出光是在60-120°范围内发射光,其角度如图11中的α所示。具体地,通过光学模拟可知,锥角β为22°,则光的发散角α在120°以内,若锥角β为7.6°,则光的发散角α在60°以内。因此,当拉锥头2的锥角β为7-25°时,拉锥头上的光能够有效的射向目的位置,如含有光敏剂的肿瘤上,则能够有效利用光能,大大增加出光率。
整个光纤的折射率可为1.5,然而,优选光纤主体部8外涂覆有包层,包层的折射率低于光纤折射率,如可为1.2、1.3等,以使光纤的主体部8中的光不会从主体部射出,约束了光,使光只能从拉锥头发出,并经过聚合物外套3直接照射至含有光敏剂的肿瘤上。
优选螺旋状的金属外套4处的光纤,即金属外套4的切缝处的光纤直型头1外没有包裹包层或包层的折射率比光纤直型头1略小,则可将一部分的光通过螺旋外套的切缝处进行出光,实现对其它辅助部位的照射,则使得通过拉锥头直击重点部位进行有效照射,直型头1对外延部位进行辅助照射,实现了对整体待照射部位的有效照射,如照射含有光敏剂的肿瘤组织,能够有效增加光敏剂药效发挥,最终增加治疗效果。
在本实施例中,若输入光纤光波长为650nm,在输入功率为1W时,从光纤拉锥头出射光功率为0.94W,出射功率很高,其发散角约为60度,能够针对重点部位进行有效的照射或治疗;光斑形状如图12所示。
实施例4
实施例1-3中任意一个的基础上,聚合物外套3也可以为其外表面设有多个倒切缝33的结构,如图13-14所示,即在金属管的外表面激光切割楔形的倒切缝33,即倒切缝33的倾斜方向为向后倾斜,如图13所示,倒切缝33的宽度为由外侧面一端至靠近内侧面一端,其厚度依次降 低。
优选地,本实施例中的聚合物外套3可为由尾端至前端,即由后至前其直径依次减小的结构,方便前进,如图13-14所示。
倒切缝结构使得前进时阻力小后退时阻力大,从而有效减小了穿刺需要的推力,使穿刺针管在血管中的前行更顺畅,减小了手术难度与手术时间。
实施例5
一种光纤穿刺针管的应用,该光纤穿刺针管可在长血管中顺畅的穿行,并可对血管壁或阻塞物进行有效穿刺,还能对人体深处的血管、组织或器官等进行光的照射,故该穿刺针管可在光动力肿瘤学中进行有效应用,还能够在疏通血管内阻塞物进行应用以及在组织中有淤血或血块等进行疏通或治疗。
如果该光纤穿刺针管是用于光动力肿瘤治疗中,若介入治疗的是肝脏肿瘤,则将光纤穿刺针管通过股动脉穿刺进入肝脏动脉,最后进入肝脏肿瘤内血管,将激光器打开,光通过光纤到达光纤最端头的拉锥头上,然后经过聚合物外套射出,并将光照射在已注射光敏药物(例如PHOTOFRINR)的肿瘤瘤体,使瘤体内的光敏药物发生光化学反应产生单态氧继而引发肿瘤瘤体的坏死及凋亡,从而达到治疗肿瘤的目的。
本发明的出光效率高,出光效果好,治疗效率高。
实施例6
为了进一步研究本发明中的光纤穿刺针管的实用效果,本申请人从所穿越的血管类型和长度、穿越时间、尖端的力度、照射效果、治疗效率和刺入精准度等多个纬度进行了研究。
方法:进入肝脏肿瘤取样活检为例:通过Seldinger动脉穿刺技术,在放射影像学引导下,将光纤穿刺针管刺入股动脉中,在振动马达的辅助作用下,经由股动脉进入肝脏动脉,再从肝脏动脉进入肝脏血管,最终进入肿瘤内部血管;对加入了光敏剂的肿瘤组织进行照射、治疗。
穿过的血管长度:1.6米。
将实施例2和3中的穿刺针管分别作为实验组1和2进行试验。
对比例1:无聚合物外套,其它与实施例3一致。
对比例2:无拉锥头结构,光纤的头部直径与其它地方一样,其它均与实施例2一致。
对比例3:无螺旋状的金属外套4,即拉锥头直接连着主体部8,其它均与实施例2一致。
对比例4:将实施例2中的主体管变为弹簧。
对比例5:将实施例2中的金属外套4变为弹簧。
对于以上试验组的总结如下表所示。
Figure PCTCN2018097461-appb-000001
在上表中,1)到达肿瘤血管的时间指的是到肿瘤血管前,在血管中行走所需要的时间。2)光纤的出光效率指的是实际照射至肿瘤光敏剂上的光与光纤的头部按正常照射至光敏剂上的光的百分比。3)光纤的照射效率指的照射至肿瘤的光敏剂上的有效的光照量,其与光敏剂对光的吸收效率呈正比;4)刺入时尖端力度指的是刺入肿瘤血管内壁时,穿刺针头部所具有的力。
对于上述实验组和对比组的结果说明如下所示:
实验组1:血管内行走容易,出光率、光纤的照射效率、刺穿效果以及治疗效果等均比较好。
实验组2:血管内行走容易,出光率、光纤的照射效率、刺穿效果以及治疗效果等均比较好。
对比例1:由于无聚合物外套,也无倒齿状结构,故在血管中行走 的时间会大大增加,且由于拉锥头裸露,其具有一定脆性,故行走时需要小心,也会影响在血管中穿行时间。由于拉锥头裸露,其在传输过程中,血管内环境对其具有一定的影响,且在行走过程中,其上也容易附着影响光的折射率和出光率的物质,因此导致其在目的位置的光纤的出光效率较低。由于其出光效率较低,故大大影响了其光纤的照射效率,即照射至光敏剂上的有效光降低。其在刺穿时尖端力度明显降低。
对比例2:由于无拉锥头,故聚合物外套的锥形结构31的强度不够,影响在血管中的行走,且其尖端力度很弱,很难实现刺穿血管壁等的目的。另外,由于无拉锥头,则使其出光的针对性不强,使得有一部分光无法有效照射到光敏剂上,而且可能存在需光量不多的地方反而照射较多光,而需要重点光照的地方反而照射量较少,故其照射盲目性较大,光纤的照射效率低,大大影响了其治疗效率。
对比例3:无螺旋结构的金属外套4,光仅仅从拉锥头射出,则其照射的普及面小,仅能照射至某些重点地方,对于其它辅助地方几乎无光照,则大大影响了其整体的照射效率,从而大大影响了其治疗效率。而且对尖端力度以及行走时间等也会有一定影响。
对比例4:弹簧不好控制力度与方向,故大大影响了穿行的总时间。由于力度不好控制,故某点的刺穿效果力度明显降低。
对比例5:若选择强度与金属外套的强度一致的弹簧,则其柔韧性、弹性等与本发明的金属外套有区别,且其方向不好控制,导致其整体尖端表现出来的力度小于实验组。
实施例7
建立肿瘤大鼠模型,取肿瘤大小基本一致的大鼠作为实验对象,对照组只加光敏剂进行治疗,实验组加光敏剂以及采用本发明所述的方法进行光照。
实验组为实施例3所述的光纤穿刺针管进行照射激光。
对比组1-3为实施例6中的对比组1-3,其激光照射方法与实验组一致。
方法:治疗10天后,解剖大鼠,并按大鼠的表面接种穿刺点做冠状切口,按垂直和水平方向测量肿瘤大小,肿瘤体积=a 2bΠ/6(a为肿瘤的短径,b为肿瘤的长径)。肿瘤生长的抑制率=[(对照组肿瘤平均体积-实验组肿瘤平均体积/对照组肿瘤平均体积)×100%来表示。则所得的肿瘤生长的抑制率如下表所示。
  实验组 对比组1 对比组2 对比组3
肿瘤生长的抑制率 83.52% 62.76% 60.51% 49.97%
因此,在光动力肿瘤治疗中,出光效率和光照的效率对于最终的治疗效果具有直接影响。本发明的实验组的治疗效果明显高于对比组中的效果。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种光纤穿刺针管,其包括光纤,其特征在于:所述光纤包括主体部和头部,所述头部包括直型头和拉锥头,所述拉锥头为采用拉锥工艺形成的直径逐渐变细的锥形尾端;所述主体部的外围包裹有主体管,所述直型头外包裹有金属外套,所述拉锥头的外围包裹有聚合物外套,所述金属外套的一端与主体管固定连接,另一端与聚合物外套固定连接;
    所述聚合物外套中,对应于锥形尾端的地方为直径依次减小的、并恰好包裹在锥形尾端外围的锥形结构;所述聚合物外套外设有倒齿状结构或倒切缝结构以使其前进时阻力小后退时阻力大,从而有效减小了穿刺需要的推力。
  2. 根据权利要求1所述的光纤穿刺针管,其特征在于:所述金属外套紧密包裹在光纤直型头的外围以使光纤和金属外套连接为一体;该金属外套为在金属管上进行激光切割形成螺旋状切缝的螺旋结构以使其具有一定强度同时增加一定的柔韧性;
    所述主体管为含有多个螺旋圈的螺旋管,螺旋管的切缝为采用激光切割形成螺旋状切缝的螺旋结构。
  3. 根据权利要求2所述的光纤穿刺针管,其特征在于:所述光纤的主体部外涂覆有防止光纤中的光从侧面射出的主体部包层;光纤拉锥头和聚合物外套的折射率均为1.45-1.55以方便光射出;
    拉锥头的锥角β为7-25°。
  4. 根据权利要求1所述的光纤穿刺针管,其特征在于:所述聚合物外套外的倒齿状结构为由多个前端直径小后端直径大的圆台形结构构成,以使光纤穿刺针管更容易向前行走且不容易后退;
    所述聚合物外套外的倒切缝结构为在金属管的外表面激光切割形成楔形的倒切缝,倒切缝的倾斜方向为向后倾斜,倒切缝的宽度为由外侧面一端至靠近内侧面一端依次降低。
  5. 根据权利要求4所述的光纤穿刺针管,其特征在于:在该倒齿状 结构中,圆台形结构的前端厚度为50-70μm,圆台形结构的后端的厚度为90-110μm,且前端和后端的厚度差为30-50μm。
  6. 根据权利要求1-5中任意一项所述的光纤穿刺针管,其特征在于:所述光纤穿刺针留在体外的一端连接有能够进行前后振动的动力装置以使其在震动的同时能够给光纤穿刺针一个向前的压力。
  7. 根据权利要求6所述的光纤穿刺针管,其特征在于:所述动力装置为声波振动马达,该动力装置的前后振动幅度为10um-500um,振动频率为10Hz-1000Hz;
    金属外套的切缝处的光纤直型头外没有包裹包层或包层的折射率比光纤直型头略小以使一部分的光通过螺旋外套的切缝处进行出光;
    所述拉锥头中,锥形尾端的最尖端的直径为10-50μm。
  8. 根据权利要求6所述的光纤穿刺针管,其特征在于:所述头部的长度为7-10mm,其中,所述聚合物外套的长度为2.5-4mm;所述金属外套的长度为4.5-6mm;
    在金属外套中,切缝的宽度为0.1-0.2mm,构成金属外套螺旋结构的金属片的宽度为0.2-1mm;
    所述主体管中,其厚度为0.05-0.1mm,构成螺旋结构的切缝的宽度为0.02-0.2mm,构成螺旋结构的螺旋片的宽度为0.5-3mm。
  9. 根据权利要求6所述的光纤穿刺针管,其特征在于:所述主体管的长度为1-2m;
    所述主体管为生物医用金属材料,包括但不限于不锈钢、合成纤维、碳纤维、钛合金、金和银中的一种;
    所述主体管外设有主管外套以增加主体管的密封性和减小阻力;所述主管外套的外侧涂敷有亲水涂层或输水涂层。
  10. 一种光纤穿刺针管的应用,其特征在于:所述光纤穿刺针管在长血管中行走、血管壁等的穿刺、光动力肿瘤学以及人体深处的血管、组织或器官的照射等中的应用。
PCT/CN2018/097461 2018-07-27 2018-07-27 一种光纤穿刺针管及其应用 WO2020019306A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/097461 WO2020019306A1 (zh) 2018-07-27 2018-07-27 一种光纤穿刺针管及其应用
US16/373,306 US10758742B2 (en) 2018-07-27 2019-04-02 Optical fiber puncture needle tubing and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097461 WO2020019306A1 (zh) 2018-07-27 2018-07-27 一种光纤穿刺针管及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/373,306 Continuation US10758742B2 (en) 2018-07-27 2019-04-02 Optical fiber puncture needle tubing and use thereof

Publications (1)

Publication Number Publication Date
WO2020019306A1 true WO2020019306A1 (zh) 2020-01-30

Family

ID=69177843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097461 WO2020019306A1 (zh) 2018-07-27 2018-07-27 一种光纤穿刺针管及其应用

Country Status (2)

Country Link
US (1) US10758742B2 (zh)
WO (1) WO2020019306A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942685B (zh) * 2021-02-07 2022-05-31 哈尔滨工业大学 用于纤维增强树脂复合材料杆的新型锚固系统及锚固方法
CN113208706B (zh) * 2021-04-30 2022-06-03 哈尔滨工业大学 一种具有形状感知功能的可操纵穿刺针

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010449A (en) * 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US20050261607A1 (en) * 2003-04-10 2005-11-24 Intraluminal Therapeutics, Inc. Shapeable intraluminal device and method therefor
CN103619401A (zh) * 2011-06-23 2014-03-05 皇家飞利浦有限公司 复合纤维导丝
CN205094526U (zh) * 2015-11-09 2016-03-23 崔福斋 一种带导向功能的肩袖修复用植入体
CN106512232A (zh) * 2016-12-28 2017-03-22 尚华 一种血管光纤导丝
CN106955423A (zh) * 2017-03-22 2017-07-18 尚华 一种血管光纤导管
CN106963992A (zh) * 2017-03-22 2017-07-21 尚华 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
CN107376132A (zh) * 2017-07-17 2017-11-24 尚华 一种新型光纤导管及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354626A (ja) * 1999-06-15 2000-12-26 Shingo Takezawa 医療用穿刺針および医療用穿刺針ユニット
US8083727B2 (en) * 2005-09-12 2011-12-27 Bridgepoint Medical, Inc. Endovascular devices and methods for exploiting intramural space
US20070233221A1 (en) * 2006-03-31 2007-10-04 The Board Of Regents, The University Of Texas System Esophageal dilation and stent delivery system and method of use
US20090304576A1 (en) * 2006-08-08 2009-12-10 Warren Stephen L Device for delivery of anti-cancer agents to tissue
JP6412505B2 (ja) * 2012-12-06 2018-10-24 インディアン ウェルズ メディカル インコーポレイテッドIndian Wells Medical,Inc. 操縦可能ガイドワイヤおよび使用方法
WO2015003159A1 (en) * 2013-07-03 2015-01-08 UVL Blood Labs, Inc. Vascular access device with integrated light guide
US10226642B2 (en) * 2015-11-06 2019-03-12 Illuminoss Medical, Inc. Systems and methods for anti-microbial effect for bones
US20190099195A1 (en) * 2017-09-14 2019-04-04 Indian Wells Medical, Inc. Steerable endoluminal punch with cutting stylet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010449A (en) * 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US20050261607A1 (en) * 2003-04-10 2005-11-24 Intraluminal Therapeutics, Inc. Shapeable intraluminal device and method therefor
CN103619401A (zh) * 2011-06-23 2014-03-05 皇家飞利浦有限公司 复合纤维导丝
CN205094526U (zh) * 2015-11-09 2016-03-23 崔福斋 一种带导向功能的肩袖修复用植入体
CN106512232A (zh) * 2016-12-28 2017-03-22 尚华 一种血管光纤导丝
CN106955423A (zh) * 2017-03-22 2017-07-18 尚华 一种血管光纤导管
CN106963992A (zh) * 2017-03-22 2017-07-21 尚华 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
CN107376132A (zh) * 2017-07-17 2017-11-24 尚华 一种新型光纤导管及其制备方法

Also Published As

Publication number Publication date
US10758742B2 (en) 2020-09-01
US20200030623A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US10751124B2 (en) Methods for implanting and reversing stimuli-responsive implants
US8979828B2 (en) Tapered liquid light guide
JP4635233B2 (ja) 衝撃波アブレーションシステム
US20190038454A1 (en) Long-lasting and degradable implant compositions
KR20160137893A (ko) 초음파 광역학 치료용 내시경 프로브
US20100204643A1 (en) Ultrasound-assisted drug-delivery method and system based on time reversal acoustics
US11298007B2 (en) Optical fiber guidewire, detection system with optical fiber guidewire and detection method using optical fiber guidewire
WO2020019306A1 (zh) 一种光纤穿刺针管及其应用
CN105233413A (zh) 一种基于导管的诊断和治疗肿瘤的微创介入装置
US10463876B1 (en) Photodynamic therapy diagnostic device capable of optical fiber puncture
CN113116517A (zh) 消融抽吸激光导管
CN109331345B (zh) 一种能够光纤穿刺的光动力治疗诊断装置
WO2020019307A1 (zh) 一种记忆金属光纤穿刺针管
CN109283688B (zh) 一种反射型匀光器以及其制备和应用
CN109331346B (zh) 一种记忆金属光纤穿刺针管
JP2008535564A5 (zh)
WO2021026995A1 (zh) 一种新型的血管光纤导丝
Zharov et al. Laser combined medical technologies from Russia
CN109331347B (zh) 一种光纤穿刺针管
WO2020093616A1 (zh) 一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法
LT6795B (lt) Lazerinės terapijos šviesolaidinis zondas
WO2022041558A1 (zh) 一种光学功能导丝、探测系统及探测方法
JPS6125544A (ja) レ−ザ内視鏡用光フアイバアプリケ−タ
WO2022181133A1 (ja) 内視鏡用光照射装置
RU94840U1 (ru) Пункционная световодная игла

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927294

Country of ref document: EP

Kind code of ref document: A1