WO2020093616A1 - 一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法 - Google Patents

一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法 Download PDF

Info

Publication number
WO2020093616A1
WO2020093616A1 PCT/CN2019/074254 CN2019074254W WO2020093616A1 WO 2020093616 A1 WO2020093616 A1 WO 2020093616A1 CN 2019074254 W CN2019074254 W CN 2019074254W WO 2020093616 A1 WO2020093616 A1 WO 2020093616A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
slit
optical fiber
sleeve
puncture needle
Prior art date
Application number
PCT/CN2019/074254
Other languages
English (en)
French (fr)
Inventor
尚华
Original Assignee
尚华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚华 filed Critical 尚华
Publication of WO2020093616A1 publication Critical patent/WO2020093616A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0612Apparatus for use inside the body using probes penetrating tissue; interstitial probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres

Definitions

  • the invention relates to the technical field of medical equipment, in particular to a method for preparing a fiber-optic puncture needle and slit and light homogenizer for uniformly emitting light.
  • Photodynamic therapy (Photodynamic Therapy, PDT) is a new technology that uses photodynamic effects for disease diagnosis and treatment.
  • the basis of its action is the photodynamic effect.
  • This is a photosensitization reaction accompanied by biological effects involving aerobic molecules.
  • the process is that the specific wavelength of laser irradiation stimulates the photosensitizer absorbed by the tissue, and the excited state photosensitizer transfers energy to the surrounding oxygen to generate highly active singlet oxygen, singlet oxygen and neighboring organisms. Macromolecules undergo oxidative reactions and produce cytotoxic effects, which in turn cause cell damage and even death.
  • photodynamic therapy has the advantages of less trauma, good targeting, no drug resistance and toxic and side effects.
  • the main wavelength of photodynamic therapy is concentrated in the red light band of more than 600 nanometers, this band has a large absorption loss in the human body, and can generally only transmit a few millimeters to tens of millimeters. It is not effective for some deep tumors. Power therapy.
  • the laser With the help of optical fibers, endoscopes and other interventional technologies, the laser can be guided to the deep part of the body for treatment, avoiding the trauma and pain caused by operations such as thoracotomy and abdominal surgery.
  • a puncture needle containing an optical fiber can be used to introduce light into the body, but since the light needs to be led out of the optical fiber, the needle tip needs to have a hole of sufficient size to allow the light to pass out, increasing the diameter of the needle.
  • the optical fiber is wrapped by a hard metal material, and the needle tube is thick.
  • the puncture process a large pressure is required to puncture it, which is easy to cause large trauma and damage normal blood vessel tissues to cause bleeding. Therefore, for this series of problems, this application has studied a memory metal fiber puncture needle tube.
  • the end face of the optical fiber is generally on the order of a few micrometers to a hundred micrometers, the radiated area of the emitted laser light to the tissue is very small, and a uniform light device is needed to distribute the laser light evenly at the lesion site.
  • a uniform light device is needed to distribute the laser light evenly at the lesion site.
  • the requirement for a uniform light device is to emit light along the side, the uniform light emitting length is about 5mm-20mm, and it must be thin enough to be used in puncture needles, endoscopes and other devices.
  • the 6398778B1 uses a fiber grating made in the optical fiber to scatter the light.
  • the fiber grating is a type II Bragg grating.
  • the grating causes refractive index modulation to diffuse the light along the side of the fiber.
  • U.S. Pat No. 5207669 proposes a way to gradually thin the outer cladding of the multimode fiber along the length of the fiber. Due to the thinning of the outer cladding, part of the light transmitted in the fiber core is coupled to the side through the evanescent wave, and the rest continues to be transmitted in the core layer and continues to be coupled out of the fiber.
  • the above methods of forming beam homogenizers have some shortcomings, including the production of scatterers with special doping concentrations and fiber gratings with graded specifications that require a higher processing technology, which inevitably causes an increase in cost; some scatterers have a light intensity When it is strong, it is easy to cause damage caused by heat absorption, thereby destroying the function of the diffuser; because the scatterer and grating are scattered laterally 360 degrees, the direction of the lateral light cannot be controlled, and the power is dispersed within the radial 360 degrees If the lesion site is on the side of the irradiation area, the light is too scattered and the optical power density of the lesion tissue on one side is insufficient.
  • the object of the present invention is to provide a method for preparing an optical fiber puncture needle with uniform light, a slit and a homogenizer, which solves the deficiencies in the prior art.
  • An invention of the present invention is to provide an optical fiber puncture needle for uniformly emitting light, which includes an optical fiber, and the optical fiber includes a main body portion, and the main body portion is connected to a homogenizer capable of uniformly emitting light;
  • the light homogenizer is a light guide device composed of a tubular structure or a rod-shaped structure.
  • the light guide device includes a tube sleeve whose inner wall has a reflection effect. Slit
  • the outer periphery of the main body part is wrapped with a main body tube, and the outer periphery of the light homogenizer is wrapped with a split-shaped needle made of memory metal.
  • the slit at the forefront and side of the needle is ejected; the split-valve needle is composed of multiple tapered petals;
  • each conical valve in the split-shaped needle made of memory metal is closed. After closing, the split-shaped needle has a conical structure, and after closing, the split-shaped needle is just wrapped in the diffuser outer;
  • each tapered petal in the split-shaped needle made of memory metal is opened, and the light homogenizer is exposed to make the light output uniformly from the light homogenizer.
  • the light guide device is any one of the following two structures: (a) The light guide device is a sleeve with a cavity inside, and light is transmitted through reflection from the inner wall of the sleeve and passes from the slit Uniform output; (b) the light guide device includes a transparent rod and a tube sleeve, the tube sleeve is fitted outside the transparent rod, the light is transmitted along the transparent rod under the reflection of the tube sleeve, and from the slit of the tube sleeve Medium even output.
  • the optical fiber further includes a head, a back end of the head is connected to the main body, and a light diffuser is provided at the front end of the head; a metal jacket is wrapped around the head; the metal jacket It is provided with an inverted tooth structure so that the resistance is small when advancing, and the resistance is large when retreating, thereby effectively reducing the thrust required for puncture.
  • the length of the light guide device is 5-20 mm, and the inner diameter of the light guide device is 0.1-2 mm.
  • the main tube is a spiral tube containing a plurality of spiral rings, and the slit of the spiral tube is a spiral structure formed by laser cutting to form a spiral slit; the length of the main tube is 1-2 m.
  • the inner wall of the tube sleeve is a reflective inner wall with a metal film layer reflector or is first polished and then plated with a metal film layer having a reflective effect.
  • the shape of the slit includes a strip shape, a spiral shape, or a hole shape
  • the hole-shaped slit is a strip-shaped or spiral-shaped slit composed of a plurality of holes.
  • the size of the slit is: the width of the slit changes with the length to satisfy the formula 1 Among them, d (z) is the width of the slit; L is the length of the sleeve; z is the length of the light transmission along the measuring point at a certain point of the slit; r is the inner diameter of the light guide device; by controlling the slit The width can make the outgoing light evenly distributed.
  • This formula is also an invention of the present invention.
  • the exit transmittance of the slit satisfies formula 2 Where T (z) is the transmittance of light exiting the slit at z.
  • This formula is also an invention of the present invention.
  • the width of the slit at z is the same as the width of d (z) in formula 1; when the transmittance T (z)> 1, the width of the slit at z It needs to be corrected on the basis of d (z) calculated in formula 1.
  • Another invention of the present invention is to provide a method for manufacturing the slit, the method is: manufacturing the slit capable of uniformly emitting light on the sleeve by mechanical processing or etching, etc.
  • the width d of the slit conforms to the width calculated by formula 1, and the slit made by this method has basically the same light transmittance everywhere.
  • Another invention of the present invention is to provide a method for manufacturing a homogenizer.
  • the method is: A. If the light guide device is a tube sleeve, the preparation method is: prepare a tube sleeve of a tubular structure, and then Make a slit that can distribute light on the sleeve; B. If the light guide device includes a tube sleeve and a transparent rod, the preparation method is: prepare the transparent rod, and then coat the reflective rod with a highly reflective metal film by coating In the reflective light guide structure, the plated metal film constitutes the metal sleeve.
  • the invention provides a preparation method of an optical fiber puncture needle with uniform light output, a slit and a homogenizer, and its main beneficial effects are:
  • the puncture needle can achieve the purpose of faster transmission in long blood vessels through the mutual cooperation of various components, such as the smooth traversal of nearly 2 meters of blood vessel length; and can achieve higher light extraction efficiency and treatment effect. Photodynamic tumor therapy has important application value and significance. And the puncture needle tube can also be used in other fields, such as eliminating vascular obstruction or performing vascular puncture.
  • the light diffuser in the puncture needle can reflect the light from the slit on the side of the sleeve by using a metal coating inside the sleeve, and at the same time, by controlling the width of the slit, the light can be kept uniform along the radial direction of the sleeve, achieving one side
  • the function of linear uniform light of course, the slit can be provided in a spiral shape or a hole shape, etc., so the spiral linear light output or the spot light along the unilateral line / spiral line can also be realized.
  • the slits in the diffuser can not only expand the light output area, but also increase the irradiation effect on the affected area, improve the light utilization rate, and ultimately improve the irradiation efficiency and treatment effect. More importantly, it is softer than a seamless metal tube, that is, it can increase the flexibility of the homogenizer on the basis of rigidity, allowing it to walk better in blood vessels.
  • the invention cleverly uses the characteristics of the memory metal, and creatively combines with the body temperature and the thermal effect of light, etc., so that during the transmission process, the closed split-valve needle can be punctured, which is beneficial to cross the blood vessel during the process of passing Walking, the practicability is stronger; and through the heat effect of light, the split-shaped needle is opened when the light is illuminated, so that the light is output from the light homogenizer and directly irradiated to the target site for treatment, etc.
  • the application of the light homogenizer greatly improves the effective irradiation rate of light, is beneficial to the effective cooperation of light and photosensitizer, reduces the waste of light or photosensitizer, thereby increasing the therapeutic effect and reducing the cost.
  • the puncture needle can be used in the treatment of various diseases that require light irradiation, and is particularly well used in photodynamic oncology to irradiate tumor tissue with photosensitizer, so that the photosensitizer can play a role in treating tumor under the catalysis of light irradiation Effect.
  • the clinical application effect is good, the practicability is strong, and it has a great value of promotion and application.
  • FIG. 1 is a schematic structural view of the optical fiber puncture needle when it is closed
  • FIG. 2 is a schematic structural view of the optical fiber puncture needle when it is opened
  • 3 is a schematic view of the three-dimensional structure of the light guide device without a transparent rod
  • FIG. 4 is a schematic structural view of a light guide device containing a transparent rod
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a light guide device including a transparent rod
  • FIG. 6 is a schematic diagram of light transmittance distribution in different places of the slit
  • FIG. 8 is a schematic diagram of the distribution of light intensity along the slit length z at the axis of FIG. 5;
  • FIG. 9 is a schematic structural view of a spiral slit on a pipe sleeve
  • FIG. 10 is a schematic view of the structure of another spiral slit on the sleeve
  • FIG. 11 is a schematic view of the structure of a hole-like slit in the pipe sleeve
  • Fig. 12 is a schematic structural view of a pipe sleeve having a tapered structure
  • Example 13 is a schematic structural view of an optical fiber puncture needle according to Example 10.
  • FIG. 14 is a schematic diagram of the structure of the head of the optical fiber puncture needle and the tapered valve
  • 15 is a schematic diagram of the cross-sectional structure of the head of the optical fiber puncture needle and the tapered petal;
  • 16 is a schematic diagram of the structure of the head of the optical fiber puncture needle
  • 17 is a schematic diagram of the structural deformation of the optical fiber puncture needle driven by the vibration motor
  • Fig. 19 is a schematic view of the cross-sectional structure of the main body tube (viewed from inside to outside);
  • 20 is a schematic diagram of the cross-sectional structure of the main body tube wound around the main body of the optical fiber;
  • 21 is a schematic cross-sectional view when the split-shaped needles are closed together
  • Fig. 22 is a schematic cross-sectional view of the split valve needle when it is opened.
  • An optical fiber puncture needle for uniformly emitting light includes an optical fiber, and the optical fiber includes a main body portion 8 connected to a homogenizer 2 that can be used for emitting light. As shown in Figure 1-2, since the optical fiber is not visible from the outside, the optical fiber is indicated by a dotted line.
  • the light homogenizer 2 is a light guide device composed of a tubular structure or a rod-shaped structure.
  • the light guide device includes a sleeve 11 having a reflection effect on an inner wall thereof, and a side surface of the sleeve 11 is provided with a through tube
  • the slits 12 on the inner and outer sides of the sleeve 11 can emit light evenly, then the light in the sleeve 11 can be evenly emitted from the slit 12, the slit can be the entire length of the sleeve, or the length of the sleeve Part of it, set as needed.
  • the periphery of the main body portion 8 is wrapped with a main body tube 9, and the periphery of the light homogenizer 2 is provided with a split-shaped needle 3 made of memory metal.
  • the split-shaped needle is deformed by heating under the influence of light to open the optical fiber.
  • Light is emitted from the slits at the forefront and side of the sleeve; the split-shaped needle 3 is in the shape of a vertebral body, and the split-shaped needle 3 is composed of a plurality of tapered petals 31, as shown in FIGS. 5-6.
  • Memory metals include but are not limited to nickel-titanium alloys, copper-nickel alloys, copper-aluminum alloys, copper-zinc alloys, and the like.
  • each conical valve 31 in the split needle 3 made of memory metal is closed.
  • the split needle 3 After closing, the split needle 3 has a conical structure, and after closing The valve needle 3 is just wrapped outside the diffuser 2 and the light cannot pass through. Wrap the diffuser 2 in the split-valve structure to protect the diffuser 2 and during the process of passing through the blood vessel, the cone-shaped split
  • the valve-like structure is convenient for walking in blood vessels, with small resistance to advance and large resistance to backwards, which is convenient for moving forward.
  • each tapered valve 31 in the split-shaped needle 3 made of memory metal is opened, as shown in FIG. 2, then the diffuser 2 is exposed to the outside, and the light in the optical fiber is emitted. After entering the sleeve, the light is then emitted from the slit on the side of the sleeve.
  • the light can also be emitted from the opening at the front end of the sleeve, and the emitted light is irradiated to the tumor or other affected parts.
  • the light homogenizer may be any one of the following two structures: 1
  • the light guide device is a sleeve with a cavity inside, as shown in FIG. 3, in this case, the fiber and the sleeve The cavity is coaxial or axis, so that the light in the optical fiber can smoothly enter the sleeve, the light is transmitted through the reflection of the inner wall of the sleeve in the empty sleeve, and then the light is uniformly output through the slit;
  • the light guide device includes a transparent rod 13 and a tube sleeve 11, the tube sleeve fits outside the transparent rod 13, as shown in FIG.
  • the optical fiber and the transparent rod 13 are closely butted to efficiently transmit light to In the transparent rod 13, due to the reflection effect of the sleeve 11, the light is mainly concentrated in the transparent rod 13 for transmission, and then the light is uniformly output through the slit. If the opening at the front end of the sleeve is not closed, the light can also be output from the front end of the sleeve at the same time. If it is closed, the light can only be output from the slit, depending on the actual needs, preferably from the front end and the narrow Output during sewing.
  • the length of the light guide device is 5mm-20mm, such as 10mm
  • the inner diameter of the light guide device is 0.1-2mm, that is, the inner diameter of the sleeve is 0.1-2mm, such as 0.4mm
  • the outer diameter is based on the actual Demand settings, generally do not exceed the outer diameter of the fiber optic catheter, such as 0.6mm.
  • the light diffuser of this specification can be used in conjunction with some optical fiber catheters previously applied by the applicant to achieve high-efficiency illumination of tumors deep in the body. When using a photosensitizer to treat a tumor, light and the effect of light play an important role in the treatment effect. Therefore, efficient irradiation can achieve the effect of improving the treatment effect.
  • the inner wall of the sleeve 11 is polished and / or plated with a metal film layer. Such an inner wall consumes less light and improves the light transmission efficiency of light.
  • the inner wall of the sleeve 11 is a reflective inner wall with a metal film layer reflector, or a metal film layer with a reflective effect is first polished and then plated, so that the inner wall of the sleeve tube forms a highly reflective film layer.
  • the metal film layer includes a silver film or a gold film, and the effect is better.
  • the sleeve 11 includes a metal sleeve, a polymer sleeve or a quartz sleeve.
  • metal sleeves are preferred, which is beneficial to the purpose or technical effect of the present application.
  • the transparent rod 13 is a solid rod-shaped structure made of a transparent material, and the transparent material includes quartz or polymer; the refractive index of the transparent rod is preferably 1.5, and the light transmission efficiency is high .
  • the slit 12 includes a strip-shaped, spiral-shaped or hole-shaped slit.
  • one end of the homogenizer is connected to a light source.
  • the light source may be a laser introduced through an optical fiber, and then light in the optical fiber is incident into the tube sleeve, or incoherent light may be introduced through focusing. Align the slit part of the homogenizer with the part to be irradiated to form a linear and evenly distributed light field, and at the same time rotate the homogenizer to scan the irradiated part as needed.
  • the slit 12 capable of uniformly emitting light needs to satisfy the following condition, that is, the variation of the slit width with the length satisfies the formula 1
  • d (z) is the width of the slit at z
  • L is the length of the sleeve
  • z is the length of the slit at the measurement point z along the light transmission direction
  • r is the inner diameter of the light guide device (that is, the sleeve Inner diameter)
  • the width of the slit can be controlled by this formula 1 to make the emitted light evenly distributed.
  • T (z) is the transmittance of light exiting the slit 12 at z
  • L is the length of the sleeve
  • z is the direction of light propagation, the length of the slit at the measurement point z
  • r is the light guide
  • T (z) is the transmittance of light exiting the slit 12 at z
  • L is the length of the sleeve
  • z is the direction of light propagation, the length of the slit at the measurement point z
  • r is the light guide
  • the inner diameter of the device is the formula 2
  • the width of the slit at z is basically the same as the width of d (z) in formula 1.
  • the simulation software can be LightTools software, which can effectively correct the situation when T (z)> 1.
  • Embodiment 1 or 2 On the basis of Embodiment 1 or 2, part of the light is output through the slit on the side during light transmission in the sleeve. By controlling the width of the slit, the emitted light can be evenly distributed.
  • the expression of the slit width d (z) is derived below.
  • the optical transmission direction in the sleeve is the z direction
  • the inner diameter of the sleeve is r
  • the optical power at the z in the sleeve is P (z)
  • the relationship between the optical power density I (z) and P (z) is:
  • optical power transmitted through the slit at z can be obtained as:
  • const and c both refer to constants
  • a slit whose width d (z) is changed according to the length z can be made, so that the slit whose transmittance is changed according to the formula (11) can be realized, so that the intensity of the outgoing light remains constant along the length z.
  • the light transmission direction is the arrow in FIG. 3
  • a slit is formed by laser cutting in the z direction, and the slit width is distributed according to the formula 1 in Example 1 (that is, the formula (12) in Example 3) to form a transmittance change as shown in FIG. 6.
  • L 10mm can be divided into 10 nodes, and the gap width of each node is calculated according to the second column of Table 1 according to the theoretical calculation.
  • the transmission rate is infinite or the slit width is infinite, as shown in FIG. 6. Therefore, when the transmission rate T ⁇ 1, the slit width d (z) is the entire pipeline The perimeter of or is larger than the perimeter, which is obviously unreasonable, so the actual seam width needs to be corrected.
  • Correction method simulate the outgoing light field through simulation software (for example, using optical modeling software: LightTools), and correct the actual slit width according to the calculation results to make the outgoing light field uniformity the best.
  • simple corrections can be made based on the results of FIG. 6, or corrections can be made in conjunction with optical modeling software in FIG. 6, and appropriate corrections can also be made based on experience. As long as the above formula is used, its modification is simple.
  • Fig. 7 is the two-dimensional distribution of light intensity on the screen placed 1mm away from the slit.
  • Fig. 8 is the intensity distribution of the light intensity along the central axis. As can be seen from Figs. 7-8, among the different lengths of the slit, the light field The intensity is basically the same and the uniformity is very high.
  • the LightTools software is used.
  • a method for manufacturing a light homogenizer is: (a) If the light guide device is a hollow tube sleeve, that is, the tube sleeve described in 1 in Example 1, then The preparation method can be as follows: preparing a tube sleeve of a tubular structure, such as a metal tube sleeve, and then making the slit on the tube sleeve; preferably preparing a polished inner wall and / or plating a highly reflective film (such as a gold film or a silver film) Pipes, such as polished inner walls and silver or gold coatings; (b) If the light guide device is a structure containing a transparent rod, that is, the light guide device as described in 2 in Example 1, the preparation method is: prepare by quartz The transparent rod made of polymer and other materials is coated with a highly reflective metal film on the outer surface of the transparent rod to form a reflective light guide structure. The plated metal film constitutes a metal sle
  • a method for manufacturing a slit is described.
  • the method is as follows: a laser cutting or etching method is used on the tube sleeve 11 of the light guide device to make all the holes that penetrate the inner and outer sides of the tube sleeve Describe the slit 12, the width d of the slit is through the formula 1 (ie ) The calculated width value. If it contains T ⁇ 1 according to formula 2, it can be slightly modified.
  • the slit made by this method has basically the same optical power transmitted through it.
  • the shape of the slit 12 includes a bar shape, a spiral shape, or a hole shape.
  • Strip-shaped slits are shown in FIGS. 3 to 4;
  • Spiral slits refer to FIGS. 9 and 10.
  • the transmission ratio T is changed by changing the pitch of the spiral and the duty ratio;
  • the hole-shaped slit is a strip-shaped or spiral slit composed of a plurality of holes 14, and the strip-shaped slit composed of holes 14 is shown in FIG. 10, which is obtained by changing the diameter of the circle And the distribution density changes the projection ratio T; the spiral slit made up of holes is to replace the slit in FIG. 9 or 10 with holes.
  • the sleeve may be a sleeve with a constant radius or a sleeve with a variable radius, that is, the radius r (z) may change with z, as shown in FIG. 12 to form a cone.
  • the radius r (z) may change with z, as shown in FIG. 12 to form a cone.
  • the optical fiber further includes a head 1, a rear end of the head 1 is integrally connected or fixedly connected to the main body 8, and a front end of the head 1 (That is, the free end of the head) the light diffuser 2 is provided.
  • a metal jacket 4 is wrapped around the head 1, and the metal jacket 4 is tightly wrapped around the periphery of the head 1 so that the head 1 of the optical fiber and the metal jacket 4 are connected together.
  • the metal jacket 4 has an inverted tooth structure, as shown in FIGS. 13-15, this structure has little resistance when advancing, and greater resistance when retreating, so that a small impact can be applied in a progressive manner Performing puncture effectively reduces the pressure required for puncture.
  • the metal jacket 4 is a spiral metal jacket, and the metal jacket 4 is a spiral structure formed by laser cutting a metal tube to form a spiral slit to make it It has a certain strength and at the same time increases a certain flexibility; then the spiral piece between two adjacent slits can be an inverted-tooth metal piece, as shown in Figure 12-14.
  • the metal piece 41 constituting the metal jacket 4 has an inverted tooth structure with a thickness at the front end that is less than the thickness at the rear end, so that the optical fiber puncture needle is easier to walk forward and is not easy to retreat .
  • the thickness c of the front end of the metal sheet is too thin, it is not easy to indicate the thickness in the drawing, so only the position of c is indicated in the drawing, and the thickness relationship is not given.
  • the thickness c of the front end of the metal sheet is 50-70 ⁇ m, and the thickness d of the rear end of the metal sheet is 90- 110 ⁇ m, and the thickness difference between the front and rear ends is 30-50 ⁇ m.
  • the thickness control is more important for effective and smooth transmission.
  • the thickness difference is too large, the outer diameter of the metal jacket will be increased, or the inner diameter of the metal jacket needs to be reduced, which will have a greater impact on the overall puncture needle tube and the thickness difference will be large.
  • the thickness of the rear side of the metal sheet increases greatly, but it will increase the overall resistance to advance, and for small blood vessels, it will also increase the degree of damage to the inner wall of the blood vessel. If the thickness difference is too small, it will not be the most useful to help advance and prevent backwards.
  • the width a of the slit is 0.1-0.2 mm, such as 0.1 mm, 0.15 mm, 0.2 mm, etc.
  • the width b of the metal sheet 41 constituting the spiral structure is 0.2-1mm, such as 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1mm, etc .
  • the data of the width a of the slit and the width b of the metal sheet 41 and the relationship between the two directly affect the ability to pass through the blood vessel and The smoothness of passing through blood vessels, but also affect the penetration strength from one blood vessel to another blood vessel. Too wide and narrow width a and width b will affect its flexibility and strength.
  • the strength is too strong, it cannot pass through the bend of the blood vessel, and the degree of damage to the inner wall of the blood vessel is great; if the flexibility is too strong, it cannot pass through the length.
  • Long blood vessels the length of less than 1 meter is easier, but the blood vessels of more than 1 meter are difficult to penetrate, and the user cannot control the strength and direction outside the body.
  • the strength is too low It is also not easy to puncture, therefore, the strength is too strong and the flexibility is too strong to achieve blood vessels or organs that reach the depth of the human body, such as liver tumors. Only a suitable width a and a suitable width b can achieve good results.
  • one end of the fiber puncture needle tube left outside the body is connected with a power device capable of vibrating back and forth so that it can give the fiber puncture needle tube a forward pressure while vibrating.
  • the power device is preferably a sonic vibration motor.
  • the front and back vibration amplitude of the power device is 10um-500um, and the vibration frequency is 10Hz-1000Hz.
  • the vibration frequency is 100Hz
  • the vibration amplitude is 50um.
  • the overall structure of the puncture needle tube undergoes deformation conduction vibration, and when the vibration is forward, the puncture needle undergoes slight deformation, as shown at A, including the bending of the puncture needle tube and the pitch of the metal jacket 4 Contraction, the elastic deformation causes the needle tip to move forward and overcome the resistance to puncture forward; when the vibration is backward, as shown at B, because the metal jacket 4 has an inverted tooth structure, the friction force is much greater than the forward movement, and the needle tip tends to Pull the puncture needle tube forward without moving.
  • the puncture needle continues to puncture forward.
  • This puncture method requires less applied pressure than traditional puncture needles, thus allowing the optical fiber puncture needle to be thinner and softer, while being able to complete the puncture effect.
  • the temperature of the split needle transmitted in the body is T0, and each of the split needles
  • the tapered lobes are needle-shaped or conical; when the fiber emits light, that is, the laser connected to the fiber is turned on to transmit the light to the fiber, due to the thermal effect of the fiber, that is, when the light exits from the tapered fiber and shines on the memory metal
  • the temperature of the split needle 3 made of memory metal gradually rises to T1 after being exposed to light, then each conical valve in the split needle opens, that is, it exceeds its phase transition temperature and produces an outward prefabrication It is deformed and opened, the light diffuser is exposed, and the light is evenly emitted from the slit of the light diffuser, and can be emitted from the end of the front end of the sleeve at the same time.
  • the temperature T0 may be 37 ° C and the temperature T1 may be 50 ° C; for example: at the temperature T0 (eg 37 ° C), the split needle 3 is prefabricated into a closed shape, and at the temperature T1 (eg 50 ° C), the split The needle 3 is prefabricated in an open shape.
  • the temperature of the split needle 3 of the head is the body temperature T0 (37 °C), and the split needle 3 is closed to realize the transmission puncture.
  • a 100mW laser with a wavelength of 650nm is passed through the fiber and radiated to the split needle 3 made of memory metal through the fiber homogenizer; as shown in Figure 18, Figure 18 is outside the puncture needle head
  • 500W / (m2.K) convection and heat conduction typically heat dissipation rate of liquid convection
  • the temperature can be increased to 70.5 °C under the action of 100mW laser, which exceeds T1 temperature (50 °C), and it deforms and opens.
  • the tapered lobe 31 is a tapered lobe formed by an arc-shaped surface with uniform curvature at each point, so that the overall running effect is better.
  • the shape and size of all the cone-shaped lobes 31 are the same, and the force distributed on each cone-shaped lobes 31 is more uniform and the overall force is greater.
  • the split-lobed structure contains 2-5 cone-shaped lobes, preferably 2 cone-shaped lobes or 3 cone-shaped lobes; if the number of petals is too large, each cone-shaped lobe is too small, and its strength is not enough.
  • the length l of the head is 2.5-10 mm, such as 5 mm, as shown in FIG. 13.
  • the length L of the split-shaped needle 3 is 5-30 mm, such as 12 mm, which is slightly longer than the diffuser, and the thickness of the split-shaped needle 3 or the tapered valve 31 is 0.06-0.12 mm.
  • the diffuser 2 When it is closed, it just wraps outside the diffuser 2, it may be preferable that there is no gap between the diffuser 2 and the split-shaped needle 3, then the diffuser 2 has an effect of enhancing the strength of the split-shaped needle 3.
  • the effect combined with the tapered valve 31 of a specific thickness, is conducive to the transmission and penetration of the puncture needle tube, and has an synergistic effect.
  • the length of the main body tube 9 is 1-2 m, such as 1.8 m, the length of the optical fiber main body portion 8 and the main body tube 9 are the same, the main body tube is tightly wrapped outside the main body portion 8 of the optical fiber to make both become one, easy to transmit.
  • the diameter of the main body portion 8 and the head portion 1 of the optical fiber may be 400 ⁇ m, which may be a quartz optical fiber, the outer diameter of the metal jacket 4 and the main body tube 9 may be 600 ⁇ m, and the inner diameter may be 400 ⁇ m.
  • each cone-shaped petal 31 when each cone-shaped petal 31 is closed, the two adjacent sides of the two adjacent cone-shaped petals 31 are close to each other, and the divided petal-shaped structure constitutes a fully-closed conical shape
  • the structure of the homogenizer to better protect the optical fiber.
  • the homogenizer is contaminated during the transmission process, which affects the exposure rate of the late light, which will affect the role of the photosensitizer on the tumor site.
  • the head end when in use, the head end is first penetrated into the blood vessel, and then transmitted in the blood vessel.
  • the external end of the puncture needle tube can be connected to a vibration motor to assist the puncture needle tube to reach a predetermined location through the blood vessel, such as a tumor in the body (such as Liver tumors) Moderate.
  • the main body tube 9 is a spiral tube containing a plurality of spiral rings, and the slit of the spiral tube is a spiral structure formed by laser cutting to form a spiral slit.
  • FIG. 19 is a schematic sectional view of the main body tube, and is a view from the inside of the main body tube; in the main body tube 9, the width a of the slit is 0.02-0.2mm, such as 0.05mm, 0.1mm , 0.15mm, etc., the width d of the spiral piece constituting the spiral structure in the body tube 9 is 0.5-3mm, such as 1mm, and the thickness is 0.05-0.1mm, such as 0.08mm.
  • the length of the main tube 9 is nearly 2 meters, and it usually has 1-1.8 meters when it penetrates into the human body, and the blood vessels of the human body have different thicknesses and a certain degree of curvature, such a long distance, such a special vascular environment, its strength and
  • the requirements for flexibility are very high, so the width a of the slit, the width d of the spiral piece and the thickness data and the matching relationship directly affect the ability to pass through the blood vessel and the smoothness of the blood vessel, and even affect the head penetration
  • the strength of the tumor blood vessel wall Too wide and narrow width a and width d will affect its flexibility and strength, only a suitable width a and a suitable width d can achieve good results.
  • the body tube 9 is a biomedical metal material, including but not limited to one of stainless steel, synthetic fiber, carbon fiber, titanium alloy, gold, and silver, preferably stainless steel. Overall, the body tube is actually made of a stainless steel The wire is wrapped and spirally wound around the winding layer of the main body portion 8 of the optical fiber. Of course, two or more winding wires may be wound.
  • the main body tube 9 is provided with a polymer jacket 106 to increase the tightness of the main body pipe 9 and reduce the resistance; the material of the polymer jacket 106 may be polyamide or polypropylene, etc. Many polymers will do.
  • the outer side of the polymer jacket 106 is coated with a hydrophilic coating 107 to increase blood compatibility.
  • the hydrophilic coating 107 is made of chemically stable materials, including but not limited to polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorocarbon polymer and polyurethane. Applying a hydrophilic coating reduces the resistance in the blood vessel and can pass through long blood vessels with complicated internal environment.
  • the hydrophilic coating 107 in this embodiment can be replaced with a hydrophobic coating.
  • the side used to abut or separate from the adjacent tapered petal is the inclined surface 105, that is, one tapered petal 31
  • the direction of the inclined surface 105 in all the conical petals 31 is the same, that is, in the clockwise or counterclockwise direction, it ensures that the two inclined surfaces that are adjacent to each other in the two adjacent conical petals can exactly fit together, That is, one is gradually inclined from the inside to the outside, and the other is inclined from the outside to the inside, then the two can fit together so that the inner surface and the outer surface are smooth curved surfaces after being joined together.
  • the four-lobed cone-shaped lobe 31 is taken as an example. In fact, two or three lobes may be used.
  • the first flexible layer is provided on the side or inclined surface 105 which is adjacent to or separated from the adjacent tapered petals 31 to make the tapered petals.
  • the connection strength between 31 is higher, the sealing is better, the sealing is better, which can better prevent the liquid in the blood vessel and the like from contaminating the homogenizer, and the better sealing can also help to improve the closed split valve needle strength.
  • the inner side of the tip of the tapered petal is provided with a second flexible layer to make the closing force between the tapered petals higher and the sealing performance better when the split-valve structure is closed.
  • the thickness of the first flexible layer and the second flexible layer may be 0.005-0.04 mm, and the material of the first flexible layer and the second flexible layer may be polytetrafluoroethylene, polyamide, polypropylene, or the like.
  • thermodynamics of tumors An application of a memory metal optical fiber puncture needle with uniform light distribution, which is used for walking in blood vessels, puncturing blood vessel walls, puncturing obstructions in blood vessels, and photodynamics of tumors; the application method is as follows: temperature T0 can 37 °C, temperature T1 can be 50 °C;
  • the temperature of the homogenizer increases, and the temperature is transferred to the split needle to increase its temperature.
  • T1 (Such as 50 °C)
  • the diffuser can efficiently irradiate the site to be irradiated.
  • the optical fiber puncture needle tube is used in photodynamic tumor therapy, if the interventional treatment is liver tumor, the optical fiber puncture needle tube is punctured into the liver artery through the femoral artery, and finally into the blood vessel in the liver tumor.
  • the valve needle is opened, and the light on the homogenizer illuminates the tumor tumor that has been injected with photosensitive drugs, causing the photochemical reaction of the photosensitive drugs (such as PHOTOFRINR) in the tumor to produce singlet oxygen, which in turn causes tumor tumor necrosis and apoptosis. So as to achieve the purpose of treating tumors.
  • the light emitting efficiency of the invention is high, the light emitting effect is good, and the treatment efficiency is high.
  • the optical fiber puncture needle of the present invention it is easy and smooth to walk in the blood vessel, and can basically enter the hepatic artery from the femoral artery within 10 minutes or so, and finally enter the blood vessel in the liver tumor.
  • the optical fiber has high irradiation efficiency and high comprehensive utilization rate of light.
  • the same treatment period of light has a high treatment rate. In the rat experiment, the treatment rate of the slit is 2 to 5% higher than that without the slit.
  • the puncture needle in the present invention can also penetrate the blood vessel wall and the like to achieve better walking across the blood vessel and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种匀出光的光纤穿刺针及狭缝(12)和匀光器(2)的制备方法,光纤穿刺针包括光纤,光纤包括主体部(8),主体部(8)与能够均匀出光的匀光器(2)连接;匀光器(2)包括其内壁具有反射效果的管套(11),管套(11)的侧面设有贯穿管套(11)内外两侧并能够均匀出光的狭缝(12);主体部(8)的外围包裹有主体管(9),匀光器(2)的外围包裹有由记忆金属构成的分瓣状针头(3)。穿刺针通过各个部件的相互协同作用,能够实现较快的在长血管中进行传输的目的,如能顺利的穿行将近2米的血管长度;并能够实现较高的出光效率和治疗效果,在光动力肿瘤治疗中具有重要的应用价值和意义。

Description

一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法 技术领域
本发明涉及一种医疗器械技术领域,具体涉及一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法。
背景技术
光动力疗法(Photodynamic Therapy,PDT)是利用光动力效应进行疾病诊断和治疗的一种新技术。其作用基础是光动力效应。这是一种有氧分子参与的伴随生物效应的光敏化反应。其过程是,特定波长的激光照射使组织吸收的光敏剂受到激发,而激发态的光敏剂又把能量传递给周围的氧,生成活性很强的单态氧,单态氧和相邻的生物大分子发生氧化反应,产生细胞毒性作用,进而导致细胞受损乃至死亡。相比传统疗法,光动力疗法具有创伤小、靶向性好、无耐药和毒副作用的优点。但是由于光动力疗法主要波长集中于600多纳米的红光波段,此波段在人体内吸收损耗大,一般只能传输几毫米至数十毫米量级,对于一些深层肿瘤,无法起到有效的光动力治疗作用。借助光纤、内窥镜和其他介入技术,可将激光引导到体内深部进行治疗,避免了开胸、开腹等手术造成的创伤和痛苦。目前采用含有光纤的穿刺针可以将光引入体内,但是由于需要将光从光纤中导出,针尖需要具有足够大小的孔洞以使光透出,增加了针头的直径。为克服穿刺阻力,光纤由坚硬的金属材料包裹,针管较粗,在穿刺过程中需要采用很大的压力使其穿刺,容易造成较大的创伤,破坏正常血管组织造成出血。因此,针对这一系列问题,本申请研究了一种记忆金属光纤穿刺针管。
此外,由于光纤端面一般仅有几微米至百微米量级,出射的激光对 组织的照射面积很小,需要一种匀光装置将激光均匀分布在病灶部位。一般来说,对匀光装置的要求为沿侧面出光,均匀发光长度为5mm-20mm左右,并且要足够细以利于在穿刺针、内窥镜等装置中使用。
目前已有多种散射型侧面发光匀光装置,通过光纤芯中的散射体(例如粉末、小球、光栅等)将光散射出光纤侧面。例如美国专利U.S.PatNos.5196005和5330465在光纤尾部的二氧化硅芯层中埋入了散射体粉末,并且散射体粉末的浓度随着长度增加而增加。U.S.PatNos.5269777中的散射体粉末选择在光纤的外包层中掺入,而不是掺杂在光纤芯层中。U.S.Pat No.4986628采用了聚合物中掺入散射体的办法。美国专利U.S.Pat Nos.6398778B1采用了在光纤中制作光纤光栅对光进行散射,光纤光栅是type II型布拉格光栅,通过光栅引起折射率调制将光沿光纤侧向散出。U.S.Pat No.5207669提出了将多模光纤的外包层沿光纤长度方向逐渐减薄的方式构成。由于外包层的减薄,光纤芯中传输的部分光通过疏逝波的方式向侧面耦合发出,剩下的继续在芯层中传输并持续耦合出光纤。
以上种种构成匀束器的办法具有一些不足点,包括制作特殊掺杂浓度的散射体和渐变规格的光纤光栅需要较高的加工工艺,不可避免的造成造价的上升;部分散射体结构在光强较强的时候容易产生热吸收导致的破损,从而破坏匀光器功能;由于散射体和光栅等是向侧向360度散射,无法控制侧向出光的方向,功率分散在径向360度之内,如果病灶部位在照射区域一侧,造成光线过于分散而一侧的病灶组织光功率密度不足。
发明内容
有鉴于此,本发明的目的是提供一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法,解决了现有技术中存在的不足。
本发明的目的是通过以下技术方案来实现:
本发明的一个发明点为提供一种匀出光的光纤穿刺针,其包括光纤,该光纤包括主体部,所述主体部与能够均匀出光的匀光器连接;
所述匀光器为由管状结构或棒状结构构成的导光装置,该导光装置包括其内壁具有反射效果的管套,该管套的侧面设有贯穿管套内外两侧并能够均匀出光的狭缝;
所述主体部的外围包裹有主体管,所述匀光器的外围包裹有由记忆金属构成的分瓣状针头,分瓣状针头在光照作用下升温产生形变从而打开使光纤的光从管套的最前端和侧面的狭缝射出;该分瓣状针头由多个锥形瓣构成;
当温度为T0时,由记忆金属构成的分瓣状针头中的各个锥形瓣闭合,闭合以后该分瓣状针头呈圆锥体状结构,且闭合以后该分瓣状针头恰好包裹在匀光器外;
当温度为T1时,由记忆金属构成的分瓣状针头中的各个锥形瓣打开,所述匀光器暴露在外面以使光从匀光器中均匀输出。
进一步地,所述导光装置为以下两种结构中的任意一种:(a)所述导光装置为内部具有空腔的管套,光通过管套内壁的反射进行传输,并从狭缝中均匀输出;(b)所述导光装置包括透明棒和管套,所述管套套合于透明棒外,光在管套的反射作用下沿着透明棒传输,并从管套的狭缝中均匀输出。
进一步地,所述光纤还包括头部,所述头部的后端与主体部连接,头部的最前端设有所述匀光器;所述头部外包裹有金属外套;所述金属外套上设有倒齿状结构以使其在前进时阻力小后退时阻力大,从而有效减小了穿刺需要的推力。
进一步地,所述导光装置的长度为5mm-20mm,导光装置的内径为0.1-2mm。
进一步地,所述主体管为含有多个螺旋圈的螺旋管,螺旋管的切缝为采用激光切割形成螺旋状切缝的螺旋结构;主体管的长度为1-2m。
进一步地,所述管套的内壁为具有金属膜层反射体的反光型内壁或先抛光处理再镀有具有反光效果的金属膜层。
进一步地,所述狭缝的形状包括条形、螺旋状或孔洞状,所述孔洞状的狭缝为由多个孔洞构成的条形的或螺旋状的狭缝。
进一步地,所述狭缝的大小为:狭缝宽度随长度变化满足公式①
Figure PCTCN2019074254-appb-000001
其中,d(z)为狭缝的宽度;L为管套的长度;z为延着光的传输方向,测定点狭缝某点处的长度;r为导光装置的内径;通过控制狭缝的宽度可以使出射的光均匀分布。该公式也是本发明的一个发明点。
进一步地,所述狭缝的出射透过率满足公式②
Figure PCTCN2019074254-appb-000002
其中,T(z)为在z处光从狭缝内出射的透过率。该公式也是本发明的一个发明点。
进一步地,透过率T(z)<1时,z处狭缝的宽度与公式①中d(z)的宽度一致;当透过率T(z)>1时,z处狭缝的宽度需要在公式①中计算所得的d(z)的基础上进行修正。
本发明的另一个发明点为提供一种所述的狭缝的制作方法,所述方法为:在管套上通过机械加工或刻蚀等方法制作能够匀出光的所述狭缝,所述狭缝的宽度d符合公式①计算所得的宽度,通过该方法所制得的狭缝,其各处光的透过率基本一致。
本发明的又一个发明点为提供一种匀光器的制作方法,所述方法为:A.若导光装置为一管套,则其制备方法为:准备管状结构的管套,然后在管套上制作能够匀出光的狭缝;B.若导光装置包括管套和透明棒,则其制备方法为:准备所述的透明棒,再在透明棒外面通过镀膜方式镀高反射金属膜构成反射型导光结构,所镀的金属膜构成了金属材质的所述管套。
本发明提供了一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法,其主要的有益效果为:
该穿刺针通过各个部件的相互协同作用,能够实现较快的在长血管 中进行传输的目的,如能顺利的穿行将近2米的血管长度;并能够实现较高的出光效率和治疗效果,在光动力肿瘤治疗中具有重要的应用价值和意义。并且该穿刺针管还能够应用在其它领域,如消除血管阻塞物或进行血管穿刺等。穿刺针中的匀光器可采用管套内金属镀膜等形式将光从管套侧面的狭缝中反射输出,同时通过控制狭缝的宽度使光沿管套径向保持均匀,实现了单侧线性匀光的功能,当然,狭缝可设置为螺旋状或孔洞状等,故也可实现螺旋线性出光或沿着单侧线/螺旋线点状出光。
此外,匀光器中狭缝的设置不仅能够扩大出光面积,且匀出光能够提升对于患处的照射效果,提高光的利用率,最终提高照射效率和治疗效果。更重要的是,其与无缝隙的金属管相比,其更柔软,即在刚性的基础上能够提高匀光器的柔性,使得其能够在血管中进行更好的行走。而且本发明巧妙的采用记忆金属的特性,并创造性的与体内温度、光的热效应等进行结合,实现了在传输过程中,闭合的分瓣状针头可进行穿刺,有利于在穿行过程中跨血管行走,实用性更强;而通过光的发热效应,使得在光照时将分瓣状针头打开,使光从匀光器中输出并直接照射到目的部位实现治疗等。
本申请通过匀光器的使用使得光的有效照射率大大提升,有利于光照与光敏剂的有效配合,减少光或光敏剂的浪费,从而增加治疗效果,降低成本。
在从权中,本申请还给出了缝隙宽度的公式,基本能够保证缝隙各处的出光均匀,使得匀出光的缝隙制作有一个量化的依据,制作更方便,效果更好。而且本发明通过在金属外套外设计倒齿状结构,然后配合振动马达,实现了前进方便、不容易后退的有效传输,有利于在血管中顺利行走。且金属外套的具体结构设置不仅能够保证强度和柔韧性,还有一个重要作用便是其能够与振动马达配合能够有规律的发生微笑形变,有助于在血管中前行。
该穿刺针能够用于治疗需要光照射的多种疾病中,尤其能够很好的用在光动力肿瘤学中,来照射有光敏剂的肿瘤组织,使光敏剂在光的照 射催化下发挥治疗肿瘤的效果。整体而言,临床的应用效果好,实用性强,具有较大的推广应用价值。
附图说明
图1是所述的光纤穿刺针闭合时的结构示意图;
图2是所述的光纤穿刺针打开时的结构示意图;
图3是不含有透明棒的所述导光装置的立体结构示意图;
图4是含有透明棒的导光装置的结构示意图;
图5是含有透明棒的导光装置的截面结构示意图;
图6是在狭缝不同地方的光透过率分布示意图;
图7是狭缝外1mm处的匀光效果二维示意图;
图8是图5中轴线处光强沿狭缝长度z的分布示意图;
图9是管套上螺旋狭缝的结构示意图;
图10是管套上另一种螺旋狭缝的结构示意图;
图11是管套上孔洞状狭缝的结构示意图;
图12是管套为锥形结构的结构示意图;
图13是实施例10所述的光纤穿刺针的结构示意图;
图14是光纤穿刺针头部和锥形瓣的结构示意图;
图15是光纤穿刺针头部和锥形瓣的截面结构示意图;
图16是光纤穿刺针头部的结构示意图;
图17是光纤穿刺针在振动马达的驱动下的结构变形示意图;
图18是分瓣状针头有光辐照时温度分布示意图;
图19是主体管的切面结构示意图(从内向外看);
图20是缠绕在光纤主体部外的主体管的横截面结构示意图;
图21是分瓣状针头闭合在一起时的横截面示意图;
图22是分瓣状针头打开时的横截面示意图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。以下提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通方法人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种匀出光的光纤穿刺针,其包括光纤,该光纤包括主体部8,所述主体部8与能够用于出光的匀光器2连接。如图1-2所示,由于从外部看不到光纤,故用虚线表示光纤。
如图3所示,所述匀光器2为由管状结构或棒状结构构成的导光装置,该导光装置包括其内壁具有反射效果的管套11,该管套11的侧面设有贯穿管套11内外两侧并能够均匀出光的狭缝12,则管套11内的光能够从狭缝12中均匀射出,该狭缝可以为贯穿管套的整个长度方向,也可以为管套长度方向的一部分,根据需要进行设置。
所述主体部8的外围包裹有主体管9,所述匀光器2的外围设有由记忆金属构成的分瓣状针头3,分瓣状针头在光照作用下升温产生形变从而打开使光纤的光从管套的最前端和侧面的狭缝射出;所述分瓣状针头3为椎体形,该分瓣状针头3由多个锥形瓣31构成,如图5-6所示。记忆金属包括但不限于镍钛合金、铜镍合金、铜铝合金、铜锌合金等。
当温度为T0时,如图1所示,由记忆金属构成的分瓣状针头3中的各个锥形瓣31闭合,闭合以后该分瓣状针头3呈圆锥体状结构,且闭合以后该分瓣状针头3恰好包裹在匀光器2外,光无法透出;将匀光器2包裹在分瓣状结构内,保护匀光器2,且在血管内穿行的过程中,圆锥体型的分瓣状结构方便在血管中行走,前进阻力小,后退阻力大,方便 前行。
当温度为T1时,由记忆金属构成的分瓣状针头3中的各个锥形瓣31打开,打开的样子如图2所示,则所述匀光器2暴露在外面,光纤中的光射入管套内,然后光再从管套侧面的狭缝中射出,当然光还可从管套最前端的开口中射出,并使射出的光照射至肿瘤上或其他患处。
所述匀光器可以为以下两种结构中的任意一种:①所述导光装置为内部具有空腔的管套,如附图3所示,此情况下,光纤与管套内部的空腔同轴心或轴线,以使光纤中的光能够顺畅的进入管套内,光在空的管套内通过管套内壁的反射进行传输,然后通过狭缝进行光的均匀输出;②所述导光装置包括透明棒13和管套11,所述管套套合于透明棒13外,如图4-5所示,此情况下,优选光纤与透明棒13紧密对接以使光高效的传递至透明棒13中,由于管套11的反射作用,光主要集中在透明棒13中进行传输,然后通过狭缝进行光的均匀输出。若管套最前端的开口不封闭,则光还可同时从管套最前端输出,若将其封闭,则光只从狭缝中输出,具体根据实际需要而定,优选同时从最前端和狭缝中输出。
作为进一步优选的实施方式,所述导光装置的长度为5mm-20mm,如10mm,导光装置的内径为0.1-2mm,即管套的内径为0.1-2mm,如0.4mm;外径根据实际需求设置,一般不超出光纤导管的外径,如0.6mm。该规格的匀光器能够较好的与本申请人之前所申请的一些光纤导管进行配合应用,实现体内深处肿瘤的高效率光照。采用光敏剂治疗肿瘤时,光照以及光照的效果对于治疗效果起着重要作用,因此,高效的照射可实现提升治疗效果的作用。
作为进一步优选的实施方式,所述管套11内壁具有抛光和/或镀有金属膜层,这样的内壁对光的耗损少,使光的光传输效率提升。
优选所述管套11的内壁为具有金属膜层反射体的反光型内壁,或先抛光处理再镀有具有反光效果的金属膜层,则使得管套内壁形成高反射效果的膜层。
优选所述金属膜层包括银膜或金膜,效果更优。
作为进一步优选的实施方式,所述管套11包括金属管套、聚合物管套或石英管套。但由于金属的折射率低,反射性强,故优选金属管套,对于实现本申请的目的或技术效果有益。
作为进一步优选的实施方式,所述透明棒13为采用透明材质构成的实心棒状结构,所述透明材料包括石英或聚合物等;所述透明棒的折射率优选为1.5,对光的传输效率高。
作为进一步优选的实施方式,所述狭缝12包括条形、螺旋状或孔洞状的狭缝。
在本实施例中,在使用过程中,将该匀光器一端连接光源,该光源可以是激光器通过光纤引入,然后光纤中的光射入管套内,也可以是非相干光通过聚焦引入。将匀光器缝隙部位对准需要照射部位,形成线性均匀分布的光场,同时根据需要转动匀光器对照射部位进行扫描。
实施例2
在实施例1的基础上,能够均匀出光的狭缝12需要满足以下条件,即狭缝宽度随长度变化满足公式①
Figure PCTCN2019074254-appb-000003
其中,d(z)为z处狭缝的宽度;L为管套的长度;z为延着光的传输方向,测定点z处的狭缝长度;r为导光装置的内径(即管套的内径);通过该公式①来控制狭缝的宽度可以使出射的光均匀分布。
所述狭缝12中光的透过率满足公式②
Figure PCTCN2019074254-appb-000004
其中,T(z)为在z处光从狭缝12内出射的透过率,L为管套的长度;z为延着光的传输方向,测定点z处的狭缝长度;r为导光装置的内径。
当透过率T(z)<1时,z处狭缝的宽度与公式①中d(z)的宽度基本一致。
公式(12)在z=L时会出现透过率无限大或缝宽无限大的情况,因此在透过率T>1时需要对实际缝宽进行修正。即当透过率T(z)>1时,z 处狭缝的宽度需要在公式①中计算所得的d(z)的基础上进行修正,修正的方法为:以T(z)<1时透过率T(z)的值为基准,采用模拟软件对出射光场进行模拟计算,根据计算结果修正实际缝宽,使出射光场均匀度达到最好。
所述模拟软件可用LightTools软件,该软件能够对T(z)>1时的情况进行有效修正。
在本实施例中,若z=L处不设置狭缝,即沿着光传输方向,最前端的侧面没有狭缝,则也可不进行数据修正。
实施例3
在实施例1或2的基础上,光在管套中传输过程中,部分光通过侧面的狭缝输出。通过控制狭缝的宽度可以使出射的光均匀分布,下面对狭缝宽度d(z)的表达式进行推导。
首先假设管套内的光传输方向为z方向,管套的内径为r,管套内在z处的光功率为P(z),光功率密度I(z)与P(z)的关系为:
Figure PCTCN2019074254-appb-000005
或者
P(z)=πr 2I(z)   (2)
假设z处狭缝的宽度为d(z),则在z处光从管套内出射的透过率T(z)为:
Figure PCTCN2019074254-appb-000006
因此可以得到z处从缝隙中透过的光功率为:
dP(z)=-I(z)T(z)2πrdz   (4)
现在需要让透过的光功率保持均匀,即要求dP(z)是一个恒定的值,因此得到:
I(z)T(z)2πr=const=c    (5)
其中,const和c均指常量;
把(5)带入(4)中可得:
dP(z)=-cdz   (6)
求解(6),并根据边界条件P(0)=P 0、P(L)=0,可得:
Figure PCTCN2019074254-appb-000007
通过(7)可知
Figure PCTCN2019074254-appb-000008
而根据(5)和(8)得到:
Figure PCTCN2019074254-appb-000009
再把(1)带入(9)得到:
Figure PCTCN2019074254-appb-000010
把(7)带入(10)后得到:
Figure PCTCN2019074254-appb-000011
再根据(3)得到:
Figure PCTCN2019074254-appb-000012
按照(12)式制作随着长度z而改变宽度d(z)的狭缝,即可实现透过率按照(11)式改变的狭缝,使得出射光强沿长度z保持不变。
实施例4
在上述任意一个实施例的基础上,若采用长度为L=10mm,内径r=200um,外径r=250um的金属空心管构成如图3所示的管套11,光传 输方向为图3箭头所示的z方向。沿z方向通过激光切割形成一条缝隙,缝隙宽度按照实施例1中的公式①(即实施例3中的公式(12))分布,形成如图6所示的透过率变化。
在实际制作过程中,可将L=10mm分为10个节点,每个节点的缝隙宽度根据理论计算按照表1第二列所示。公式(12)在z=L时会出现透过率无限大或缝宽无限大的情况,参见图6所示,因此在透过率T≥1时,则缝隙宽度d(z)为整个管道的周长或大于周长,这显然不合理,故需要对实际缝宽进行修正。修正方法:通过模拟软件对出射光场进行模拟计算(如采用光学建模软件:LightTools),根据计算结果修正实际缝宽,使出射光场均匀度达到最好。此外,还可根据附图6的结果进行简单修正,或者附图6结合光学建模软件进行修正,另外,还可根据经验进行适宜性的修正。只要采用上述公式,其修正很简单。
在本实例中,按照公式(12)计算的缝宽和实际缝宽对照如下表所示。按照表1第三列(即实际制作的宽度d(z))数据制作的狭缝如图3和图4所示。图7是在距离狭缝1mm外放置的屏上的光强二维分布,图8是该光强沿中轴线的强度分布,由图7-8可知,缝隙的不同长度中个,其光场强度基本一致,均匀度很高。
表1缝隙理论宽度和实际宽度对照
位置z(mm) 理论计算d(z)(um) 实际d(z)(um)
0 12.56 12
1 13.95 13
2 15.70 15
3 17.94 18
4 20.93 20
5 25.12 25
6 31.40 31
7 41.86 41
8 62.80 45
9 125.6 75
10 INF 110
在上表1中,z为1-8mm中的任意长度时,不进行修饰也可以,即通过本发明公式所计算的缝隙宽度d(z)能够使出光保持基本一致,有时为了更精确或使宽度为整数时,会进行稍微的更改或修饰。
在实际应用中,通常,通过本发明公式所计算的理论宽度d(z)等于或大于半径的一半时(如表1中z=9-10mm时),其出光强度需要进行稍微的修饰,尤其是当T≥1时,修正方法可参考光学模拟软件进行便可,本实施例采用LightTools软件。
实施例5
在上述任意一个实施例的基础上,一种匀光器的制作方法,所述方法为:(a)若导光装置为空心的管套,即实施例1中①所述的管套,则其制备方法可为:准备管状结构的管套,如金属管套,然后在管套上制作所述的狭缝;优选准备内壁抛光和/或镀高反射膜(如金膜或银膜)的管道,如内壁抛光并镀银膜或金膜;(b)若导光装置为含有透明棒的结构,即如实施例1中②所述的导光装置,则其制备方法为:准备由石英、聚合物等材料制成的透明棒,再在透明棒外面通过镀膜方式镀高反射金属膜构成反射型导光结构,所镀的金属膜构成了金属材质的管套。
实施例6
在上述任意一个实施例的基础上,一种狭缝为的制作方法,所述方法为:在导光装置的管套11上通过激光切割或刻蚀等方法制作贯穿管套内外两侧的所述狭缝12,狭缝的宽度d为通过公式①(即
Figure PCTCN2019074254-appb-000013
)计算所得的宽度数值。若根据公式②,含有T≥1的情况,则可进行稍微的修饰。通过该方法所制得的狭缝,其各处透过的光功率基本一致。
实施例7
在上述任意一个实施例的基础上,所述狭缝12的形状包括条形、螺 旋状或孔洞状。(1)条形的狭缝如图3~4所示;(2)螺旋的狭缝参考图9和10,对于图9,通过改变螺旋线的螺距和占空比改变透射比率T;(3)所述孔洞状的狭缝为由多个孔洞14构成的条形的或螺旋状的狭缝,由孔洞14构成的条形的狭缝如图10所示,其是通过改变圆形的直径和分布密度改变投射比率T;由孔洞构成的螺旋状的狭缝即为将图9或10中的缝隙采用孔洞来替代。此外,管套可为恒定半径的管套,还可以为半径可变的管套,即半径r(z)可随z进行变化,如形成图12所示的锥形。但无论什么类型的狭缝以及半径是否恒定的管套,其在狭缝中的任意处z均满足公式(11)和(12)的透过率和宽度。
实施例8
在上述任意一个实施例的的基础上,如图13-15,所述光纤还包括头部1,所述头部1的后端与主体部8一体连接或固定连接,头部1的最前端(即头部自由端)设置有所述匀光器2。所述头部1外包裹有金属外套4,所述金属外套4紧密包裹在头部1的外围以使光纤的头部1和金属外套4连接为一体。
所述金属外套4上具有倒齿状结构,如图13-15所示,此种结构在前进时具有很小阻力,在后退时阻力较大,从而能够以施加微小冲击方式,以递进方式进行穿刺,有效减小了穿刺需要的压力。
作为进一步优选的实施方式,如图13-15所示,所述金属外套4为螺旋状的金属外套,该金属外套4为在金属管上进行激光切割形成螺旋状切缝的螺旋结构以使其具有一定强度同时增加一定的柔韧性;则相邻两个切缝之间的螺旋片即可为倒齿状的金属片,如图12-14所示。
作为进一步优选的实施方式,如图13-16所示,构成金属外套4的金属片41呈前端的厚度小于后端的厚度的倒齿状结构以使光纤穿刺针更容易向前行走且不容易后退。
更优选地,如图16所示,由于金属片前端的厚度c太薄,在附图中不容易标示其厚度,故附图中只标示了c的位置,没有给出其厚度关系。 在金属外套4的倒齿状结构中,即构成金属外套的金属片的前端的厚度小于后端的厚度的结构中,金属片前端的厚度c为50-70μm,金属片后端的厚度d为90-110μm,且前端和后端的厚度差为30-50μm。该厚度的把控对于有效顺畅的传输前进比较重要,厚度差太大则要么会增加金属外套外径,要么需要减小金属外套的内径,则对整体穿刺针管的影响较大,而且厚度差大,金属片后侧面的厚度增加较大,反而会增加整体的前进阻力,且对于细小血管而言,还会增加对血管内壁的损伤程度。若厚度差太小的话,则起不到有助于前进、防止倒退的最用。
更优选地,在金属外套4中,如图16所示,切缝的宽度a为0.1-0.2mm,如0.1mm、0.15mm、0.2mm等等,构成螺旋结构的金属片41的宽度b为0.2-1mm,如0.2mm、0.4mm、0.6mm、0.8mm、1mm等等;切缝的宽度a与金属片41的宽度b的数据以及二者的配合关系直接影响着能否穿过血管以及穿过血管的顺畅性,而且还影响着从一个血管刺穿进入另一个血管的刺入强度。宽度a和宽度b的太宽太窄都会影响着其柔韧性和强度,强度太强则无法通过血管的弯曲处,且对血管内壁的损伤度很大;柔性太强,则无法穿过长度较长的血管,1米以内的长度较容易,但1米以上的血管很难穿过,且使用者在体外不好控制力度和方向,从一个血管刺穿进入另一个血管时,由于强度太低也不好刺穿,因此,强度太强和柔性太强度无法实现达到人体内深度的血管或器官中,如肝脏肿瘤中。只有合适的宽度a配合合适的宽度b方可实现良好的效果。
作为进一步优选的实施方式,所述光纤穿刺针管留在体外的一端连接有能够进行前后振动的动力装置以使其在震动的同时能够给光纤穿刺针管一个向前的压力。
所述动力装置优选为声波振动马达,该动力装置的前后振动幅度为10um-500um,振动频率为10Hz-1000Hz。
如:在穿刺时,将穿刺针管连接声波振动马达,其振动频率为100Hz,振动幅度为50um。如图17所示,在穿刺针管振动时,穿刺针管整体结 构发生形变传导振动,当振动向前时穿刺针发生微小形变,如A处所示,包括穿刺针管的弯曲及金属外套4中螺距的收缩,该弹性形变促使针尖向前运动,克服阻力向前穿刺;当振动向后时,如B处所示,由于金属外套4具有倒齿状结构,摩擦力远大于向前运动,针尖倾向于不动而拉动穿刺针管整体向前运动。在多次振动同时施加额外压力的作用下,穿刺针管持续向前穿刺。此种穿刺方式所需施加压力小于传统穿刺针,因此允许光纤穿刺针更细更为柔软,同时能够完成穿刺效果。
作为进一步优选的实施方式,当光纤内没有光出射时,即激光器与光纤穿刺针管体外一端连接,激光器没有打开时,在体内传输的分瓣状针头的温度为T0,分瓣状针头中的各个锥形瓣合拢为针状或圆锥体形;当光纤有光出射时,即与光纤连接的激光器打开使光传输给光纤后,由于光纤的热效应,即当光由锥形光纤出射并照射在记忆金属上时,使得由记忆金属构成的分瓣状针头3在受光照后温度逐渐升高为T1,则分瓣状针头中的各个锥形瓣打开,即超过其相变温度而产生向外的预制形变,呈打开状,匀光器裸露出来,光从匀光器的狭缝中均匀出射,并可同时从管套最前端的端头出射。
温度T0可为37℃,温度T1可为50℃;例如:在温度T0(例如37℃)时,将分瓣状针头3预制为闭合形状,在温度为T1(例如50℃)时,分瓣状针头3预制为打开形状。则在体内穿刺时,光纤内不通光,头部的分瓣状针头3温度为体温T0(37℃),分瓣状针头3闭合实现传输穿刺。在穿刺到预定地点后,光纤内通100mW波长为650nm激光,通过光纤匀光器辐射到由记忆金属构成的分瓣状针头3上;如图18所示,图18是在穿刺针头部的外部具有500W/(m2.K)对流导热情况(液体对流的典型散热率),在100mW激光作用下温度可升高到70.5℃,超过T1温度(50℃),产生形变而打开。
作为进一步优选的实施方式,所述锥形瓣31为其上各个点均曲率一致的、由弧形面构成的锥形瓣,则使得整体穿行效果更好。
所有所述锥形瓣31的形状和大小均一致,则各个锥形瓣31上分布 的力更均匀,整体力度更大。
分瓣状结构中含有2-5个锥形瓣,优选2个锥形瓣或3个锥形瓣;瓣数太多则每个锥形瓣太小,其强度不够。
作为进一步优选的实施方式,所述头部的长度l为2.5-10mm,如5mm,如图13所示。分瓣状针头3的长度L为5-30mm,如12mm,比匀光器略长,分瓣状针头3或锥形瓣31的厚度为0.06-0.12mm。当其闭合时,其恰好包裹在匀光器2的外面,可优选匀光器2与分瓣状针头3之间无缝隙,则匀光器2对于分瓣状针头3具有辅助增强其强度的作用,再配合特定厚度的锥形瓣31,有利于穿刺针管的传输、刺入等,具有增效作用。
作为进一步优选的实施方式,所述主体管9的长度为1-2m,如1.8m,光纤主体部8与主体管9的长度一致,主体管紧密包裹在光纤的主体部8外以使二者成为一体,方便传输。
光纤的主体部8和头部1的直径可为400μm,其可为石英光纤,所述金属外套4和主体管9的外径可为600μm,内径可为400μm。
作为进一步优选的实施方式,当各个锥形瓣31闭合时,相邻两个锥形瓣31中的相互靠近的两个侧边紧密靠合,该分瓣状结构构成了全封闭的圆锥体状结构,更好的保护光纤的匀光器,匀光器在传输过程中受到污染,影响后期出光的照射率,从而会影响肿瘤部位上光敏剂的作用。
在本实施例中,使用时,将头部端首先刺入血管中,然后在血管中传输,穿刺针管的体外一端可连接振动马达,协助穿刺针管通过血管达到预定部位,如体内的肿瘤(如肝脏肿瘤)中等。
实施例9
在实施例8的基础上,所述主体管9为含有多个螺旋圈的螺旋管,螺旋管的切缝为采用激光切割形成螺旋状切缝的螺旋结构。
如图19所示,图19为主体管的切面示意图,且为从主体管内向外看的视图;所述主体管9中,切缝的宽度a为0.02-0.2mm,如0.05mm、 0.1mm、0.15mm等,体管9中构成螺旋结构的螺旋片的宽度d为0.5-3mm,如1mm,厚度为0.05-0.1mm,如0.08mm。主体管9的长度将近2米,其穿入人体通常就有1-1.8m,且人体血管粗细不一、还有一定的弯曲度,如此长的距离、如此特殊的血管环境,对其强度和柔韧性要求很高,故切缝的宽度a、螺旋片的宽度d以及其厚度的数据以及配合关系直接影响着能否穿过血管以及穿过血管的顺畅性,甚至还影响着头部刺入肿瘤血管壁的强度。宽度a和宽度d的太宽太窄都会影响着其柔韧性和强度,只有合适的宽度a配合合适的宽度d方可实现良好的效果。
所述主体管9为生物医用金属材料,包括但不限于不锈钢、合成纤维、碳纤维、钛合金、金和银中的一种,优选不锈钢,从整体上看,该主体管其实是通过一根不锈钢丝包裹并螺旋缠绕于光纤的主体部8外围的绕丝层,当然,也可为两根或多根绕丝缠绕。
如图19-20所示,所述主体管9外设有聚合物外套106以增加主体管9的密封性和减小阻力;聚合物外套106的材料可为聚酰胺或聚丙烯等等,其它很多聚合物都可以。所述聚合物外套106的外侧涂敷有亲水涂层107以增加血液相容性。所述亲水涂层107为采用化学稳定的材料制成,包括但不限于聚四氟乙烯、硅橡胶、聚乙烯、聚氯乙烯、氟碳聚合物和聚氨酯。涂覆亲水涂层,减小在血管中的阻力,能够通过内环境复杂的长血管。
本实施例中的亲水涂层107可采用疏水涂层替代。
实施例10
在实施例8或9的基础上,如图21-22所示,在锥形瓣31中,用于与相邻锥形瓣靠合或分开的侧边为斜面105,即一个锥形瓣31有两个侧边,每个侧边均为斜面结构。且所有锥形瓣31中的斜面105方向均一致,即按顺时针或逆时针的方向一致,则确保了相邻两个锥形瓣中相互靠合的两个斜面能够恰好对合在一起,即一个为从内部向外逐渐倾斜,一个为从外部向内倾斜,则二者可恰好配合在一起,使得对合在一起后其内表面和外表面均为光滑的弧形面。
设计为斜面结构,相当于侧边的宽度变宽,则使得相邻两个锥形瓣31中相互靠合时的接触面积增大,则分瓣状针头3闭合以后,各个锥形瓣31之间的结合强度更大,所表现出来的针状结构的刺穿效果更好。更重要的是,由于侧边设计为斜面105,使得相邻两个锥形瓣31相互靠合时的接触宽度增大,密封性更好,故在血管中传输过程中,不容易使内部的光纤匀光器2受到浸染,从而影响最终的出光。
本实施例的附图21-22中是以四瓣锥形瓣31为例,其实,两瓣、三瓣都可以。
实施例11
在实施例8-10中任意一项的基础上,在锥形瓣31中,与相邻锥形瓣31靠合或分开的侧边或斜面105上设有第一柔性层以使锥形瓣31之间的连接强度更高密封性更好,密封性更好能够更好的防止血管等中的液体污染匀光器,且密封性更好也能有助于提高闭合的分瓣状针头的强度。
优选地,所述锥形瓣的尖端的内侧面设有第二柔性层以使分瓣状结构闭合时锥形瓣之间的靠合力强度更高,密封性更好。
第一柔性层和第二柔性层的厚度可为0.005-0.04mm,第一柔性层和第二柔性层的材料均可为聚四氟乙烯、聚酰胺或聚丙烯等。
实施例12
一种匀出光的记忆金属光纤穿刺针的应用,其在人体内血管内行走、血管壁穿刺、血管内阻塞物的刺穿以及肿瘤光动力学中的应用;所述应用方法如下:温度T0可为37℃,温度T1可为50℃;
(1)在光纤穿刺针管留在体外的一端连接声波振动马达,由于在温度T0时(如37℃),分瓣状针头闭合,光纤的匀光器被封闭在分瓣状针头内,然后刺入血管中,在血管中进行行走;
(2)当遇到待刺穿的位置时,如阻塞物或血管壁等,则刺入其中。
(3)当给光纤连接激光器使光纤发出一定波长的光时,如通100mW 波长为650nm激光,则匀光器的温度增高,温度传递给分瓣状针头使其温度也增高,当温度达到T1(如50℃)时,分瓣状针头打开,匀光器2露出,则匀光器可对待照射部位进行高效照射。
如果该光纤穿刺针管是用于光动力肿瘤治疗中,若介入治疗的是肝脏肿瘤,则光纤穿刺针管通过股动脉穿刺进入肝脏动脉,最后进入肝脏肿瘤内血管,将激光器打开,温度升高,分瓣状针头打开,匀光器上的光照射在已注射光敏药物的肿瘤瘤体,使瘤体内的光敏药物(例如PHOTOFRINR)发生光化学反应产生单态氧继而引发肿瘤瘤体的坏死及凋亡,从而达到治疗肿瘤的目的。
本发明的出光效率高,出光效果好,治疗效率高。采用本发明中的光纤穿刺针,在血管内行走容易、顺畅,基本可在10分钟以内或左右从股动脉进入肝脏动脉,最后进入肝脏肿瘤内血管。其光纤的照射效率高、光的综合利用率高,同样时长的光照,本申请的治疗率高,在大鼠实验中,有狭缝比没有狭缝其治疗率高2-5%。此外,本发明中的穿刺针还可刺穿血管壁等实现更好的跨血管行走等。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种匀出光的光纤穿刺针,其包括光纤,其特征在于:该光纤包括主体部,所述主体部与能够均匀出光的匀光器连接;
    所述匀光器为由管状结构或棒状结构构成的导光装置,该导光装置包括其内壁具有反射效果的管套,该管套的侧面设有贯穿管套内外两侧并能够均匀出光的狭缝;
    所述主体部的外围包裹有主体管,所述匀光器的外围包裹有由记忆金属构成的分瓣状针头,分瓣状针头在光照作用下升温产生形变从而打开使光纤的光从管套的最前端和侧面的狭缝射出;该分瓣状针头由多个锥形瓣构成;
    当温度为T0时,由记忆金属构成的分瓣状针头中的各个锥形瓣闭合,闭合以后该分瓣状针头呈圆锥体状结构,且闭合以后该分瓣状针头恰好包裹在匀光器外;
    当温度为T1时,由记忆金属构成的分瓣状针头中的各个锥形瓣打开,所述匀光器暴露在外面以使光从匀光器中均匀输出。
  2. 根据权利要求1所述的匀出光的光纤穿刺针,其特征在于:所述导光装置为以下两种结构中的任意一种:(a)所述导光装置为内部具有空腔的管套,光通过管套内壁的反射进行传输,并从狭缝中均匀输出;(b)所述导光装置包括透明棒和管套,所述管套套合于透明棒外,光在管套的反射作用下沿着透明棒传输,并从管套的狭缝中均匀输出。
  3. 根据权利要求1所述的匀出光的光纤穿刺针,其特征在于:所述光纤还包括头部,所述头部的后端与主体部连接,头部的最前端设有所述匀光器;
    所述头部外包裹有金属外套;所述金属外套上设有倒齿状结构以使其在前进时阻力小后退时阻力大,从而有效减小了穿刺需要的推力。
  4. 根据权利要求2所述的匀出光的光纤穿刺针,其特征在于:所述导光装置的长度为5mm-20mm,导光装置的内径为0.1-2mm;
    所述管套内壁具有抛光和/或镀有金属膜层以使其内壁光传输效率提升;
    所述透明棒为采用透明材质构成棒状结构,所述透明材料包括石英或聚合物;所述透明棒的折射率为1.5;
    所述主体管为含有多个螺旋圈的螺旋管,螺旋管的切缝为采用激光切割形成螺旋状切缝的螺旋结构;主体管的长度为1-2m。
  5. 根据权利要求2所述的匀出光的光纤穿刺针,其特征在于:所述管套的内壁为具有金属膜层反射体的反光型内壁或先抛光处理再镀有具有反光效果的金属膜层;
    所述狭缝的形状包括条形、螺旋状或孔洞状,所述孔洞状的狭缝为由多个孔洞构成的条形的或螺旋状的狭缝。
  6. 根据权利要求1-5中任意一项所述的匀出光的光纤穿刺针,其特征在于:所述狭缝的大小为:狭缝宽度随长度变化满足公式①
    Figure PCTCN2019074254-appb-100001
    其中,d(z)为狭缝的宽度;L为管套的长度;z为延着光的传输方向,测定某点处的狭缝长度;r为导光装置的内径;通过控制狭缝的宽度可以使出射的光均匀分布。
  7. 根据权利要求6所述的匀出光的光纤穿刺针,其特征在于:所述狭缝的出射透过率满足公式②
    Figure PCTCN2019074254-appb-100002
    其中,T(z)为在z处光从狭缝内出射的透过率。
  8. 根据权利要求7所述的匀出光的光纤穿刺针,其特征在于:透过率T(z)<1时,z处狭缝的宽度与公式①中d(z)的宽度一致;
    当透过率T(z)>1时,z处狭缝的宽度需要在公式①中计算所得的d(z)的基础上进行修正。
  9. 一种狭缝的制作方法,其特征在于,权利要求1-8中任意一项所述的狭缝的制作方法为:在管状的导光装置上通过机械加工或刻蚀等方 法制作能够匀出光的所述狭缝,所述狭缝的宽度d符合权利要求6公式①计算所得的宽度,通过该方法所制得的狭缝,其各处光的透过率基本一致。
  10. 一种匀光器的制作方法,其特征在于,所述方法为:A.若导光装置为权利要求2中的①所述的管套,则其制备方法为:准备如权利要求1-5中任意一项所述的管套,然后在管套上制作能够匀出光的所述狭缝;B.若导光装置为权利要求2中的②所述的结构,则其制备方法为:准备所述的透明棒,再在透明棒外面通过镀膜方式镀高反射金属膜构成反射型导光结构,所镀的金属膜构成了金属材质的所述管套。
PCT/CN2019/074254 2018-11-09 2019-01-31 一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法 WO2020093616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811332047.2 2018-11-09
CN201811332047.2A CN109603010B (zh) 2018-11-09 2018-11-09 一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法

Publications (1)

Publication Number Publication Date
WO2020093616A1 true WO2020093616A1 (zh) 2020-05-14

Family

ID=66004115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074254 WO2020093616A1 (zh) 2018-11-09 2019-01-31 一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法

Country Status (2)

Country Link
CN (1) CN109603010B (zh)
WO (1) WO2020093616A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129775B (zh) * 2020-09-23 2023-03-24 哈尔滨工业大学 一种匀光棒条形光源及基于该光源的光学元件损伤检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100016930A1 (en) * 2004-11-16 2010-01-21 Visualase, Inc. Light diffusing tip
US20120300498A1 (en) * 2011-05-23 2012-11-29 Cal-Comp Electronics & Communications Company Limited Light guide element, light source module, and display
CN202843727U (zh) * 2012-02-15 2013-04-03 浙江海洋学院 一种可变角尖齿分叉针芯
CN106963992A (zh) * 2017-03-22 2017-07-21 尚华 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
CN107376132A (zh) * 2017-07-17 2017-11-24 尚华 一种新型光纤导管及其制备方法
CN108143469A (zh) * 2016-12-02 2018-06-12 潘湘斌 一种穿刺鞘管
CN108671415A (zh) * 2018-05-22 2018-10-19 西安雅泽泰克医疗科技有限公司 一种医用光纤及激光治疗仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203107075U (zh) * 2013-03-01 2013-08-07 重庆医科大学 可视化穿刺系统
CN105520783A (zh) * 2015-11-30 2016-04-27 李昭中 一种高温汽化肿瘤治疗机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100016930A1 (en) * 2004-11-16 2010-01-21 Visualase, Inc. Light diffusing tip
US20120300498A1 (en) * 2011-05-23 2012-11-29 Cal-Comp Electronics & Communications Company Limited Light guide element, light source module, and display
CN202843727U (zh) * 2012-02-15 2013-04-03 浙江海洋学院 一种可变角尖齿分叉针芯
CN108143469A (zh) * 2016-12-02 2018-06-12 潘湘斌 一种穿刺鞘管
CN106963992A (zh) * 2017-03-22 2017-07-21 尚华 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
CN107376132A (zh) * 2017-07-17 2017-11-24 尚华 一种新型光纤导管及其制备方法
CN108671415A (zh) * 2018-05-22 2018-10-19 西安雅泽泰克医疗科技有限公司 一种医用光纤及激光治疗仪

Also Published As

Publication number Publication date
CN109603010B (zh) 2019-07-26
CN109603010A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
AU725320B2 (en) Phototherapeutic apparatus
JP3648555B2 (ja) カラム状環境を照射する改良された光線治療用装置
JP2882818B2 (ja) レーザ光の照射装置
US5908415A (en) Phototherapy methods and apparatus
CN200941530Y (zh) 一种半导体激光散斑发生装置
CN107376132B (zh) 一种新型光纤导管及其制备方法
WO2020093615A1 (zh) 一种反射型匀光器以及其制备和应用
US20230077399A1 (en) Anti-microbial blue light systems and methods
CN110339489B (zh) 一种新型的血管光纤导丝
WO2020093616A1 (zh) 一种匀出光的光纤穿刺针及狭缝和匀光器的制备方法
WO2020019306A1 (zh) 一种光纤穿刺针管及其应用
CN109331345B (zh) 一种能够光纤穿刺的光动力治疗诊断装置
US10463876B1 (en) Photodynamic therapy diagnostic device capable of optical fiber puncture
WO2020019307A1 (zh) 一种记忆金属光纤穿刺针管
CN107213554B (zh) 一种介入用的液态光传导装置
US20220161046A1 (en) Catheter and light irradiation system
CN109331346B (zh) 一种记忆金属光纤穿刺针管
CN209437897U (zh) Atp镀金发光器
CN109331347B (zh) 一种光纤穿刺针管
EP1527798A2 (en) Diffusive tip assembly
US10300295B2 (en) Liquid light conducting device used in intervention
Zharov et al. Comparison possibilities of ultrasound and its combination with laser in surgery and therapy
RU2452454C1 (ru) Устройство для бесконтактной ультразвуковой обработки биотканей
AU5195700A (en) Phototherapeutic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881553

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19881553

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19881553

Country of ref document: EP

Kind code of ref document: A1